_ Gregor V. BOCHMANN

>

INFORMATION PROCESSING LETTERS

- Recelved 13 May 1976, revised version received 29 July 1976

QOctober 1976

COMMENTS ON MONITOR DEFINITION AND IMPLEMENTATION *

- De'partement d'Informati;jue, Université de Montréal, Montréal, Canada

Monitors, scheduiic:z, synchranization, mutual exclusion, monitor implementation

. 'The concept of monitors has been proposed as a
* structuring tool for the design of systems of closely
racting processes [1,2]. In ref. [2], Hoare gives
 different d. .criptions of the monitor concept:
informal intruduction of the concept, an algorithm
interpreting monitors in terms of semaphores [3],

fections of a monitor. We point out in this note that
_ the urgent semaphore of Hoare’s interpretation algo-
fithm is not needed for obtaining a monitor imple-
mentation that sztisfies the given proof rules.
- We take tiie view that the ruies for scheduling con-

'eumnt interacting processes should be divided into
_ two parts: (z) the rules that are sufficient for obtain-
“ing a correct operation of the whole system, and (b)
 the rules that increase the efficiency of the resulting
ule. In the case of monitors, the basic scheduling
,as{mﬂ'wt for the correct aperation of the moni-
 tor coustruct in general) speclfy in what order the
‘monitor procedur¢ calls of the different pfocesses are
executed. These rules are:
i"‘i(i) mutual exclusion of the different calls on proce-
7 - dures of the same monitor,
_(b) immediate resumption of processes waiting on a
~~ condition variable, as soon as the condition is sig-
, nalled,

{c) otherwise fair scheduling of waitiug processes.
- More explicitly, these rules can be expressed as

. This work was supported in part by the National Research
- Councii of Canada and the Ministere de 'Education du
Qucbec Dc;:z tment d'Informatique, Universite de

- MOHu;&. paslation #233.

116

| proof rules that can be used for verifying the cor-

follows: Mutual exclusion: if a monitor is written

such that a certain invariant assertion I about the
local varicbles of the monitor holds (1) after initializa-
tion, (2) before returr..ig from each monitor proce-

. dure, and (3) before each wait and signal operation

within any monitor procedure, then the same asser-
tion can be assumed to hold also (1) at the entry to
each monitor procedure, and (2) after each wait and
signal operation within any monitor procedure.

Immediate resuniption: If a monitor is written
such that a certain assertion B holds before each signal
oneration of a certain condition variable, then the
same assertion can be assumed to hold also after each
wait operation referring to the same condition varia-
ble. (The assertion B describes the condition(s) under
which a waiting process wishes to be resumed).

These rules for mutual exclusion and immediate

‘resumption are equivalent to Hoare’s proof rules [2].

- Fair scheduling, ia the sense of Brinch-Hansen 1],
means that the priority rule for selecting a delayed
process for continuation must be such that no process

- can be delayed indefinitely in favor of more urgent
processes.

Since monitors are normally used for scheduling
resources, it is important that the execution of the
monitor procedures are much faster than the resource
they schedule (to avoid keeping the resource idle).
Therefore the fair scheduling of the monitor calls has
a strong influence on the system efficiency. In particu-
lar, processes that wait for entering the monitor should
be given on higher priority than processes that are

ready for executing code in some non-critical region.

Hoare [2] gives an interpretation of monitors in



Volume 5, number 4

terms of semaphores. He uses a semaphore mutex for
establishing mutual exclusion, a semaphore urgent on
which those processes wait that have executed a signal
operation, and one semaphore for each condition vari-

aila An whish thaoa cnenncoans wrnit that heova awass

a0:C O WniiCni uiose PIULERCY wail uial nave UACLU!CU
a wait operation for the corresponding condition. As-
suming fair scheduling for the processes waiting on a
given semaphore, Hoare’s interpretation algorithm
can be shown to satisfy the above three basic monitor
scheduling rules. (We note that specifying the monitor
interpretation in terms of semaphores does not neces-
sarily mean that monitors must be implemented that
way. It is just a convenient way of describing how
monitors function.)

The following interpretation algorithm is similar
and also satisfies these rules, but it is simpler since it
does not use the semaphore urgent. The actions to be
executed at the different occasions are the following:

entry to a monitor procedure:
P (mutex)

exit from a monitor procedure:
V (mutex)

wait on a certain condition:

condcount := condcount +1;
¥ (mutex);

P (condsem);

condcount := condcount —1;

signal the same condition:
if condcount > Q then {¥ (condsem); P (mutex)} .

If a signal operation is the last operation of a proce-
dure body, it can be combined with the monitor exit
as follows: :

if condcount > 0 then V (condsem)
else ¥ (mutex)

A similar monitor interpretation has already been

described by Saxena [4]. The diiference, compared

to Hoare’s interpretation, is that the processes that
execute a signal operation have no priority for con-
tinuing the monitor procedure, over the processes
that wait for beginning the executior of a monitor
procedure call. Since the basic monitor definition
given above only specifies that the scheduling must

be fair, we can say that this difference is a question of

INFORMATION PROCESSING LE1TERS

October 1976

efficiency only. More detailed discussions of monitor
implementat:. -5 ar. i their «fficiency can be feund in
refs. [4] and |3).

Hoare [2] mentions Dahl’s suggestion that signals
should always be the last uperation of a monitor pro-
cedure. This restriction is in fact :ealized 1:: *he moni-
tors of Brinch—Hansen’s Concurrent Pascai [6]. There
seem to be two reasons for imposing this restriction:
(1) this restriction is a natural one, i.e. it is satisfied in
most examples; (2) if this restriction is imposed then
the semaphore urgent in Hoare’s interpretation algo-
rithm can be omit’ed, together with all operations
upon it {2]. This second reason, one of efficiency,
loses much of its justification in the light of the inter-
pretation algorithm given above, which does not use
the semaphore urgent anyway. We conclude that no
obvious advantage in efficiency is obtained by restrict-
ing the signal operation in monitors to be the last
operation of a procedure. Future experience will
show whether occasionally a signal operation in the
middle of a monitor procedure can be uzeful.

We have discussed, in the case of monitors, the
distinction between the scheduling rules that aré es-
sential for the correct operation of a system, and the
rules that oniy influence the efficiency of the system.
We hope that, in other cases as well, this distinction
can be useful for clarifying synchronization concepts.

Acknowledgement

I am grateful to Jean Vauchzr and Pierre Desjardins
for many discussions on this subject.

References

[1] P. Brinch-Hansen, Operating Systems Principles (Prentice-
Hall, Englewood Cliffs, N.Y., 1973).

[2] C.A.R. Hoare, Monitors: an operating system structuring
concept, Comm. ACM 17 (1974) 549-557.

{3] E.W. Dijkstra, Cooperating sequential processes, in
Programming Languages (Ed. F. Geauys), (Academic
Press, New York, 1968).

{4] A.R. Saxena, An efficient implemer. taticn of monitors
and condition variables, presented at the ACM Interpro-
cess Communication Workshop, March 1975, Santa
Monica.

[5]1 D. Bustard, C.A.R. Hoare, R.M. McKcag, A nucleus for a
multiprocessor multiprogramming system, Tech. Rep.,
Dep. Computer Science, The Queen’s University of Belfast.

{6] P. Brinch-Hansen, The Programming Langvage Concurrent
Pascal, IEEE Transactions on Software Eng. SE-1 (1975)
199-207.

117



