
INFORMATiON PROCESSING LETTERS October 1976

7

Lb ENTS ON MOS”SITOR DEFINiTXON AND IMPLkMENTATION *

-_ -3 ,i G~V.rnHMANN (” -.I
irqv&mmt ci’Inf~rrnat&ue, Univdt4 de Montdd, Mcrrtrfhl, Canada

‘, u ti- . 13 May 1976, revised version received 29 July 1976
3

#d&m, s&eduik~, synchtckzation, mutual exclusiw, monitor implementation

I’he concept of monitors has been proposed as a
tool for the de&n of systems of’ closely

[II ,2], In ref. 121, Hoare gives
@ions of the monitor concept:

&tion of the concept, an algorithm
monitofi in terms of serna@iores 231,
that can be used for verifying the car- .

We point out in this note that
of Hoare’s interpre taGon algo-

t needed for obtaining a monitor imple-
ahat satisfies the @en proof rules.
t&e view that the ruies for sAed.uIing con-

should be divided into
re sufficient for obtain-

operation of the whole system, and (b)
t increase the efficiency of the resufting
the case of monito& the basic scheduliryt
at for the correct operation of the moni*
in general) specify in what o&r the

ruonitar procedw~ c&3 of the Gfferent processes are
ted. T!LEse rules are:

r+ual exclu.&n of the dfifferent c& on proce-
dures of the same monitor,

(b) immediate resumption of processes waiting on a
*‘A)nrition variable, as soon as the condition is sig-
rut&d,

[c) oti~rti= fou’r scheduling of wti tiug processes.
ore explicitly, the& rules can be expressed as

follows: fM4fz.uzZ eMusion: if a monitor is written
such that a certain invariant assertion I about the
local vari&les of the monitor holds (1) after initializa-
tion; (2) before returr,,ig from each monitor proce-
dure, and (3) before each wait and S&P& operation
within any monitor procedure, then the same asser-
tion can ue assumed to hold also (I) at the entry to

. each monitor procedure, and (2) after each wait and
signal operation within any momtor procedure.

Immediate mswhption: If a monitor is written
such that a certain assertion B holds before each s&d
o,neratian of a certain condition variable, then the
sa?ne assertion can be assumed to hold also after each
wait operation referring to the same condition varia-
bie. (The assertion B describes the condition(s) under
which a waiting process wishes to be resumed).

These rules for mutual exclusion and immediate
resumption are equivalent to Hoare’s proof rules [2f.

Fair s&d&g, irl the sense of Brinch-Hansen [I],
means that the priority rule for selecting a deiayed
process for continuation must be such that no process
can be delayed indefmiteiy in favor of notie urgent
processes.

Since monitors are normally used for scheduling
resources, it is ir;lportant that the execution of the
monitor procedures are much faster than the resource
they schedule (to avoid keeping the resource idle).
Therefore the fair scheduling of the monitor calls has
a strong influence on the system efficiency. In particu-

4
WC& was, squirted in part by tl\re National Research lar, processes that wait for entering the monitor should

c;f Canada and the Mi&ere de l’Educ;ttion du t>e given on higher priority than processes that are
,

. Dep; p Q-Tnent d’lnformatique, lJniversi.te de ready for executing code in some non-critical region.
Z4, i;.&?_ation #233. Hoare [2] gives an interpretation of monitors in

Volume 5, number 4 INFORMATION PROCESSING LETTERS October 1976

terms of semaphores. He uses a semaphore mutex for
establishing mutual exclusion, a semaphore urgent CG
which those processes wait that have executed a signal
operation, and one semaphore for each condition vari-
ab!e on which *those processes wait that have executed
a wait operation for the corresponding condition. As-
suming fair scheduling for the processes waiting on a
given semaphore, Hoare’s interpretation algorithm
can be shown to satisfy the shove three basic monitor
scheduling rules. (‘We note that specifying the monitor
interpretation in terms of semaphores does not neces-
sarily mean that monitors must be implemented that
way. It is just a convenient way of describing how
monitors function.)

The following interpretation algorithm is similar
and also satisfies these rules, but it is simpler since it
does not use the semaphore urgent. The actions to be
executed at the different occasions are the folIowing:

entry to a monitor procedure:

P (mutex)

exit from a monitor procedure:

Y (mutex)

wait on a certain condition:

condcount : = condcount + I ;
V (mutex); .

P (condsem);
condcount : = condcoun t - 1;

signal the same condition:

If condcount > 0 then (V (condsem); P (mutex)} .

If a s&W operation is the last operation of a proce-
dure body, it can be combined with the monitor exit
as follows:

if condcount > 0 then V (condsem)
eIse Y(mutex)

A similar monitor interpretation has already been
described by Saxena [4]. The difference, compared
to Hoare’s interpretation, is that the processes that
execute a s&r;rl operation have no priority for con-
tinuing the monitor procedure, over the processes
that wait for beginning the execution of a monitor
procedure call. Since the basic monitor defmition
given above only specifies that the scheduling must
be fair, we can say that this difference is a question I of

efficiency only. Mare detailed discussions of monitor
implementst18 * ; r: I their dkiency can be fcwxj in
refs. [4] sllld 15].

Hoare [2] mentions Dahl’s suggestion that signals
should always be the last operation of a monitor pro-
cedure. This restriction is in fact ~ea.Iked IL +he moni-
tors of Brinch-Hansen’s Concurrent Pasta: [6]. There
;:eem to be two reasons for imposing this restriction:
(1) this restriction is a natural one, i.e. it is satisfied in
most examples; (2) if this restrktion is imposed rhen
the semaphore urgent in Hoare’s interpretation algo-
rithm can be omitted, together with all operations
upon it [2]. This second reason, one of efficiency,
loses much of its justification in the light of the inter-
pretation algorithm given above, which does not use
the semaphore urgent anyway. We conclude that no
obvious advantage in efficiency is obtained by restrict-
ing the signal operation in monitors to be the last
operation of a procedure. Future experience will
show whether occasionally a signal operation in the
middle of a monitor procedure can be useful.

We have discussed, in the case of monitors, the
distinction between the scheduling rules that are es-
sential for the correct operation of a syste.m, and the
rules that only influence the efficiency of the system.
We hope that, in other cases as well, this distinction
can be useful for clarifying synchronization concepts.

Acknowledgement

I am grateful to Jean Vauchlzr and Pierre Desjardins
for many discussions on this subject.

References

PI

VI

1311

[41

I51

f61

P. Brinch-Hansen, Operating Systems Principles (Prentice-
Hall, Englewood Cliffs, N.Y ., 1973).
C.A.R. Hoare, Monitors: an operating system structuring
concept, Comm. ACM 17 (1974) 549-557.
E.W. Dijkstra, Cooperating sequential processes, in
Programming Languages (Ed. F. Genuys), (Academic
Press, New York, 1968).
A.R. Saxena, An efficient implemer; taticn of monitors
and condition variables, presented at the ACM Interpro-
cess Communication Workshop, March 1975, Santa
Monica.
D. Bustard, C.A.R. HIiare, R.M. McKc;;g, A nucleus for 2

mu1 tiprocessor multiprogramming system, Tech, Rep.,
Dep. Contputer Science, Tote Queen’s University of Belfast.
P. Brinch-Hansen, The Programming Language Concurrent
Pascal, IEEE Transactions on Software Eng. SE-1 (1975)
199-207.

117

