
An Approach to Testing Specifications

Claude Jard
CNE T Lmnion, France

Gregor v. Bochmann
University of Montreal

An approach to testing the consistency of specifications
is explored, which is applicable to the design validation of
communication protocols and other cases of step-wise re-
finement. In this approach, a testing module compares a
trace of interactions obtained from an execution of the re-
fined specification (e.g., the protocol specification) with
the reference specification (e.g., the communication ser-
vice specification). Nondeterminism in reference specifi-
cations presents certain problems. Using an extended fi-
nite state transition model for the specifications, a
strategy for limiting the amount of nondeterminacy is pre-
sented. An automated method for constructing a testing
module for a given reference specification is discussed.
Experience with the application of this testing approach
to the design of a transport protocol and a distributed mu-
tual exclusion algorithm is described.

ent descriptions, and check that they are consistent with
one another. In particular, the system implementation
should be consistent with the original system
specification.

There seem to be essentially two approaches to
validation:

1. INTRODUCTION

Verijcation, which analyses the specifications by
logical means. This may take the form of analytical
performance prediction, program “correctness”
proofs, symbolic execution, or the proof of system
properties based on the given specifications.
Testing, which explores a large number of the pos-
sible execution histories of the system, and compares
the observed behavior with the given specification.
This may take the form of simulation studies, tra-
ditional testing procedures, or the execution of spec-
ifications [lo] to test their consistency.

During the design of a computer system or some appli-
cation software, the validation of the design is an im-
portant activity. The purpose of validation is to make
sure that the different specifications of the computer or
application system are consistent. Usually, specifica-
tions are given at different levels of abstraction. The
overall system specifications represent the highest level
of description. During the design and implementation
of the system, different specifications with more details
are subsequently elaborated, such as a functional de-
composition of the system into several system parts, or
the steps that lead to the implementation of these parts
in a programming language or in hardware. The vali-
dation activity should detect any errors in these differ-

This paper explores a validation approach which
uses high-level specifications as a reference in respect to
which lower-level specifications, or implementations
may be tested for consistency. While the method de-
scribed is generally applicable to any system design
which employs formal specifications, the main objective
of our research was the use of such an approach for the
design of communication protocols and services.

This paper describes the use of what we call a “trace
checker.” This is a module which observes the execu-
tion of a system under test (which may be a system im-
plementation or an artificial execution of some refined
system specifications) and compares its behavior with
the formal specifications given for that system.

Address correspondence to C. Jard, Departement Evaluation de
Protocoles. CNET Lannion. BP40, 22301 Lannion. France.

In Sec. 2, we describe the main application scenarios
for the use of such a trace checker, and in Sec. 3, we
explain the interaction model that underlies the method
used for writing abstract or refined system specifica-

The Journal of Systems and Software 3, 3 15-323 (1983) 315
0 Elsevier Science Publishing Co., Inc., 1983 0164-1212/83/53.00

316 C. Jard and G. V. Bochmann

tions. We think that this model is sufficiently general to
allow the use of this approach in different application
areas. Section 4 presents the design and implementa-

tion principles of a trace checker for a given reference
specification, and discusses its limitations. In Sec. 5, the
application of this testing approach to the design of
communication protocols is discussed. The experience
gained with using a trace tester is described.

2. SCENARIOS FOR USE OF A TRACE CHECKER

A. Testing a System Implementation in Respect to
the Specifications

One way of using a trace checker is for the testing of
an implementation. We assume that a formal specifi-
cation is given for the behavior of the implemented sys-

tem. The testing configuration is shown in Figure 1.
The implementation under test is stimulated by some
test input sequence and this input, as well as the output
produced by the implementation, is observed by the
trace checker. The latter checks that the observed se-
quence of events is a possible sequence according to the
given specification.

Two modes of operation may be distinguished: on-
line and off-line. The on-line mode has the advantage

that in the case of a detected error, the execution of
further test input can be halted and the state of the im-
plementation under test can be investigated. It is to be

noted, however, that the cause for the detected error
may have occured much earlier in the observed execu-
tion history (error latency). This approach is similar to
the worker-observer principle in [7]. A more detailed
discussion of error detection is given in Section 4.

In the case of off-line operation, the observed trace
of input and output interactions of the implementation
under test is temporarily stored on some medium and

later checked by the trace checker. This may be easier
to realize than on-line testing, in certain cases.

In the area of communication protocols, this testing
scenario could be used for the testing and certification
of protocol implementation [11. A given protocol imple-
mentation may be checked for conformance with the

Figure 1. Testing a system implementation.

l-l Test
Generator

I under test I

protocol specification, which is given by a formal
description.

6. Step-Wise Refinement of Specifications

In the case that a design phase consists of a step-wise

refinement of a more abstract specification into a more
detailed one, a trace checker may be used to test the
consistency of the refined specification in respect to the
abstract one. It is assumed that it is possible to “exe-
cute” the refined specification. (See, e.g., [IO] and the
approach in [121). Care must be taken to cover, as far
as possible, all possible execution sequences that are al-
lowed by the detailed specifications.

The testing configuration is similar to Figure 1. In-
stead of an “implementation under test,” we have a
“detailed specification under test,” which consists pre-
sumably of several interacting submodules, the behav-

iors of which are defined by the specification. In the
case of communication protocol design, this scenario
would be used for protocol design validation [2], i.e., to
check that the protocol specification of a given protocol
layer N is consistent with the service specifications of
that layer and the layer below. As shown in Figure 2,

the behavior of the protocol will be observed by “exe-
cuting” two protocol entities interacting through an en-
tity representing the communication service of the layer
below.

Test inputs are generated by appropriate user enti-
ties which use the communication service provided by
the protocol. The observed trace of interactions with the
user entities (inputs generated by the users and outputs
generated by the protocol entities) are compared by the
trace checker with the possible execution histories that
are defined by the service specification for the same
layer N.

It is important to note that the observed trace char-
acterizes the global properties of the system layer, since
interactions at the different service access points are
considered.

3. THE CONTEXT OF A TRACE CHECKER

This section explains the context in which the trace
checker described in this paper has been designed. This
includes in particular the descriptive model used for the
writing of formal specifications.

A. The Interaction Model

The descriptive model used by the trace checker is de-
scribed in more detail in [3-61. A “process” (also called
entity, module, etc.) is characterized by a number of
“ports” (also called interaction points, access points, in-
terfaces, etc.) through which it interacts with other pro-

Approach to Testing Specifications 317

user
entity 2

4 I. A Trace

Trace b Checker

I-
____,___-_--- ----1

I w 1 I I , I Figure 2. Testing a detailed specification.

I Underlaylng comun"'+~~"

I service of layer N
I

I_ --_------- ----- - A

cesses in its environment. At each port, certain types of
interactions are possible. An interaction type is char-
acterized by its name and a number of parameters. For
each occurrence of an interaction, each parameter takes
on a definite value within the range of possible values
defined by a data type definition associated with the
declaration of the interaction type. In addition, it is as-
sumed that each interaction transfers information only
in one direction; therefore the distinction between
“input” and “output” interactions is made.

A “trace” (also called execution history, etc.) of a
process is obtained by observing all interactions in
which the process participates. Assuming that at a
given port only one interaction can take place at any
given time, the order of the interactions at a given port
is defined for each trace. For also checking certain
properties of the process the relative order of interac-
tions occurring at different ports must be determined.
In a distributed system, this may in general be a diffi-
cult problem. However, different practical methods can

be chosen to obtain a total order of all observed inter-
actions. For example, the interactions may be ordered
in respect to their beginning in real time, where a global
clock, or several synchronized clocks may be taken as

time reference [141. In the case of execution by simu-
lation, the virtual simulation time may be chosen as a
reference. In the case that simultaneous interactions
are considered, several different traces are obtained de-
pending on the arbitrary order into which the simulta-
neous interactions are put in the trace. We assume in
the following that a satisfactory method is given for ob-
taining a trace of interactions from an observed execu-
tion of an implementation, or detailed specification.

B. An Extended State Transition Specification
Model

The trace checker described in this paper is based on
an extended state transition model for the description
of the reference specification in respect to which the

trace is compared. The model is an extension of a finite

state machine. In addition to the major state, which de-
fines the finite state part of the machine, a process de-
scription contains, in general, some additional state

variables. Together with the major state and the pa-
rameters of an input interactions, they determine the
transition to be performed by the machine. Each tran-
sition defined by a given specification is characterized
by a condition that must be satisfied if the transition is

to be executed, and a transition action which updates

the state variables and possibly generates some output
interactions. (For more detail, see [3, 111).

For the purpose of the following exposition, we dis-
tinguish the following classes of transitions:

1.

2.

3.

C.

Input transitions. They are initiated by some input
interaction, and may produce one or several output

interactions.
Spontaneous output transitions. They are sponta-

neous transitions (i.e., they may be executed any-
time provided that the machine is in an appropriate
state) which produce one or several output

interactions.
Internal transitions. They are spontaneous, and do
not produce output.

Nondeterminism in Specifications

A specification is nondeterministic, as observed by its
interaction sequences, if, for a particular state, there is
a spontaneous transition, or for a given input interac-
tion, there are more than one possible input transitions.
In practice, nondeterminism is mostly due to sponta-

neous transitions which are usually introduced for one

of the following reasons:

1.

2.

The description of failures of system components
which may occur any time.
The description of a time-out mechanism, which ac-
tivates a time-out transition after a given time pe-
riod. Since most specifications are time independent,

318 C. Jard and G. V. Bochmann

3.

4.

the concept of a time period is not naturally de-
scribed. Usually, a time-out transition is specified as
a spontaneous transition that may execute any time
(as long as the machine is in the “timer running”
state, which may be changed by other transitions
that occur).
The description of incompletely specified conditions,
which may occur at certain times, such as “network
congestion.”
The description of parallelism, where the order in
which two or more spontaneous transitions occur is
not important.

It is clear that in the case of a nondeterministic ref-
erence specification, in general, several different traces
are valid for a given sequence of input interactions pro-
vided to the system under test (because the same inputs
can produce different sets of outputs). How the trace
checker takes care of these different possibilities is dis-
cussed in Sects. 4A and 4B.

An example of a nondeterministic specification is
given in Figure 3. It is part of a distributed mutual ex-
clusion algorithm studied by the CNET [8]. This ex-
ample will be used as an illustration throughout the
paper. We consider first the state diagram for one site
only.

1.

2.

Initially, the given site is in an inactive (FAILED)
state, and becomes IDLE after a reset (re) interac-
tion by the user.
The user may demand the resource (de) entering the
CANDIDATE state; if the state was not IDLE, the
service is refused (rs).

When the resource is free, the user may receive a
reservation interaction (er) and enter the ELECT
state; if he is not elected after a finite amount of
time, an exclusion failure is indicated (ee).
After the use of the resource in the elected state, the
user may release the resource (fe).
At any time, the site may crash and enter the
FAILED state.

All the types of transitions appear in Figure 3: the
failure transitions are internal and no indication is sent
to the user, two transitions from the CANDIDATE
state are spontaneous output transitions and indicate to
the user the mutual exclusion reservation (er) or failure
(ee), the others are input transitions.

D. Incomplete Specifications

It is often convenient to allow for incomplete specifica-
tions. A specification is incomplete if, for a particular
state and a particular input interaction (with particular
parameter values) no input transition is specified (i.e.,
the conditions of all input transitions are false). In the
case of a service specification, e.g., usually only the
“normal” input interaction sequences are considered by
the specification, since it is assumed that the user of the
service follows certain rules about the order in which
the input interactions are invoked.

If the situation of an incompleteness of the reference
specification is encountered by the trace checker during
the analysis of a trace, the analysis must be stopped,
since at this point the specification is considered to

Figure 3. Mutual exclusion specification for one site. Znter-
actions: re: reset (input); de: demand of exclusion access to
resource (input); rs: refusal of resource access (output); ee:
exclusion failure (output); er: reservation confirmed (out-
put); fe: release of resource access (input). Internal condi-
tions: nl: crash of the site; n2: resource is or becomes free;
n3: resource not free; n4: time out elapsed; Notations: -
:input; - :spontaneous output; -: internal.

319 Approach to Testing Speci~cations

allow an arbitrary behavior for the specified system.
The following two possibilities should be considered:

1.

2.

The specification is not correct, i.e., should be com-
pleted to take care of the encountered input.
The test input provided to the system under test does
not conform to the assumptions that are made, ac-
cording to the specification, about the behavior of
the environment of the system under test.

Let us consider again the specification given in Fig-
ure 3. This specification is not complete because no
transition is specified for release request (fe) in the
states IDLE and CANDIDATE. It is assumed that the
user may only release the resource after he was elected
to use it.

4. DESIGN AND IMPLEMENTATION OF A TRACE
CHECKER

This section describes the design and implementation
principles of a trace checker. Experience with such a
trace checker is described in Sect. 5.

A. Principle of Operation

The task of a trace checker is to check whether a trace
of observed interactions is an execution history that is
a possible one according to the specification of the sys-
tem under test. Its principle of operation is not very dif-
ficult, as explained in the following paragraphs.

We assume that the trace checker reads the trace
sequentially, and records after each observed interac-
tion the possible states in which the reference specifi-
cation may possibly be.

We note that after a given prefix of the whole trace,
the reference specification may be in one of several dif-
ferent states depending on the possible nondeterministic
transitions of the specification. In fact, for each input
interaction, the trace checker considers for each of the
possible states the transitions that are possible for the
given input. Any output interaction to be generated is
recorded. Internal transitions must also be considered.

For each output interaction observed in the trace,
the checker verifies for each of the possible states,
whether the output was already generated by a previous
input transition, or whether it may be generated by a
spontaneous output transition. If for a given state, this
is not possibie (or only outputs with different parameter
values can be generated) then the state in question is
not in agreement with the observed trace, and must be
eliminated from further consideration in the trace
analysis.

If at some time during the analysis of the observed
trace, no state of the reference specification remains in
agreement with the grace, an error has been found.

B. A Checking Algorithm

We give in this section a more detailed description of
the checking algorithm used in the trace checker we im-
plemented. We also discuss the application of this al-
gorithm to the example given in Sec. 3C.

As mentioned above, the trace checker makes a se-
quential analysis of the observed trace and maintains at
all stages of the analysis a list of all states in which the
reference specification may possibly be after the inter-
actions already analysed. Such a “state” has two
components:

1. The values of the state variables declared in the ref-
erence specification, and

2. The output interactions already generated by the
considered transitions of the reference specification,
but not yet observed in the trace.

The analysis of the next interaction in the observed
trace builds up a list of possible next states, as follows:
For each of the states in the list mentioned above, the
follo~ng action will be executed. If the interaction is
an input, then all possible input transition will be con-
sidered, each leading to a next state which is placed on
the list of possible next states. Any output interaction
generated by the transition is recorded in the next state.
Then all internal transitions are considered from the
new next states found, leading in turn to next states.
Some of these next states may already be in the list of
next states. This process is continued until no new next
states can be found.

As an example, we consider the specification of Fig-
ure 3 and a trace of the form (re,de,er,fe). This trace
represents successively, the activation (re), the request
(de), and confirmation (er) of the access to the resource
followed by its release (fe). Figure 4 shows the checking
tree for this trace. The (only) initial state of the speci-
fication is FAILED. Given the first interaction in the
trace (re), only one input transition may be fired from
this state. The next state is IDLE. From this state an
internal transition is possible and produces the next
state FAILED. Therefore the possible states after the
(re) interaction are IDLE and FAILED. In the same
way, the next input interaction (de) applied to these
possible states give rise to the two possible next states
CANDIDATE and FAILED.

While an input interaction in the trace usually in-
creases the number of possible states to be considered,
the output observed interactions usually reduce the
number of possible states. If the next interaction in the
analysed trace is an output, the following action is ex-
ecuted for each of the possible states: if the state con-
tains an already generated output interaction which is
identical to the output interaction of the trace, then this
interaction is deleted from the state, and the state is

C. Jard and G. V. Bochmann

kept as one of the possible next states. Otherwise all
possible s~ntaneous output transitions are considered
to check whether they generate the observed output.
Any different output generated is kept as state infor-
mation, and any subsequent internal transitions are
considered. After the exploration of all spontaneous
output and internal transitions, only those states are
kept that have generated the output observed in the
trace. All other states are discarded from the further
analysis.

Let us consider the next output interaction (er) in
the trace of the exemple discussed above. The state
FAILED does not give rise to any next states, since
there is no sequence of transitions that leads from this
state to the generation of the output interaction (er).
From the state CANDIDATE, a spontaneous output
transition may be fired to the state ELECT producing
this output. In this state, the site may then crash. The
system remains in one of the two possible states
(ELECT and FAILED) and the checker is allowed to
continue the analysis of the trace.

We note that different strategies for the analysis of
a trace could be considered. For instance, it would be
possible to check during the analysis of an input inter-
action whether an output interaction generated by the
input transition can be found in the trace. It is impor-
tant to note that, in general, it is not necessary that this
interaction is the next interaction in the trace. Indeed,
a certain degree of uncertainty may be allowed in the
ordering of the interactions of the trace (see Sec. 3A),
which means that interactions occuring at different in-
teraction points may appear in the trace between the
input and output interactions of a single transition of
the specification. The algorithm described above takes
care of this possibility.

C. Error Detection

The following three kinds of errors may be detected:

1. Violation of safeness constraints {unexpected out-
puts). If at some point during the analysis of the
trace, no possible next state exists then the trace is
in contradiction with the specification, i.e., the out-

Figure 4. Checking for the trace (re, de, er,
fe} (for notations, see Figure 3; a “*” indi-
cates that a state has no possible next state for
the given trace).

put interactions generated by the system under test
do not conform with the specification.
Inconclusive test result due to incompleteness. If at
some point during the analysis of the trace, no input
transition is specified for the next input interaction
of the trace for one of the possible states of the ref-
erence specification, then an incompleteness of the
specification is encountered, and one of the possibil-
ities mentioned in Sec. 3D must be considered.
Termination errors. Different situations may char-
acterize the end of an observed trace. If the end of
the trace is at an arbitrary point in the execution
history of the system under test, not much can be
said. If, however, the end of the trace corresponds to
a stable state of the system under test, i.e., a state
that does not produce any further output, then the
following can be said about the termination: (a) If
all possible final states of the reference specification
include generated output interactions, then there is
a termination error; the system under test should
have produced one of the possible outputs. (There
may be a deadlock.) (b) If all possible states either
include generated output interactions or allow fur-
ther output through spontaneous output transitions,
then there may be a termination error, as in (a).

In the case of a detected error, it is, in general, not
easy to locate the reason for the erroneous behavior of
the system under test. In fact, the reason for such be-
havior may in some cases not be immediately visible in
the observed trace, but only lead to a change of the in-
ternal system state, which may become apparent only
in the later part of the trace.

D. Implementation

Trace checkers for the two reference specifications dis-
cussed in Sec. 5 have been implemented in PASCAL. This
experience clearly demonstrates that two parts of a
trace checker may be distinguished: the first one that is
specifi~tion dependent, and the second one that is
specification independent. The independent part con-
sists of the checking algorithm explained in Sec. 4B.
The specification-dependent part consists of two
subparts:

Approach to Testing Specifications 321

Specification inde-
pendant part in
PASCAL a MERGE

Reference
Specification

i d=l

Figure 5. Automated generation of a trace checking
module.

1. The declarations of the interactions, and
2. The program realizing the transitions of the

specification.

It is noted that the specification-dependent parts are
very similar to the PASCAL source code that is generated

.-.

by a compiler that translates a formal specification
written in the extended state transition model [1 l] into
a PASCAL program [91. It would not be difficult to adapt
that compiler to generate directly the code needed for
the specification dependent part of the trace checker.
Following this approach, the implementation of a trace
checker could be automated, as indicated in Figure 5.

5. APPLICATION EXPERIENCES

Two different protocols have been used for application
experiences. The first has been briefly described (in Sec.
3C) to illustrate the principle of the checking algo-
rithm: a distributed mutual exclusion protocol. Speci-
fications of this protocol exist in [8] and the construc-
tion of an executable model for these specifications is
described in [131. This model was used for the valida-
tion of the defined protocol, using the trace checker de-
scribed in Sec. 5A. Several errors in the protocol spec-
ification were found during this process, as explained in

Figure 6. Checking tree for the trace (rel, re2, del, de2,
erl, er2, fe2, fel, del, erl, fel) (for notation see Figure 3).

C. Jard and G. V. Bochmann

[131. The second protocol is a Transport protocol de-
veloped by IS0 and CCIm, a formal specification of
the class protocol is given in [5]. An implementation of
this protocol is being developed and the trace checker
may be used to test that it provides the Transport ser-
vice as specified in [4].

A. Distributed Mutual Exclusion Algorithm

A specification provided by the service of the protocol
is given in Figure 3. There is such a state diagram for
each site of the dist~buted system. Figure 6 shows the
checking process for a more complex trace formed from
the interactions of two users at sites 1 and 2. The check-
ing algorithm of Sec. 4B is used. A state of the system
is characterized by three letters [the initials of the state
for user 1 and user 2 followed by the letter F or N in-
dicating whether the resource is free (F) or not (N)] .

The trace which is explored in Figure 6 includes an
error (two successive exclusion confirmation erl and
er2 in the absence of failures). Naturally, this error is
detected; however, we see here a good example of a
later error detection: when checking the output inter-
action er2, a possible valid state is FEN where site1 is
crashed. A violation of the service specification is de-
tected when the next output (erl) of site 1 is checked.
Figure 7 shows the output produced by the checker pro-
gram for this trace: the number of points after each in-
teraction indicates the number of possible states after
the analysis of each of the interactions indicated at the
beginning of the line.

B. Transport Protocol

While the mutual exclusion example, with the absence
of interaction parameters, allows a quasifinite state ref-

Figure 7. Checker output for the mutual exclusion
algorithm.

-- TRACE CHECKER _ VO4/05/11,'Sl _

OP(l).RE : *
op(2j.m
UT(l).DE
UT(ZJ.DE
UT(l).ER . _ . .
UT(Z).ER . .
UT(2).FE . .
UT(l).FE . .
UT(l).DE . .
UT(l).ER

END OF ANALYSIS .._.

TIME USED : 0.64 SECONDS . .

. STOP CHECKING

. BECAUSE OF AN UNEXPECTED OUTPUT

erence specification, the Transport service specification
[4] relies heavily on interaction parameters and addi-
tional state variables for expressing the service proper-
ties. It is interesting to note that for this example the
finite (major) state does not induce any nondetermin-
ism for the trace checker. In fact, there are no internal
transitions. Some nondeterminism due to nonspecified
values of certain additional state variables does not lead
to any problem since the value adopted by the unit
under test can be deduced by the next output produced.

Figure 8 shows an example of an output obtained for
the Transport service: the trace checker detects an error
in the ordering of data units during data transfer after
the connection establishment phase. Unit 3 is received
by user 2 at the access point AP2 before the unit 2.

6. CONCLUSION

The trace checker described in this paper is a module
which compares the observed behavior (i.e., a trace) of
a system under test with the requirements of a refer-

Figure 8. Checker output for the Transport protocol.

-- TRACE CHECKER _ VO4/05/11/81 -

AP1.T CONNECT REQ 1 TCEPI 1 - -
TO T ADDRESS 2
FROM T ADDRESS 1
QOTS REQUEST
OPTISNS 0
TS CONNECT DATA CONNECT 1

AP2.T CONNECT IND (TFEPI 1 - -
TO T ADDRESS 2 --
FROM T ADDRESS 1 --
QOTS REQUEST
OPTIGNS 0
TS CONNECT DATA CONNECT)

APZ.T_ACCEPT_REQ f TCEPI 1 -
QOTS REQUEST
OPTISNS 0
TS ACCEPT DATA ACCEPT)

AP2.T_DATA_REQ (T?EPI l-
TSDU FRAGMENT DATAZ-1 1)

AP2.T DATA REQ (TCEPI 1 --
TSDU FRAGMENT

APl.T_ACCEPT_IND (TCEiSI 1
QOTS REQUEST
OPTIENS 0
TS ACCEPT DATA

AP1.T DATA REQ (?CEPI i - _
TSDU FRAGMENT

APl.T_DATA_REQ (TCEPI 1
TSDU FRAGMENT

AP1.T DATA IND (TCEPI 1
TSDU FRAGMENT

APl.T_DATA_REQ (TCEPI 1
TSDU FRAGMENT

AP1.T DATA IND (TCEPI 1
TSDU FRAGMENT

AP2.T DATA IND (TCEPI 1
TSDU FRAGMENT

AP2.T DATA IND (TCEPI 1 - -
TSDU FRAGMENT -

END OF ANALYSIS

TIME USED : 0.63 SECONDS . .

DATAZ-1 2)

ACCEPT)

DATAl-2 1)

DATAl-2 2)

DATAZ-1 1 1

DATAl-2 3)

DATA2-1 2)

DATAl-2 1)

DATAl-2 3)

. ...* STOP CHECKING

. BECAUSE OF AN UNEXPECTED OUTPUT

Approach to Testing Specifications 323

ence specification. The paper discusses how such a trace
checker can be obtained semiautomatically for any ref-
erence specification given in an extended state transi-
tion description technique. Such a trace checker may
be used for testing an implementation of a system for
which a formal specification is given, or for testing the
consistency of refined specifications in respect to a more
abstract reference specification if the refined specifica-
tions exist in an executable form. The selection of ap-
propriate input test sequences is a related problem,
which is not addressed in this paper.

The objective of our work was to apply this testing

approach to the validation of communication protocols.
Some practical results are reported in [131. The appli-
cation of this approach to a mutual exclusion and a
Transport protocol shows that the nondeterminism in-
herent in the reference specifications of these examples
does not lead to an excessive number of possible states
to be considered for the analysis of typical traces. We

believe that this technique is equally suitable for other
areas of software design.

REFERENCES

D. Rayner, A System for Testing Protocol Implemen-
tations, Comput. Networks 6 (1982).
G. V. Bochmann and C. A. Sunshine, Formal Methods
in Communication Protocol Design, IEEE Trans.

COM-28, 4, 624-631 (1980).
G. V. Bochmann, A General Transition Model for Pro-
tocols and Communication Services, IEEE Trans. Com-

mun. COM 28, 643-650 (1980).

4.

5.

6.

I.

8.

9.

10.

11.

12.

13.

14.

G. V. Bochmann, E. Cerny, and C. Lacaille, Formal
Specification of a Transport Service, Dtpartement
d’IR0, Universite de Montreal, also WASH-9 of IS0
TC97/SCl6/WGl ad hoc group on FDT.
IS0 TC97/SC 16/WGl ad hoc group on FDT, Trial
Specification of Transport Protocol Using Subgroup B
FDT (July 1983).
G. V. Bochmann and M. Raynal, Structured Specifica-
tion of Communicating Systems, Publ. Departement
d’IR0, Universite de Montreal.
J. M. Ayache, P. Aztma, and M. Diaz, Observer: A
Concept for Detecting at Run Time Control Errors in
Concurrent Systems, LAAS, presented at the IEEE
Fault Tolerant Computing Symposium, Madison, June
1979.
Modtle Externe du Protocole D’exclusion Mutuelle du
Projet Galaxie, Document Interne, CNET groupe EVP

(Juin 1981).
M. Gag&, Un Compilateur Pour un Langage de Sptc-
ification, Document de Travail (Dec. 1981).
J. Goguen, Thoughts on Specification, Design and Ver-
ification, ACM Software Eng. Notes 5, 29-33 (1980).

A FDT Based on an Extended State Transition Model,
IS0 TC97/SC 16 N (May 1983).
C. Jard, Definition d’un Modele de Simulation Pour le
Validation de Protocoles, Note technique CNET Lan-
nion, Groupe EVP, NT/LAA/SLC/49 (Juin 1981).
C. Jard, Specification et Validation d’un Algorithme
Distribut D’exclusion Mutuelle-Mise en Oeuvre de la
Simulation: Mtthode et R&hats, Note technique NT/
LAA/SLC/93, CNET Lannion, France, July 1982.
L. Lamport, Time, Clocks and the Ordering of Events
in a Distributed System, Commun. ACM 21, 558-565

(1978).

