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An approach to testing the consistency of specifications 
is explored, which is applicable to the design validation of 
communication protocols and other cases of step-wise re- 
finement. In this approach, a testing module compares a 
trace of interactions obtained from an execution of the re- 
fined specification (e.g., the protocol specification) with 
the reference specification (e.g., the communication ser- 
vice specification). Nondeterminism in reference specifi- 
cations presents certain problems. Using an extended fi- 
nite state transition model for the specifications, a 
strategy for limiting the amount of nondeterminacy is pre- 
sented. An automated method for constructing a testing 
module for a given reference specification is discussed. 
Experience with the application of this testing approach 
to the design of a transport protocol and a distributed mu- 
tual exclusion algorithm is described. 

ent descriptions, and check that they are consistent with 
one another. In particular, the system implementation 
should be consistent with the original system 
specification. 

There seem to be essentially two approaches to 
validation: 

1. INTRODUCTION 

Verijcation, which analyses the specifications by 
logical means. This may take the form of analytical 
performance prediction, program “correctness” 
proofs, symbolic execution, or the proof of system 
properties based on the given specifications. 
Testing, which explores a large number of the pos- 
sible execution histories of the system, and compares 
the observed behavior with the given specification. 
This may take the form of simulation studies, tra- 
ditional testing procedures, or the execution of spec- 
ifications [lo] to test their consistency. 

During the design of a computer system or some appli- 
cation software, the validation of the design is an im- 
portant activity. The purpose of validation is to make 
sure that the different specifications of the computer or 
application system are consistent. Usually, specifica- 
tions are given at different levels of abstraction. The 
overall system specifications represent the highest level 
of description. During the design and implementation 
of the system, different specifications with more details 
are subsequently elaborated, such as a functional de- 
composition of the system into several system parts, or 
the steps that lead to the implementation of these parts 
in a programming language or in hardware. The vali- 
dation activity should detect any errors in these differ- 

This paper explores a validation approach which 
uses high-level specifications as a reference in respect to 
which lower-level specifications, or implementations 
may be tested for consistency. While the method de- 
scribed is generally applicable to any system design 
which employs formal specifications, the main objective 
of our research was the use of such an approach for the 
design of communication protocols and services. 

This paper describes the use of what we call a “trace 
checker.” This is a module which observes the execu- 
tion of a system under test (which may be a system im- 
plementation or an artificial execution of some refined 
system specifications) and compares its behavior with 
the formal specifications given for that system. 

Address correspondence to C. Jard, Departement Evaluation de 
Protocoles. CNET Lannion. BP40, 22301 Lannion. France. 

In Sec. 2, we describe the main application scenarios 
for the use of such a trace checker, and in Sec. 3, we 
explain the interaction model that underlies the method 
used for writing abstract or refined system specifica- 
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tions. We think that this model is sufficiently general to 
allow the use of this approach in different application 
areas. Section 4 presents the design and implementa- 

tion principles of a trace checker for a given reference 
specification, and discusses its limitations. In Sec. 5, the 
application of this testing approach to the design of 
communication protocols is discussed. The experience 
gained with using a trace tester is described. 

2. SCENARIOS FOR USE OF A TRACE CHECKER 

A. Testing a System Implementation in Respect to 
the Specifications 

One way of using a trace checker is for the testing of 
an implementation. We assume that a formal specifi- 
cation is given for the behavior of the implemented sys- 

tem. The testing configuration is shown in Figure 1. 
The implementation under test is stimulated by some 
test input sequence and this input, as well as the output 
produced by the implementation, is observed by the 
trace checker. The latter checks that the observed se- 
quence of events is a possible sequence according to the 
given specification. 

Two modes of operation may be distinguished: on- 
line and off-line. The on-line mode has the advantage 

that in the case of a detected error, the execution of 
further test input can be halted and the state of the im- 
plementation under test can be investigated. It is to be 

noted, however, that the cause for the detected error 
may have occured much earlier in the observed execu- 
tion history (error latency). This approach is similar to 
the worker-observer principle in [7]. A more detailed 
discussion of error detection is given in Section 4. 

In the case of off-line operation, the observed trace 
of input and output interactions of the implementation 
under test is temporarily stored on some medium and 

later checked by the trace checker. This may be easier 
to realize than on-line testing, in certain cases. 

In the area of communication protocols, this testing 
scenario could be used for the testing and certification 
of protocol implementation [ 11. A given protocol imple- 
mentation may be checked for conformance with the 

Figure 1. Testing a system implementation. 
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protocol specification, which is given by a formal 
description. 

6. Step-Wise Refinement of Specifications 

In the case that a design phase consists of a step-wise 

refinement of a more abstract specification into a more 
detailed one, a trace checker may be used to test the 
consistency of the refined specification in respect to the 
abstract one. It is assumed that it is possible to “exe- 
cute” the refined specification. (See, e.g., [IO] and the 
approach in [ 121). Care must be taken to cover, as far 
as possible, all possible execution sequences that are al- 
lowed by the detailed specifications. 

The testing configuration is similar to Figure 1. In- 
stead of an “implementation under test,” we have a 
“detailed specification under test,” which consists pre- 
sumably of several interacting submodules, the behav- 

iors of which are defined by the specification. In the 
case of communication protocol design, this scenario 
would be used for protocol design validation [2], i.e., to 
check that the protocol specification of a given protocol 
layer N is consistent with the service specifications of 
that layer and the layer below. As shown in Figure 2, 

the behavior of the protocol will be observed by “exe- 
cuting” two protocol entities interacting through an en- 
tity representing the communication service of the layer 
below. 

Test inputs are generated by appropriate user enti- 
ties which use the communication service provided by 
the protocol. The observed trace of interactions with the 
user entities (inputs generated by the users and outputs 
generated by the protocol entities) are compared by the 
trace checker with the possible execution histories that 
are defined by the service specification for the same 
layer N. 

It is important to note that the observed trace char- 
acterizes the global properties of the system layer, since 
interactions at the different service access points are 
considered. 

3. THE CONTEXT OF A TRACE CHECKER 

This section explains the context in which the trace 
checker described in this paper has been designed. This 
includes in particular the descriptive model used for the 
writing of formal specifications. 

A. The Interaction Model 

The descriptive model used by the trace checker is de- 
scribed in more detail in [ 3-61. A “process” (also called 
entity, module, etc.) is characterized by a number of 
“ports” (also called interaction points, access points, in- 
terfaces, etc.) through which it interacts with other pro- 
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cesses in its environment. At each port, certain types of 
interactions are possible. An interaction type is char- 
acterized by its name and a number of parameters. For 
each occurrence of an interaction, each parameter takes 
on a definite value within the range of possible values 
defined by a data type definition associated with the 
declaration of the interaction type. In addition, it is as- 
sumed that each interaction transfers information only 
in one direction; therefore the distinction between 
“input” and “output” interactions is made. 

A “trace” (also called execution history, etc.) of a 
process is obtained by observing all interactions in 
which the process participates. Assuming that at a 
given port only one interaction can take place at any 
given time, the order of the interactions at a given port 
is defined for each trace. For also checking certain 
properties of the process the relative order of interac- 
tions occurring at different ports must be determined. 
In a distributed system, this may in general be a diffi- 
cult problem. However, different practical methods can 

be chosen to obtain a total order of all observed inter- 
actions. For example, the interactions may be ordered 
in respect to their beginning in real time, where a global 
clock, or several synchronized clocks may be taken as 

time reference [ 141. In the case of execution by simu- 
lation, the virtual simulation time may be chosen as a 
reference. In the case that simultaneous interactions 
are considered, several different traces are obtained de- 
pending on the arbitrary order into which the simulta- 
neous interactions are put in the trace. We assume in 
the following that a satisfactory method is given for ob- 
taining a trace of interactions from an observed execu- 
tion of an implementation, or detailed specification. 

B. An Extended State Transition Specification 
Model 

The trace checker described in this paper is based on 
an extended state transition model for the description 
of the reference specification in respect to which the 

trace is compared. The model is an extension of a finite 

state machine. In addition to the major state, which de- 
fines the finite state part of the machine, a process de- 
scription contains, in general, some additional state 

variables. Together with the major state and the pa- 
rameters of an input interactions, they determine the 
transition to be performed by the machine. Each tran- 
sition defined by a given specification is characterized 
by a condition that must be satisfied if the transition is 

to be executed, and a transition action which updates 

the state variables and possibly generates some output 
interactions. (For more detail, see [3, 111). 

For the purpose of the following exposition, we dis- 
tinguish the following classes of transitions: 

1. 

2. 

3. 

C. 

Input transitions. They are initiated by some input 
interaction, and may produce one or several output 

interactions. 
Spontaneous output transitions. They are sponta- 

neous transitions (i.e., they may be executed any- 
time provided that the machine is in an appropriate 
state) which produce one or several output 

interactions. 
Internal transitions. They are spontaneous, and do 
not produce output. 

Nondeterminism in Specifications 

A specification is nondeterministic, as observed by its 
interaction sequences, if, for a particular state, there is 
a spontaneous transition, or for a given input interac- 
tion, there are more than one possible input transitions. 
In practice, nondeterminism is mostly due to sponta- 

neous transitions which are usually introduced for one 

of the following reasons: 

1. 

2. 

The description of failures of system components 
which may occur any time. 
The description of a time-out mechanism, which ac- 
tivates a time-out transition after a given time pe- 
riod. Since most specifications are time independent, 



318 C. Jard and G. V. Bochmann 

3. 

4. 

the concept of a time period is not naturally de- 
scribed. Usually, a time-out transition is specified as 
a spontaneous transition that may execute any time 
(as long as the machine is in the “timer running” 
state, which may be changed by other transitions 
that occur). 
The description of incompletely specified conditions, 
which may occur at certain times, such as “network 
congestion.” 
The description of parallelism, where the order in 
which two or more spontaneous transitions occur is 
not important. 

It is clear that in the case of a nondeterministic ref- 
erence specification, in general, several different traces 
are valid for a given sequence of input interactions pro- 
vided to the system under test (because the same inputs 
can produce different sets of outputs). How the trace 
checker takes care of these different possibilities is dis- 
cussed in Sects. 4A and 4B. 

An example of a nondeterministic specification is 
given in Figure 3. It is part of a distributed mutual ex- 
clusion algorithm studied by the CNET [8]. This ex- 
ample will be used as an illustration throughout the 
paper. We consider first the state diagram for one site 
only. 

1. 

2. 

Initially, the given site is in an inactive (FAILED) 
state, and becomes IDLE after a reset (re) interac- 
tion by the user. 
The user may demand the resource (de) entering the 
CANDIDATE state; if the state was not IDLE, the 
service is refused (rs). 

When the resource is free, the user may receive a 
reservation interaction (er) and enter the ELECT 
state; if he is not elected after a finite amount of 
time, an exclusion failure is indicated (ee). 
After the use of the resource in the elected state, the 
user may release the resource (fe). 
At any time, the site may crash and enter the 
FAILED state. 

All the types of transitions appear in Figure 3: the 
failure transitions are internal and no indication is sent 
to the user, two transitions from the CANDIDATE 
state are spontaneous output transitions and indicate to 
the user the mutual exclusion reservation (er) or failure 
(ee), the others are input transitions. 

D. Incomplete Specifications 

It is often convenient to allow for incomplete specifica- 
tions. A specification is incomplete if, for a particular 
state and a particular input interaction (with particular 
parameter values) no input transition is specified (i.e., 
the conditions of all input transitions are false). In the 
case of a service specification, e.g., usually only the 
“normal” input interaction sequences are considered by 
the specification, since it is assumed that the user of the 
service follows certain rules about the order in which 
the input interactions are invoked. 

If the situation of an incompleteness of the reference 
specification is encountered by the trace checker during 
the analysis of a trace, the analysis must be stopped, 
since at this point the specification is considered to 

Figure 3. Mutual exclusion specification for one site. Znter- 
actions: re: reset (input); de: demand of exclusion access to 
resource (input); rs: refusal of resource access (output); ee: 
exclusion failure (output); er: reservation confirmed (out- 
put); fe: release of resource access (input). Internal condi- 
tions: nl: crash of the site; n2: resource is or becomes free; 
n3: resource not free; n4: time out elapsed; Notations: - 
:input; - :spontaneous output; -: internal. 
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allow an arbitrary behavior for the specified system. 
The following two possibilities should be considered: 

1. 

2. 

The specification is not correct, i.e., should be com- 
pleted to take care of the encountered input. 
The test input provided to the system under test does 
not conform to the assumptions that are made, ac- 
cording to the specification, about the behavior of 
the environment of the system under test. 

Let us consider again the specification given in Fig- 
ure 3. This specification is not complete because no 
transition is specified for release request (fe) in the 
states IDLE and CANDIDATE. It is assumed that the 
user may only release the resource after he was elected 
to use it. 

4. DESIGN AND IMPLEMENTATION OF A TRACE 
CHECKER 

This section describes the design and implementation 
principles of a trace checker. Experience with such a 
trace checker is described in Sect. 5. 

A. Principle of Operation 

The task of a trace checker is to check whether a trace 
of observed interactions is an execution history that is 
a possible one according to the specification of the sys- 
tem under test. Its principle of operation is not very dif- 
ficult, as explained in the following paragraphs. 

We assume that the trace checker reads the trace 
sequentially, and records after each observed interac- 
tion the possible states in which the reference specifi- 
cation may possibly be. 

We note that after a given prefix of the whole trace, 
the reference specification may be in one of several dif- 
ferent states depending on the possible nondeterministic 
transitions of the specification. In fact, for each input 
interaction, the trace checker considers for each of the 
possible states the transitions that are possible for the 
given input. Any output interaction to be generated is 
recorded. Internal transitions must also be considered. 

For each output interaction observed in the trace, 
the checker verifies for each of the possible states, 
whether the output was already generated by a previous 
input transition, or whether it may be generated by a 
spontaneous output transition. If for a given state, this 
is not possibie (or only outputs with different parameter 
values can be generated) then the state in question is 
not in agreement with the observed trace, and must be 
eliminated from further consideration in the trace 
analysis. 

If at some time during the analysis of the observed 
trace, no state of the reference specification remains in 
agreement with the grace, an error has been found. 

B. A Checking Algorithm 

We give in this section a more detailed description of 
the checking algorithm used in the trace checker we im- 
plemented. We also discuss the application of this al- 
gorithm to the example given in Sec. 3C. 

As mentioned above, the trace checker makes a se- 
quential analysis of the observed trace and maintains at 
all stages of the analysis a list of all states in which the 
reference specification may possibly be after the inter- 
actions already analysed. Such a “state” has two 
components: 

1. The values of the state variables declared in the ref- 
erence specification, and 

2. The output interactions already generated by the 
considered transitions of the reference specification, 
but not yet observed in the trace. 

The analysis of the next interaction in the observed 
trace builds up a list of possible next states, as follows: 
For each of the states in the list mentioned above, the 
follo~ng action will be executed. If the interaction is 
an input, then all possible input transition will be con- 
sidered, each leading to a next state which is placed on 
the list of possible next states. Any output interaction 
generated by the transition is recorded in the next state. 
Then all internal transitions are considered from the 
new next states found, leading in turn to next states. 
Some of these next states may already be in the list of 
next states. This process is continued until no new next 
states can be found. 

As an example, we consider the specification of Fig- 
ure 3 and a trace of the form (re,de,er,fe). This trace 
represents successively, the activation (re), the request 
(de), and confirmation (er) of the access to the resource 
followed by its release (fe). Figure 4 shows the checking 
tree for this trace. The (only) initial state of the speci- 
fication is FAILED. Given the first interaction in the 
trace (re), only one input transition may be fired from 
this state. The next state is IDLE. From this state an 
internal transition is possible and produces the next 
state FAILED. Therefore the possible states after the 
(re) interaction are IDLE and FAILED. In the same 
way, the next input interaction (de) applied to these 
possible states give rise to the two possible next states 
CANDIDATE and FAILED. 

While an input interaction in the trace usually in- 
creases the number of possible states to be considered, 
the output observed interactions usually reduce the 
number of possible states. If the next interaction in the 
analysed trace is an output, the following action is ex- 
ecuted for each of the possible states: if the state con- 
tains an already generated output interaction which is 
identical to the output interaction of the trace, then this 
interaction is deleted from the state, and the state is 
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kept as one of the possible next states. Otherwise all 
possible s~ntaneous output transitions are considered 
to check whether they generate the observed output. 
Any different output generated is kept as state infor- 
mation, and any subsequent internal transitions are 
considered. After the exploration of all spontaneous 
output and internal transitions, only those states are 
kept that have generated the output observed in the 
trace. All other states are discarded from the further 
analysis. 

Let us consider the next output interaction (er) in 
the trace of the exemple discussed above. The state 
FAILED does not give rise to any next states, since 
there is no sequence of transitions that leads from this 
state to the generation of the output interaction (er). 
From the state CANDIDATE, a spontaneous output 
transition may be fired to the state ELECT producing 
this output. In this state, the site may then crash. The 
system remains in one of the two possible states 
(ELECT and FAILED) and the checker is allowed to 
continue the analysis of the trace. 

We note that different strategies for the analysis of 
a trace could be considered. For instance, it would be 
possible to check during the analysis of an input inter- 
action whether an output interaction generated by the 
input transition can be found in the trace. It is impor- 
tant to note that, in general, it is not necessary that this 
interaction is the next interaction in the trace. Indeed, 
a certain degree of uncertainty may be allowed in the 
ordering of the interactions of the trace (see Sec. 3A), 
which means that interactions occuring at different in- 
teraction points may appear in the trace between the 
input and output interactions of a single transition of 
the specification. The algorithm described above takes 
care of this possibility. 

C. Error Detection 

The following three kinds of errors may be detected: 

1. Violation of safeness constraints {unexpected out- 
puts). If at some point during the analysis of the 
trace, no possible next state exists then the trace is 
in contradiction with the specification, i.e., the out- 

Figure 4. Checking for the trace (re, de, er, 
fe} (for notations, see Figure 3; a “*” indi- 
cates that a state has no possible next state for 
the given trace). 

put interactions generated by the system under test 
do not conform with the specification. 
Inconclusive test result due to incompleteness. If at 
some point during the analysis of the trace, no input 
transition is specified for the next input interaction 
of the trace for one of the possible states of the ref- 
erence specification, then an incompleteness of the 
specification is encountered, and one of the possibil- 
ities mentioned in Sec. 3D must be considered. 
Termination errors. Different situations may char- 
acterize the end of an observed trace. If the end of 
the trace is at an arbitrary point in the execution 
history of the system under test, not much can be 
said. If, however, the end of the trace corresponds to 
a stable state of the system under test, i.e., a state 
that does not produce any further output, then the 
following can be said about the termination: (a) If 
all possible final states of the reference specification 
include generated output interactions, then there is 
a termination error; the system under test should 
have produced one of the possible outputs. (There 
may be a deadlock.) (b) If all possible states either 
include generated output interactions or allow fur- 
ther output through spontaneous output transitions, 
then there may be a termination error, as in (a). 

In the case of a detected error, it is, in general, not 
easy to locate the reason for the erroneous behavior of 
the system under test. In fact, the reason for such be- 
havior may in some cases not be immediately visible in 
the observed trace, but only lead to a change of the in- 
ternal system state, which may become apparent only 
in the later part of the trace. 

D. Implementation 

Trace checkers for the two reference specifications dis- 
cussed in Sec. 5 have been implemented in PASCAL. This 
experience clearly demonstrates that two parts of a 
trace checker may be distinguished: the first one that is 
specifi~tion dependent, and the second one that is 
specification independent. The independent part con- 
sists of the checking algorithm explained in Sec. 4B. 
The specification-dependent part consists of two 
subparts: 
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pendant part in 
PASCAL a MERGE 
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Figure 5. Automated generation of a trace checking 
module. 

1. The declarations of the interactions, and 
2. The program realizing the transitions of the 

specification. 

It is noted that the specification-dependent parts are 
very similar to the PASCAL source code that is generated 

.-. 

by a compiler that translates a formal specification 
written in the extended state transition model [ 1 l] into 
a PASCAL program [ 91. It would not be difficult to adapt 
that compiler to generate directly the code needed for 
the specification dependent part of the trace checker. 
Following this approach, the implementation of a trace 
checker could be automated, as indicated in Figure 5. 

5. APPLICATION EXPERIENCES 

Two different protocols have been used for application 
experiences. The first has been briefly described (in Sec. 
3C) to illustrate the principle of the checking algo- 
rithm: a distributed mutual exclusion protocol. Speci- 
fications of this protocol exist in [8] and the construc- 
tion of an executable model for these specifications is 
described in [ 131. This model was used for the valida- 
tion of the defined protocol, using the trace checker de- 
scribed in Sec. 5A. Several errors in the protocol spec- 
ification were found during this process, as explained in 

Figure 6. Checking tree for the trace (rel, re2, del, de2, 
erl, er2, fe2, fel, del, erl, fel) (for notation see Figure 3). 
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[ 131. The second protocol is a Transport protocol de- 
veloped by IS0 and CCIm, a formal specification of 
the class protocol is given in [5]. An implementation of 
this protocol is being developed and the trace checker 
may be used to test that it provides the Transport ser- 
vice as specified in [4]. 

A. Distributed Mutual Exclusion Algorithm 

A specification provided by the service of the protocol 
is given in Figure 3. There is such a state diagram for 
each site of the dist~buted system. Figure 6 shows the 
checking process for a more complex trace formed from 
the interactions of two users at sites 1 and 2. The check- 
ing algorithm of Sec. 4B is used. A state of the system 
is characterized by three letters [the initials of the state 
for user 1 and user 2 followed by the letter F or N in- 
dicating whether the resource is free (F) or not (N)] . 

The trace which is explored in Figure 6 includes an 
error (two successive exclusion confirmation erl and 
er2 in the absence of failures). Naturally, this error is 
detected; however, we see here a good example of a 
later error detection: when checking the output inter- 
action er2, a possible valid state is FEN where site1 is 
crashed. A violation of the service specification is de- 
tected when the next output (erl) of site 1 is checked. 
Figure 7 shows the output produced by the checker pro- 
gram for this trace: the number of points after each in- 
teraction indicates the number of possible states after 
the analysis of each of the interactions indicated at the 
beginning of the line. 

B. Transport Protocol 

While the mutual exclusion example, with the absence 
of interaction parameters, allows a quasifinite state ref- 

Figure 7. Checker output for the mutual exclusion 
algorithm. 

-- TRACE CHECKER _ VO4/05/11,'Sl _ 

OP(l).RE : * 
op(2j.m . . . . 
UT(l).DE . . . . 
UT(ZJ.DE . . . . 
UT(l).ER . _ . . 
UT(Z).ER . . 
UT(2).FE . . 
UT(l).FE . . 
UT(l).DE . . 
UT(l).ER 

END OF ANALYSIS .._. 

TIME USED : 0.64 SECONDS . . 

. . . . . STOP CHECKING . . . . . 

. . . . . BECAUSE OF AN UNEXPECTED OUTPUT 

erence specification, the Transport service specification 
[4] relies heavily on interaction parameters and addi- 
tional state variables for expressing the service proper- 
ties. It is interesting to note that for this example the 
finite (major) state does not induce any nondetermin- 
ism for the trace checker. In fact, there are no internal 
transitions. Some nondeterminism due to nonspecified 
values of certain additional state variables does not lead 
to any problem since the value adopted by the unit 
under test can be deduced by the next output produced. 

Figure 8 shows an example of an output obtained for 
the Transport service: the trace checker detects an error 
in the ordering of data units during data transfer after 
the connection establishment phase. Unit 3 is received 
by user 2 at the access point AP2 before the unit 2. 

6. CONCLUSION 

The trace checker described in this paper is a module 
which compares the observed behavior (i.e., a trace) of 
a system under test with the requirements of a refer- 

Figure 8. Checker output for the Transport protocol. 

-- TRACE CHECKER _ VO4/05/11/81 - 

AP1.T CONNECT REQ 1 TCEPI 1 - - 
TO T ADDRESS 2 
FROM T ADDRESS 1 
QOTS REQUEST 
OPTISNS 0 
TS CONNECT DATA CONNECT 1 

AP2.T CONNECT IND ( TFEPI 1 - - 
TO T ADDRESS 2 -- 
FROM T ADDRESS 1 -- 
QOTS REQUEST 
OPTIGNS 0 
TS CONNECT DATA CONNECT ) 

APZ.T_ACCEPT_REQ f TCEPI 1 - 
QOTS REQUEST 
OPTISNS 0 
TS ACCEPT DATA ACCEPT ) 

AP2.T_DATA_REQ ( T?EPI l- 
TSDU FRAGMENT DATAZ-1 1 ) 

AP2.T DATA REQ ( TCEPI 1 -- 
TSDU FRAGMENT 

APl.T_ACCEPT_IND ( TCEiSI 1 
QOTS REQUEST 
OPTIENS 0 
TS ACCEPT DATA 

AP1.T DATA REQ ( ?CEPI i - _ 
TSDU FRAGMENT 

APl.T_DATA_REQ ( TCEPI 1 
TSDU FRAGMENT 

AP1.T DATA IND ( TCEPI 1 
TSDU FRAGMENT 

APl.T_DATA_REQ ( TCEPI 1 
TSDU FRAGMENT 

AP1.T DATA IND ( TCEPI 1 
TSDU FRAGMENT 

AP2.T DATA IND ( TCEPI 1 
TSDU FRAGMENT 

AP2.T DATA IND ( TCEPI 1 - - 
TSDU FRAGMENT - 

END OF ANALYSIS . . . . 

TIME USED : 0.63 SECONDS . . 

DATAZ-1 2 ) 

ACCEPT ) 

DATAl-2 1 ) 

DATAl-2 2 ) 

DATAZ-1 1 1 

DATAl-2 3 ) 

DATA2-1 2 ) 

DATAl-2 1 ) 

DATAl-2 3 ) 

. ...* STOP CHECKING . . . . . 

. . . . . BECAUSE OF AN UNEXPECTED OUTPUT 
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ence specification. The paper discusses how such a trace 
checker can be obtained semiautomatically for any ref- 
erence specification given in an extended state transi- 
tion description technique. Such a trace checker may 
be used for testing an implementation of a system for 
which a formal specification is given, or for testing the 
consistency of refined specifications in respect to a more 
abstract reference specification if the refined specifica- 
tions exist in an executable form. The selection of ap- 
propriate input test sequences is a related problem, 
which is not addressed in this paper. 

The objective of our work was to apply this testing 

approach to the validation of communication protocols. 
Some practical results are reported in [ 131. The appli- 
cation of this approach to a mutual exclusion and a 
Transport protocol shows that the nondeterminism in- 
herent in the reference specifications of these examples 
does not lead to an excessive number of possible states 
to be considered for the analysis of typical traces. We 

believe that this technique is equally suitable for other 
areas of software design. 
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