IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984

389

Synchronization and Specification Issues in
Protocol Testing

BEHCET SARIKAYA, STUDENT MEMBER, 1EEE, AND GREGOR v. BOCHMANN, MEMBER, IEEE

Abstract—Protocol testing for the purpose of certifying the imple-
mentation’s adherence to the protocol specification can be done with a
test architecture consisting of remote tester and local responder proc-
esses generating specific input stimuli, called test sequences, and
observing the output produced by the implementation under test. It is
possible to adapt test sequence generation techniques for finite state
machines, such as transition tour, characterization, and checking
sequence methods, to generate test sequences for protocols specified
as incomplete finite state machines. For certain test sequences, the
tester or responder processes are forced to consider the timing of an
interaction in which they have not taken part; these test sequences are
called nonsynchronizable. The three test sequence generation algo-
rithms are meodified to obtain synchronizable test sequences. The
checking of a given protocol for intrinsic synchronization problems is
also discussed. Complexities of synchronizable test sequence genera-
tion algorithms are given and complete testing of a protocol is shown
to be infeasible.

To extend the applicability of the characterization and checking
sequences, different methods are proposed to enhance the protocol
specifications: special test input interactions are defined and a metho-
dology is developed to complete the protocol specifications.

1. INTRODUCTION

ROTOCOL implementation assessment methods are used

to determine that a particular implementation (in the
following simply called “implementation” or “I””) adheres
to the specification of the protocol. There seems to be agree-
ment on a general architecture to be used for testing one or
more layers of the OSI protocol hierarchy [4], [10}, {17]. A
remote tester (also called “active tester,” ‘‘tester,” or “7T” for
short) and a supplementary test module (also called “test
responder,” “responder,” or ‘“R”) directly connected to the
implementation, and playing the role of the implementation’s
service user, constitute the major parts of this architecture, as
shown in Fig. 1(a).

This paper addresses the problem of selecting test sequences
for protocol implementation assessment, Assuming finite state
machine (FSM) models for protocol specification, various
methods developed for FSM’s implemented in hardware and
software can be applied to the selection of test sequences for
protocols, as reported earlier [2]. In the context of the under-
lying test architecture, however, certain problems of syn-
chronijzation between the tester and the responder may arise.

The paper first gives a short review of the application [20]
of three finite state test sequence selection methods, (i.e.,
transition tours [15], characterization [7], and checking

Paper approved by the Editor for Computer Communications of
the IEEE Communications Society for publication after presentation
in part at the SIGCOMM ’83 Symposium on Communication Architec-
ture and Protocols, Austin, TX, March 1983. Manuscript received De-
cember 10, 1982; revised September 16, 1983. This work was supported
in part by the Natural Sciences and Engineering Research Council of
Canada. '

B. Sarikaya is with the Schopl of Computer Science, McGill Uni-
versity, Montréal, P.Q., Canada.

G. v. Bochmann is with the Departement d’Informatique et de Re-
cherche Opérationnelle, Université de Montréal, Montréal, P.Q., Canada.

sequences [13]) to protocol implementation assessment, and
then explains in Section III the nature of the possible syn-
chronization problems. Section IV discusses algorithms for
selecting test sequences without synchronization problems,
which are called in the following synchronizable. Some proto-
col examples are also given for which no complete synchroniz-
able test sequence exists. The use of synchronizable test
sequences simplifies the design of the tester and the responder.

Most protocol specifications define incompletely specified
machines, i.e., for certain machine state and input signal pairs
there is no transition specified. Therefore, the test sequence
selection methods have been generalized for the case of in-
complete machines [20]. Unfortunately, these methods are
not always applicable. Section V thus contains a discussion of
different strategies for partially completing protocol specifica-
tions in view of making them easier to test. The X.25 virtual
circuit establishment and clearing protocol is taken as an
example. Also, the class 0 transport protocol is taken as the
main example to demonstrate the properties of the different
test sequence selection methods. A short comparison of the
three methods is also given.

In Section VI, the complexities of the test sequence genera-
tion algorithms and the effect of synchronization to the com-
plexities are discussed. Complete testing of a real protocol is
shown to be infeasible.

II. TEST SEQUENCE GENERATION FOR PROTOCOLS

The testing methods explained in [7], [13], [15].are
briefly explained below, using as an example the state machine
specification of the ISO/CCITT class O transport protocol
[11] shown in Fig. 2.

A. Transition Tour Method

An input sequence starting with the initial state and cover-
ing all transitions defined in the protocol specification is
called a transition tour [15]. A transition tour for the trans-
port protocol is shown in Fig. 3(a).

Formulas for the upper bound on the length of transition
tours depending on the size of the specification are given in
Table I. For the specification of Fig. 2, the upper bound and
the actual length of the transition tour of Fig. 3(a) are listed in
Table II. Table I contains upper bound formulas and their
complexities for all three methods, and Table IT shows actual
lengths and upper bounds for this and other types of protocols.

B. The W-Method: Characterization Sequences

A characterization set W of an FSM A4 is a set of input
sequences such that the output observed from the application
of W is different for each state [7]. Every reduced, completely
defined FSM possesses a W-set.

A testing tree is defined to have the machine transitions as
its branches and states as its nodes; it contains each transition
exactly once. The root of this tree is the initial state.

A test sequence, called a characterization. sequence, is ob-
tained by the concatenation of the two sets P and W, where P
is the set containing all partial paths in the testing tree, includ-
ing the empty sequence. Each sequence in the concatenation

0090-6778/84/0400-0389$01.00 © 1984 IEEE

390

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984

Test Synchroanization
(Active Tester) (Test Responder)
R
T
Protocol to be Tested | (Implementation
#| under Test)
I (layer N)
Layer 1 Layer 1
(a)
T R
4+
TI 1T E—_j R IR
Q - Q Q - Q
1
(b)

Fig. 1.

(a) A test architecture for testing an (/V)-layer protocol imple-

mentation in the context of the OSI reference model. (b) Basic in-
teraction model of the test architecture in (a).

T_Dreq/DR,
CR/ERR,

CC/ERR,
DT/ERR,

DR/ERR

T _Cresp/CC

Notation for Input Events
From Tester

CR Connect_request PDU
cc Counnect_Counfirm PDU
DT Data_Requeat PDU

DR Disconnect_Request PDU

N_Dind Network Disconnect_Indication
N_Rind Network_Reset_Indication

Notation for Output Events

To Tester
ERR Error PDU
N_Dreq Network Disconnect_Request
cc Connect_Confirm PDU
DT Data_Request PDU
DR Disconnect_Request PDU

N_Dind N_Disconmect_Indication
N_Rind N_Reset_lIndication

Fig. 2.

c¢/~, DTp=, DR/-

T_Dreq/N_Dreq,
CR/ERR,
DR/N_Dreq,
N_Dind/T_PDind,
N_Rind/T_Dind

T_Creq/CR

DR/T_Dind, N_Dreq

CC/T_Cconf

v T_DTreq/DT, DT/T_DTind

From Respouder
T_Creq T_Connect Request
T_Dreq T _Disconnect Request
T_Cresp T_Connect_Response
T_DTreq T Data_Request

To Responder
T_Cind T_Connect_Indication
T_Dind T _Disc_Indication
T_Cconf T_Connect_Confirm
T_DTind T_Data Indication

Finite state machine for the class Q transport protocol.

1 T.CR 2 R.T_Dreq 1 T.CC 1 T.DT 1 T.DR 1 T.CR 2 T.CR 1

R.T_C1ind T.DR - - - R.T_Cind T.ERR
*
R.T Creq 3 T.DT 1 T.CR 2 R.T Cresp 4 R.T_DTreq 4 T.DT 1
T.CR T.ERR R.T_Cind T.CC T.DT R.T_DTind
R.T_Dreq 1 T.CR 2 T.CC 1 T.CR 2 T.DT 1 T.CR o2
T.N_Dreq R.T_Cind T.ERR R.T_Cind T.ERR R.T_Cind

o .

T.DR 1 R.T Creq 3 T.DR 1 R.T_Creq 3 T.CC 4
T.ERR T.CC R.T_Dind, T.N_Dreq T.CC R.T_Cconf
T.CR 1 T.CR 2 R.T Creap & T.DR 1 "T.CR 2 R.T_Cresp &
T.ERR R.T_Cind T.CC T.N_Dreq R.T_Cind T.CC
T.N_Rind 1 T.CR 2 R.T_Cresp 4 T.N Dind 1
R.T_Dind R.T_Cind T.CC R.T_Dind

Notation for Transitioms:

Start State Input Initiating Side.Input Primitive
Output Receiving Side.Output Primitive

"4''s are used to indicate nonsynchronizable transitions.

(a)

Final State

1 R.T_Creq 3 T.CC 4 R.T_Dreq 1 T.CR 2 R.T_Dreq ! T.CC 1 T.DT 1

T.CR R.T _Cconf T.N_Dreq R.T_Cind T.DR - -
T.DR 1 T.CR 2 R.T_Cresp 4 R.T_DTreq 4 T.CR 1 T.CR 2 R.T_Cresp 4
- R.T_Cind T.CC T.DT T.ERR R.T_Cind T.CC
T.DT 4 T.N_Rind 1 R.T _Creq 3 T.DT 1 T.CR 2 R.T_Cxesp 4
R.T_DTind T.T_Diad T.CR - R.T_Cind T.CC

T.N_Dind 1 R.T_Creq 3 T.DR 1 T.CR 2 R.T_Cresp 4
R.T_Dind T.CR R.T_Dind, T.N_Dreq R.T_Cind T.CC

T.DR 1 T.CR 2 T.CR 1 T.CR 2 T.CC 1 T.CR 2 T.DT 1
T.N_Dreq R.T_Cind T.ERR R.T Cind T.ERR R.T_Cind T.ERR
T.CR 2 T.DR 1

R.T_Cind T.ERR

(b)

Fig. 3. (a) A transition tour for- the transport protocol. (b) Synchro-

nizable transition tour for the transport protocol.

TABLE I
UPPER BOUND FORMULAS AND THEIR COMPLEXITIES

Upper Bound for Transition TourzLangth:
1(T) <= gq+(q-1)(n-1) 0(n"k)
Upper Bound for W-Sequence Length(vithbresetl):
L(W) <= (1/2)knw(an+1)+m(q+l) 0(n k)
Upper Bound for Checking Sequence Lengs_?:
1(C) <= 2nL+(n~1)*#2+q(n+L) 0(n"~%k)

where k=maximum number of specified entries for a given atate
(number of input symbols at maximum)
L=length of DS
masum of the lengths of the membera in the W-get
n=number of states
g=total number of specified entries in the Table (maximum n.k)
w=number of members in the W-set

TABLE I
ACTUAL LENGTHS (L) AND UPPER BOUNDS (U) OF
TEST SEQUENCES

Tour W-Method D-Method

L u L U L u

Transport Protocol 34 81 65 92 64 122

X25 DTE with "Read State" transition
(and "Set State 1" for W-Method) 54 273 140 216 106 380

UK Transport Protocol with "Read

State” (and "Set State 1" for W-Method) 57 311 153 363 127 453
X25 DTE Sémi-Completed ’

(W-method with resets) 97 369 408 600 - -

UK Transport Pr. Semi-Completed

(W-method without resets) 337 1429 2305 4505 - -

SARIKAYA AND BOCHMANN: SYNCHRONIZATION AND SPECIFICATION

of P and W is applied starting with the initial state and fol-
lowed by a transfer sequence back to the initial state (also
called reset) to be ready for the next sequence.

As long as a W-set exists, this metliod is applicable to
incompletely specified machines. For the transport protocol of
Fig. 2, DR (the disconnect request protocol data unit) is a
W-set, a single sequence of length one, A complete test se-
quence for the protocol is given in Fig. 4.

C. The D-Method: Checking Sequences

Checking sequences can be used to test machines that have
a distinguishing sequence (DS) [13]. A checking sequence
consists of two parts: first a state recognition part, and then a
transition checking part: The state recognition part starting
with the initial state is designed to display the response of each
state to the sequence DS-DS. Transfer sequences might be
used in this part when necessary. The transition checking part
checks individual transitions that are not checked in the state
" recognition part and can be defined as
TC = Ux,- - DS (A)
where U stands for set union and the x; are the machine
transitions to be checked.

As long as a DS exists, the D-method is applicable to in-
completely specified machines. A DS for the transport proto-
col of Fig. 2 is again DR, which is of length one. (See also
[20].)

D. Fault Detection Capability of the Methods

The transition tour method is the simplest approach, but it
does not detect all errors in an implementation, i.e., errors in
the next state function of the FSM may remain undetected. A
characterization sequence or a checking sequence detects any
misbehavior, also in the case of incompletely specified ma-
chines, as long as the method is applicable. However, this is
only true as long as it can be assumed that the implementation
behaves like a FSM with a number of states smaller than or
equal to the specification. Unfortunately, this assumption is
often difficult to check, and implementations may introduce
additional states due to resource management and other
practical considerations. It is therefore interesting to note that
additional implementation states can be accommodated by the
W-method, with, however, the penalty of increased test se-
quence lerigths.

The fault detection is demonstrated by the following s1mple
example. Assume that the following erroneous behavior is
realized by an implementation of the transport protocol. In
state 4 under input N_Dind, the next state is 4 (instead of 1
as indicated in Fig. 2), i.e., a transfer error. The characteriza-
tion sequence of Fig. 4 applied to this implementation would
lead to

2 T Cresp 4 N_Dind 4
cC T_Dind

1 CR
T_Cind

DR 1
N_Dreq

The unexpected output of N_Dreq to the input DR reveals
the error. The transition tour of Fig. 3(a) results in

1 CR
T_Cinc

2 T Cresp 4 N_Dind 4
CC T_D ind
No error is detected!

II1. SYNCHRONIZATION. PROBLEMS IN TEST SEQUENCES

Test sequences reported in [20] were generated with the
assumption that the tester and responder are directly syn-

391

1 T.DR 1

Hx e

T _Creq 3 T.DR
CR R.T_Dind

1 T.CR 2 T.DR 1 T.CC 1 T.DR 1
R.T_Cind T.ERR - -

0
1 R.T_Creq 3 T.CC 4
T.CR R.T_Ccounf

T.DT 1 T.DR 1 T.DR ! T.CR 2 R.T_Dreq 1 T.DR

- - - R.T_Cind T.DR -
] »

T.DR 1 R.T_Creq 3 T.DT 1 T.DR 1 R.T_Creq 3 T.DR 1 T.DR 1 T.CR 2
T.N_Dreq T.CR T.ERR - T.CR R.T_Dind - R.T_Cind
R-I Cresp 4 R.T_Dreq 1 T.DR 1 T.CR 2 R.T_Cresp 4 R.T_DTreq 4
T.C T.N_Dreq - R.T_Cind T.CC T.DT
T.DR 1 T.CR 2 R.T_Cresp 4 T.CR 1 T.DR 1 T.CR 2 R.T_Cresp &
T.N_Dreq R.T_Cind T.CC T.ERR - R.T_Cind T.CC
T.DT 4 T.DR 1 T.CR 2 R.T_Cresp 4 T.DR 1 T.DR 1
R.T_DTind T.N Dreq R.T_Cind T.CC T.N_Dréq -
T.CR 2 R.T Cresp 4 T:N_Dind 1 T.DR 1 T.CR 2 R.T_Cresp 4
R.T_Cind T.CC R.T_Dind - R.T_Cind T.CC
T.N_Rind 1 T.DR 1 T.CR 2 R.T _Cresp 4 T.DR 1 T.CR 2 T.CkR 1
R.T_Dind - R.T_Cind T.CC T.N_Dreq R.T_Cind T.ERR
T.DR 1 T.CR 2 T.CC 1 T.DR 1 T.CR 2T.DT 1 T.DR 1 T.CR 2

- R.T_Cind T.ERR - R.T_Cind T.ERR - R.T_Cind
T.DR 1 T.DR 1
T.ERR -

(Same Notation as in figure 3a)

Fig. 4. A characterization sequence for the transport protocol.

chronized with one another. In the architecture of Fig. 1(a),
however, the tester and responder are distributed over two
sites, and they are only synchronized through the interactions
with the implementation. This may lead to synchronization
problems between the tester and the responder, which are
explained in this section. Section IV then contains considera-
tions for avoiding them.

A. Basic Interaction Model

The implementation (I), tester (T), and responder (R),
shown in Fig. 1(a), are modeled as processes, each represented
as an FSM, which communicate by exchanging messages
through FIFO queues [Fig. 1(b)]. T and R may send or re-
ceive a message to/from I when they execute a state transition.
I can receive a message from T or R, or it can send a message
to one or both of T or R after receiving a message from one
of them. The system has a predefined initial state: all queues
empty and all three processes in their initial states.

1) Basic Interaction Sequences (BIS): A sequence of transi-
tions of the implementation, tester, and responder defines a
transition sequence for each process. In the following, abstrac-
tion is made from the particular transitions, only the informa-
tion whether an input is received (R) or an output is sent (§) is
recorded, and over which FIFO queue, Following some ideas
from [19], we call such an abstracted view of a transition a
basic transition, and the individual interactions of a basic
transition basic interactions. For example, the basic interac-
tions corresponding to the transition from state 1 under input
CR of the protocol of Fig. 2 are to receive a message through
0TI from T (written RIT), and to send a message through
OfR to R (written STR), Hence, it corresponds to the basic
transition RITSIR All possible basic trdnsitions of process /
under the model of Fig. 1(b) are énumerated in Table III(a),
assummg that each transition of I starts with an input interac-
tion. It is noted that some of the entries in Table III(a) (namely
RIR RIRGIR and RIRSIRGIT) do not occur for the trans-
port protocol of Fig. 2, but they may occur in other cases.

Test sequences discussed in Section II are composed of
transitions of process /, each starting in the initial state. Hence,
a test sequence, such as the one in Fig. 3(a), can be easily
converted into a corresponding BIS by replacing each transi-
tion with its corresponding basic transition.

From a given test sequence, it is possible to obtain BISes
for T and R as well. The execution steps of I that do not in-
volve any interaction with either T or R will be shown as” in
the corresponding BIS. The BIS for T corresponding to a given

392

TABLE 111
LIST OF BASIC TRANSITIONS (a) AND NONSYNCHRONIZABLE
PAIRS OF TRANSITIONS (b) FOR AN IMPLEMENTATION (/)

21T pITgIR pITRIRGIT ITRIRGIR o ITGIRCIRCIT
IR RIRRIT, gIRRITGIT pIRNITSIR pIRLITGITGIR
RITGIT 'ln'snkxn, RITSITRIRGIT pITGITyIRGIR pIToIT IRGIRGIT
RITIR _ '
RIBGIT R
RIRgIR RIRGIRGIT RIRGIRZITCIT SIRGIRGITGIR pTRGIRPITSITGIR
RITGITGIR ’
gIRgIRGIT

(a) (b)

BIS for I can be obtained from the latter by replacing an RIT
with ST, and an SIT with RT! and an execution step not
involving “7T by ~. A BIS for R can be obtained in a similar
way.

B. Synchronization

Definition: Considering two consecutive basic transitions of
I, one of the test modules, say T (or R), faces a synchroniza-
tion problem if T (or R) dld not take part in the first transi-
t10n and if the second transition requires that it sends a mes-
sage to I.

Lemma: A pair of basic transitions has a synchronization
problem if (and only if) the corresponding BIS for T and/or
R has any sends (S) preceded by a”.

Proof: Follows from the definition.

Two consecutive basic transitions of I will be called a
synchronizable pair of transitions if the second transition can
follow the first one without generating a synchronization
problem. For example, RIR followed by R‘T would violate
synchronization because of the Lemma above. Similarly,
RIR and RIRSIR cannot be followed by RIT or RITSIT or
RITGITGIR Also, RIT and RITSIT cannot be followed by
RIR or RIRSIR or RIRGIRGIT All nonsynchronizable pairs
of basic transitions are listed in Table III(b).

Theorem: A given test sequence is synchronizable if (and
only if) any two subsequent transitions of the sequence cor-
respond to a synchronizable pair of basic transitions.

Proof: .

(If part) Follows from repeated application of the
Lemma to the test sequence.

(Only if part) By contradiction.

The test sequences shown in Figs. 3(a) and 4 were derived
in [20] without concern for possible synchronization prob-
lems. It is easily seen that they contain synchronization prob-
lems, as indicated by “*”’s. The sequence of Fig. 3(a) contains
two violations, both of the type RITSITRIRGIT which is one
of the pairs listed in Table III(b). The sequence of Fig. 4 con-
tains four violations of the same kind.

C. Protocol Specifications with Intrinsic
Synchronization Problems

For certain protocolispecifications, it is impossible to avoid
synchronization problems. Such a situation occurs in the case
that a transition p; from state j to state £ is of one of the types
RIR RIRGIT R‘RSIR, or RIRSIRSIT and each transition
p; entermg state j is of one of the types RIT or RITSIT Then
each pair p;p; is a nonsynchronizable pair of transitions. There-
fore, the executlon of the transition p; implies a synchroniza-
tion problem. We call such a transition nonsynchronizable. A
dual situation exists for the case that all p; are of types RIR
or RIRSIR and p; is of one of the types RIT, RITGIT,

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984

RITGIR or RITSITSIR We call a state nonsynchronizable
if it can only be reached through nonsyrchronizable transi-
tions.

Protocol specifications having nonsynchronizable transi-
tions and/or states are called intrinsically nonsynchronizable.
It is clear that any complete test sequence generated for such
specifications will carry synchronization problems. It can be
seen that the transport protocol of Fig. 2 does not have any
nonsynchronizable transitions; therefore, it does not have any
intrinsic synchronization problem.

D. An Example: The X.25 DTE

Fig. 5 shows a state table for an X.25 DTE. Each entry
in the table represents a transition to be executed by the DTE
for a given present state and input interaction. An entry de-
fines the result of the transition in the form

next state

output interaction

Fig. 5 was obtained as follows. The X.25 specification [5]
defines the DCE behavior as far as DCE-DTE interactions are
concerned. A symmetric behavior was assumed for the DTE,
which accounts for the first four columns of rows 1-7 in Fig.
5. In addition, user interactions (see last four columns, and
certain outputs) have been added to the table in a relatively
straightforward way [18]. We note that state 6 handles both
user clears and protocol errors, as specified in X.25. For the
user errors a ‘‘user error” state (state 9) is introduced, as
explained in Section V. Clear collision in the user-DTE inter-
face is handled by adding a “clear-collision” state (state 8).
Since according to X.25, the DCE does not send a clear-
confirmation packet in the case of a clear collision at the
DTE-DCE interface, there is no transition to state 8 in response
to an interaction from the DCE.

Fig. 5 contains eight nonsynchronizable transitions: the
entries in states 8 and 9 for all interactions from the DCE. The
reason for this problem is that no transition from the DCE
leads to either of these states. Modifications to the state table
to avoid these intrinsic synchronization problems will be
discussed in Section V,

IV. GENERATION OF SYNCHRONIZABLE TEST SEQUENCES

Each test sequence generation method discussed in Section
II may give rise, for a given protocol specification, to different
test sequences depending on the way the method is imple-
mented. It is clear from the discussion of Section III that some
of these sequences are not applicable in the test architecture of
Fig. 1(a) because they violate the synchronization rules. The
different methods can be adopted to generate only synchroniz-
able test sequences, unless the protocol is intrinsically nonsyn-
chronizable. These adaptations are specific to each method, as
explained below. The basic approach in all cases is to check
each new transition added to the sequence in order to see
whether it is synchronizable with its predecessor. This check
is based on Table III(b) which lists all nonsynchronizable pairs
of transitions.

A. Transition Tours

Any graph traversal algorithm such as the one given in [22]
can be modified to obtain a transition tour. Each transition
to be added to.the sequence by the algorithm is first checked
whether it forms a synchronizable pair together with the last
transition of the sequence [using Table III(b)]. If it is not
synchronizable, a different transition from the present state is
considered. If no suitable transition exists from the present
state, the selection algorithm backtracks to the previous state
continuing the tour from there in a different way. This process
continues until all the transitions of the machine are covered.

‘SARIKAYA AND BOCHMANN: SYNCHRONIZATION AND SPECIFICATION

Cl_ind |Cl_conf|Conn Inc N_Creq {N_Cresp| N _Dreq [N_Clresp
)3 7 6 6 3 2 9 6 9
N_Dind Err Err N_Cind | Req N_Err |Cl_req [N_Err
{Rote?) {N_Err)
2! 7 6 4 5 9(2) 9 6 9
N_Diad Err N_Cconf - N_Err N_Err Cl_req |N_Err
« - (N_Err)
3 7 6 6 6 5 4 6 9
N_Dind Err Err Cl_req Req Acc Cl_req |N_Err
4 7 6 6 6 9 9 & 9
N_Dind JCl_req |Cl_req |Cl_req |N_Err N_Err Cl_req [N_Err
5 7 6 4 6 9 9 6 9
N_Dind Err N_Cconf| Err N_Err |N_Err |Cl _req |N_Err
{¥_Err)
6 1 - 1 6 6 9 9 6 6
N_Dconf|N_Dcounf [Discard| Discard) N_Err N_Err Discard -
[Notel]
7 7 6 6 .6 9 9 8 1
Discard|{ Err Err Err N_Err N_Err - Cl_counf
8 8 6 6 6 9 9 8 1
Discard| Err Err Err N_Err N_Err Discard| Cl_couf
-9 1 1 9 9 9 9 1 9
N_Dind {N_Dind |Discard] Err Discard - Cl_req -
[Notel)

[Notel):This transition mway take place after time-out.
[Note2):Specification defines astate 7 as the next state for the DCE

Notation for Input Fvents

From DCE
Cl_ind Clear Indication
Cl_conf Clear Confirmation
Coun Call Connect
Inc Incoming Call

From User
N Creq N_Connect _Request
N_Cresp N_Connect_Response
N_Dreq N_Disconrnect_Request
N_Clresp N_Clear_Respounse

Notation for Qutput Events

Req Call Request N_Cind N_Connect_Indication

Acc Call Accepted N_Cconf N_Counnect_ Confirmation
Cl_req Clear Request N_Dconf N_Disconnect_ Confirmation
Cl_conf Clear Confirmation N_Dind N_Disconnect_Ihdication
Err Error N_Err N_Error_Indication

"-" means no output is generated.

Fig. 5. State table of X.25 DTE.

In general, it may be necessary to deviate from the goal of
obtaining minimum length sequences.

Applying such an algorithm to the transport protocol, the
transition tour of Fig. 3(b) is obtained. The length of this
sequence is 34, as in Fig. 2; in this case the length is not
increased.

B. Characterization Sequences

Algorithms to find a W-set and to construct a testing tree
(and, lLience, to calculate P+ W, without resets) are given in [6].
Any shortest path finding ‘algorithm; such as the one in [8],
can be used for determining the resets. Synchronizable cha;aé-
terization sequences can be obtained in three steps as follows.

In Step 1, all subsequences of P-W (w1thout resets) are
checked for synchronization problems using a “subsequenceé
checking algorithm’ which checks all pairs of consecutive
transitions in a sequence for synchronization problems, using
Table III(b). If a subsequence of P-W has synchronization
problems, the use of a different W set or testing tree P may be
considered, possibly leading to longer sequences.

In Step 2, each subsequerice of P-W is completed by ap-
pending a synchronizable reset sequence using a backtracking
algorithm similar to the one for transition tours explained
above.

In Step 3 the subsequences obtained in step 2 are merged
together to obtain a single synchronizable test sequence. Any
‘““‘concatenation algorithm” could be used which puts the sub-
sequeénces in such an order that no synchronization problem
is generated.

A synchronizable W-sequence for the transport protocol
can be obtained using the same testing tree as for Fig. 4. Due

393

to longer reset sequences, it contains four more transitions
than Fig. 4.

C. Checking Sequences

Ignoring the problem of synchronization, an algonthm for
findinig a DS can be found in [13], and algorithms for state
recognition and transition checking parts are reported in [9].
Shortest path algorithm$ can be used for finding transfer
sequences.

The following measures are proposed to obtain synchroniz-
able test sequences.

1) A synchronizdble DS must be found, not necessanly of
minimal length.

2) The state recogmtmn part obtained according to [9] is
checked using the ¢ subsequence checking algorithm’ men-
tioned above. In case of synchronization problems, changing
the transfer sequences should first be considered. The use of a
different DS may also be considered,

3) The transition checking step is checked with a two-part
procedure. Fiist each subsequence x;+DS in the set TC as de-
fined in Section II is checked by the “subsequence checking
algorithm.” If one of the tests fails, a different DS should be
generated, if it exists. In the second step, the transition check-
ing part as a whole is checked for synchronization. In the case
of synchronization problems, a different order of the subse-
quences and/or different transfer sequences should be con-
sidered.

4) Finally, the state recognition and transition checking
parts are combined using an appropriate transfer sequence.

A synchronizable checking sequence for the transport
protocol can be obtained containing three more transitions
than the sequence reported in [20].

V. SPECIFICATION ENHANCEMENTS FOR TESTING

The transition tour method is generally applicable for the
generation of test sequences; unfortunately, it does not have
full fault detection capability. The other two methods could
be applied as long as a DS or a W-set exists, which was the case
for the transport protocol.

Two approaches can be taken in order to make the W-and
D-methods applicable, if the original protocol specification
does not have a DS and/or W-set:

1) the protocol specification may be enhanced by defining
special test interactions and transitions (i.e., “read state” and
“‘set state’’ transitions as described in [16]), and

2) the specification (usually incomplete) may be completed
until a W-set or DS is obtained.

These two enhancement techniques will be d1scussed in the
following sections.

A. Special Test Transitions

A “‘read state’ transition is by definition 2 DS and a W-set,
and a ‘“‘set state’’ transition can be used as a transfer sequence
(in particular for resets) of length one.)

The advantages of using ‘“read state’ and “set state’’ transi-
tions for testing can be summarized as follows: _

1) It becomes possible to apply any of the test sequence
generation methods discussed i in Section IL

2) Minimum length test sequences are obtained in all three
cases. W-set and DS dre minimal (of length one) and transfer
sequences for all methods have length one.

3) Incompletely specified machines can be tested venfymg
only the specified part. It should be noted that the special test
transitions are also subject to testing. Any implementation

cerror of these transitions will be detected by the D- or W-

methods.

Test sequences for the X.25 DTE and the U.K. transport
protocol [14] were obtained using the special test transitions.
The lengths of these sequences are given in Table II. In obtain-

394

ing the ui)per bounds the following parameters were used:
n=8 q=35,L=1,k=5m=1,w=1

for the X.25 DTE, and

n=10,q=32,L=1k=6,m=1,w=1
for the U.K. transport protocol.

B. Completing Specifications

In order to make the protocol more easily testable, an in-
complete specification of a protocol may be completed in the
following four stages.

1) One state is added to the model, namely the “protocol
and uvser error” state (if not already present).

2) Unspecified transitions for any input and state are speci-
fied to lead to the error state.

3) There should exist at least one transition which takes the
protocol out of the error state, as, for instance, the disconnect
request input.

'4) The error state should ignore all other inputs and stay in
the same state.

A criterion for the choice of outputs for the added transi-
tions should be to avoid intrinsic synchronization problems.
(See also examples in Section V-C.)

With the above approach, a W-set is obtained unliess the re-
sulting specification has an intrinsic synchronization problem.
The existence of a DS depends on the protocol, and it might
be necessary to introduce new output symbols in order to
obtain a DS (see also [13]). After obtaining a W-set arid/or
DS as explained above, the error transitions specified in stages
2) and 4) above can be removed, if the input symbol does not
occur in the W-set and/or DS.

C. Completing the X.25 Specification for Testing

The completion procedure above was applied to the X.25
DTE protocol, leading to the specification of Fig. 5. As dis-
cussed in Section III-E, the resulting table has intrinsic syn-
chronization problems. There are two possible solutions to the
problems related to state 8. The first is to completely delete
this state by modifying the entry in state 7 under input
N_Dreq to go to state 1 with no output. The second solution
requires two modifications to the state table:

In state 6 under C/__ind: next state 8, no output

In state 8 under C/__conf: next state 1, output N__Dconf

Note that this solution requires the DCE to transfer a clear
confirmation packet even in the case of a clear collision,
which is not foreseen in X.25. In the following discussion we
assume the first solution.

No solution will be offered for the problems related to the
user-error state, since these entries can be removed from the
table (they are not required by the test methods considered
below).)

1) Outpur Specifications and W-Sets: As far as output in
response to erroneous inputs is concerned, we adopt the pro-
posals of [1]. As far as interactions with the user are con-
cerned, N_Err indications are returned in response to all
erroneous inputs from the user. With certain modifications to
Fig. 5 (indicated inside parentheses), we identify the following
W-séts.

w1l = [conn, inc]

w2 = [N_Creq, N_Dreq]

The existence of these two W-sets, each containing only inter-
actions from the DCE or the user, respectively, facilitates the
selection of a synchronizable characterization sequence. It is
possible to recognize the state of the implementation under
test by applying one of these sets, depending on which side

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL: COM-32, NO. 4, APRIL 1984

received the last output from the implementation. The syn-
chronization problems are thus avoided.

2) Transition Tour and Characterization Sequences: A
transition tour for the X.25 DTE defined in Fig. 5 was gener-
ated to cover the transitions in the state table, except the user
error transitions which were considered to remain unspecified.
The sequence has a length of 97, and no synchronization
problems.)

A characterization sequence was generated based on the
two W-sets defined above, and the P-set (empty sequence
ignored):

[CI_ind -+ [CI_ind, CI_conf, conn, inc, N_Creq
* [N_Creq, N_Dreq], N_Dreq, N_Clresp],
Ci_conf - [CI_ind, conn, inc], conn, inc [Cl_inq,
Cl_conf, conn, inc, N_Creq * [N_Creq, N_D req],
N_Cresp, N_Dreq}, N_Creq - [Cl_ind, CI_conf,
inc * [CI_ind, Ci__conf, conn, inc, N_Creq, N_D req],
inc - [Ci_ind, CI_conf, conn, inc], N_Creq,
N_Dreq - [N_Creq, N_D req, N_Clresp]], N_D req]

This sequence has a length of 408 and no synchronization
problems.

The X.25 DTE state table does not possess any DS; hence,
the checking sequence method is not applicable in this cdse.

VI. COMPLEXITY OF TEST SEQUENCE GENERATION

The following algorithm checks for intrinsic synchroniza-
tion problems. It finds all nonsynchronizable transitions and
states. The algorithm determines for each state the set of test
sides associated with the incoming transitions to that state,
and checks if this set includes all the initiating sides of the
outgoing transitions from the state. The compiexity of this
algorithm is O(n2k).

Ignoring the synchronization problem, the complexities
of the lengths of the test sequences are shown in Table I. The
complexities of the algorithms for finding these test sequences
are as follows.

Transition Tour: The depth-first search algorithm [21] has
the complexity of O(n + k) and the breadth-first search
algorithm [8] used for transfer sequence generation of O(nk).
Since this algorithm can be called nk — 1 times in the worst
case, the complexity of the transition tour generation algo-
rithm is O(n?k2).

W-Method: Reference [7] gives the complexity of the algo-
rithms for this method as O(n3k).

D-Method: For the complexity of an algorithm to find a
DS, we assume that the most expensive operation is searching
a list containing all possible state groupings (this list has a size
of 2* — 1), whose complexity is O(2"). From [13] in the
worst case, this search will be done n” times. The algorithms
to generate a D-sequence [9] are graph traversal algorithms,
with a complexity of O(n2k?); thus, the complexity of the
algorithms for this method becomes O(n”? + n?k2).

In finding synchronizable test sequences, the algorithm for
intrinsic synchronization problems is a necessary first step.
Hence, n2k should be added to the complexities of the algo-
rithms. Our practical experience with the protocols listed in
Table II shows that in these cases it is possible to find syn-
chronizable test sequences with lengths close to those which
are found when the synchronization problem is ignored.

In the case of real protocols, the number of states (see
Section II-D) and inputs can be very large due to the imple-
mentation considerations and to the variations in interaction
parameters of input primitives. For example, a 125 byte DT

SARIKAYA AND BOCHMANN: SYNCHRONIZATION AND SPECIFICATION

primitive of the transport protocol of Fig. 2 would introduce
21000 gifferent inputs. The above considerations therefore
show that ‘“‘complete testing”’of a real protocol is practically
impossible. Similar conclusions were reached in [16] for the
complete testing of an HDLC protocol. For the application of
the test methods described in this paper, it must therefore be
assumed. that a suitable FSM is a realistic approximatjon of
the protocol to be tested.

VII. CONCLUSIONS

Test sequence generation methods (transition tours, W-and
D-methods) are applicable to protocols specified as incom-
plete FSM’s. The transition tour has a limited and the other
methods have full fault detection capabilities. The transition
tour method is generally applicable; the application of the
other two methods requires the protocol possessing a W-set or
DS, respectively.

With a remote testing architecture, as shown in Fig. 1, the

synchronization between the tester and responder modules.

becomes an issue. It is shown in Section III that test sequences
can be checked for synchronization problems by associating
each interaction of a test sequence with the tester or responder
module, respectively. Synchronizable test sequences can be
generated using modified versions of the algorithms developed
for each of the testing methods. Longer test sequences might
be the price to pay. However, this is only possible if the proto-
col design does not include any intrinsic synchronization
problems. It is not clear whether intrinsic synchronization
problems can always be avoided by making appropriate changes
to the protocol specification. The case of X.25 is discussed
in Section V.

Two methods to enhance protocol specifications are de-
scribed in Section V. These methods lead to protocol specifi-
cations that are more easily testable, especially in view of using
the W- and D-methods. However, it is not clear whether such
methods can be applied for the case of any particular protocol,
since they lead to additions andfor changes to the protocol
specification.

While this paper concentrates on exhaustive test methods
and limits the discussion to protocol specifications that are
given as finite state machines, most real protocols are more
complex in nature. Therefore, the methods discussed here will
only be applicable to a limited extent in the case of a real
protocol. For instance, many protocol specifications include
additional state variables and parameters for the input-output
interactions [12], and typical test sequences must include
means for verifying the correct behavior in relation to these
interaction parameters (see, for example, [3]). Complexity
considerations of Section VI (see also [16]) preciude the
feasibility of exhaustive testing in these cases. Some results on
test sequence selection considering interaction parameters are
reported in [21]. More research is needed for a better under-
standing of these issues.

ACKNOWLEDGMENT

We are grateful to the anonymous referees and C. Sunshine
for suggesting many improvements on an earlier version of
this paper. We also thank E. Cerny for his helpful criticisms.

REFERENCES

‘Some problems with the X.25 packet
vol. 7, no. 4, pp. 41-52,

[1] D. Belsnes and E. Lynning, *
level protocol,”” Comput. Commun. Rev.,
1977.

[2] G. v. Bochmann er al., **Experience with formal specifications
using an extended state transition model,”’ IEEE Trans. Commun.,
vol. COM-30, pp. 2506-2513, Dec. 1982.

(3] **Testing transport protocol implementations,’” in Proc. Can.

Inform Processing Soc. Conf., May 1983, pp. 123- 129

{41 G.v. Bochmann and E. Cerny, *‘Protocol assessment,’’ Rep. Dep.-
Commun Canada, Feb. 1982.
[5] ’Recommendation X.25,"" CCITT Study Group VII, Working

Paper 2, pp. 100-190, fasc. VIII.2, Sept. 1981.

395

[6] H. Chaigne et al., "*Un generateur de tests pour systemes modelises
par automates d’etats finis,”” BIGRE (IRISA), Rennes, France, no.
27, Dec. 1981.

(71 T. S. Chow, 'Testing software design modeled by finite state
machines,”’ IEEE Trans. Software Eng., vol. SE-4, no. 3, 1978.

(8] S. Even, Graph Algorithms. Rockville, MD: Comput. Sci. Press,

CT 1979,

[9] G. Gonenc, “*A method for the design of fault detection experi-

ments,”’ IEEE Trans. Comput., vol. C-19, no. 6, 1970.

Several papers in Proc. 2nd Int. Workshop Protocol Specification,

Testing, Verification, 1982.

ISO, *‘Connection oriented transport protocol specification,”

1983.

1SO, ‘A FDT based on an extended state transition model,’” work-

ing doc. of Subgroup B, ISO TC97/SC161 WG1, Mar. 1984.

Z. Kohavi, Switching and Finite Automata Theory. New York:

McGraw-Hill, 1978.

P. F. Linington, Ed.,

Feb. 1980.

S. Naito and M. Tsunoyama, ‘‘Fault detection for sequential ma-

chines by transition tours,’’ in Proc. IEEE Fault Tolerant Comput.

Conf., 1981.

T. F. Piatkowski, *'On the feasibility of validating and testing

ADCCP implementations,’’ NBS Trends Appl., May 1980.

D. Rayner, "*A system for testing protocol implementations,”” in

Proc. 2nd Int. Workshop Protocol Specification, Testing, Verifica-

tion, 1982; also Comput. Networks, vol. 6, Dec. 1982.

R. Razouk, ‘*Modelling X.25 using the graph model of behavior,”’

in Proc. 2nd Int. Workshop Protocol Specification, Testing, Verifi-

cation, 1982.

R. Rubin and C. H. West, “"An improved protocol validation tech-

nique,’’ Comput. Newtorks, May 1982.

B. Sarikaya and G. v. Bochmann, ‘‘Some experience with test

(101
[t Apr.
f12]
[13]
**A network indépendent transport service,’

[14]

[15)

[16]
(7

(18]

(19]

[20]

sequence generation for protocols,”” in Proc. 2nd Int. Workshop
Protocol Specification, Testing, Verification, 1982.

B. Sarikaya, ‘‘Test design for computer network protocols,”
McGill Univ., Montreal, P.Q., Canada, to be published, 1984.
R. Tarjan,
J. Comput.,

[21]

SIAM

[22) **Depth-first search and linear graph algorithms,"’

vol. 1, no. 2, 1972.

*

Behget Sarikaya (S80) received the B.Sc. de-
gree in electrical engineering and the M.Sc. de-
gree in computer science from the Middle East
Technical University, Ankara, Turkey, in 1973
and 1976, respectively.

He is currently a Ph.D. candidate at the School
of Computer Science, McGill University, Mon-
tréal, P.Q., Canada, and completing his work at
the Département D’Informatique, Université de
Montréal. His research interests include protocol
specification and validation, distributed system
|mplememauon and analytic performance modeling.

Mr. Sarikaya is a student member of the Association for Computing
Machinery.

*

Gregor v. Bochmann (M’82) received the Di-
ploma in physics from the University of Munich,
Munich, Germany, in 1968, and the Ph.D. degree |
from McGill University, Montréal, P.Q., Can-
ada, in 1971.

He has worked in the areas of programming
languages and compiler designs, communication
protocols, and software engineering. He is cur-
rently a Full Professor in the Département d’In-
formathue et de Recherche Operauonnelle Uni-
versit€ de Montréal, Montréal. His present work
is aimed at de51gn models for communication protocols and distributed
systems. From 1977 to 1978 he was a Visiting Professor at the Ecole
Polytechnique Federale, Lausanne, Switzerland. From 1979 to 1980 he
was a Visiting Professor in the Computer Systems Laboratory, Stanford
University, Stanford, CA.

