
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4 , APRIL 1984 389

Synchronization and Specification Issues in
Protocol Testing

BEHCET SARIKAYA, STUDENT MEMBER, IEEE, AND GREGOR v. BOCHMANN, MEMBER, IEEE

Abstract-Protocol testing for the purpose of certifying the imple-
mentation’s adherence to the protocol specification can be done with a
test architecture consisting of remote tester and local responder proc-
esses generating specific input stimuli, called test sequences, and
observing the output produced by the implementation under test. It is
possible to adapt test sequence generation techniques for finite state
machines, such as transition tour, characterization, and checking
sequence methods, to generate test sequences for protocols specified
as incomplete finite state machines. For certain test sequences, the
tester or responder processes are forced to consider the timing of an
interaction in which they have not taken part; these test sequences are
called nonsynchronizahle. The three test sequence generation algo-
rithms are modified to obtain synchronizable test sequences. The
checking of a given protocol for intrinsic synchronization problems is
also discussed. Complexities of synchronizable test sequence genera-
tion algorithms are given and complete testing of a protocol is shown
to he infeasible.

To extend the applicability of the characterization and checking
sequences, different methods are proposed to enhance the protocol
specifications: special test input interactions are defined and a metho-
dology is developed to complete the protocol specifications.

P
I. INTRODUCTION

ROTOCOL implementation assessment methods are used
t o determine that a particular implementation (in the

following simply called “implementation” or “I”) adheres
to the specification of the protocol. There seems to be agree-
ment on a general architecture to be used for testing one or
more layers of the OS1 protocol hierarchy [41, [I O] , [171. A
remote tester (also called “active tester,” “tester,” or “T” for
short) and a supplementary test module (also called “test
responder,” “responder,” or “R”) directly connected to the
implementation, and playing the role of the implementation’s
service user, constitute the major parts of this architecture, as
shown in Fig. l(a).

This paper addresses the problem of selecting test.sequences
for protocol implementation assessment. Assuming finite state
machine (FSM) models for protocol specification, various
methods developed for FSM’s implemented in hardware and
software can be applied to the selection of test sequences for
protocols, as reported earlier [21. In the context of the under-
lying test architecture, however, certain problems of syn-
chronization between the tester and the responder may arise.

The paper first gives a short review of the application [201
of three finite state test sequence selection methods, (i.e.,
transition . tours [151, characterization [71, and checking

Paper approved by the Editor for Computer Communications of
the IEEE Communications Society for publication after presentation
in part at the SIGCOMM ’83 Symposium on Communication Architec-
ture and Protocols, Austin, TX, March 1983. Manuscript received De-
cember 10, 1982; revised September 16,1983. This work was supported
in part by the Natural Sciences and Engineering Research Council of
Canada.

B. Sarikaya is with the Schopl of Computer Science, McGill Uni-
versity, MontrLal, P.Q., Canada.

G. v. Bochmann is with the De’partement d’Informatique et de Re-
cherche Opdrationnelle, Universitk de Montrial, Montrkal, P.Q., Canada.

sequences [131) to protocol implementation assessment, and
then explains in Section I11 the nature of the possible syn-
chronization problems. Section IV discusses algorithms for
selecting test sequences without synchronization problems,
which are called in the following synchronizable. Some proto-
col examples are also given for which no complete synchroniz-
able test sequence exists. The use of synchronizable test
sequences simplifies the design of the tester and the responder.

Most protocol specifications define incompletely specified
machines, i.e., for certain machine state and input signal pairs
there is no transition specified. Therefore, the test sequence
selection methods have been generalized for the case of in-
complete machines [20]. Unfortunately, these methods are
not always applicable. Section V thus contains a discussion of
different strategies for partially completing protocol specifica-
tions in view of making them easier t o test. The X.25 virtual
circuit establishment and clearing protocol is taken as an
example. Also, the class 0 transport protocol is taken as the
main example to demonstrate the properties of the different
test sequence selection methods. A short comparison of the
three methods is also given.

In Section VI, the complexities of the test sequence genera-
tion algorithms and the effect of synchronization to the com-
plexities are discussed. Complete testing of a real protocol is
shown to be infeasible.

11. TEST SEQUENCE GENERATION FOR PROTOCOLS
The testing methods explained in [71, [131, [151 , are

briefly explained below, using as an example the state machine
specification of the ISO/CCITT class 0 transport protocol
[1 11 shown in Fig. 2.

A. Transition Tour Method
An input sequence starting with the initial state and cover-

ing all transitions defined in the protocol specification is
called a transition tour [1.51. A transition tour for the trans-
port protocol is shown in Fig. 3(a).

Formulas for the upper bound on the length of transition
tours depending on the size of the specification are given in
Table I. For the specification of Fig. 2, the upper bound and
the actual length of the transition tour of Fig. 3(a) are listed in
Table 11. Table I contains upper bound formulas and their
complexities for all three methods, and Table I1 shows actual
lengths and upper bounds for this and other types of protocols.

B. The W-Method: Characterization Sequences
A characterization set W of an FSM A is a set of input

sequences such that the output observed from the application
of W is different for each state [71. Every reduced, completely
defined FSM possesses a W-set.

A testing tree is defined to have the machine transitions as
its branches and states as its nodes; if contains each transition
exactly once. The root of this tree is the initial state.

A test sequence, called a characterization sequence, is ob-
tained by the concatenation of the two sets P and W , where P
is the set containing all partial paths in the testing tree, includ-
ing the empty sequence. Each sequence in the concatenation

0090-6778/84/0400-0389$01.00 0 1984 IEEE

3 90 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984

Tent Synchronization
(Active Tenter)

Protocol to be Tented
4 L

1 Layer 1

(Test Responder)

(Implementation
under Test)

I (layer N)

Layer I

1 T.CR 2 R.T-Dreq 1 T.CC 1 T.DT 1 T.DR 1 T.CR 2 T.CR I
R.T-Cind T.DR R.T-Cind T.ERR *

R.T-Creq 3 T.DT 1 T.CR 2 R.T-Crenp 4 R.T-DTreq 4 T.DT 1
T.CR T.ERR R.T-Cind T.CC T.DT R.T-DTind

R.T-Dreq I T.CR 2 T.CC I T.CR 2 T.DT I T.CR 2
T.N-Dreq R.T-Cind T.ERR R.T-Cind T.ERR R.T-Cind

T.DR I R.T-Creq 3 T.DR 4
T.ERR

1 R.T-Creq 3 T.CC

T.CR I T.CR 2 R.T-Crenp 4 T.DR 1 'T.CR 2 R.T-Cresp 4
T.ERR R.T-Cind T.CC T.N-Dreq R.T-Cind T.CC

T.CC R.T-Dind, T.N-Dreq T.CC R.T-Cconf

T.N-Rind I T.CR 2 R.T-Crenp 4 T.N-Dind I
R.T-Dind R.T-Cind T.CC R.T-Dind

P + t 4 t
- I ' I

(b)
Fig. 1. (a) A test architecture for testing an (N)-layer protocol imple-

mentation in the context of the OS1 reference model. (b) Basic in-
teraction model of the test architecture in (a).

T-DreqlN-Dreq.

N-DindIT-Dind.

T-CreapICC

T-DTreqIDT, DTIT-Wind

Notstion for Input Events

CR Connect-request PDU
CC Connect-Confirm PDU T-Dreq T-Disconnect-Baqueat
DT Data-Request PDU ~-crasp T-Connect-Response
DR Disconnect-Requeet PDU T-DTraq T-Data-Baquast
N Dind Network Dincannect-Indication
N'ind Network~Renet-Indicatia.

From Tenter From Responder
T-Craq T-Connect-Raquest

Notation for Output Events

ERR Error PDU
To Tester

N-Dreq Network-Disconnect-Request T-Dind T-DiSc-Indication
cc Connect-Confirm PDU T-Cconf T-Connect-Confirm
DT Data-Request PDU T-mind T-Data-Indication
DR Disconnect-Request PDU
N-Dind N-Dinconnect-Indication
N-RincJ N-Reset-Indication

T-Clad T-Connect-Indication
To Peaponder

Fig. 2. Finite state machine for the class 0 transport protocol.

Notation for Tranaitione:
Start State Input Initiating Side.Input Primitive Final State

"*"n are used to indicate nonsynchronirable tranaitiona.
Output Receiving Side.Output Primitive

I R.T-Creq 3 T.CC 4 R.T-Dreq I T.CR 2 R.T-Dreq 1 T.CC 1 T.DT 1
T.CR R.T-Cconf T.N-Dreq R.T-Cind T.DR

, - -
T.DR 1 T.CR 2 R.T-Cresp 4 R.T-DTreq 4 T.CR I T.CR 2 R.T-Crasp 6 - R.T-Cind T.CC T.DT T.ERR R.T-Cind T.CC

T.DT 4 T.N-Rind I R.T-Creq 3 T.DT I T.CR 2 R.T-Cresp 4
R.T-DTind T.T-Dind T.CR - R.T-Cind T.CC

T.N-Dind 1 R.T-Creq 3 T.DR
R.T-Dind T.CR R.T-Dind. T.N-Dreq R.T-Cind T.CC

T.DR I T.CR 2 T.CR I T.CR 2 T.CC I T.CR 2 T.DT I
T.N-Dreq R.T-Cind T.ERR R.T-Cind T.ERR R.T-Cind T.ERR

T.CR 2 T.DR I
R.T-Cind T.ERR

1 T.CR 2 R.T-Cresp 4

(b)

Fig. 3. (a) A transition tour for. the transport protocol. (b) Synchro-
nizable transition tour for the transport protocol.

TABLE I
UPPER BOUND FORMULAS AND THEIR COMPLEXITIES

Upper Bound for Transition Tour Length:
1(T) <- q+(q-l)(n-l) O(n2k)

Upper Bound for V-Sequence Length(with resets):
l(Y) <- (1/2)knw(n+l)+m(q+I) O(n4k)

Upper Bound for Checking Sequence Leng9:
1(C) <- ZnL+(n-L)**Z+q(n+L) O(n ~ k)

where k-maximum number of npecifiad entries for a given atate
(number of input symbol# at maximum)

L-length of DS
m-aum of the lengths of the members in the V-net
n-number of states

r a u m b a r of member# in the V-set
q-total number of specified entries in the Table (maximum n-k)

TABLE I1
ACTUAL LENGTHS (L) AND UPPER BOUNDS (cr) O F

TEST SEQUENCES

L U L U L U
T o u r U-Method D-Method

_ _ _ _ _ _ _ _ _ _ _-___----- ----------
Transport Protocol 3 4 81 6 5 9 2 6 4 1 2 2

X 2 5 DTE with "Read State" transition
(and "Set State I " f o r U-Method) 5 4 2 1 3 1 4 0 2 1 6 1 0 6 380

U K Transport Protocol with "Read
Slate" (and "Set State 1" f o r W-Method) 5 7 3 1 1 1 5 3 3 6 3 1 2 7 4 5 3

X 2 5 DTE Semi-Completed
(W-method with resets) 9 7 3 6 9 4 0 8 6 0 0 - -
U K Transport PC. Semi-Completed
(U-method without resets) 3 3 7 1 4 2 9 , 2 3 0 5 4 5 0 5 - -

SARIKAYA AND BOCHMANN: SYNCHRONIZATION AND SPECIFICATION 39 1

of P and W is applied starting with the initial state and fol-
lowed by a transfer sequence back to the initial state (also
called reset) to be ready for the next sequence.

As long as a W-set exists, this method is applicable to
incompletely specified machines. For the transport protocol of
Fig. 2, DR (the disconnect request protocol data unit) is a
W-set, a single sequence of length one. A complete test se-
quence for the protocol is given in Fig. 4.

C. The D-Method: Checking Sequences
Checking sequences can be used to test machines that have

a distinguishing sequence (DS) [131. A checking sequence
consists of two parts: first a state recognition part, and then a
transition checking part; The state recognition part starting
with the initial state is designed to display the response of each
state to the sequence DS-DS. Transfer sequences might be
used in this part when necessary. The transition checking part
checks individual transitions that are not checked in the state
recognition part and can be defined as

TC = U X ~ * DS (A)

where U stands for set union and the x i are the machine
transitions to be checked.

As long as a DS exists, the D-method is applicable to in-
com.pletely specified machines. A DS for the transport proto-
col of Fig. 2 is again DR, which is of length one. (See also
1201 .>
D. Fault Detectiorl Capability of the Methods

The transition tour method is the simplest approach, but it
does not detect all errors in an implementation, i.e., errors in
the next state function of the FSM may remain undetected. A
characterization sequence or a checking sequence detects any
misbehavior, also in the case of incompletely specified ma-
chines, as long as the method is applicable. However, this is
only true as long as it can be assumed that the implementation
behaves like a FSM with a number of states smaller than or
equal to the specification. Unfortunately, this assumption is
often difficult to check, and implementations may introduce
,additional states due to resource management and other
practical considerations. It is therefore interesting to note that
additional implementation states can be accommodated by the
W-method, with, however, the penalty of increased test se-
quence lengths.

The fault detection is demonstrated by the following simple
example. Assume that the following erroneous behavior is
realized by an implementation of the transport protocol. In
state 4 under input N-Dind, the next state is 4 (instead of 1
as indicated in Fig. 2), i.e., a transfer error. The characteriza-
tion sequence of Fig. 4 applied to this implementation would
lead to

1 CR 2 T-Crew 4 N-D ind 4 DR 1

T-C ind cc T-0 md N_1> req

The unexpected output of N-Dreq to the input DR reveals
the error. The transition tour of Fig. 3(a) results in

1 CR 2 T-C resp 4 N-D ind 4

T-C inc CC T-D ind

No error is detected!

111. SYNCHRONIZATION PROBLEMS IN TEST SEQUENCES
Test sequences reported in [201 were generated with the

assumption that the tester and responder are directly syn-

1 T.DR 1 R.T-Creq 3 - T.CR

T.DT I T.DR 1 T.DR 1

T.DR I R.T-Creq 3
T.N-Dreq T.CR

R.T-C:esq 4 R.T-Dreq
T.CC T.N-Dreq

T.DR 1 T.CR 2 T.OR 1 T.CC 1 T.DR I
R.T-Dind R.T-Cind T.ERR -
T.CR 2 R.T-Dreq 1 T.DR 1 R.T-Creq 3 T.CC 4
R.T-Cind T.DR - T.CR R.T-Cconf

T.DT I T.DR 1 R.T-Creq 3 T.DR 1 T.DR 1 T.CR 2
T.ERR - T.CR R.T-Pind - R.T-Cind

1 T.DR 1 T.CR 2 R.T-Cresp 4 R.T-DTKeq 4 - R.T-Cind T.CC T.DT

T.DR 1 T.CR 2 R.T-Creap 4 T.CR 1 TIDR 1 T.CR 2 R.f-c'Cr.SQ 4
T.N-Dreq R.T-Cind T.CC T.ERR - R.T-Ctnd C C C

T.DT 4 T.DR 1 T.CR 2 R.T-Cresp 4 T.DR 1 T.DR 1
RaT-DTlnd T.N-Dreq R.T-Cind T.CC T.N-Dreq -
T.CR 2 R.T-Cresp 4 TPN-Dind 1 T.DR 1 T.CR 2 R.T-Creep 4
R.T-Cind T.CC R.T-Dind - R.T-Cind T.CC

T.N-Rind 1 T.DR I T.CR 2 R.T-Cresp 4 T.DR I T.CR 2 T.CR 1
R.T-Dind - R.T-Cind T.CC T.N-Dreq R.T-Cind T.i%RR

T.DR 1 T.CR 2 T.CC 1 T.DR 1 T.CR 2 T.DT 1 T.DR 1 T.CP 2 - R.T-Cind T.ERR - R.T-Cind T.ERP - R.T-Clnd

T.8P.R - T.DR 1 T.DR 1 . .

(Same Notation as in figure 3a)

Fig. 4. A characterization sequence for the transport protocol.

chronized with one another. In the architecture of Fig. l(a),
however, the tester and responder are distributed over two
sites, and they are only synchronized through the interactions
with the implementation. This may lead to synchronization
problems between the tester and the responder, which are
explained in this section. Section IV then contains considera-
tions for avoiding them.

A. Basic Interaction Model
The implementation (I) , tester (T) , and responder (R) ,

shown in Fig. l(a),-are modeled as processes, each represented
as an FSM, which communicate by exchanging messages
through FIFO queues [Fig. l(b)] . T and R may send or re-
ceive a message to/from I when they execute a state transition.
I can receive a message from T or R , or it can send a message
to one or both of T or R after receiving a message from one
of them. The system has a predefined initial state: all queues
gmpty and all three processes in their initial states.

1) Basic Interaction Sequences IBIS): A sequence of transi-
tions of the implementation, tester, and responder defines a
transition sequence for each process. In the following, abstrac-
tion is made from the particular transitions, only the informa-
tion whether an input is received (R) or an output i s sent (8) is
recorded, and over which FIFO queue. Following some ideas
from [191, we call such an abstracted view of a transition a
basic transition, and the individual interactions of a basic
transition basic interactions. For example, the basic interac-
tions corresponding to the transition from state 1 under input
CR of the protocol of Fig. 2 are to receive a message through
Q T 1 from T (written R I T) , and to send a message through
QJR to R (written S I R) . Hence, it corresponds to the basic
transition R I T S I R . All possible basic transitions of process I
under the model of Fig. l (b) are enumerated in Table III(a),
assuming that each transition of I starts with an input interac-
tion. It is noted that some of the entries in Table III(a) (namely
R I R , RIR S I R , and R I R S I R S I T) do not occur for the trans-
port protocol of Fig. 2, but they may occur in other cases.

Test sequences discussed in Section I1 are composed of
transitions of process I , each starting in the initial state. Hence,
a test sequence, such as the one in Fig. 3(a), can be easily
converted into a corresponding BIS by replacing each transi-
tion with its corresponding basic transition.

From a given test sequence, it is possible to obtain BISes
for T and R as well. The execution steps of I that do not in-
volve any interaction with either T or R will be shown as- in
the corresponding BIS. The BIS for T corresponding to a given

392 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984

TABLE 111
LIST O F BASIC TRANSITIONS (a) AND NONSYNCHRONIZABLE

PAIRS O F TRANSITIONS (b) FOR AN IMPLEMENTATION (I)

R I T R I T R I R , R I T R I R s I T , R I T R I R R I R , R I T R I R S I R S I T

RIB , I R R 1 T , R I R R I T S I T , R I R I I I T S I R , R I R R I T S I T S I R

,,ITSIT R I T s l T R I R , g I T S I T R I R S I T , R I T S I T R I R S I R , R I T s I T R I R S I R S I T

R I T S I R

R I B S I T

RIRsIR R I R s I R R I T , R I R s I R R I T S I T , R I P S I R P I T S I R , R I R S I R R I T S I T S I R

R I T S I T s I R -
R I R s I R s I T -

(a) (b)

BIS for I can be obtained from the latter by replacing an R I T
with S T I , and an S I T with RT1 and an execution step not
involving “T” by ^. A BIS for R can be obtained in a similar
way.

B. Synchronization
Definition: Considering two consecutive basic transitions of

I , one of the test modules, say T (or R) , faces a synchroniza-
tion problem if T (or R) did not take part in the first transi-
tion and if the second transition requires that it sends a mes-
sage to I.

Lemma: A pair of basic transitions has a synchronization
problem if (and only if) the corresponding BIS for T and/or
R has any sends (S) preceded by a ^ .

Proof: F,ollows from the definition.
Two consecutive basic transitions of I will be called a

synchronizable pair of transitions if the second transition can
follow the first one without generating a synchronization
problem. For example, R I R followed by RIT would violate
synchronization because of the Lemma above. Similarly,
RIR and RIR.SIR cannot be followed by RIT or R I T S I T or
R I T S I T S I R . Also, RIT and R I T S I T cannot be followed by
R I R or R I R S I R or R I R S I R S I T . All nonsynchronizable pairs
of basic transitions are listed in Table III(b).

Th’eorem: A given test sequence is synchronizable if (and
only if) any two subsequent transitions of the sequence cor-
respond to a synchronizable’pair of basic transitions.

Proof:
(If part) Follows from repeated application of the

(Only if part) By contradiction.
Lemma to the test sequence.

The test sequences shown in Figs. 3(a) and 4 were derived
in 1201 without concern for possible synchronization prob-
lems. It is easily seen that they contain synchronization prob-
lems, as indicated by “*”s. The sequence of Fig. 3(a) contains
two violations, both of the type R I T S I T R I R S I T , which is one
of the pairs listed in Table III(b). The sequence of Fig. 4 con-
tains four violations of the same kind.

C. Protocol Specifications with Intrinsic
Synchronization Problems

For certain protocol’specifications, it is impossible to avoid
synchronization problems. Such a situation occurs in the case
that a transition piT from state j to state k is of one of the types
R I R , R I R S I T , R A R S I R , or R I R S I R S I T , and each transition
pi entering state j is of one of the types R I T or R I T S I T . Then
each pair pipi is a nonsynchronizable pair of transitions. There-
fore, ‘the execution of the transition p i implies a synchroniza-
tion problem. We caU such a transition nonsynchronizable. A
dual situation exists for the case that all pi are of types RIR
or R I R S I R , and p i is of one of the types R I T , R I T S I T ,

R I T S I R , or R I T S I T S I R . We call a state nonsynchronizable
if it can only be reached through nonsynchronizable transi-
tions.

Protocol specifications having nonsynchronizable transi-
tions and/or states are called intrinsically nonsynchronizable.
It is clear that any complete test sequence generated for such
Specifications will carry synchronization problems. It can be
seen that the transport protocol of Fig. 2 does not have any
nonsynchronizable transitions; therefore, it does not have any
intrinsic synchronization problem.

D. An Example: The X25 DTE
Fig. 5 shows a state table for an X.25 DTE. Each entry

in the table’ represents a transition to be executed by the DTE
for a given present state and input interaction. An entry de-
fines the result of the transition in the form

next state

output interaction

Fig. 5 was obtained as follows. The X.25 specification [SI
defines the DCE behavior as far as DCE-DTE interactions are
concerned. A symmetric behavior was assumed for the DTE,
which accounts for the first four columns of rows 1-7 in Fig.
5. In addition, user interactions (see last four columns, and
certain outputs) have been added to the table in a relatively
straightforward way [181. We note that state 6 handles both
user clears and protocol errors, as specified in X.25. For the
user errors a “user error” state (state 9) is introduced, as
explained in Section V. Clear collision in the user-DTE inter-
face is handled by adding a “clear-collision” state (state 8).
Since according to X.25, the DCE does not send a clear-
confirmation packet in the case of a clear collision at the
DTE-DCE interface, there is no transition to state 8 in response
to an interaction from the DCE.

Fig. 5 contains eight nonsynchronizable transitions: the
entries in states 8 and 9 for all interactions from the DCE. The
reason for this problem is that no transition from the DCE
leads to either of these states. Modifications to the state table
to avoid these intrinsic synchronization problems will be
discussed in Section V.

IV. GENERATION OF SYNCHRONIZABLE TEST SEQUENCES

Each test sequence generation method discussed in Section
I1 may give rise, for a given protocol specification, to different
‘test sequences depending on the way the method is imple-
mented. It is clear from the discussion of Section I11 that some
of these sequences are not applicable in the test architecturs of
Fig. l(a) because they violate the synchronization rules. The
different methods can be adopted to generate only synchroniz-
able test sequences, unless the protocol is intrinsically nonsyn-
chronizable. These adaptations are specific to each method, as
explained below. The basic approach in all cases is to check
each new transition added to the sequence in order to see
whether it is synchronizable with its predecessor. This check
is based on Table III(b) which lists all nonsynchronizable pairs
of transitions.

A. Transition Tours
Any graph traversal algorithm such as the one given in [22 1

can be modified to obtain a transition tour. Each transition
to be added to the sequence by the algorithm is first checked
whether it forms a synchronizable pair together with the last
transition of the sequence [using Table III(b)]. If it is not
synchronizable, a different transition from the present state is
considered. If no suitable transition exists from the present
state, the selection algorithm backtracks to the previous state
continuing the tour from there in a different way. This process
continues until all the transitions of the machine are covered.

SARIKAYA AND BOCHMANN: SYNCHRONIZATlON AND SPECIFICATION 393

Cl-ind N-Clreap N-Dreq N-Cresp N-Creq Ioe Con” Cl-conf

1 7 9 6 9 2 3 6 6
N-Dind N-Err Cl-req N-Err Req N-Cind Err Err
I @-Err) [Note21

3 7 9 6 4 5 6 6 6
N-Dind N-Err Cl-req Acc Req Cl-reg Err Err

4 7 9 6 9 9 6 6 6
N-Dind N-Err Cl-req N-Err N-Err Cl-req Cl-req Cl-req

5 7 9 6 9 9 6 4 6
N-Dind N-Err Cl-req N-Err N-Err Err N-Cconf Err

(N-Err)

6 - Discard N-Err N-Err Discard Discard N-Dconf N-Dconf
6 6 9 9 6 6 1 1 .

[Notell

7 7 . 6 6 1 8 9 9 6
Discard N-Err N-Err Err Err Err - c 1-conf

8 8 I 8 9 9 6 6 6
Discard Cl-conf Discard N-Err N-Err Err Err Err

[Notell:This transition may take place after time-out.
[NoteZl:Specification defines atate 7 as the n e x t state for the DCE

Notation for Input Events

Cl-ind Clear Indication
Prom DCE

N-Creq N-Connect-Request
Cl-conf Clear Cbnfirmation ~-creep ~-~onneht_~esponse
Conn Call Connect N-Dreq N-Dieconnect-Request
Inc Incoming Call N-Clresp N-Clear-Response

Notation for Output Eirents

Reg Call Request N-Cind N-Conn&t-Indication
ACC Call Accepted
Cl-req Clear Request
Cl-conf Clear Confirmation N-Dind N-Disconnect-Indication
Err Error
s o _ * *

From User

N-Cconf N-CannecC_Confirmation
N-Dconf N-Disconnect-Confirmario.

N-Err N-Error-Indication
meane no Output is g e n e r a t e d .

Fig. 5. State table of X.25 DTE.

In general, it may be necessary to deviate from the goal of
obtaining minimum length sequences.

Applying such an algorithm to the transport protocol, the
transition tour of Fig. 3(b) is obtained. .The length of this
sequence is 34, as in Fig. 2 ; in this case the length is not
increased.

B. Characterization Sequences
Algorithms to find a W-set and to construct a testing tree

(and, hence, to calculate P - W, without resets) are given in [61 .
Any shortest path finding ’algorithm, such as the one in [81,
can be used for determining the resets. Synchronizable charac-
terization sequences can be obtained in three steps as follows.

In Step 1, all subsequences of P- W (without resets) are
checked for synchronization problems using a “subsequenc;
checking algorithm” which checks all pairs of consecutive
transitions in a sequence for synchronization problems, using
Table III(b). If a subsequence of P - W has synchronization
problems, the use of a different W set or testing t reeP may be
considered, possibly leading to longer sequences.

In Step 2, each subsequence of P - W is completed by ap-
pending a synchronizable reset sequence using a backtracking
algorithm similar to the one for transition tours explained
above.

In Step 3 the subsequences obtained in step 2 are merged
together to obtain a single synchronizable test sequence. Any
“concatenation algorithm” could be used which puts the sub-
sequences in such an order that no synchronization problem
is generated.

A synchronizable W-sequence for the transport protocol
can be obtained using the same testing tree as for Fig. 4. Due

to longer reset sequences, it contains four more transitions
than Fig. 4.

C. Checking Sequences
Ignoring the problem of synchronization, an algorithm for

finding a DS can be found in [131, and algorithms for state
recognition and transition checking parts are reported in [91.
Shortest path algorithms can be used for finding transfer
sequences.

The follow&g measures are proposed to obtain synchroniz-
able test sequences.

1) A synchronizable DS must be found, not necessarily of
minimal length.

2) The state recognitipn part obtained according to [9] is
checked using the “subsequence checking algorithm” men-
tioned above. In case of synchronization problems, changing
the transfer sequences should first be considered. The use of a
different DS may also be considered.

3) The transition checking step is checked-with a two-part
procedure. Fiist each subsequence xi.DS in the set TC as de-
fined in Section I1 is checked by the “subsequence checking
algorithm.” If one of the tests fails, a different DS should be
generated, if it exists. In the second step, the transition check-
ing part as a whole is checked for synchronization. In the case
of synchronization problems, a different order of the subse-,
quences and/or different transfer sequences should be con-
sidered.

4) Finally, the state recognition and transition checking
parts are combined using an appropriate transfer sequence.

A synchronizable checking sequence for the transport
protocol can be obtained containing three more transitions
than the sequence reported in [20 J .

V. SPECIFICATION ENHANCEMENTS FOR TESTING

The transition tour method is generally applicable for the
generation of test sequences; unfortunately, it does not have
full fault detection capability. The other two methods could
be applied as long as a DS or a W-set exists, which was the case
for the transport protocol.

Two approaches can be taken in order to make the W- and
D-methods applicable, if the original protocol specification
does not have a DS and/or W-set:

1) the protocol specification may be enhaficed by defining
special test interactions and transitions (i.e., “read state” and
“set state” transitions as described in [161), and

2) the specification (usually incomplete) may be completed
until a W-set or DS is obtained.

These two enhancement techniques will be discussed in the
following sections.

A. Special Test Transitions
A “read state” transition is by .definition a DS and a W-set,

and a “set state” transition can be used as a transfer sequence
(in particular for resets) of length one. :

The advantages.of using “read state” and “set state” transi-
tions for testing can be summarized as follows,

1) It becomes possible to apply any of the test sequence
generation methods discussed in Section 11.

2) Minimum length test sequences are obtained in a i three
cases. W-set and DS are minimal (of length one) and transfer
sequences for all methods have length one.

3) Incompletely specified machines can be tested verifying
only the specified part. It should be’noted that the special test
transitions are also subject to testing. Any implementation
error of these transitions will be detected by the D- or W-
methods.

Test sequences for the X.25 DTE and the U.K. transport
protocol.[141 were obtained using the special test transitions.
The lengths of these sequences are given in Table 11. In obtain-

394 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984

ing the upper bounds the following parameters were used:
n = 8 , q = 3 5 , L = l , k = 5 , m = l , w = :

for the X.25 DTE, and

n = l O , q = 3 2 , t = l , k = 6 , m = l , w = l

for the U.K. transport protocol.

B. Completing Specifications
In order to make the protocol more easily testable, an in-

complete specification of a protocol may be completed in the
following four stages.

1) One state is added to the model, namely the “protocol
and user error” state (if not already present).

2) Unspecified transitions for any input and state are speci-
fied to lead to the error state.

3) There should exist at least one transition which takes the
protocol out of the error state, as, for instance, the disconnect
request input.

4) The error state should ignore all other inputs and stay in
the same state.

A criterion for the choice of outputs for the added transi-
tions should be to avoid intrinsic synchronization problems.
(See also examples in Section V-C.)

With the above approach, a W-set is obtained unless the re-
sulting specification has an intrinsic synchronization problem.
The existence of a DS depends on the protocol, and it might
be necessary to introduce new output symbols in order to
obtain a DS (see also [131). After obtaining a W-set and/or
DS as explained above, the error transitions specified in stages
2) and 4) above can be removed, if the input symbol does not
occur in the W-set and/or DS.

C. Completing the X.25 Specification for Testing
The completion procedure above was applied to the X.25

DTE protocol, leading to the specification of Fig. 5. As dis-
cussed in Section 111-E, the resulting table has intrinsic syn-
chronization problems. There are two possible solutions to the
problems related to state 8. The first is t o completely delete
this state by modifying the entry’ in state 7 under input
N-Dreq to go to state 1 with no output. The second solution
requires two modifications to the state table:

In state 6 under Cl-ind: next state 8, no output

In state 8 under CZ-conf: next state 1, output N-Dconf

Note that this solution requires the DCE to transfer a clear
confirmation packet even in the case of a clear collision,
which is not foreseen in X.25. In the following discussion we
assume the first solution.

No solution will be offered for the problems related to the
user-error state, since these entries can be removed from the
table (they are not required by the test methods considered
below).

I) Output Specifications and W-Sets: As far as output in
response to erroneous inputs is concerned, we adopt the pro-
posals of [11. As far as interactions with the user are con-
cerned, N-Err indications are returned in response to all
erroneous inputs from the user. With certain modifications to
Fig. 5 (indicated inside parentheses), we identify the following
W-sets.
w 1 = [conn, inc J

w 2 = [N-Creq, N-Dreq]

The existence of these two W-sets, each containing only inter-
actions from the DCE or the user, respectively, facilitates the
selection of a synchronizable characterization sequence. It is
possible to recognize the state of the implementation ynder
test by applying one of these sets, depending on which side

received the last output from the implementation. The syn-
chronization problems are thus avoided.

2) Transition Tour and Characterization Sequences: A
transition tour for the X.25 DTE defined in Fig. 5 was gener-
ated to cover the transitions in the state table, except the user
error transitions which were considered to remain unspecified.
The sequence has a length of 97, and no synchronization
problems.

A characterization sequence was generated based on the
two W-sets defined above, and the P-set (empty sequence
ignored):

[Cl-ind - [CZ-ind, Cl-conf, conn, inc, N-Creq

- [N-C req, N-D req] , N-D req, N-CZ resp] ,

CZ-conf * [Cl-ind, conn, inc] , conn, inc * [Cl-ind,

Cl-conf, conn, inc, N-Creq - [N-Creq, N-D req] ,

N-C resp, N-D req] , N-C req - [Cl-ind, Cl-conf,

inc [.Cl-ind, CZ-conf, conn,inc, N-Creq, N-D req] ,

inc [CZ-ind, Cl-conf, conn, inc], N-Creq,

N-D req - [N-C req, N-D req, N-CZ resp] 1, N-D req]

This sequence has a length of 408 and no synchronization
problems.

The X.25 DTE state table does not possess any DS; hence,
the checking sequence method i s not applicable in this case.

VI. COMPLEXITY OF TEST SEQUENCE GENERATION
The following algorithm checks for intrinsic synchroniza-

tjon problems. It finds alJ nonsynchronizable transitions and
states. The algorithm determines for each state the set of test
sides associated with the incoming transitions to that state,
and checks if this set includes all the initiating sides of the
outgoing transitions from the state. The Complexity of this
algorithm is O(n2kj.

Ignoring the synchronization problem, the complexities
of the lengths of the test sequences are shown in Table I. The
complexities of the algorithms for finding these test sequences
are as follows.

Transitioii Tour: The depth-first search algorithm [21] has
the complexity of O(n -I- k) and the breadth-first search
algorithm [81 used for transfer sequence generation of O(nk).
Since this algorithm can be called nk - 1 times in the worst
case, the complexity of the transition tour generation algo-
rithm is O(n2k2).

W-Method: Reference [71 gives the complexity of the algo-
rithms for this method as 0(n3k).

D-Method: For the complexity of an algorithm to find a
DS, we assume that the most expensive operation is searching
a list containing all possible state groupings (this list has a size
of 2n - l), whose complexity is O(2n). From [131 in the
worst case, this search will be done nn times. The algorithms
to generate a D-sequence [9] are graph traversal algorithms,
with a complexity of O(nzk2); thus, the complexity of the
algorithms for this method becomes O(nn f n 2 k 2) .

In finding synchronizable test sequences, the algorithm for
intrinsic synchronization problems is a necessary first step.
Hence, n2k should be added to the complexities of the algo-
rithms. Our practical experience with the protocols listed in
Table I1 shows that in these cases it is possible to find syn-
chronizable test sequences with lengths close to those which
are found when the synchronization problem is ignored.

In the case of real protocols, the number of states (see
Section 11-D) and inputs can be very large due to the imple-
mentation considerations and to the variations in interaction
parameters of input primitives. For example, a 125 byte DT

SAKIKAYA AND BOCHMANN: SYNCHRONIZATION AND SPECIFICATION 395

primitive of the transport protocol of Fig. 2 would introduce
’l1oO0 different inputs. The above considerations therefore
show that “complete testing”of a real protocol is practically
impossible. Similar conclusions were reached in [161 for the
complete testing of an HDLC protocol. For the application of
the test methods described in this paper, it must therefore be
assumed. that a suitable FSM is a realistic approximation of
the protocol to be tested.

VII. CONCLUSIONS
Test sequence generation methods (transition tours, W - and

D-methods) are applicable to protocols specified as incom-
plete FSM’s. The transition tour has a limited and the other
methods have full fault detection capabilities. The transition
tour method is generally applicable; the application of the
other two methods requires the protocol possessing a W-set or
DS, respectively.

With a remote testing architecture, as shown in Fig. 1, the
synchronization between the tester and responder modules.
becomes an issue. It is shown in Section I11 that test sequences
can be checked for synchronization problems by associating
each interaction of a test sequence with the tester or responder
module, respectively. Synchronizable test sequences can be
generated using modified versions of the algorithms developed
for each of the testing methods. Longer test sequences might
be the price to pay. However, this is only possible if the proto-
col design does not include any intrinsic synchronization
problems. It is not clear whether intrinsic synchronization
problems can always be avoided by making appropriate changes
to the protocol specification. The case of X.25 is discussed
in Section V.

Two methods to enhance protocol specifications are de-
scribed in Section V. These methods lead to protocol specifi-
cations that are.more easily testable, especially in view of using
the W - and D-methods. However, it is not clear whether such
methods can be applied for the case of any particular protocol,
since they lead to additions and/or changes to the protocol
specification.

While this paper concentrates on exhaustive test methods
and limits the discussion to protocol specifications that are
given as finite state machines, most real protocols are more
complex in nature. Therefore, the methods discussed here will
only be applicable to a limited extent in the case of a real
protocol. For instance, many protocol specifications include
additional state variables and parameters for the input-output
interactions [121, and typical test sequences must include
means for verifying the correct behavior in relation to these
interaction parameters (see, for example, [31). Complexity
considerations of Section VI (see also [161) preclude the
feasibility of exhaustive testing in these cases. Some results on
test sequence selection considering interaction parameters are
reported in [2 1] . More research is needed for a better under-
standing of these issues.

ACKNOWLEDGMENT
We are grateful to the anonymous referees and C. Sunshine

for
this

suggesting many improvements on an earlier version of
paper. We also thank E. Cerny for his helpful criticisms.

REFERENCES
D. Belsnes and E. Lynning, “Some problems with the X.25 packet
level protocol,” Comput. Commun. Rev., vol. 7 , no. 4, pp. 41-52,
1977.

G . v. Bochmann e t a l . , “Experience with formal Specifications
using an extended state transition model,” IEEE Trans. Commun.,
vol. COM-30, pp. 2506-2513, Dec. 1982.

Inform. Processing SOC. Conf., May 1983, pp, 123-129.
G . v. Bochmann and E. Cerny, “Protocol assessment,” Rep. Dep.’
Commun. Canada, Feb. 1982.
“Recommendation X.25,” CCITT Study Group VII , Working
Paper 2, pp. 100-190, fasc. V111.2. Sept. 1981.

- , “Testing transport protocol implementations,“ in Proc. Can.

H. Chaigne et al . , “Un generateur de tests pour systemes modelises
par automates d’etats finis,” BIGRE (IRISA), Rennes, France, no.
27, Dec. 1981.
T . S. Chow, “Testing software design modeled by finite state
machines,” IEEE Trans. Sofrware E n g . , vol. SE-4, no. 3 , 1978.
S. Even, Graph Algorithms. Rockville, MD: Comput. Sci. Press,
1979.
G . Gonenc, “A method for the design of fault detection experi-
ments,” IEEE Trans. Comput., vol. (2-19, no. 6 , 1970.
Several papers in Proc. 2nd Int. Workshop Protocol Specification,
Testing, Verification, 1982.
ISO, “Connection oriented transport protocol specification,” Apr.
1983.
ISO, “A FDT based on an extended state transition model,” work-
ing doc. of Subgroup B, IS0 TC97/SC161 WGI, Mar. 1984.
2. Kohavi, Switching and Finite Automata Theory. New York.:.
McGraw-Hill, 1978.

Feb. 1980.
P. F. Linington, Ed., “A network independent transport service,”

S . Naito and M. Tsunoyama, “Fault detection for sequential ma-
chines by transition tours,” in Proc. IEEE Fault Tolerant Compur.
Conf., 1981.
T. F. Piatkowski, ”On the feasibility of validating and testing
ADCCP implementations.” NBS Trends Appl., May 1980.
D. Rayner, “ A system for testing protocol implementations,” in
Proc. 2nd Int. Workshop Protocol Specifcation, Testing, Verifica-
tion, 1982; also Comput. Networks, vol. 6, Dec. 1982.
R. Razouk, “Modelling X.25 using the graph model of behavior,”
in Proc. 2nd Int. Workshop Protocol Specification, Testing, Verifi-
cation, 1982.
R. Rubin and C. H. West, “An improved protocol validation tech-
nique,” Comput. Newtorks, May 1982.
B. Sarikaya and G . v. Bochmann, “Some experience with test
sequence generation for protocols,” in Proc. 2nd Int. Workshop
Protocol Specification, Testing, Verification, 1982.
B. Sarikaya, “Test design for computer network protocols,”
McGill Univ., Montreal, P.Q. , Canada, to be published, 1984.
R. Tarjan, “Depth-first search and linear graph algorithms,” SMM
J . Compur., vol. 1 , no. 2, 1972.

*
Behqet Sarikaya (S’80) received the B.Sc. de-
gree in electrical engineering and the M.Sc. de-
gree in computer science from the Middle East
Technical University, Ankara, Turkey, in 1973
and 1976, respectively.

He is currently a Ph.D. candidate at the School
of Computer Science, McGill University, Mon-
treal, P.Q., Canada, and completing his work at
the De‘partement D’lnformatique, Universite de
Montrkal. His research interests include protocol
specification and validation, distributed system

Mr. Sarikaya is a student member of the Association for Computing
implementation, and analytic performance modeling.

Machinery.

