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Synchronization  and  Specification  Issues in 
Protocol  Testing 

BEHCET  SARIKAYA, STUDENT MEMBER, IEEE, AND GREGOR v.  BOCHMANN, MEMBER, IEEE 

Abstract-Protocol testing for the purpose of certifying the imple- 
mentation’s adherence to the protocol specification can be done with a 
test  architecture consisting of remote tester and local responder proc- 
esses generating specific input stimuli, called test sequences, and 
observing the output produced by the implementation under test. It  is 
possible to adapt test sequence generation techniques for finite state 
machines,  such as transition tour, characterization, and checking 
sequence  methods, to generate test sequences for protocols specified 
as incomplete finite state machines. For certain test sequences, the 
tester or responder processes are forced to consider the timing of an 
interaction in which they have not taken part; these test sequences are 
called  nonsynchronizahle. The three test sequence generation algo- 
rithms are modified to obtain synchronizable test sequences. The 
checking of a given protocol for intrinsic synchronization problems is 
also discussed. Complexities of synchronizable test sequence genera- 
tion  algorithms  are given and complete testing of a protocol is shown 
to he infeasible. 

To extend the applicability of the characterization and checking 
sequences, different methods are proposed to enhance the protocol 
specifications: special test input interactions are defined and a metho- 
dology is developed to complete the protocol specifications. 

P 
I. INTRODUCTION 

ROTOCOL  implementation assessment methods  are  used 
t o  determine  that a  particular  implementation  (in  the 

following  simply  called  “implementation”  or “I”) adheres 
to   the  specification of the  protocol.  There  seems  to  be agree- 
ment  on a  general  architecture to  be  used  for  testing  one  or 
more  layers of the OS1 protocol  hierarchy [ 41, [ I O ] ,  [ 171. A 
remote  tester (also  called  “active tester,”  “tester,”  or “T” for 
short)  and a supplementary  test  module  (also called “test 
responder,”  “responder,”  or “R”) directly  connected  to  the 
implementation,  and  playing  the  role of the  implementation’s 
service user,  constitute  the  major  parts of this  architecture,  as 
shown in Fig. l(a). 

This  paper  addresses  the  problem of selecting  test.sequences 
for  protocol  implementation  assessment. Assuming finite  state 
machine  (FSM)  models  for  protocol  specification,  various 
methods developed for FSM’s implemented  in  hardware  and 
software  can  be  applied to  the selection of test  sequences  for 
protocols,  as  reported earlier [ 21. In  the  context of the  under- 
lying  test  architecture,  however,  certain  problems of syn- 
chronization  between  the  tester  and  the  responder  may arise. 

The  paper  first gives a short review of the  application [ 201 
of  three  finite  state  test  sequence  selection  methods,  (i.e., 
transition . tours [ 151,  characterization [ 71, and checking 
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sequences [ 131 ) to  protocol  implementation  assessment,  and 
then explains in Section I11 the  nature of the possible  syn- 
chronization  problems.  Section IV discusses  algorithms for 
selecting  test  sequences  without  synchronization  problems, 
which  are called in the following synchronizable. Some  proto- 
col  examples  are  also given for  which  no  complete  synchroniz- 
able  test  sequence  exists.  The  use of synchronizable  test 
sequences simplifies the design of the  tester  and  the  responder. 

Most protocol  specifications  define  incompletely  specified 
machines, i.e., for  certain  machine  state  and  input signal pairs 
there is no transition  specified.  Therefore,  the  test  sequence 
selection  methods have  been  generalized for  the case of in- 
complete  machines  [20].  Unfortunately,  these  methods  are 
not always  applicable.  Section V thus  contains a  discussion of 
different  strategies  for  partially  completing  protocol specifica- 
tions  in view  of  making them easier t o  test.  The X.25 virtual 
circuit  establishment  and  clearing  protocol is taken as an 
example.  Also,  the class 0 transport  protocol is taken  as  the 
main  example  to  demonstrate  the  properties of the  different 
test  sequence  selection  methods. A short  comparison of the 
three  methods  is also given. 

In Section VI, the  complexities of the  test  sequence genera- 
tion  algorithms  and  the  effect  of  synchronization  to  the  com- 
plexities  are discussed. Complete  testing of a real  protocol is 
shown  to  be  infeasible. 

11. TEST SEQUENCE GENERATION FOR PROTOCOLS 
The  testing  methods  explained  in [ 71, [ 131, [ 151 , are 

briefly  explained  below, using as  an  example  the  state  machine 
specification  of  the  ISO/CCITT class 0 transport  protocol 
[ 1 11 shown  in Fig. 2. 

A. Transition Tour  Method 
An  input  sequence  starting  with  the  initial  state  and cover- 

ing  all transitions  defined  in  the  protocol  specification  is 
called  a transition  tour [ 1.51. A transition  tour  for  the  trans- 
port  protocol  is  shown  in  Fig.  3(a). 

Formulas  for  the  upper  bound  on  the  length of transition 
tours  depending  on  the size of the specification  are given in 
Table I. For  the specification of Fig. 2,  the  upper  bound  and 
the  actual  length  of  the  transition  tour of Fig. 3(a)  are  listed  in 
Table 11. Table I contains  upper  bound  formulas  and  their 
complexities  for all three  methods,  and  Table I1 shows  actual 
lengths  and  upper  bounds  for  this  and  other  types of protocols. 

B. The  W-Method: Characterization  Sequences 
A characterization set W of an FSM A is a set of input 

sequences  such  that  the  output  observed  from  the  application 
of W is  different  for  each  state [ 71. Every  reduced,  completely 
defined FSM possesses  a W-set. 

A testing tree is defined to  have the machine  transitions  as 
its branches and  states as its  nodes; if contains  each  transition 
exactly  once.  The  root of this  tree is the  initial  state. 

A test  sequence, called  a characterization sequence, is  ob- 
tained  by  the  concatenation of the  two  sets P and W ,  where P 
is  the  set  containing all partial  paths  in  the  testing  tree,  includ- 
ing the  empty  sequence.  Each  sequence  in  the  concatenation 
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Tent  Synchronization 
(Active  Tenter) 

Protocol to be  Tented 
4 L 

1 Layer 1 

(Test  Responder) 

(Implementation 
under  Test ) 

I (layer  N) 

Layer I 

1 T.CR 2 R.T-Dreq 1 T.CC 1 T.DT 1 T.DR 1 T.CR 2 T.CR I 
R.T-Cind  T.DR  R.T-Cind T.ERR * 

R.T-Creq 3 T.DT 1 T.CR 2 R.T-Crenp 4 R.T-DTreq 4 T.DT 1 
T.CR T.ERR R.T-Cind T.CC T.DT R.T-DTind 

R.T-Dreq I T.CR 2 T.CC I T.CR 2 T.DT I T.CR 2 
T.N-Dreq  R.T-Cind  T.ERR  R.T-Cind  T.ERR  R.T-Cind 

T.DR I R.T-Creq 3 T.DR 4 
T.ERR 

1 R.T-Creq 3 T.CC 

T.CR I T.CR 2 R.T-Crenp 4 T.DR 1 'T.CR 2 R.T-Cresp 4 
T.ERR R.T-Cind  T.CC  T.N-Dreq  R.T-Cind  T.CC 

T.CC R.T-Dind,  T.N-Dreq  T.CC  R.T-Cconf 

T.N-Rind I T.CR 2 R.T-Crenp 4 T.N-Dind I 
R.T-Dind R.T-Cind T.CC R.T-Dind 

P + t 4 t 
- I '  I 

(b) 
Fig. 1. (a) A test  architecture  for testing an (N)-layer  protocol  imple- 

mentation in the  context  of  the OS1 reference  model. (b) Basic  in- 
teraction  model  of  the  test  architecture in  (a). 

T-DreqlN-Dreq. 

N-DindIT-Dind. 

T-CreapICC 

T-DTreqIDT, DTIT-Wind 

Notstion  for  Input  Events 

CR Connect-request PDU 
CC Connect-Confirm PDU T-Dreq T-Disconnect-Baqueat 
DT Data-Request PDU ~-crasp T-Connect-Response 
DR Disconnect-Requeet  PDU T-DTraq T-Data-Baquast 
N Dind  Network  Dincannect-Indication 
N'ind Network~Renet-Indicatia. 

From Tenter From Responder 
T-Craq T-Connect-Raquest 

Notation  for  Output  Events 

ERR  Error  PDU 
To  Tester 

N-Dreq Network-Disconnect-Request T-Dind T-DiSc-Indication 
cc Connect-Confirm PDU T-Cconf T-Connect-Confirm 
DT  Data-Request PDU  T-mind T-Data-Indication 
DR Disconnect-Request PDU 
N-Dind N-Dinconnect-Indication 
N-RincJ N-Reset-Indication 

T-Clad T-Connect-Indication 
To  Peaponder 

Fig. 2. Finite  state  machine  for  the class 0 transport  protocol. 

Notation  for  Tranaitione: 
Start  State  Input  Initiating Side.Input Primitive  Final  State 

"*"n are used to indicate  nonsynchronirable tranaitiona. 
Output  Receiving  Side.Output  Primitive 

I R.T-Creq 3 T.CC 4 R.T-Dreq I T.CR 2 R.T-Dreq 1 T.CC 1 T.DT 1 
T.CR R.T-Cconf T.N-Dreq R.T-Cind T.DR 

, - - 
T.DR 1 T.CR 2 R.T-Cresp 4 R.T-DTreq 4 T.CR I T.CR 2 R.T-Crasp 6 - R.T-Cind  T.CC  T.DT  T.ERR  R.T-Cind  T.CC 

T.DT 4 T.N-Rind I R.T-Creq 3 T.DT I T.CR 2 R.T-Cresp 4 
R.T-DTind  T.T-Dind T.CR - R.T-Cind  T.CC 

T.N-Dind 1 R.T-Creq 3 T.DR 
R.T-Dind  T.CR R.T-Dind.  T.N-Dreq  R.T-Cind  T.CC 

T.DR I T.CR 2 T.CR I T.CR 2 T.CC I T.CR 2 T.DT I 
T.N-Dreq  R.T-Cind  T.ERR  R.T-Cind T.ERR R.T-Cind  T.ERR 

T.CR 2 T.DR I 
R.T-Cind  T.ERR 

1 T.CR 2 R.T-Cresp 4 

(b) 

Fig. 3.  (a)  A  transition  tour  for.  the  transport  protocol. (b) Synchro- 
nizable  transition  tour  for  the  transport  protocol. 

TABLE I 
UPPER  BOUND  FORMULAS  AND  THEIR  COMPLEXITIES 

Upper  Bound  for  Transition  Tour  Length: 
1(T) <- q+(q-l)(n-l) O(n2k) 

Upper  Bound  for  V-Sequence  Length(with resets): 
l(Y) <- (1/2)knw(n+l)+m(q+I) O(n4k) 

Upper  Bound  for  Checking  Sequence Leng9: 
1(C) <- ZnL+(n-L)**Z+q(n+L) O(n ~ k) 

where  k-maximum  number of npecifiad  entries  for a given  atate 
(number of input  symbol# at maximum) 

L-length of DS 
m-aum of the  lengths  of  the  members in the V-net 
n-number of states 

r a u m b a r  of member# in the V-set 
q-total number of specified entries in the  Table  (maximum n-k) 

TABLE I1 
ACTUAL  LENGTHS ( L )  AND  UPPER  BOUNDS (cr) O F  

TEST  SEQUENCES 

L U  L U   L U  
T o u r  U-Method  D-Method 

_ _ _ _ _ _ _ _ _ _  _-___----- ---------- 
Transport  Protocol 3 4  81 6 5   9 2   6 4   1 2 2  

X 2 5  DTE with  "Read  State" transition 
(and "Set State I "  f o r  U-Method) 5 4   2 1 3   1 4 0   2 1 6   1 0 6  380 

U K  Transport  Protocol  with "Read 
Slate" (and "Set State 1" f o r  W-Method) 5 7   3 1 1  1 5 3  3 6 3  1 2 7   4 5 3  

X 2 5  DTE  Semi-Completed 
(W-method  with  resets) 9 7   3 6 9   4 0 8   6 0 0  - - 
U K  Transport PC. Semi-Completed 
(U-method  without  resets) 3 3 7   1 4 2 9   , 2 3 0 5   4 5 0 5  - - 
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of P and W is applied  starting  with  the  initial  state  and  fol- 
lowed by a transfer sequence back to  the  initial  state  (also 
called reset) to  be  ready  for  the  next  sequence. 

As long as a W-set exists,  this  method  is  applicable to  
incompletely  specified  machines.  For  the  transport  protocol of 
Fig. 2, DR  (the  disconnect  request  protocol  data  unit) is a 
W-set, a single sequence of length  one. A complete  test se- 
quence  for  the  protocol is given in  Fig. 4. 

C. The  D-Method: Checking Sequences 
Checking  sequences  can  be used to test  machines  that have 

a  distinguishing  sequence  (DS) [ 131. A checking  sequence 
consists of two  parts:  first  a  state  recognition  part,  and  then  a 
transition  checking  part;  The  state  recognition  part  starting 
with  the  initial  state is designed to display the response of each 
state  to  the  sequence  DS-DS.  Transfer  sequences  might  be 
used  in  this  part  when  necessary.  The  transition  checking  part 
checks  individual  transitions that  are  not  checked  in  the  state 
recognition  part  and  can  be  defined as 

TC = U X ~  * DS (A) 

where U stands  for set union  and  the x i  are  the  machine 
transitions to be checked. 

As long  as  a DS exists,  the  D-method  is  applicable to  in- 
com.pletely  specified  machines. A DS for  the  transport  proto- 
col of Fig. 2 is again DR, which  is of length  one. (See  also 
1201 .> 
D. Fault Detectiorl Capability of the  Methods 

The  transition  tour  method is the simplest  approach,  but  it 
does not  detect all errors  in  an  implementation, i.e., errors  in 
the  next  state  function of the FSM may  remain  undetected. A 
characterization  sequence  or  a  checking  sequence  detects  any 
misbehavior,  also in the case of incompletely  specified  ma- 
chines, as long as the  method is applicable.  However,  this is 
only  true  as  long as it can  be  assumed that  the  implementation 
behaves  like a FSM with  a  number of states smaller than  or 
equal  to  the  specification.  Unfortunately,  this  assumption  is 
often  difficult to check,  and  implementations  may  introduce 
,additional  states  due  to  resource  management  and  other 
practical  considerations.  It is therefore  interesting to  note  that 
additional  implementation  states can  be accommodated by the 
W-method, with,  however, the  penalty of increased  test se- 
quence  lengths. 

The  fault  detection is demonstrated by the following  simple 
example. Assume that  the following  erroneous  behavior is 
realized  by  an  implementation of the  transport  protocol.  In 
state 4 under  input N-Dind, the  next  state is 4 (instead of 1 
as indicated in Fig. 2), i.e., a  transfer  error.  The  characteriza- 
tion  sequence of Fig. 4 applied to this  implementation  would 
lead to 

1 CR 2 T-Crew 4 N-D ind 4 DR 1 

T-C ind cc T-0 md N_1> req 

The  unexpected  output of  N-Dreq to  the  input DR reveals 
the error.  The  transition  tour of Fig.  3(a)  results  in 

1 CR 2 T-C resp 4 N-D ind 4 

T-C inc CC T-D ind 

No error is detected! 

111. SYNCHRONIZATION PROBLEMS IN TEST  SEQUENCES 
Test  sequences  reported in [ 201 were generated  with  the 

assumption  that  the  tester  and  responder  are  directly  syn- 

1 T.DR 1 R.T-Creq 3 - T.CR 

T.DT I T.DR 1 T.DR 1 

T.DR I R.T-Creq 3 
T.N-Dreq  T.CR 

R.T-C:esq 4 R.T-Dreq 
T.CC  T.N-Dreq 

T.DR 1 T.CR 2 T.OR 1 T.CC 1 T.DR I 
R.T-Dind  R.T-Cind T.ERR - 
T.CR 2 R.T-Dreq 1 T.DR 1 R.T-Creq 3 T.CC 4 
R.T-Cind T.DR - T.CR  R.T-Cconf 

T.DT I T.DR 1 R.T-Creq 3 T.DR 1 T.DR 1 T.CR 2 
T.ERR - T.CR  R.T-Pind - R.T-Cind 

1 T.DR 1 T.CR 2 R.T-Cresp 4 R.T-DTKeq 4 - R.T-Cind  T.CC  T.DT 

T.DR 1 T.CR 2 R.T-Creap 4 T.CR 1 TIDR 1 T.CR 2 R.f-c'Cr.SQ 4 
T.N-Dreq  R.T-Cind  T.CC  T.ERR - R.T-Ctnd C C C  

T.DT 4 T.DR 1 T.CR 2 R.T-Cresp 4 T.DR 1 T.DR 1 
RaT-DTlnd T.N-Dreq  R.T-Cind  T.CC  T.N-Dreq - 
T.CR 2 R.T-Cresp 4 TPN-Dind 1 T.DR 1 T.CR 2 R.T-Creep 4 
R.T-Cind  T.CC  R.T-Dind - R.T-Cind  T.CC 

T.N-Rind 1 T.DR I T.CR 2 R.T-Cresp 4 T.DR I T.CR 2 T.CR 1 
R.T-Dind - R.T-Cind  T.CC  T.N-Dreq  R.T-Cind  T.i%RR 

T.DR 1 T.CR 2 T.CC 1 T.DR 1 T.CR 2 T.DT 1 T.DR 1 T.CP 2 - R.T-Cind  T.ERR - R.T-Cind  T.ERP - R.T-Clnd 

T.8P.R - T.DR 1 T.DR 1 . .  

(Same  Notation as in figure 3a) 

Fig. 4. A characterization  sequence for the  transport  protocol. 

chronized  with  one  another.  In  the  architecture  of  Fig.  l(a), 
however, the  tester  and  responder  are  distributed over two 
sites,  and  they  are  only  synchronized  through  the  interactions 
with  the  implementation.  This may  lead to synchronization 
problems  between  the  tester  and  the  responder,  which  are 
explained  in  this  section.  Section  IV  then  contains  considera- 
tions  for avoiding them. 

A.  Basic Interaction  Model 
The  implementation ( I ) ,  tester ( T ) ,  and  responder (R) ,  

shown  in Fig. l(a),-are modeled  as  processes,  each  represented 
as an FSM, which  communicate  by  exchanging messages 
through  FIFO  queues  [Fig.  l(b)] . T and R may  send or re- 
ceive a message to/from I when  they  execute  a  state  transition. 
I can  receive a message from T or R ,  or  it can  send  a  message 
to  one  or  both of T or R after receiving a message from  one 
of them.  The  system  has  a  predefined  initial  state: all queues 
gmpty  and  all  three  processes  in  their  initial  states. 

1)  Basic Interaction Sequences IBIS): A sequence of transi- 
tions of the  implementation,  tester,  and  responder  defines a 
transition  sequence  for  each  process.  In  the  following,  abstrac- 
tion is made  from  the  particular  transitions,  only  the  informa- 
tion  whether  an  input  is received ( R )  or  an  output i s  sent (8)  is 
recorded,  and over  which FIFO  queue.  Following  some  ideas 
from [ 191, we call such an abstracted view of a  transition  a 
basic transition, and  the  individual  interactions of a basic 
transition basic interactions. For  example,  the basic interac- 
tions  corresponding  to  the  transition  from  state  1  under  input 
CR of the  protocol of Fig. 2 are to receive a message through 
Q T 1  from T (written R I T ) ,  and to  send  a  message through 
QJR to  R (written S I R ) .  Hence,  it  corresponds to  the basic 
transition R I T S I R .  All  possible  basic  transitions of process I 
under  the  model of Fig. l (b)  are  enumerated  in  Table  III(a), 
assuming that  each  transition of I starts  with  an  input  interac- 
tion.  It is  noted  that  some of the  entries  in  Table  III(a)  (namely 
R I R ,  RIR S I R ,  and R I R S I R  S I T )  do  not  occur  for  the  trans- 
port  protocol of Fig.  2,  but  they  may  occur in other cases. 

Test  sequences discussed in  Section I1 are  composed of 
transitions of process I ,  each  starting  in  the  initial  state.  Hence, 
a  test  sequence,  such  as  the  one  in Fig.  3(a),  can be easily 
converted  into  a  corresponding BIS by  replacing  each  transi- 
tion  with  its  corresponding basic transition. 

From  a given test  sequence,  it is possible to  obtain BISes 
for T and R as well. The  execution  steps of I that  do  not in- 
volve any  interaction  with  either T or R will  be shown  as-  in 
the  corresponding BIS. The BIS for T corresponding to  a given 
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TABLE 111 
LIST O F  BASIC  TRANSITIONS (a) AND NONSYNCHRONIZABLE 

PAIRS O F  TRANSITIONS (b) FOR  AN  IMPLEMENTATION (I) 

R I T   R I T R I R ,   R I T R I R s I T ,   R I T R I R R I R ,   R I T R I R S I R S I T  

RIB , I R R 1 T ,   R I R R I T S I T ,   R I R I I I T S I R ,   R I R R I T S I T S I R  

,,ITSIT R I T s l T R I R ,   g I T S I T R I R S I T ,   R I T S I T R I R S I R ,   R I T s I T R I R S I R S I T  

R I T S I R  

R I B S I T  

RIRsIR R I R s I R R I T ,   R I R s I R R I T S I T ,   R I P S I R P I T S I R ,   R I R S I R R I T S I T S I R  

R I T S I T s I R  - 
R I R s I R s I T  - 

(a) (b) 

BIS for I can  be  obtained  from  the  latter by  replacing  an R I T  
with S T I ,  and  an S I T  with RT1 and  an  execution  step  not 
involving “T” by ^.  A BIS for R can be obtained  in  a similar 
way. 

B. Synchronization 
Definition: Considering two consecutive  basic  transitions of 

I ,  one of the  test  modules, say T (or R) ,  faces  a synchroniza- 
tion  problem if T (or R )  did not  take  part  in  the  first  transi- 
tion  and if the  second  transition  requires  that it sends  a mes- 
sage to  I. 

Lemma: A pair of basic transitions  has  a  synchronization 
problem if (and  only  if)  the  corresponding BIS for T and/or 
R has  any  sends (S) preceded  by a ^ .  

Proof: F,ollows from  the  definition. 
Two consecutive  basic  transitions of I will  be  called a 

synchronizable pair of transitions if the  second  transition  can 
follow  the  first  one  without  generating  a  synchronization 
problem.  For  example, R I R  followed by RIT would  violate 
synchronization  because of the  Lemma  above.  Similarly, 
RIR and RIR.SIR cannot  be  followed by RIT  or R I T S I T  or 
R I T S I T S I R .  Also, RIT and R I T S I T  cannot be followed by 
R I R  or R I R S I R  or R I R S I R S I T .  All nonsynchronizable  pairs 
of basic transitions  are  listed  in  Table  III(b). 

Th’eorem: A given test  sequence  is  synchronizable if (and 
only  if)  any  two  subsequent  transitions of the  sequence  cor- 
respond to a  synchronizable’pair of basic transitions. 

Proof: 
(If  part)  Follows  from  repeated  application of the 

(Only if part) By contradiction. 
Lemma  to  the  test  sequence. 

The  test  sequences  shown  in Figs. 3(a)  and 4 were  derived 
in 1201 without  concern  for  possible  synchronization  prob- 
lems. It is  easily  seen that  they  contain  synchronization  prob- 
lems,  as  indicated  by “*”s. The  sequence of Fig.  3(a)  contains 
two  violations,  both of the  type R I T S I T R I R S I T ,  which  is one 
of the pairs  listed  in  Table  III(b).  The  sequence of Fig. 4 con- 
tains  four  violations of the same  kind. 

C. Protocol  Specifications  with  Intrinsic 
Synchronization Problems 

For  certain protocol’specifications, it  is  impossible to avoid 
synchronization  problems.  Such  a  situation  occurs in the case 
that  a  transition piT from  state j to  state k is of one of the  types 
R I R ,  R I R S I T ,   R A R S I R ,  or R I R S I R S I T ,  and  each  transition 
pi entering  state j is of one of the  types R I T  or R I T S I T .  Then 
each  pair pipi is  a  nonsynchronizable  pair of transitions.  There- 
fore,  ‘the  execution of the  transition p i  implies  a  synchroniza- 
tion  problem. We  caU such  a  transition nonsynchronizable. A 
dual  situation  exists  for  the case that all pi are of types RIR  
or R I R S I R ,  and p i  is of one of the  types R I T ,  R I T S I T ,  

R I T S I R ,  or R I T S I T S I R .  We call a  state nonsynchronizable 
if it  can  only  be  reached  through  nonsynchronizable  transi- 
tions. 

Protocol  specifications having nonsynchronizable  transi- 
tions  and/or  states  are called intrinsically nonsynchronizable. 
It is clear that  any  complete  test  sequence  generated  for  such 
Specifications  will  carry  synchronization  problems. It can  be 
seen that  the  transport  protocol of Fig. 2  does not have any 
nonsynchronizable  transitions;  therefore, it does  not have any 
intrinsic  synchronization  problem. 

D. An Example:  The X25 DTE 
Fig.  5  shows  a state  table  for  an X.25 DTE.  Each  entry 

in  the  table’  represents  a  transition  to  be  executed by the  DTE 
for  a given present  state  and  input  interaction.  An  entry de- 
fines  the  result of the  transition  in  the  form 

next  state 

output  interaction 

Fig. 5 was obtained as follows.  The X.25 specification [SI  
defines  the DCE behavior  as  far  as DCE-DTE interactions  are 
concerned. A symmetric  behavior was  assumed for  the  DTE, 
which  accounts  for  the  first  four  columns of rows 1-7 in Fig. 
5.  In  addition, user interactions  (see  last  four  columns,  and 
certain  outputs) have  been added to  the table  in  a  relatively 
straightforward way [ 181. We note  that  state 6 handles  both 
user  clears  and  protocol  errors, as specified in X.25. For  the 
user errors  a  “user  error”  state  (state 9) is  introduced, as 
explained  in  Section V. Clear  collision  in the user-DTE inter- 
face  is  handled  by  adding  a  “clear-collision”  state  (state 8). 
Since  according to  X.25, the DCE does  not  send  a clear- 
confirmation  packet  in  the case  of a  clear  collision at  the 
DTE-DCE interface,  there is no transition to  state 8 in  response 
to an  interaction  from  the DCE. 

Fig. 5  contains  eight  nonsynchronizable  transitions:  the 
entries  in  states 8 and 9 for all interactions  from  the DCE. The 
reason  for  this  problem is that  no  transition  from  the  DCE 
leads to  either of these  states.  Modifications to  the  state  table 
to  avoid these  intrinsic  synchronization  problems will be 
discussed in  Section V. 

IV. GENERATION OF SYNCHRONIZABLE TEST SEQUENCES 

Each  test  sequence  generation  method discussed in Section 
I1 may give rise, for  a given protocol  specification,  to  different 
‘test  sequences  depending  on  the way the  method  is  imple- 
mented.  It is clear  from  the  discussion of Section I11 that  some 
of these  sequences  are  not  applicable  in  the  test  architecturs of 
Fig. l(a) because  they  violate  the  synchronization  rules.  The 
different  methods  can  be  adopted  to  generate  only  synchroniz- 
able  test  sequences,  unless  the  protocol  is  intrinsically  nonsyn- 
chronizable.  These  adaptations  are  specific  to  each  method,  as 
explained  below.  The basic approach in all cases  is to check 
each  new  transition  added to  the  sequence  in  order  to see 
whether  it is synchronizable  with  its  predecessor.  This  check 
is based on  Table  III(b)  which  lists  all  nonsynchronizable  pairs 
of transitions. 

A. Transition Tours 
Any  graph  traversal  algorithm  such  as  the  one given in [ 22 1 

can be modified to  obtain  a  transition  tour.  Each  transition 
to  be  added to  the  sequence by the  algorithm is first  checked 
whether  it  forms  a  synchronizable  pair  together  with  the  last 
transition of the  sequence  [using  Table  III(b)]. If it is not 
synchronizable,  a  different  transition  from  the  present  state  is 
considered. If no  suitable  transition  exists  from  the  present 
state,  the  selection  algorithm  backtracks  to  the  previous  state 
continuing  the  tour  from  there  in  a  different way.  This  process 
continues  until all the  transitions of the  machine  are  covered. 
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Cl-ind N-Clreap N-Dreq N-Cresp  N-Creq Ioe Con” Cl-conf 

1 7  9 6 9 2 3 6 6 
N-Dind N-Err  Cl-req  N-Err Req N-Cind Err Err 
I @-Err) [Note21 

3 7  9 6 4 5 6 6 6 
N-Dind N-Err  Cl-req Acc Req Cl-reg Err Err 

4 7  9 6 9  9 6 6 6 
N-Dind N-Err Cl-req  N-Err  N-Err Cl-req Cl-req  Cl-req 

5 7  9 6 9 9 6 4 6 
N-Dind N-Err Cl-req N-Err  N-Err Err N-Cconf Err 

(N-Err) 

6 - Discard N-Err  N-Err Discard  Discard N-Dconf  N-Dconf 
6 6 9 9 6 6 1 1 .  

[Notell 

7 7  . 6  6 1 8 9  9 6 
Discard N-Err  N-Err Err Err Err - c 1-conf 

8 8  I 8 9 9 6 6 6 
Discard Cl-conf Discard N-Err  N-Err Err Err Err 

[Notell:This  transition may take  place  after  time-out. 
[NoteZl:Specification  defines  atate 7 as the n e x t  state  for  the  DCE 

Notation  for  Input  Events 

Cl-ind Clear  Indication 
Prom DCE 

N-Creq  N-Connect-Request 
Cl-conf Clear  Cbnfirmation  ~-creep  ~-~onneht_~esponse 
Conn  Call  Connect N-Dreq N-Dieconnect-Request 
Inc  Incoming  Call N-Clresp N-Clear-Response 

Notation  for  Output Eirents 

Reg  Call  Request N-Cind  N-Conn&t-Indication 
ACC  Call  Accepted 
Cl-req Clear  Request 
Cl-conf Clear  Confirmation N-Dind N-Disconnect-Indication 
Err  Error 
s o _ * *  

From User 

N-Cconf N-CannecC_Confirmation 
N-Dconf N-Disconnect-Confirmario. 

N-Err N-Error-Indication 
meane no Output  is g e n e r a t e d .  

Fig. 5. State table of X.25 DTE. 

In  general,  it  may  be  necessary to deviate  from  the  goal of 
obtaining  minimum  length  sequences. 

Applying  such  an  algorithm to  the  transport  protocol,  the 
transition  tour of  Fig.  3(b)  is  obtained.  .The  length of this 
sequence  is 34, as in Fig. 2 ;  in  this case the  length  is  not 
increased. 

B. Characterization Sequences 
Algorithms to find  a W-set and to construct  a  testing  tree 

(and,  hence,  to  calculate P -  W, without  resets)  are given in [ 61 . 
Any  shortest  path  finding  ’algorithm,  such  as  the  one  in [ 81, 
can  be  used for  determining  the  resets.  Synchronizable  charac- 
terization  sequences can be obtained  in  three  steps as follows. 

In  Step  1, all subsequences of P- W (without  resets)  are 
checked for  synchronization  problems  using  a  “subsequenc; 
checking  algorithm”  which  checks all pairs  of  consecutive 
transitions  in  a  sequence  for  synchronization  problems, using 
Table  III(b). If a  subsequence of P -  W has  synchronization 
problems,  the use of a  different W set or testing t reeP may  be 
considered,  possibly  leading to longer  sequences. 

In  Step 2, each  subsequence of P -  W is  completed by  ap- 
pending  a  synchronizable  reset  sequence using a  backtracking 
algorithm similar to  the  one  for  transition  tours  explained 
above. 

In  Step 3 the  subsequences  obtained  in  step 2 are  merged 
together to  obtain a single synchronizable  test  sequence.  Any 
“concatenation  algorithm”  could  be  used  which  puts  the  sub- 
sequences  in  such  an  order  that  no  synchronization  problem 
is generated. 

A  synchronizable W-sequence for  the  transport  protocol 
can be obtained using the  same  testing  tree as for Fig. 4. Due 

to longer  reset  sequences, it  contains  four  more  transitions 
than Fig. 4. 

C. Checking  Sequences 
Ignoring  the  problem of synchronization,  an  algorithm  for 

finding  a DS can be found in [ 131,  and  algorithms  for  state 
recognition  and  transition  checking  parts  are  reported in [ 91. 
Shortest  path  algorithms can  be  used for  finding  transfer 
sequences. 

The  follow&g  measures  are  proposed to  obtain  synchroniz- 
able  test  sequences. 

1) A synchronizable DS must  be  found,  not necessarily  of 
minimal  length. 

2) The  state  recognitipn  part  obtained  according  to [9]  is 
checked using the  “subsequence  checking  algorithm”  men- 
tioned  above.  In  case of synchronization  problems, changing 
the  transfer  sequences  should  first  be  considered.  The use  of a 
different DS may  also  be considered. 

3) The  transition  checking  step  is  checked-with  a  two-part 
procedure.  Fiist  each  subsequence  xi.DS  in  the  set TC  as  de- 
fined  in  Section I1 is checked by the “subsequence  checking 
algorithm.” If one of the  tests fails, a  different DS  should be 
generated, if it  exists.  In  the  second  step,  the  transition  check- 
ing part as a  whole is checked  for  synchronization.  In the case 
of synchronization  problems,  a  different  order of the subse-, 
quences  and/or  different  transfer  sequences  should  be  con- 
sidered. 

4) Finally,  the  state  recognition  and  transition  checking 
parts  are  combined using an  appropriate  transfer  sequence. 

A synchronizable  checking  sequence  for  the  transport 
protocol can be obtained  containing  three  more  transitions 
than  the  sequence  reported in [ 20 J . 

V. SPECIFICATION ENHANCEMENTS FOR TESTING 

The  transition  tour  method  is  generally  applicable  for  the 
generation of test  sequences;  unfortunately,  it  does  not have 
full  fault  detection  capability.  The  other  two  methods  could 
be  applied as long  as  a DS or a W-set exists,  which was the case 
for  the  transport  protocol. 

Two  approaches can  be taken  in  order  to  make  the W- and 
D-methods  applicable, if the original  protocol  specification 
does not have a DS and/or W-set: 

1)  the  protocol specification  may  be  enhaficed by defining 
special  test  interactions  and  transitions  (i.e.,  “read  state”  and 
“set  state”  transitions as described  in [ 161 ), and 

2 )  the  specification  (usually  incomplete)  may  be  completed 
until  a W-set or DS is  obtained. 

These  two  enhancement  techniques will be  discussed in the 
following  sections. 

A. Special Test Transitions 
A  “read  state”  transition  is by .definition a DS and  a W-set, 

and  a  “set  state”  transition  can be used  as  a  transfer  sequence 
(in  particular  for  resets) of length  one. : 

The  advantages.of using  “read state”  and  “set  state”  transi- 
tions  for  testing  can be summarized  as  follows, 

1) It becomes  possible to apply  any of the  test  sequence 
generation  methods discussed in  Section 11. 

2) Minimum  length  test  sequences  are  obtained  in a i  three 
cases. W-set and DS are  minimal  (of  length one)  and  transfer 
sequences  for all methods have length  one. 

3) Incompletely  specified  machines  can  be  tested  verifying 
only  the specified  part. It  should  be’noted  that  the  special  test 
transitions  are also subject to testing.  Any  implementation 
error of these  transitions will be detected by the D- or W- 
methods. 

Test  sequences  for  the X.25 DTE  and the U.K. transport 
protocol.[ 141 were obtained using the special  test  transitions. 
The  lengths of these  sequences  are  given  in  Table 11. In  obtain- 
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ing the  upper  bounds  the  following  parameters were  used: 
n = 8 , q = 3 5 , L =   l , k = 5 , m = l , w = :  

for  the X.25 DTE,  and 

n = l O , q = 3 2 , t = l , k = 6 , m = l , w = l  

for  the U.K. transport  protocol. 

B. Completing  Specifications 
In  order to make  the  protocol  more easily testable,  an  in- 

complete  specification of a  protocol  may be completed  in  the 
following  four stages. 

1)  One  state is added to  the  model,  namely  the  “protocol 
and  user  error”  state (if not  already  present). 

2) Unspecified  transitions  for  any  input  and  state  are speci- 
fied to lead to  the  error  state. 

3)  There  should  exist  at least one  transition which takes  the 
protocol  out of the  error  state, as, for  instance,  the  disconnect 
request  input. 

4) The  error  state  should  ignore all other  inputs  and  stay  in 
the  same  state. 

A  criterion  for  the  choice of outputs  for  the  added  transi- 
tions  should be to  avoid intrinsic  synchronization  problems. 
(See  also examples  in  Section V-C.) 

With the  above  approach,  a W-set is obtained  unless  the re- 
sulting  specification  has  an  intrinsic  synchronization  problem. 
The  existence of a DS depends  on  the  protocol,  and  it might 
be necessary to  introduce  new  output  symbols  in  order  to 
obtain  a DS (see  also [ 131).  After  obtaining a W-set and/or 
DS as explained  above,  the  error  transitions  specified  in stages 
2) and 4) above can  be removed, if the  input  symbol  does  not 
occur  in  the W-set and/or DS. 

C. Completing  the X.25 Specification for Testing 
The  completion  procedure  above was applied to  the  X.25 

DTE  protocol,  leading to  the specification of Fig. 5.  As dis- 
cussed in  Section 111-E, the resulting  table  has  intrinsic  syn- 
chronization  problems.  There  are  two possible solutions  to  the 
problems  related  to  state  8.  The  first is t o  completely  delete 
this  state by modifying  the  entry’  in  state  7  under  input 
N-Dreq to  go to  state  1  with no output.  The  second  solution 
requires  two  modifications  to  the  state  table: 

In  state 6 under Cl-ind: next  state  8,  no  output 

In  state  8  under CZ-conf: next  state  1,  output N-Dconf 

Note  that  this  solution  requires  the DCE to  transfer  a clear 
confirmation  packet even  in the case  of a clear  collision, 
which is not foreseen  in X.25. In  the following  discussion we 
assume the  first  solution. 

No solution will be offered  for  the  problems  related  to  the 
user-error  state, since  these entries  can be removed  from  the 
table  (they  are  not  required by the  test  methods  considered 
below). 

I )  Output Specifications and W-Sets: As far as output in 
response to  erroneous  inputs is concerned, we adopt  the  pro- 
posals  of [ 11. As far  as  interactions  with  the user  are  con- 
cerned, N-Err indications  are  returned  in  response to  all 
erroneous  inputs  from  the  user. With certain  modifications to  
Fig. 5 (indicated  inside  parentheses), we identify  the  following 
W-sets. 
w 1 = [ conn,  inc J 

w 2  = [N-Creq, N-Dreq] 

The  existence of  these  two W-sets, each  containing  only  inter- 
actions  from  the DCE or  the  user,  respectively,  facilitates  the 
selection of a  synchronizable  characterization  sequence.  It is 
possible to recognize  the  state  of  the  implementation  ynder 
test  by  applying  one of these  sets,  depending on  which  side 

received the last output  from  the  implementation.  The  syn- 
chronization  problems are thus  avoided. 

2 )  Transition  Tour  and  Characterization Sequences: A 
transition  tour  for  the X.25  DTE  defined in Fig. 5 was gener- 
ated  to cover the  transitions  in  the  state  table,  except  the  user 
error  transitions which  were considered to remain  unspecified. 
The  sequence  has  a  length of 97,  and  no  synchronization 
problems. 

A  characterization  sequence was generated based on  the 
two W-sets defined  above,  and  the P-set (empty  sequence 
ignored): 

[ Cl-ind - [ CZ-ind, Cl-conf, conn,  inc,  N-Creq 

- [ N-C req, N-D req] , N-D req, N-CZ resp] , 

CZ-conf * [Cl-ind, conn,  inc] , conn,  inc * [Cl-ind, 

Cl-conf, conn,  inc,  N-Creq - [N-Creq, N-D req] , 

N-C resp, N-D req] , N-C req - [ Cl-ind, Cl-conf, 

inc [.Cl-ind, CZ-conf, conn,inc,  N-Creq, N-D req] , 

inc [ CZ-ind, Cl-conf, conn,  inc],  N-Creq, 

N-D req - [ N-C req, N-D req, N-CZ resp] 1,  N-D req] 

This  sequence  has  a  length of 408 and  no  synchronization 
problems. 

The  X.25  DTE  state  table  does  not possess any  DS;  hence, 
the  checking  sequence  method i s  not applicable  in  this case. 

VI. COMPLEXITY OF TEST SEQUENCE GENERATION 
The  following  algorithm  checks  for  intrinsic  synchroniza- 

tjon  problems.  It  finds alJ nonsynchronizable  transitions  and 
states.  The  algorithm  determines  for  each  state  the  set of test 
sides  associated  with the  incoming  transitions  to  that  state, 
and  checks  if  this set  includes  all the  initiating  sides of the 
outgoing  transitions  from  the  state.  The Complexity of this 
algorithm is O(n2kj. 

Ignoring the  synchronization  problem,  the  complexities 
of the  lengths  of  the  test  sequences are shown  in  Table I. The 
complexities  of  the  algorithms  for  finding  these  test  sequences 
are as  follows. 

Transitioii  Tour: The  depth-first  search  algorithm [ 21 ] has 
the  complexity of O(n -I- k )  and  the  breadth-first  search 
algorithm [ 81 used for  transfer  sequence  generation of O(nk). 
Since this  algorithm  can be  called nk - 1  times  in  the  worst 
case, the  complexity of the  transition  tour  generation algo- 
rithm is O(n2k2). 

W-Method: Reference [ 71 gives the  complexity of the algo- 
rithms  for  this  method as 0(n3k). 

D-Method:  For  the  complexity  of  an  algorithm  to  find  a 
DS, we assume that  the  most  expensive  operation is searching 
a list containing  all possible state  groupings  (this list has  a size 
of 2n - l), whose complexity is O(2n).  From [ 131  in the 
worst case, this  search will be done nn times.  The  algorithms 
to generate a D-sequence [9]  are  graph traversal algorithms, 
with  a  complexity of O(nzk2);  thus,  the  complexity of the 
algorithms  for  this  method  becomes O(nn f n 2 k 2 ) .  

In  finding  synchronizable  test  sequences,  the  algorithm  for 
intrinsic  synchronization  problems is a necessary  first step. 
Hence, n2k  should be added to  the complexities of the algo- 
rithms.  Our  practical  experience  with  the  protocols  listed  in 
Table I1 shows  that  in  these cases it is  possible to  find  syn- 
chronizable  test  sequences  with  lengths close to  those which 
are  found when the  synchronization  problem is ignored. 

In  the case of real  protocols,  the  number of states (see 
Section 11-D) and  inputs can be very  large due to  the imple- 
mentation  considerations  and to  the variations  in  interaction 
parameters of input primitives. For  example,  a  125  byte  DT 
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primitive  of the  transport  protocol of  Fig. 2 would  introduce 
’l1oO0 different  inputs.  The  above  considerations  therefore 
show  that  “complete  testing”of  a  real  protocol is  practically 
impossible.  Similar  conclusions  were  reached  in [ 161 for  the 
complete  testing of an  HDLC  protocol.  For  the  application of 
the test  methods  described in this  paper,  it  must  therefore be 
assumed.  that  a  suitable FSM is a  realistic  approximation of 
the  protocol  to be tested. 

VII. CONCLUSIONS 
Test  sequence  generation  methods  (transition  tours, W -  and 

D-methods)  are  applicable to  protocols specified  as incom- 
plete FSM’s. The  transition  tour has a  limited  and  the  other 
methods have  full fault  detection  capabilities. The transition 
tour  method is  generally applicable;  the  application of the 
other  two  methods  requires  the  protocol possessing a W-set or 
DS, respectively. 

With a  remote  testing  architecture,  as  shown  in  Fig. 1, the 
synchronization  between  the  tester  and  responder  modules. 
becomes  an issue. It is shown  in  Section I11 that  test  sequences 
can  be  checked  for  synchronization  problems by  associating 
each  interaction of a  test  sequence  with  the  tester  or  responder 
module,  respectively.  Synchronizable  test  sequences  can be 
generated using modified versions of the algorithms  developed 
for  each of the  testing  methods. Longer test  sequences might 
be the price to  pay. However, this is only possible if the  proto- 
col design does  not  include  any  intrinsic  synchronization 
problems.  It is not clear whether  intrinsic  synchronization 
problems can  always be avoided by making  appropriate changes 
to the  protocol  specification.  The case of X.25 is  discussed 
in  Section V. 

Two  methods  to  enhance  protocol  specifications  are de- 
scribed in Section V. These  methods lead to  protocol specifi- 
cations that  are.more easily testable, especially  in  view of using 
the W -  and  D-methods.  However,  it is not clear whether  such 
methods  can be  applied  for  the case  of any  particular  protocol, 
since they  lead to  additions  and/or changes to  the  protocol 
specification. 

While this  paper  concentrates  on  exhaustive  test  methods 
and  limits  the discussion to  protocol specifications  that  are 
given as finite  state  machines,  most  real  protocols  are  more 
complex  in  nature.  Therefore,  the  methods discussed here will 
only be applicable to  a limited  extent  in  the case of  a  real 
protocol.  For  instance,  many  protocol  specifications  include 
additional  state variables and  parameters  for  the  input-output 
interactions [ 121,  and  typical  test  sequences  must  include 
means  for verifying the  correct behavior in  relation  to  these 
interaction  parameters  (see,  for  example,  [31).  Complexity 
considerations of Section  VI  (see  also [ 161)  preclude  the 
feasibility  of  exhaustive  testing  in  these cases. Some  results on 
test  sequence  selection  considering  interaction  parameters  are 
reported  in [ 2 1 ] .  More  research is needed  for a better  under- 
standing  of  these  issues. 
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