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Abstract - The service concept has acquired 

an increasing level of recognition by protocol 

designers. Being an architectural concept, the 

service concept influences the methodology 

applied to service and protocol definition. 

Since the protocol is seen as the logical 

implementation of the service, one can ask the 

question whether it is possible to formally 

derive the specification of a protocol providing 

a given service. 

This paper addresses this question and 
presents an algorithm for deriving a protocol 
specification from a given service specifica- 

tion. It is assumed that services are described 

by expressions including operators for se- 
quence, parallelism and alternatives and 

primitive service interactions. The expression 

defining the service is the basis for the 

protocol derivation process. The presented 
algorithm fully automates the derivation 

process. Future work focuses on the inclusion 

of parameters and the optimization of traffic 

between protocol entities. 
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1. INTRODUCTION 

The service concept has acquired an increasing level 

of recognition by protocol designers (see e.g. [ViLo85]). 

Being an architectural concept, the service concept 
influences the methodology applied to service and 

protocol definition ([Chu84]). Since the protocol is seen 

as the logical implementation of the service, one can 

ask the question whether it is possible to formally 

derive the specification of a protocol providing a given 

service. Similar questions have been raised 
concerning the derivation of synchronization code from 

given specifications ([Lav79], [Mac83]). 

A service definition is the specification with the highest 

degree of abstraction. Therefore, it should not contain 
explicit information associated with the protocol level. 

Depending on the 0%layer being considered, this can 

mean that no information about the places where 

service primitives are to be executed is included. 
However, this is important for the derivation of the 

protocol entities and has to be added in our approach. 

Further information is added during the derivation of 

the protocol entities. An algorithm is developed for that 

purpose which allows to fully automate the derivation 

process. Services are described by expressions 
including operators for sequence, parallelism and 

alternatives and primitive service interactions. The 

expression defining the service is the basis for the 

protocol derivation process. Currently, we are working 
on the inclusion of parameters which are not 

considered in the algorithm presented in this paper. 
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Other approaches toward the synthesis of protocol 

specifications can be found in [Zaf80], [Mer83] and 

[Gou84]. All have in common that they make use of the 
duality inherent in message exchange: For each 

message sent by a protocol entity, there must be a 

protocol entity prepared to receive it. Differences exist 

concerning the assumed properties of the transmission 

medium or the maximum number of protocol entities. 

The approach described in [Zaf80] starts from partly 

specified protocol entities and gives rules how to arrive 

at complete specifications (‘complete’ with respect to 
message reception). [Gou84] assumes the existence of 

the specification of one protocol entity and constructs a 

second one which remains in some sense 

synchronous with the former. [Mer83] employs the 

specification of n-l protocol entities and the service 

specification for the synthesis of the remaining nth 

protocol entity. The method introduced in this paper is 

more general in that only the existence of the service 

specification is required. In addition, an assignment of 

the different primitive service interactions to a finite 

number of service access points must be given, and the 

method provides specifications for all the protocol 

entities serving these access points. 

The paper is composed as follows: Section 2 

introduces concepts and notations on which our 

algorithm is based. Section 3 presents the algorithm in 
several steps, each representing successive 
improvements. It also contains a complete example, 

demonstrating some of the capabilities of the algorithm. 

Section 4 mentions further extensions, such as the 

inclusion of parameters and the optimization of traffic 

between system components. 

1. for each terminal symbol x E {a,b,...}: e + x 

2. 83 e;e 

3. e+ elle 
4. e4 ele 

The operator ‘;’ expresses that the service defined by 

the left subexpression must be terminated completely 

before execution of the service defined by the right 
subexpression may be started. ‘I]’ expresses that the 

services defined by the two subexpressions may be 

executed in parallel. The meaning of ‘1’ is that either the 

service defined by the left subexpression or by the right 

subexpression is to be executed. 

The services defined by such expressions have to be 

augmented by information about the location where a 

service primitive shall be executed. For this reason, 

we introduce identifiers referring to interaction 

points, called “places” in the following, and 

associate service primitives with places: The notation 
Qa41 means that the service primitive ‘a’ is to be 

executed at place ‘4’. 

We now can describe a constraint which applies to 

production rule 4 in an informal way (a precise 
definition is given in section 3.1.). In this case of 

alternative subexpressions, a decision has to be made 

which subexpression should be executed. We assume 

that this decision is taken at one place without the 
consultation of entities at other places (all actions at 

one place are associated with one entity). Therefore, 

we require that the places of the starting operations of 

the two subexpression be the same. 

3. THE DERIVATION ALGORITHM 
2. CONCEPTS AND NOTATIONS 

A service (see [BoSu80], [ViLo85]) in our approach is 

defined by an expression, consisting of service 

primitives and operators. The syntax of expressions is 
defined by production rules of a context-free grammar, 

where ‘e’ is a non-terminal (and also the starting) 

symbol, and ‘{a,b,...} u {;,jj,j}’ is a finite set of terminal 

symbols: 

In this section, we introduce the derivation algorithm in 

several steps thus incrementally arriving at the desired 
result. For a given service specification (see section 2), 

this algorithm produces the specifications of all protocol 

entities. 

The principle is to define the behavior of each protocol 

entity to be the projection (see [Mer83]) of the service 
specification onto the place (i.e. service access point) 
serviced by the respective entity. This is augmented by 

appropriate synchronization among the protocol 

149 



entities through the underlying communication medium 

such that the possible temporal order of operations 

being executed at different places satisfies the order 

implied by the service specification. Note that each 

protocol entity can determine directly only the order of 

operations at the place which it services. Therefore, 

communication among the protocol entities through an 

underlying communication medium is required and has 

to be introduced by the derivation algorithm. 

Synchronization is required in all cases where the 

operator ‘;’ is used in the service definition. Here, all 

terminating operations of the left subexpression of ‘;’ 

have to send synchronization messages to all starting 

operations of its right subexpression. Similarly, all 

starting operations of the right subexpression have to 

receive synchronization messages from all terminating 
operations of the left subexpression. 

In case of ‘I]‘, no synchronization is needed. Also, with 

the constraint concerning the places of starting 
operations in production rule 4 (see section 2), no 

additional synchronization is required in case of ‘I’. 

3.1. A first version of the derivation algorithm 

In order to define the derivation algorithm, the 

formalism of attribute grammars ([Boc76]) is used. From 

the consecutive application of production rules 1 to 4, 

starting from the non-terminal symbol ‘e’, we obtain a 

syntax tree for each service expression ‘es’, where 

service expressions only contain terminal symbols. For 

each node in this tree, synthesized attributes pass 

information upward (from the successor(s) of the node 

toward the root), and inherited attributes pass 

information downward. For the derivation algorithm, the 
attributes provide information between which places 

synchronization messages must be exchanged. 

To define the attribute evaluation rules, we need a 
clear distinction between the left and the right side of a 

production rule and between the subexpressions on its 

right side. Therefore, we introduce indices referring to 

the number of a successor node. This notation does not 
affect the applicability of production rules, i.e. if a rule is 

applicable to the non-terminal symbol ‘e’, then it can 

also be applied to ‘et’ or ‘ep’. 

We rewrite the context-free grammar of section 2 as 
follows: 

1. for each terminal symbol x E {a’,bi,...}: e + x 

2. e + el ; e2 

3. e 3 el 11 e2 

4. e + el 1 e2 

where the starting operations of ‘el’ and ‘e2’ 

are located at one single place 

The following attributes are defined for each node of a 
syntax tree: 

S (.) : send-operations associated with the 

‘starting places’ (synthesized) 

E (.) : receive-operations associated with the 

‘ending places’ (synthesized) 

P (.) : receive-operations from the ‘preceeding 

places’ (inherited) 

F (.) : send-operations to the ‘following places’ 

(inherited) 

For production rule 1, the attributes S and E are 

synthesized as follows: 

S (e) := ‘1 ‘1 s place(x) for each terminal symbol 

x E (at,bi,...] 

E (e) := “f’placqx) for each terminal symbol 

x E {ai,bi,...) 

‘place’ is a function from the set {ai,bj,...} to the set of 

places: place(xP):=p. The values of ‘place’ are 
interpreted as strings. Subsequent strings are implicitly 

concatenated. Thus, we get string values for the 

attributes S and E which later are incorporated into 

protocol expressions: “sp” or VP” means that a 

synchronization message has to be Sent to, or Leceived 

from, place ‘p’, respectively. 

The heuristics for the attribute evaluation rule above is 
the observation that synchronization messages have to 

be transmitted to ‘place(x)’ from all ‘preceeding places’ 

and to be received by all ‘following places’. For the 

other production rules, the attributes are evaluated as 
follows: 
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production 

rule S E 

2 S(e) := S(el) E(e) := E(e2) 

3 S(e) := S(et) “II” S(e2) E(e) := E(el) “II” E(e2) 

4 S(e) := S(el) E(e) := E(el) “I” E(e2) 

The heuristics for the attribute evaluation rules 

concerning production rules 2 to 4 is just the same as 

for production rute 1. In case of production rule 2, for 

example, the send-operations associated with the 

‘starting places’ for the father-node in the syntax tree 

are the same as for the left subexpression of the 

operator I;‘, the receive-operations associated with 

‘ending-places’ are the same as for the right 

subexpression. 

We are now capable of precisely defining the constraint 

for production rule 4: 

e + ef 1 e2 where S(el) = S(e2) = “sp” 

for some place ‘p’ 

This also explains why we can simplify the definition of 

the attribute evaluation rule for S in this case. 

After having synthesized attributes S and E, we can 

now evaluate the inherited attributes P and F, starting 
at the root. Initializing ‘P(e)’ and ‘F(e)’ as ‘empty’ at 

the root, the following evaluation rules are used: 

production P F 

rule 
1 P(x) := P(e) F(x) := F(e) 

for all XE {a’,bi,...} for all xE{a’,bj,...} 

2 P(el) := P(e) F(et) := S(e2) 

P(e2) := E(el) F(e2) := F(e) 

3 P(el) := P(e2) := P(e) F(el) := F(e2) := F(e) 

4 P(el) := P(e2) := P(e) F(el) := F(e2) := F(e) 

The heuristics is that we want to arrive at expressions 

which define for each operation associated with a leaf 

of the syntax tree which receptions have to be 
performed before the execution of the operation 

(attribute P) and which transmissions are necessary 

afterwards (attribute F). This is done by making use of 
the synthesized attributes S and E (see definition 
covering production rule 2). 

The attributes defined above can now be used to 
derive, from a service specification, the specification of 

the protocol entities. Let ‘p’ be an arbitrary place, then 

the following rules, applied recursively to the syntax 

tree of service expressions, provide a specification for 

the entity serving the place ‘p’, which is given by ‘Tp’ 

applied to the root node of the service specification. 

production rule 1 TP 

1 Tp(e) := if place(x) = “p” 
then P(x) “; x ;” F(x) 

else “empty” 

2 

3 

4 

for all xe {a’,bi,...} 

Tp(e) := Tp(el) “;” Tp(e2) 

Tp(e) := Tp(el) “II” Tp(e2) 
Tp(e) := Tp(el) “I” Tp(e2) 

In order to obtain the specifications for all protocol 

entities, ’ Tp’ has to be applied for each place ‘p’. Let 

us consider a first example: the operations {a1,b2} and 
the service expression ‘at; b2’. The syntax tree for 

this service and its attributes can be depicted as follows 

(,,-‘I represents “empty”): 

E 
!;’ 

. I 3 

G-sYy 
1 “St ” 

I I 2 “Sl ‘I 

3 “S2” 
4 5 4 

a1 b* 5 

“‘2” 

“‘1 I’ 

“‘2” 

The derivation of the protocol specifications for the 

places 1 and 2 leads to the fotlowing result: 

Tt (es) = T1 (al; b2) 

= TI (a’) “;” TI (b2) 
= P(al) “; a1 ;” F(al) “; empty” 

= “empty ; a1 ; 52 ; empty” 
= “al ; s2” 

T2(e,) = . . . = “empty ;” P(b2) “; b2 ;” F(b2) 
= “rl ; b 211 
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This is obviously the result we were expecting: the 

protocol entity at place ‘I’ first executes operation *aI’ 

and then sends a synchronization message ‘~2’ to 

place ‘2’, while the protocol entity at place ‘2’ first 

receives this message from place ‘1’ (see 71’) and 

then executes operation ‘b2*. 

It should be noted that certain simplifications of 

expressions obtained during the process of derivation 

are permitted. Semantically, the following expressions 

are equivalent: 

e ;empty = e 

empty; e = e 

el II e2 = e2 II el 
elIempty= e 

empty 1 empty = empty 

for arbitrary expressions e, el and e2. 

4’) Tp(e) = if (S(el) = Step) = “sp”) 

then P(e) “; (” Tp(el ) “I” Tp(e2) ‘I)” 

else Tp(el) “I” Tp(e2) 

The distinction made by the condition assures that the 

attribute ‘P(e)’ is only included in the result of ‘Tp(e)’ if 

the place of the starting operation of ‘el’ is ‘p’, i.e. the 

place for which the specification of the protocol entity is 

currently derived. By constraint, ‘S(el)’ and ‘S(e2)’ 

are identical (see production rule 4). In order not to get 

the value for ‘P(e)’ a second time by applying 

transformation rule 1 later in the derivation process, the 

attribute evaluation rule for production 4 has to be 

changed, too: 

4’) P(e1) := P(e2) := “empty” 

The reader may check that the changes lead to the 

result T2’(e,). 

3.2. Improvement of the derivation algorithm 3.3. Further improvements 

The algorithm presented so far still contains some 

flaws. One flaw can be illustrated by the following 

example. The service expression 

The revised algorithm of section 3.2. still has some 

shortcomings which are illustrated by the following 

examples: 

% = (a11b1);(c21d2) leads to 

Tl (es) = “( a1 ; 52) 1 (bl ; ~2)” 

T2(es) = “WI I ‘1) ; c2) I (PI I ‘$1 ; d2)” 

a) alternative 
i) es = (al; b2) I (cl; d2 ) results in 

Tl (es) = “(al; s2) \ (cl; ~2)” and 

T2(e,) = “(rl; b2) I (rl; d2)” 
In the case of Tl(e,), the result is exactly what one Thus the result is semantically equivalent to the 
expects. In the case of T2(e,), it should be protocol derivation for the service 

T2’(es) = “(t-1 I ‘1) ; (c2 I d2)” 

which better reflects the fact that the choice between 
UC21 and ‘d2’ is made on place ‘2’ after a reception 

from place ‘I ‘. (This may also be seen as an 

optimization.) 

The information required is already contained in the 

attribute P. Therefore, the following revised 

transformation rule 4 could be applied: 

ii) es’ = (a’1 cl) ; (b2 I d2) leading to 
Tl(es’)= “(a’; s2) I (cl; ~2)” and 

Q&J = “(‘1 I rl); (b2 I d2)” 

The protocol derjved from es is obviously not 

what one expects, since the sequence of oper- 

ations defined in the service is not always main- 

tained by the derived protocol. 

b) parallelism 

es = (all1 bl) ; (c2 II d2) results in 

T1 (es)= “[ a’; (9 I I ~211 I I 1 b1 ; (~2 I I sp)l” and 
T#,)= “IO1 II ‘1); c21 II [(rl II rd; d21” 
This allows e.g. c2 to be executed after two 

receptions from place ‘I’, but before completion 
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of both a1 and bf. As in case (a.i), the derived 

protocol is not correct. 

The problem seems to be that different send-operations 

cannot be distinguished by the receiver. A means for 

overcoming the deficiencies illustrated above therefore 

is the addition of a message parameter which 

‘identifies’ a synchronization message. 

It is noted that synchronization is always linked to the 
sequence operator I;‘: The service defined by the left 

subexpression must be completely executed before the 

service given by the right subexpression may be 

started. Therefore, synchronization messages have to 

be sent from all places of ‘terminating’ operations of the 
left subexpression to all places of ‘starting’ operations 

of the right subexpression. 

Messages related to different ‘terminating’ operations 

must be distinguishable at the receiving places, and 

therefore we introduce a consecutive numbering 

applied to groups of synchronization messages: For 
each ‘terminating’ operation, all messages indicating 

its completion form a group. Groups can have more 

than one element, because the completion of a 

‘terminating’ operation may have to be communicated 

to more than one place (or to the same place, but for 

different ‘starting’ operations) of the right subex- 

pression. 

The following modifications of the algorithm overcome 

the deficiencies illustrated above: An attribute N(.) is 

introduced which defines a unique numbering of all 

leaves of the syntax tree. This attribute can be obtained 
by parsing the syntax tree from left to right. Now we can 

modify the definition of the synthesis of the attributes S 

and E for production rule 1: 

1’) S(e) := “S”ptace(x)“(Z)” 

for each terminal symbol XE {ai,bi,,.,) 
E(e) := “r”place(x)“(“N(x)“)” 

for each terminal symbol xg{ai,bj,...) 

This means that we add the parameter value N(x) to 
receive-operations associated with the operation x 

(attribute E). Furthermore, a parameter ‘z’ is added to 
send-operations which is replaced by a specific value 

later in the derivation process, according to the 

following modified derivation rule: 

1’) Tp(e) := if place(x) = “p” 

then P(x) “; x ;‘I F(x)[z/N(x)] 

else “empty” 

for all XE {a’,b],...} 

Here, ‘F(x)[z/N(x)]’ denotes that all occurrences of ‘z’ 

in ’ F(x)’ are to be substituted by the value of ‘N(x)‘. 

Reconsidering the examples from the beginning of 

section 3.3., the derivation now leads to correct 

protocol specifications: 

a.i) Tl (es) = “(a’; 9(l)) 1 (Cl; S#)” 

T&J = ‘YrlV 1; b2) I (rl(3); d2Y 

a.ii) T1 (e,‘) = ‘*(al; 9(l)) I (c’ ; .s2(2))” 

T:!(e,‘) = “(q(l) I rlG3); lb2 I d2)” 

W Tl(+J = 
‘I a’; @p(l) II spU))l II 1 bl; (s&3 II s2Wl” 

We,) = 
‘l(rlU) II r1W; c21 II Krl(V II q(2)); d21” 

3.4. A complete example 

We give in the following a derivation of the protocol for 

the service defined by 

es = (Ua’ ; (b2 ; c3)) I (d’ ; e5)1 II f6) ; (s7 II h8) 

The syntax tree of this service expression is shown in 

figure 1. For each node of the tree, the attribute values 

of S, E, P, F and N are given. 

The result of the derivation process is the following: 

TI (es) = V& spU)) I NJ1; s5(4))” 
T2(es) = ” [rl(l); b2; s3(2)] 1 empty” 

T3(es) = ‘lr2W; c3; (s?(3) II Q(3))] I empty” 

T5(es) = “empty I I q(4); e5; (s7(5) II s3(5)) I ” 

Ttj(es) = “f6; (s7(6) II S&3))” 
We,) = ” [ k.+) I r&W II r#) 1; !J7. 
T&Q = ” [ (r3P) I r&3) II $63) I; h8” 
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4. DISCUSSION, EXTENSIONS AND 

APPLICATIONS 

We have presented an algorithm which allows to fully 

automate the derivation of protocol specifications from 
service expressions. To define a service, we used 

operators for sequence, parallelism and alternatives. 

Such operators can also be found in FDTs like LOTOS 

([Bri85]), CCS ([Mil80]) or CSP ([Hoa78]). The ex- 

change of messages between the protocol entities is 

assumed to be provided by reliable FIFO-queues. The 
protocol specifications obtained by applying the 

algorithm are unique, since the derivation process is 

based on the (unique) syntax tree of the service 

expression and the defined attribute evaluation rules 

are deterministic. 

It would be desirable to formally define the semantics of 

the language used to specify services and protocols in 

order to prove that the presented algorithm yields 

correct results. So far we believe that the flaws 

eliminated in sections 3.2. and 3.3. represent all 

shortcomings present in the algorithm as described in 

section 3.1. 

A current limitation which we expect to remove in the 

next version concerns parameters which will have to be 

added to the service primitives. Since we deal with 

distributed systems, inputs of a service primitive may 

have to be obtained from different places, they are 

possibly results of the execution of other service 

primitives. First of all, such dependencies between 

inputs and outputs impose constraints on the set of 

valid service expressions. Secondly, additional 

message exchange becomes necessary to commu- 
nicate outputs to the places where they are needed, 

which requires an extension of our derivation algo- 

rithm. 

Additional extensions should concern the optimization 
of traffic necessary to synchronize operations and to 

pass parameter values. It is for instance not necessary 

to pass messages to synchronize subsequent 

operations at the same place. Also, synchronization 
messages and data messages may be combined. 

Furthermore, it could be useful to include more power- 

ful elements like levels of hierarchy and recursion into 

our language for the specification of services. The 

impact of such extensions on the’derivation algorithm 

must be carefully examined. 

The described protocol derivation algorithm may be 

applied in different areas. It is noted that we assume 

the availability of a reliable message transmission 

service between participating protocol entities. Usually, 
logical connections would be established between 

these entities before the derived protocol is executed. 

Within the OSI reference model, this situation can be 

satisfied for the application layer, it is therefore 

expected that the algorithm could be useful in areas 

such as distributed data bases, process control, etc. It is 

necessary, however, to include the exchange of 

parameters into the considerations. Also, subsystem 

failures which are not handled by the algorithm should 

be taken into account. 
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