
343

Semi-Automatic Implementation
of Transport and Session Protocols

Gregor von BOCHMANN *

Universit$ de Montreal, Dept. d'lnformatique et de Recherche
Op~rationnelle, C.P. 6128, Succ. A, Montreal, Que. H3C 3J7,
Canada

The paper describes experience with the use of formal
protocol specifications in the protocol implementation process.
As formal description techniques (FDT) for OSI protocols are
being standardized, formal OSI protocol specifications in these
FDT's become available on a trial basis. The technical issues
involved in the use of such specifications for the automation of
the implementation process are discussed, and the experience
with a semi-automated implementation approach for the OSI
Transport and Session protocols is described.

Keywords: Protocol implementation, formal description tech-
niques, Transport protocol, Session protocol, auto-
mated implementation.

Gregorv. Bochmann received the Di-
plom in physics from the University
of Munich, Germany, in 1968, and the
PhD degree from McCAll University,
Montreal, Canada, in 1971. He has
worked in the areas of programming
languages and compiler designs, com-
munication protocols and software en-
gineering.

He is a full professor in the
D6partement d'informatique et de re-
cherche op~rationnelle at the Uni-
versit~ de Montreal. His present work

is aimed at design and' implementation methods for communi-
cation protocols and distributed systems. He was visiting pro-
fessor at the Ecole Polytechnique, Lausanne, Switzerland, in
1977-78, and in the Computer Systems Laboratory, Stanford
University, USA, in 1979-80.

* Until June 1987 all correspondence should be sent to: G.v.
Bochmann, Pidinger Str. 10, 8 Munich 70, FR Germany.

North-Holland
Computer Standards & Interfaces 5 (1986) 343-349

I. Introduction

Methods for formally specifying communica-
tion protocols and services received much atten-
tion recently (see for instance [16]). Such methods
become important in relation to their use for
protocol design validation, protocol implementa-
tions and testing. It seems that some of these
methods have advanced enough to make them
usable in the design and implementation of real
systems involving real-life protocols, including
standards such as those developed by ISO or
CCITT. The interest in formal specifications is
stimulated by the fact that the standardization
community of ISO and CCITT realizes that the
use of formal description techniques (FDTs) for
the specification of protocols and service stan-
dards has certain advantages. In particular, formal
specifications tend to be more precise than de-
scriptions given in natural languages. This sim-
plifies the validation, implementation and testing
efforts. Work is underway within ISO and CCITT
to develop FDTs for specifying OSI protocols
[11,231.

Formal protocol specifications, like informal
ones, are used for the following purposes:

(a) They serve as a "reference" specification, i.e. a
specification of a communication service or
protocol which serves as the authoritative ref-
erence for all other activities.

(b) Protocol and service specifications are used
for the validation of the design of the protocol
of a given layer, by comparing the service
provided by the protocol entities and the com-
munication service below with the service
specification of the layer in question.

(c) The protocol specification is used for the
elaboration of an implementation.

(d) The protocol specification is used during the
validation (debugging, testing) of an imple-
mentation, and for assessing its conformance
with the protocol specification.

Experiments with automated tools for the above

344 G. yon Bochmann / Implementation of Transport and Session Protocols

activities have been reported in the literature. Such
tools become important when formal specifica-
tions are used for real-life protocols which are
usually sufficiently complex to make some auto-
marion desirable.

This paper considers the automation of the
protocol implementation activity (point (c) above).
It is assumed that the protocol specification is
given in an extended finite state machine for-
malism [5], such as Estelle [12]. Using such a
formalism, a protocol entity executing the com-
munication protocol in question is described as
one or several interconnected machines which in-
teract through input /output interactions. The be-
havior of each machine is described as a finite
state transition machine extended with interaction
parameters and additional state variables. The re-
lation of the state transitions with these parame-
ters and state variables is described using a pro-
gramming language notation (Pascal in the case of
Estelle).

In section 2 of this paper, general issues and
design choices for protocol implementations are
discussed. Also different objectives for the imple-
mentations are considered. Section 3 describes a
general implementation strategy which is based on
the extended state machine formalism. For this
implementation strategy, an FDT compiler has
been developed which translates a formal specifi-
cation into appropriate Pascal code which can be
incorporated into a Pascal program implementing
the protocol specification. Several real-life imple-
mentations of the ISO-CCITT Transport protocol
and an implementation of the Session protocol are
discussed in section 4. Most of them were ob-
tained using the F DT compiler mentioned. A
comparison between an ad hoc implementation
approach and the use of the FDT compiler is also
made. Finally, section 5 gives a short discussion of
the results presented in the paper, and a compari-
son with other related work.

2. Issues in protocol implementations

In communication software design, it seems
natural to model the structure of the software
modules in some way along the lines of the layered
structure of the protocol architecture. This archi-
tecture often follows the OSI Reference Model, or
a subset of the layers defined in that model.

Usually several levels of protocols are involved in
a given communication system. The communica-
tion software must be written in such a way that

(a) all properties defined in the protocol specifica-
tion are satisfied by the system (this means the
system conforms to the protocol specifica-
tion), and

(b) properties not defined by the protocol specifi-
cation are chosen and implemented in such
way as to make the resulting system useful; in
particular the following issues must be ad-
dressed:

- efficiency of operation: communication de-
lays introduced, maximum throughput ob-
tainable, memory requirements, etc.

- appropriate interfaces to the user programs,
- appropriate interfaces to the underlying

data transmission facilities, usually through
the I / O facilities of the operating system.

We assume in the following that an implementa-
tion of the protocol is to be obtained based on a
formal specification of the protocol(s) given in an
extended state transition formalism, such as
Estelle. In this case, the properties of an imple-
mentation not defined by the specification usually
relate to

- e x p r e s s i o n s , statements, functions, or proce-
dures not explicitely defined, or

- the nondeterminism in the specification due to
the fact that in a given state and for a given set
of input interactions to be considered, there
may be more than one of the defined transi-
tions which are candidates for execution. Non-
determinism may also be introduced by sponta-
neous transitions which may be executed pro-
vided that the present state satisfies a specified
condition without involving any input.

The complete protocol specification for a given
system consists usually of several "extended finite
state machines" (sometimes called "modules"), one
or several for each protocol layer. It is therefore
important to determine how the interactions be-
tween these different modules is realized in the
implementation. Usually the specification defines
in which manner the different modules are con-
nected with one another. Some of these modules
also interact with the rest of the system (the user

G. yon Bochmann / Implementation of Transport and Session Protocols 345

or the I / O system for communication). Important
design decisions relate to the manner in which
these different interactions are realized. The im-
plementation strategy discussed in section 3, for
instance, automatically provides certain alterna-
tives for the interactions between modules, and
provides for a framework in which the interactions
with the remaining part of the system can be
realized in a flexible manner, depending on the
interfaces provided by the operating system.

Another important design decision is the ques-
tion of how many processes are used to implement
the protocol system, and how these processes are
supported by the operating system. Extreme possi-
bilities are to use one process per module in the
protocol specification, or alternatively, to imple-
ment all modules within a single process.

Based on a formal protocol specification, pro-
tocol implementations can be obtained automati-
cally, as for instance discussed below. Automated
implementations ~can be useful for different pur-
poses, such as the following:

(a) For providing an operational system, which
may be used for various applications requiring
the communication services provided by the
protocol(s).

(b) For performing simulated executions of the
protocol(s): This may be useful during the
design of the protocol for analysing the logical
correctness of the protocol [14,21], or for mak-
ing performance simulations [22]. Performance
simulations are in particular useful for de-
termining optimal parameters for a protocol
implementation which should satisfy certain
performance objectives.

(c) For analyzing the observed behavior of an
other protocol implementation, in order to test
whether the latter conforms to the given pro-
tocol specification [14,21,26].

It is important to note that for each of these
different purposes of automated implementation,
different design decisions seem to be appropriate
for the structure of the implementation approach,
in particular in respect to the realization of the
different possible implementation choices not de-
fined by the specification (see above). An imple-
mentation approach suitable for obtaining oper-
ational protocol implementations (point (a) above)
is described below.

3. An Implementation Strategy

An implementation strategy for the implemen-
tation of higher-level protocols is described in
[9,19]. Based on a formal specification of the
protocol to be implemented, several stages of re-
finement are distinghuished. In a first stage of
refinement, the formal specification is completed
with such details that are implementation depen-
dent, but that can be formulated in a manner
independent of the operating environment in which
the implementation is to run. These details may
relate to the handling of user and/or peer proto-
col errors, the choice between different simulta-
neously enabled transitions, or the handling of
spontaneous transitions. In a second stage, those
details are added to the specification which are
dependent on the particular environment in which
the program operates. These details may relate to
the way the program communicates with other
programs in the system, or to the use of operating
system resources.

The detailed specification must then be trans-
formed into corresponding procedures in an im-
plementation programming language. For the im-
plementations discussed in section 4, this was
done in one case in an ad hoc manner, in the other
cases by the use of an FDT compiler [13] which
translates a formal specification into a set of Pas-
cal procedures. The structure of the implementa-
tion obtained by this translation is further de-
scribed in [9].

4. Experiences with Transport and Session Proto-
col Implementations

Experience with two Transport class 0/2 proto-
col implementations is described in sections 4.1
and 4.2. The first implementation was based on a
formal specification. An ad hoc implementation
approach was chosen, not necessarily following
the principles described in section 3. A second
implementation, also based on the same formal
specification was obtained following the strategy
described in section 3 and using the FDT com-
piler. A comparison of these two implementations
is given. Both implementations run on a PDP-11
computer under the RSX operating system.

Subsequently, implementations of the class 2/4
Transport protocol and a simple Session protocol

346 G. yon Bochmann / Implementation of Transport and Session Protocols

were made. For both of these projects, the imple-
mentation strategy of section 3 and the FDT
compiler were used. These projects are briefly
described in the sections 4.3 and 4.4.

4.1. An ad hoc Implementation of the Transport
Protocol Based on a Formal Specification

The structure of the first implementation (for
more details see [19]) is shown in fig. 1. The
Transport entity is a single task in the operating
system, communicating through operating system
primitives with a task providing the Network
service, and several user tasks which may establish
one or several Transport connections with remote
systems through the Transport entity.

The interactions between the different tasks is
based on message exchange provided by the oper-
ating system. However, the user data is not di-
rectly included in these messages, rather pointers
to data buffers are passed between the processes.
The logical behavior of the Transport entity and
its program structure was derived in an ad hoc
manner from a formal specification of the proto-
col [6] given in a version of Estelle.

The spontaneous transitions were handled in an
ad hoc manner. The code corresponding to a given
transition was directly included in those input
transitions after which the spontaneous transitions
in question should be executed. The result of this
transformation was that the program has the form
of a loop which performs the processing for the

., - ~ sdopteUon (transport service)]

task

commu-
nication [Mapp ing I

I
_ ~ c o d i n g / d e c o d i n 9 (transport PDU end /

network service).]
! ! .

Fig. 1. Structure of the "Manual" Implementation.

Table 1
Size of different parts of a Transport protocol implementation

Part of program Number of Program size
source lines (in octets)

A B A B

(a) PDU de- and en-coding
(b) Code corresponding to the

transitions of the formal
specification

(c) Buffer management and
O/S interfaces for
intertask communication

(d) Run-time support routines 1000 1400
(e) main program 1000 400

3000 3000 11,940 11,940

3000 5500 17,800 29,306

3000 3000 3974 3974
2324 3452
6468* 3282*

* Including static variables

incoming interactions, one after the other.
The protocol implementation was tested using

the interactive Transport protocol tester developed
earlier [24]. The class 0 part of the implementation
was also tested by an automatic tester [7,10] ex-
ecuting test sequences which are believed to pro-
vide a relatively exhaustive validation of Trans-
port protocol implementations [17].

The experience of this implementation [19]
showed that the availability of a formal specifica-
tion significantly simplifies the implementation
process; however, only part of the implementation
is directly related to the formal specification. Much
time was spent in the development of the inter-
faces with the operating system for interaction
with the user processes and the Network com-
munication service, including buffer management.
Another important part, not included in the for-
mal specification, is the coding and decoding of
PDUs. The size of the Pascal source code for these
different program sections is given in table 1
above (column A).

4.2. A Semi-automatic Implementation of the
Transport Protocol

In order to evaluate the usefulness of an F D T
compiler for the automatic generation of parts of
a protocol implementation, the same formal
specification that was the basis for the ad hoc
implementation described above was also used for
generating semi-automatically an implementation
using the FDT compiler. The same buffer mana-

G. yon Bochmann / Implementation of Transport and Session Protocols 347

gement and intertask communication routines were
used in order to make the comparison between the
two implementation approaches more meaningful.
The resulting program sizes are shown in table 1.
(column B). It is noted that only part (b) is
generated by the FDT compiler, and part (d) is
the standard set of procedures used as runtime
support for the compiler-generated procedures.
The parts (a) and (c) are the same in the two
different implementations. As table 1 shows, the
transition code generated by the compiler is larger
than the corresponding code of the hand-coded
implementation, but it turned out to be of a more
regular structure. This part of the program repre-
sents 53 percent of the total program size; the
fixed support routines represent another 6 percent
of the code. These figures are similar to those
quoted in [4].

As the table shows, the buffer management and
intertask communication routines are relatively
complex. However, the FDT compiler allows the
integration of several separately specified modules
into a single Pascal program. The implemented
Transport protocol entity, for instance, consists of
one "mapping" module and several "AP" mod-
ules. Also, the specification of the protocols for
several layers may be compiled into a combined,
single program (task). This would reduce the inter-
task communication overhead associated with an
implementation where each layer protocol would
be implemented in a separate program.

A comparison of the runtime efficiency of the
two implementations yielded the following results.
The hand-coded implementation was always faster
than the one obtained with the compiler. The ratio
between the maximum throughput obtainable with
the two respective implementations ranged be-
tween 1.16 and 1.5 for data transfer with a simu-
lated network connection, between 1.08 and 1.8
for data transfer through the real network, and
between 1.5 and 1.6 for connection establishment
and disconnection. These numbers correspond to
different tests involving either a single or several
connections, and different classes of protocol. The
interpretation of these numbers is complicated by
the fact that both implementations use overlays
because of the small addressing space available on
the PDP-11. The larger size of the compiler gener-
ated implementation leads to additional overlay
swapping, which may explain part of the effi-
ciency difference.

4.3. Implementation of the Transport Class 4 Proto-
col

An implementation of the Transport protocol
classes 2 and 4 is in progress. This project uses the
implementation strategy which is described in sec-
tion 4.2. However, the program runs on a VAX
computer under the VMS operating system. This
larger computer was chosen because of the mem-
ory limitations of the PDP-11 computer.

The formal specification developed by ISO [20]
was used as the basis for this implementation.
During the different stages of this work, a number
of difficulties and problems with the specification
were identified. We thank W. McCoy (from NBS,
Washington) for helping us in the resolution of
these issues. It seems that the identification and
resolution of these issues was one of the useful
side effects of this implementation project.

4.4. Implementation of a Simple Session Protocol

In parallel with the implementation of the class
4 Transport protocol, an implementation of a
simple Session protocol was made in the same
operating environment using the same implemen-
tation strategy. In the lack of a suitable formal
specification of the OSI Session protocol, we de-
veloped a new formal specification including the
Session kernel functions, two-way alternate and
simultaneous data transfer and release functions.
An attempt was made to use in the formal specifi-
cation as much as possible the names and identi-
fiers used in the ISO Session standards. In con-
trast to the Transport protocol program which
handles multiple connections, a single copy of our
initial Session implementation handles only one
connection. However, it is very easy to configure
other kind of program structures which could
support multiple simultaneous connections.

5. Discussion and Conclusions

As discussed in this paper, the availability of
the formal specification of a protocol can be use-
ful for the validation of the protocol design, as
well as for protocol implementation and testing.
This paper discusses, in particular, the semi-auto-
matic implementation of protocols based on their
formal specification given in an formal description

348 G. yon Bochmann / Implementation of Transport and Session Protocols

technique (FDT) based on an extended finite state
machine formalism, such as EsteUe. It is important
to note that a protocol specification usually leaves
important design decisions unspecified; these de-
sign decisions must be made for each implementa-
tion of the protocol depending on the particular
requirements for that implementation.

Specifications in Estelle sometimes tend to ap-
pear " implementat ion oriented", in the sense that
they seem to imply certain design decisions which
could be considered a matter of implementation.
Implementations using these decisions can be ob-
tained semi-automatically, as discussed in this
paper. However, it is conceivable that other imple-
mentations would be built which use different, but
equivalent mechanisms. The automatic generation
of such implementations is much more difficult, as
it is related to program transformations.

Other specification languages, such as Lotos
[15], which are intended for more abstract specifi-
cations, would usually leave more design decisions
to the implementation phase. This, clearly, makes
the automatic generation of efficient implementa-
tions a more difficult task.

The approach to protocol implementations dis-
cussed in this paper is related to many other
efforts in this area [3,4,18]. In contrast to the
latter, our F D T compiler accepts a language very
similar to an emerging F D T standard [12] and

allows the integration of arbitrarily many modules
within a single program implementation.

As discussed in section 4 in relation with the
Transport protocol implementations, the F D T
compiler produces readable code which is rela-
tively efficient in space and runtime. It could
therefore be used for many protocol implementa-
tion projects, provided that a formal specification
of the protocol is available. However, it is also
clear that it would not be used in cases where a
high-performance implementation is desired.

Further experience with the semi-automatic im-
plementation approach is planned. Areas which
would profit f rom further research include the
following:

(a) The automatic inclusion of testing facilities
within the generated implementations.

(b) Improvements in the code generated for han-
dling interactions between module instances
and for the initialization of the module inter-
connection structure. An implementation lan-

(c)

(d)

guage with less strong typing rules than Pascal
may be useful for some of these aspects.
Adaptation of the F D T compiler to the final
version of the F D T language standard, when
the latter becomes available.
An integration of the F D T language and com-
piler with PDU coding and decoding facilities
based on a standardized notation, such as
defined in [1,2].

Acknowledgements

I would like to thank J.M. Serre and C.
Antonescu who did most of the work described in
this paper. M. Maksud and E. Cerny also contrib-
uted to this work. This work was funded by the
Natural Science and Engineering Research Coun-
cil of Canada, and the Department of Communi-
cations Canada.

References

[1] ISO TC97/SC21, DP8824, 1985, "Specification of Ab-
stract Syntax Notation One".

[2] ISO TC97/SC21, DP8825, 1985, "Encoding Rules for
Abstract Syntax Notation One".

[3] J.P. Ansart, V. Chaff and D. Simon, "From formal de-
scription to automated implementation using PDIL" in
Protocol Specification, Testing and Verification
(IFIP/WG6.1), H. Rudin and C.H. West (eds.), North
Holland, 1983.

[4] T.P. Blumer and R. Tenney, "A formal specification
technique and implementation method for protocols",
Computer Networks 6, 3 (July 1982), pp. 201-217.

[5] G.v. Bochmann, "A general transition model for protocols
and communication services", IEEE Trans. Comm.,
COM-28, 4 (April 1980), pp. 643-650.

[6] G.v. Bochmann, "Example of a Transport protocol speci-
fication", prepared for CERBO Informatique Inc. under
contract for the Department of Communications Canada,
Oct. 1982.

[7] G.v. Bochmann, E. Cerny, M. Maksud, B. Sarikaya,
"Testing of Transport protocol implementations", Proc.
CIPS Conference, Ottawa, 1983, pp. 123-129.

[8] G.v. Bochmann, "Formal description techniques for OSI:
an example", Proc. at INFOCOM '84, San Francisco,
April 1984, pp. 312-317.

[9] G.v. Bochmann, G. Gerber and J.M. Serre, "Semi-auto-
mated implementation of communication protocols", sub-
mitted for publication (1984).

[10] E. Cemy, G.v. Bochmann, M. Maksud, A. Leveille, J.M.
Serre and B. Sarikaya, "Experiments in testing communi-
cation protocol implementations", Proc. FTCS '84, IEEE.

G. yon Bochmann / Implementation of Transport and Session Protocols 349

[11] G.J. Dickson and P. de Chazal, "Application of the
CCITT SDL to protocol specification", Proceedings of the
IEEE, vol. 71, 12 (Dec. 1983).

[12] ISO DP 9074 (Second version 1986) "Estelle: A formal
description technique based on an extended state transi-
tion model".

[13] G. Gerber, "One mrthode d'implantation automaltisre de
systemes specifirs formellement", MSC thesis, Univ. of
Montreal, 1983.

[14] C. Jard and G.v. Bochmarm, "An approach to testing
specifications", Journal of Systems and Software, Vol. 3, 4
(Dec. 1983), pp. 315-323.

[15] ISO TC97/SC21 DP8807 (Second version 1986) "Lotos:
a formal description technique".

[16] Proceedings of 6th workshop on "Protocol specification,
Testing and verification" (IFIP/WG 6.1), G.v. Bochmann
and B. Sarikaya (eds.) North Holland, 1986.

[17] B. Sarikaya, "Test sequences for the Transport protocol
class 2", CERBO Informatique Inc. prepared under con-
tract for DOC, 1984.

[18] G.D. Schultz, D.B. Rose, C.H. West and J.P. Gray, "Ex-
ecutable description and validation of SNA", IEEE Trans.
COM-28, no. 4 (April 1980), pp. 661-677.

[19] J.M. Serre, E. Cerny, G.v. Bochmann, "A methodology
for implementing high-level communication protocols",

Proc. 19th Hawaii Int. Conf. on System Siences, Jan.
1986.

[20] ISO TC97/SC16/SC6, "Formal specification of the
Transport protocol", April 1985.

[21] H. Ural and R.L. Probert, "Automated testing of protocol
specifications and their implementations", Proc. ACM
SIGCOMM Symposium, 1984.

[22] J. Vaucher and G.v. Bochmann, "A simulation tool for
formal specifications" (27 pages+ annexes), prepared for
CERBO Informatique Inc. under contract for the Depart-
ment of Communications Canada, 1984.

[23] C.A. Vissers, G.v. Bochmann and R.L. Termey, "Formal
description techniques by ISO/TC97/SC16/WG1 ad hoc
group on FDT", Proceedings of the IEEE, vol. 71, 12
(Dec. 1983), pp. 1356-1364.

[24] M. Maksud, "Operator's Manual for the Interactive
Transport Tester", prepared for CERBO Informatique
Inc., under contract for DOC of Canada, 1984.

[25] J.M. Serre, "Methodologie d'implantation du protocole
Transport classe 0/2", M.Sc. Thesis, Dept. D'IRO, Uni-
versit~ de Montreal, 1985.

[26] R.J. Linn, "An evaluation of the ICST test architecture",
in Proc. 4th workshop on "Protocol specification, Testing
and Verification", Y. Yemini (ed.), North Holland, 1984.

