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The service specification concept has acquired an increasing level of recognition by protocol 
designers. This architectural concept influences the methodology applied to service and protocol 
definition. Since the protocol is seen as the logical implementation of the service, one can ask 
whether it is possible to formally derive the specification of a protocol providing a given service. 
This paper addresses this question and presents an algorithm for deriving a protocol specifica- 
tion from a given service specification. It is assumed that services are described by expressions, 
where names identifying both service primitives and previously defined services are composed 
using operators for sequence, parallelism and alternative. Services and service primitives may 
have input and output parameters. Composition of services from predefined services and service 
primitives is also permitted. The expression defining the service is the basis for the protocol 
derivation process. The algorithm presented fully automates the derivation process. Future work 
will focus on the optimization of traffic between protocol entities and on applications. 

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network 
Protocols-protocol architecture, protocol verification; C.2.4 [Computer-Communication Net- 
works]: Distributed Systems--distributed applications 
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1. INTRODUCTION 

The service specification concept has acquired an increasing level of recogni- 
tion by protocol designers (see e.g. [201). This architectural concept influences 
the methodology applied to service and protocol definition [61. Since the 
protocol is seen as the logical implementation of the service, one can ask 
whether it is possible to formally derive the specification of a protocol 
providing a given service. Similar questions have been raised concerning the 
derivation of synchronization code from given specifications [13, 141. 

An architectural model for both service level and protocol level is depicted 
in Figure 1. A service is realized by a service provider which, according to the 
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Fig. 1. (a) Service architecture. (II) Protocol architecture. 

principle of abstraction is seen as a black box, and made available through 
Service Access Points (SAPS) (Figure la). On the protocol level, some inter- 
nal structure is given to the black box: Several entities, linked by an 
underlying transmission medium, may cooperate to provide the service (Fig- 
ure lb). We assume the communication medium to be reliable, to maintain 
the sending sequence of messages and to be connected to each entity by 
FIFO-queues for transmissions and receptions (also see Section 3.3). 

Based on this architectural model, we can phrase the above question in 
more precise terms. Given a service specification e, (Figure 2a), is it possible 
to formally derive the specifications T,(e,) for all protocol entities (Figure 
2b)? 

Services in our approach are described by expressions. Names identifying 
both service primitives and previously defined services are composed using 
operators for sequence, parallelism and alternative. Each service primitive is 
explicitly linked to an interaction point where it is made available to the 
service user. The expression defining the service then is the basis for the 
protocol derivation process. An algorithm has been developed which allows 
us to fully automate this process. 

Techniques for systems development and validation can be classified into 
analytic and synthetic approaches. Analysis means decomposition of an 
existing structure and examination of its components and their relationships. 
The analysis techniques depend on the nature of the structure and the 
relevant relationships of its components. Relationships assuring the absence 
of certain errors are of interest in software engineering. The purpose of the 
analysis in this area is therefore the detection of these errors. Synthesis 
denotes the process of building a structure that possesses desired properties. 
The synthesis procedure determines the way components may be put together 
to form the structure. The purpose of the synthesis method is the prevention 
of design errors in software engineering. 

Both analysis and synthesis techniques have been developed for, and more 
or less successfully applied to many different areas, among them sequential 
programs, database relations and communication protocols. Analysis of a 
sequential program is understood as a formal proof that the program meets 
its requirements, that is, it is correct with respect to its input/output 
assertions (program verification). Synthesis, on the other hand, starts from 
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Fig. 2. (a) Service specification. (?I) Derived protocol specification. 
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these assertions and constructs the correct program by stepwise insertion of 
intermediate assertions and program elements. Analysis of data base rela- 
tions is used to discover the presence of some undesired properties like 
insertion, deletion and update anomalies. Synthesis here starts from basic 
relations and avoids these anomalies by construction E7, 211. 

In the area of communication protocols, analysis techniques have been 
developed and applied to detect design errors such as deadlocks, unspecified 
receptions, nonexecutable interactions, state ambiguities 1241 and nonconfor- 
mance with the service specification. The best known approach appears to be 
reachability analysis. This is usually based on the specification of protocol 
entities as finite state automata, which model certain aspects of message 
exchange between them. Various types of reachability analysis have been 
proposed including exhaustive state exploration 12, 221, random state explo- 
ration 1231 and reduced reachability analysis 119, 251. Since the analysis of a 
sufficiently complex protocol specification reveals some of the above design 
errors, the specification has to be revised and the analysis must be repeated 
until no more errors are found. 

With protocol synthesis one wants to avoid the above errors a priori. So far, 
not much work has been dedicated to this problem. Existing approaches (124, 
15, 8, 17, 181) take partly specified protocol entities or complete specifications 
of some protocol entities as a starting point for the synthesis procedure. The 
synthesis procedure is based on the duality inherent in message exchange. 
For each message sent by a protocol entity, there must be a protocol entity 
prepared to receive it. However, several important limitations apply to each 
of these approaches: 

-With the exception of 1151, the service specification is not taken into 
account. There is no formal requirement on which the synthesis is based. 
Instead it requires part of the solution to be provided in advance. It is clear 
that without a formal service definition, conformance with the service is 
not guaranteed by the synthesis algorithm and must be shown in a 
separate step. 

-Again with the exception of 1153, only two party protocols are considered. It 
seems to be difficult to extend the approaches to an arbitrary number of 
protocols entities. Thus they are not well suited for high level protocols 
involving more than two parties. 
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-1241, 141, and [171 all assume the existence of a reliable communication 
medium. The latter, however, is extended to cover noisy channels. 

-None of the above approaches takes parameters into account. Only a 
distinction between different message types is possible. 

-[241 and WI do not avoid deadlocks by construction. 
-All approaches assume the existence of (incomplete) protocol specifications. 

None is based solely on the service definition. 
-1241 and Ml are quite expensive with respect to computation. 

Our approach, introduced in 141 and extended here, is more general in that 
only the existence of the service specification (Figure 2a) is required. It can 
handle an arbitrary number of protocol entities. Furthermore, input and 
output parameters are taken into account, and the possibility of composing 
new services from previously defined services and/or service primitives 
supports abstraction and modularity, both on the service and the protocol 
level. Subsystem failures and unreliable channels, however, are not taken 
into account. For the derivation of the protocol specification, an assignment 
of the different services/service primitives to a finite number of service 
access points must be given. An algorithm then provides specifications of all 
protocol entities serving these interaction points. 

The paper is structured as follows, Section 2 introduces concepts and 
notations on which our algorithm is based. Section 3 presents the algorithm 
in two steps, the first focusing on synchronization between the distributed 
protocol entities, the second describing extensions in order to handle parame- 
ters. Section 4 introduces a concept of abstraction by composition of previ- 
ously defined services and describes how the algorithm of Section 3 can be 
used for this purpose. In Section 5, a number of examples are presented. 
Finally, Section 6 discusses the results and gives hints for the extension and 
application of the algorithm. 

2. CONCEPTS AND NOTATIONS 

A service (13, 201) in our approach is defined by an expression, consisting of 
the names of service primitives and operators. Let SP =nf { ar, b”, . . . , z”} 
denote a set of service primitives. The syntax of expressions is defined by the 
following production rules of a context-free grammar, where e is a nontermi- 
nal and starting symbol, and SP U { ;, III, [I} is a finite set of terminal sym- 
bols: 

Rule 1: for each terminal symbol x E SP: e + x 

Rule 2: e-+e;e 

Rule 3: e -+ e III e 
Rule 4: e-+e[]e 

Each x E SP denotes a service primitive. Each service primitive is linked to 
an interaction point, in the following called place, where it is made available 
to the service user (and also executed): The notation a4 means that the 
service primitive a is accessible at place 4. 
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The operator “ ; ” means that the service defined by the left subexpression 
must be terminated completely before execution of the service defined by the 
right subexpression may be started. The operator “III” means that the ser- 
vices defined by the two subexpressions may be executed in parallel (or in 
either order). The meaning of “[I” is that either the service defined by the 
left subexpression or by the right subexpression is to be executed. 

In the case of alternative subexpressions (production Rule 4), a decision has 
to be made regarding which subexpression should be executed. We assume 
that this decision is made at one place without the consultation of entities at 
other places. All actions at one place are associated with one entity. We 
therefore require that the places of the starting operations of the two subex- 
pressions be the same. This is defined more precisely in Section 3.1.2. 

We extend this service language by allowing service primitives to have 
formal input and output parameters. A service primitive then has the 
following form: 

x”( Xl,. . ., x, I x,+1, * . . , xn) 

where x is the name of the service primitive, p is the place where it is 
accessible, xi,. . . , x, are formal input parameters, and x,+i, . . . , X, are 
formal output parameters. The syntax of this extension could be defined by 
additional production rules of the context free grammar above. 

The term service primitive denotes a unit that is not decomposed further. It 
is executed at a given service access point as a single, atomic action. The 
service primitive uses the values of its input parameters for determining the 
values of its output parameters. Within our language, we do not define the 
meaning of service primitives. That is, we do not define how the output 
parameter values depend on the input parameters of a service primitive. This 
issue is outside the scope of this paper, and could for instance be done by 
adding input/output assertions. 

The values of the input parameters of service primitives are provided by 
the user of the service, or are obtained as outputs from service primitives 
executed previously. The output parameters of service primitives are either 
used as input for subsequently executed service primitives, or are delivered 
to the service user. For example, in Figure 3a, the following communication 
service is specified. An a primitive at place p is followed by a b primitive at 
place p’. xi is a formal input parameter name, the value of which has to be 
provided by the service user at place p. xa is the name of an output 
parameter of a which is not exchanged with a service user, but instead used 
as input by the subsequent service primitive b at place p’. We will call such a 
parameter an intermediate parameter. Finally, xs will be available to the 
service user at place p’ after execution of b. 

The above notion of input/output parameters of service primitives is 
different from what is commonly used for describing communication services 
(131 or 1201). Usually, a parameter of a service primitive is either provided by 
the service user and is input to the service provider or is output from the 
service provider and is passed to the user. For a reliable communication 
service, the output parameter provided at the destination place is equal to 
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(a) (b) 
Fig. 3. (a) Service specification. (b) Corresponding protocol specification. 

the input parameter provided by the user at the sending place. This service 
model can be easily expressed in the more general model adopted in this 
paper. The data transfer example, could be expressed in our model as two 
service primitives ‘send( xi 1 x2)’ and ‘receive( xa 1 3~~)’ executed at the sending 
and destination places, respectively, and where for both service primitives 
the output parameter is equal to its input parameter. 

For each syntactically correct service expression, a derivation tree (Figure 
4) can be obtained. This tree shows which production rules have been applied 
to derive the expression. It is used in the definition of the synthesis algo- 
rithm (Section 3). As an example, a derivation tree for the service expression 
(a’ ; b”) III zt is shown in Figure 4. 

To specify protocol entities, we will use the same language as for services, 
augmented with send and receive operations. Each entity is connected to the 
underlying medium by FIFO queues for transmissions and receptions (Sec- 
tion 3.3.). When the entity serving place i issues a send operation to the 
entity at place j, written sj, then a new element is added to its FIFO queue 
for transmissions which has the following contents: 

place of sender place of receiver synchronization value/ 
parameter value 

The place of the sender is determined implicitly. It is the place where sj is 
issued. The place of the receiver is given explicitly as the index j. We 
distinguish between synchronization messages sj( z), carrying a synchroniza- 
tion parameter value z, and data messages Sj(Xk). The element placed into 
the transmission queue is eventually conveyed by the medium to the recep- 
tion queue of its destination. To remove it from that queue, the receiver 
issues a receive operation, written ri. This means that a message from place i 
is expected. 

3. THE DERIVATION ALGORITHM 

The derivation algorithm presented in this section begins with a given 
service specification. It is assumed to be written in the syntax defined by the 
context free grammar of Section 2. The principle of the derivation algorithm 
is to consider for each protocol entity the projection 1151 of the service 
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Fig. 4. Derivation tree for (a’ ; b’) III zt. 

specification onto the place serviced by that entity. This projection is aug- 
mented by appropriate synchronization among the protocol entities, such 
that, the possible temporal order of operations being executed at different 
places satisfies the order implied by the service specification. Note that each 
protocol entity can directly determine the order of actions only at the place it 
services. Therefore, communication among the protocol entities through an 
underlying communication medium is required and has to be introduced by 
the derivation algorithm. 

It is desirable to give a proof that the algorithm described here always 
gives rise to protocol specifications that include properties such as absence of 
deadlocks and unspecified receptions, as well as provide a communication 
service equivalent to the given service specification. Without having formu- 
lated a proof, if the precautions mentioned in Section 3.3. are taken, we are 
convinced that the derived protocols exhibit neither deadlocks nor unspeci- 
fied receptions. The proof that the derived protocols provide a service equiva- 
lent to the given service specification is more difficult to establish. It requires 
the use of formal semantics of the language for the service and protocol 
specifications, and the determination of the “equivalence” to be considered. 
The translation of the specification language defined here into LOTOS [lOI 
could be the basis for the semantics [12]. Various forms of equivalences 15, 101 
may be used for a comparison of the specifications. The authors think that 
the service of the derived protocol specification is bisimulation equivalent to 
the given service specification, however, a proof of this fact goes beyond the 
work described here. 
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We will present the derivation algorithm in two steps, first dealing with 
synchronization only and then adding extensions to handle parameters. In 
order to define the algorithm, the formalism of attribute grammars [ll is 
used. An attribute grammar is a context free grammar augmented by at- 
tributes which are associated with the nodes of derivation trees. In order to 
define the values of the attributes at the nodes of a given tree, attribute 
evaluation rules are associated with the productions of the grammar. These 
rules are then applied to the instances of the corresponding productions in 
the derivation tree. Two kinds of attributes are distinguished. An attribute is 
inherited, if its value is determined by the evaluation rule associated with 
the production rule “above” the node. In many cases, it is immediately 
obtained from the parent node. Here information is passed down from the 
root toward the leaves. An attribute is synthesized, if its value is determined 
from the attributes of the immediate descendants and the applied production 
rule. Here information is passed up from the leaves towards the root. 

To define the attribute evaluation rules, a distinction has to be made 
between the left side of a production rule and the subexpressions on its right 
side. We introduce indices for this purpose and rewrite the grammar of 
Section 2 as follows: 

Rule 1: for each terminal symbol x E SP: e --f x 

Rule 2: e + el ; ez 

Rule 3: e + q III et 
Rule 4: e + q [I e2 

where the starting operations of et and e2 are located at one single place. 

This notation does not affect the applicability of production rules. If a rule 
is applicable to the nonterminal symbol e, then it can also be applied to e, 
or e2. 

3.1 Synchronization Between Places 

3.1.1 Informal Introduction. As examples, we consider the service ex- 
pressions a1 ; (b2 Ill c3) and (a’ ; b2) [I (cl ; d2). Since we want to discuss syn- 
chronization only among places to enforce the correct temporal ordering of 
service primitive executions, parameters are omitted throughout this section. 
Their addition is discussed in Section 3.2. Figures 5 and 6 also show the 
specifications of the protocol entities serving the places 1, 2, and 3 which the 
derivation algorithm should produce as results for the examples above. 

We use the same specification language to specify protocol entities as for 
services. We write T,(e,) for the specification of the protocol entity serving 
place i, and derived from the service specification e,. In the case of service e, 
(Figure 5), the specification T,(e,) expresses that after the execution of a’, 
synchronization messages have to be sent to places 2 and 3 in any order to 
enable the service primitives b2 and c 3. The notation s,(l) denotes a send 
operation, where a message is sent to place 2. The integer “1” is a synchro- 
nization parameter which is needed in certain cases to identify the received 
message unambiguously. The corresponding message reception is written 
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Fig. 5. Service e, = a1 ; (b2 III c3) and the specification of the corresponding protocol entities. 

1 2 1 2 

communication medium 

Fig. 6. Service e: = (a1;b2)[l(c’ ;d2) and th e specification of the corresponding protocol 
entities. 

r,(l), a message is received from place 1. The send and receive operations 
constitute a protocol and are part of the specification of the protocol entities. 
Similarly, the protocol specification for service el, (Figure 6) can be inter- 
preted. Note that it is one of the cases where we need the synchronization 
parameter to distinguish on the receiving side whether b2 or d2 is to be 
executed next. 

In general, synchronization is required in all cases where the operator “ ; ” 
is used in the service definition. Here, all terminating operations of the left 
subexpression of “ ; ” have to send synchronization messages to all starting 
operations of its right subexpression. Similarly, all starting operations of the 
right subexpression have to receive synchronization messages from all termi- 
nating operations of the left subexpression. 

In the case of parallel execution of service primitives, “Ill”, no synchroniza- 
tion is needed. Also, with the constraint concerning the places of starting 
operations in production Rule 4 (Section 2), no additional synchronization is 
required in case of alternatives. 

The messages carry a synchronization parameter. It is chosen such that all 
messages signaling the completion of a particular service primitive to other 
places use the same parameter value. Thus messages related to different 
service completions are distinguishable by the receiver. 

3.1.2 Definition of the Derivation Algorithm. The algorithm producing 
the specification of the protocol entities follows these steps: 

Step 1. Construct the derivation tree of the given service expression e,. 
Step 2. Synthesize attributes S and E at each node of the tree. 
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Step 3. Compute attributes P and F at each node of the tree. 
Step 4. For each place p, compute TJe,) which is the specification of the 

protocol entity serving that place. 

The values of the attributes S, E, P, and F are character strings that 
represent expressions of send and receive operations, respectively. Infor- 
mally, they can be interpreted as follows: 

S(e): send operations associated with the starting places of subexpres- 
sion e (synthesized) 

E(e): receive operations associated with the ending places of subexpres- 
sion e (synthesized) 

P(e): receive operations from the preceding places (inherited) 
F(e): send operations to the following places (inherited) 

Starting and ending places of an expression or subexpression are those places 
at which execution of the expression or subexpression is begun or finished. 
Preceding places are those places at which service primitives are executed 
directly before the execution of the considered expression or subexpressions 
takes place. This is analogous for following places. 

The precise definition of the evaluation rules for the attributes S, E, P and 
F is given in Table I. For each leaf node X, the synthesized attributes S and 
E are initialized as follows: 

S(x) := “S”pla~r.(x)“(z)” for all x E SP 

E(x) := “r”place(x)“(“N(x)“)” for all x E SP 

Here, place is a function from the set SP of service primitives to the set of 
places, place(xP) := p. The values of place are interpreted as strings. The 
different strings are implicitly concatenated. Thus, we get string values for 
the attributes S and E which later are incorporated into protocol expressions, 
“sp( 2)” or “rp(i)” means that a synchronization message has to be, respec- 
tively, sent to, or received from, place p. 

N(z) is an additional attribute of the leaf nodes. It defines a unique 
numbering of all leaves of the derivation tree and can be obtained by parsing 
the tree from left to right. Its value is used for the initialization of the E 
attribute as stated above. The value N(x) is carried as a parameter by receive 
operations associated with the operation x in attribute E. Furthermore, a 
synchronization parameter z is associated with send operations (see attribute 
S, initialization) which is replaced by specific values later during the deriva- 
tion process (definition of Tp, Table II). 

The attributes S and E are synthesized, that is, they are evaluated from 
the bottom, the leaves, to the top, the root, of the derivation tree. After 
initialization at all leaf nodes, the rules in Table I are applied to synthesize 
the values of S and E for the immediate parent nodes, and all others. For 
instance, for a parent node to which production Rule 2 has been applied, 
yielding two immediate descendant nodes, the value of S is equal to the value 
of S as evaluated for its left descendant node (see Table I). This process is 
repeated until the values of S and E for the root node have been synthesized. 
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Table I. Evaluation Rules for the Attributes S, E, P and F 

S 

S(e):=S(x) 
for all xE SP 

S(e):=S(el) 

S(e):=S(el)“lll”S(e2) 

S(e):=S(el) 

E P F 

E(e):=E(x) P(x):=P(e) F(x):=F(e) 
for all XE SP for all XE SP for all XE SP 

E(e):=E(ez) P(el):=P(e) F(el):=S(ez) 
P(e&=E(el) F(ez):=F(e) 

E(e):=E(el)“lll”E(e2) P(el):=P(ez):=P(e) F(el):=F(et):=F(e) 

E(e):=E(el)“[l”E(ed P(el):=P(e2):=“ernply” F(el):=F(ez):=F(e) 

/ r 
1 

2 
3 
4 

Table II. Definition of the Function Tp 

Tp(e) := if place(x) = “p” 

then P(x) “; x ;” F(x)[fl(x)] 
else “empty” 

for all XE SP 
Tp(e) := T,(el) “;” Tp(e2) 
Tp(e) := TpCa) “III” T,(e) 
Tp(e) := if (S(el) = S(e2) = “sp(z)” ) 

then P(e) “; (” Tp(el) “[I” Tp(e2) ‘I)” 
else Tp(el) “[I” Tp(e2) 

The reasoning behind the attribute evaluation rules for S and E is the 
observation that synchronization messages have to be transmitted to place(x) 
from all preceding places and to be received by all following places. In case of 
production Rule 2, for example, the send operations associated with the 
starting places for the father node in the derivation tree are the same as for 
the left subexpression of the operator “ ;.” The receive operations associated 
with ending places are the same as for the right subexpressions. 

Based on the attribute S, we can now precisely define the constraint for 
production Rule 4: 

Rule 4: e + el [I ez where S(Q) = S(e2) = “sp(z)” for some place p 

This also explains why we can simplify the definition of the attribute 
evaluation rule for S in this case. 

After having synthesized attributes S and E, we can now evaluate the 
inherited attributes P and F from the root node of the tree towards the 
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leaves, using the rules defined in Table I. P and F are initialized to empty at 
the root. The purpose of these rules is to obtain for each leaf node of the tree 
a pair of strings. These define the receptions that must be performed before 
the execution of the operation (attribute P), and the transmissions to be 
performed afterwards (attribute F). The attributes P and F depend on the 
synthesized attributes S and E as described in the definition covering produc- 
tion Rule 2. 

The attributes P and F are used to derive, from the given service specifica- 
tion, the specification of the protocol entities. Let p be an arbitrary place, 
then the rules shown in Table II, applied recursively to the derivation tree of 
the service expression, provide a specification for the entity serving the place 
p. The specification is given by Tr applied to the root node of the service 
specification. Here, F(x)[z/N(x)l denotes F(x), where all occurrences of z are 
substituted by the value of N(x). 

For alternatives, the rules of Table II specify that the receptions are 
inserted before a decision as to which branch to execute. This is the reason 
why we distinguish two cases in the definition of Tr covering production Rule 
4 (Table II) and why we define P(el) and P(e,) to be empty for this 
production rule (Table I). 

In order to obtain the specifications for all protocol entities, T, has to be 
applied for each place p. Let us consider a first example, the operations 
{a’, b2} and the service expression a l; b2. The derivation tree for this service 
and its attributes can be depicted as follows where “-” represents “empty”. 

The derivation of the protocol specifications for the places 1 and 2 leads to 
the following result: 

Tdes) = Tl(al;b2) 

= Tl(al) ‘I;” Tl(b2) 
= p(al) “; al ;” F(al)[z/l] “; empty” 

= “empty ; al ; s2( 1) ; emply” 

= “al ; ~(1)” 

TAed = . . . = “empty ;” P(b2) “; b2 ;” F(b2)12/2] 

= “q(l) ; b2” 

This is obviously the result we were expecting. The protocol entity at place 
1 first executes operation a1 and then sends a synchronization message ~~(1) 
to place 2, while the protocol entity at place 2 first receives this message from 
place 1 (rl(l)) and then executes operation b2. 

It should be noted that certain simplifications of expressions obtained 
during the process of derivation are permitted. Semantically, for arbitrary 
expressions e, e,, and e2, the following expressions are equivalent: 

e;emply = e 

empty;e = e 

el III e2 = e2 III el 
e Illempty = e 

empty [] empty = empty 
ACM Transactions on Computer Systems, Vol. 8, No. 4, November 1990. 
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Fig. 7. Derivation tree and attributes for the service e, = a’ ; b2 

3.2 Exchange of Data Between Places 

3.2.1 Informal Introduction. In this section, we discuss the inclusion of 
parameters in the service primitives. As mentioned in Section 2, a service 
primitive may have formal input and output parameters. On the protocol 
level, this requires, in addition to synchronization messages, that parameter 
values are exchanged among places. Additional send and receive operations 
are included for this purpose. We assume that a service primitive can only 
start its execution when the required synchronization messages have been 
received, and all specified input parameter values are available at its place. 

Figure 8 shows the kind of expressions we are now dealing with and the 
desired result of the protocol derivation process. Note that we do not consider 
optimization issues at this point. The specification T,(e,) expresses that after 
execution of a’, both synchronization and data messages have to be sent in 
any order to places 2 and 3 to enable b2 and c3. The corresponding receptions 
are part of T,(e,) and T,(e,). 

The relationship between output and input parameters is established by 
the formal parameter name. In Figure 8, x2 and x3 are outputs of the service 
primitive a1 and inputs to the primitives b2 and c3, respectively. This 
convention allows us to specify where outputs are needed as inputs and thus 
gives us the necessary information for the protocol derivation. Each output 
has to be communicated to all places where it is needed as input. 

As already mentioned in the explanation of Figure 3, parameter values 
which are not directly exchanged with the service users are called intermedi- 
ate parameters. In Figure 8, x2 and xa are intermediate parameters. An 
additional message must be exchanged between the protocol entities of the 
places where the value of an intermediate parameter is produced as output 
and the place or places where it is used as input to a service primitive. 

3.2.2 Principles of the Derivation Algorithm. Since for alternative expres- 
sions e,[l e2 only one side is chosen for execution, we call each side brunch 
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12 3 1 2 3 

communication medium 

Fig. 8. Service e, = a’( x1 I x2, x3) ; ((b2( x2 1 x4) III c3( x3 I x5)) and the specification of the corre- 
sponding protocol entities. 

(or alternative) throughout this section. A starting service (primitive) of a 
branch is denoted first element of that branch, all other services and service 
primitives of a branch are successive elements. 

The data flow between input and output parameters should be checked for 
consistency (static semantics). The following restrictions apply: 

Rl. Parameters names may only denote inputs of a service (primitive) x 
if they occur as outputs of a service (primitive) y to be executed 
before x, or if they are supplied by the service user. An exception of 
this rule applies to alternatives: Here, inputs to successive elements 
of either alternative must occur as outputs earlier in the same 
branch. 

R2. Parameter names may only be used once to denote an output 
(uniqueness of service results), except in the case of alternatives. 
Here, the same parameter name may be used in either branch to 
denote an output. 

R3. Parameter names may only be used to denote outputs if they have 
not been used to denote an input in a preceding element of the 
service specification. 

The motivation for the exception in case of alternatives and restriction Rl 
is that if inputs to the second or successive elements of a branch are produced 
before the branching decision (recall that this decision is taken at the place 
where the first element of the branch is executed), it is generally difficult to 
decide whether they are needed as inputs. 

Example. a’(xl I x2, x3);((b2(r2 1 x4);c3(x3, x4 1 s,))[ld2(x2 I x5)) is an 
expression not fulfilling Rl, since it is unclear whether x3 will be needed as 
input after execution of a’. 

The exception in restriction R2 is motivated by the observation that 
parameters needed as inputs after completion of the alternative expression 
must be available independent of the selected branch. 
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Example. (a’( x1 1 x2, x3)[lb1(x1 1 x2, xq));c2(x2 ) x5). Here, x2 is avail- 
able as input for c2, since it occurs as output in both preceding branches. 

R3 is due to the derivation formalism. 

Example. a’(xi 1 x2);b2(x2 1 x1) is an expression not fulfilling R3, be- 
cause of parameter xi. 

We will now extend the definition of Tp (Section 3.1.2.) such that the 
derived protocols handle the exchange of parameters. Informally, this means 
that each parameter value has to be sent (received) from each place where it 
occurs as output to (at) each place where it is needed as input. We will define 
several new attributes including P* and F* which are then used to extend 
the definition of Tn. 

To extract the information for additional transmissions, we proceed through 
the following steps: 

Step 1. Construct a bag containing all tuples (i, xj), where xj is an input 
parameter name and i is the place where xj is needed. 

Step 2. For each leaf of the derivation tree, select those tuples of the bag 
constructed in Step 1 for which the service primitive attached to 
this leaf produces the corresponding output. 

Step 3. From the bag resulting from Step 2, construct the expression 
specifying the transmissions for each leaf. 

We use the concept of bags, because tuples may occur more than once in 
some cases, and we do not consider optimization issues. Steps 1 and 3 will 
lead to correct results because of restriction R2. 

To obtain the information for additional receptions, we proceed as follows: 

Step 4. Construct a set of input parameter names for each node of the 
derivation tree such that: 
(a) at nodes, to which production Rule 4 is applied, the set 

contains the names of input parameters to be received before 
the decision which branch will be executed is taken, that is, 
input parameter names of the first element of either branch; 

(b) at leaves the set contains the names of input parameters of 
the attached service primitive, except in cases where the 
service is the first element of an alternative branch. 

Step 5. For each node, construct a bag containing all tuples (i, xj) of the 
corresponding subtree, where xj is an output parameter name, 
and i is the place where xj occurs. 

Step 6. For each node of the derivation tree, select those tuples of the 
bag constructed in Step 5 which may be received before or during 
execution of the subtree defined by the considered node (poten- 
tial receptions). 

Step 7. For each node of the derivation tree, select those tuples of the 
bag, constructed in Step 6, which have to be received by the 
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considered node before execution may start. These are actual 
receptions. This is done by comparing each element of the bag 
with the set obtained in Step 4. 

Step 8. From the bag resulting from Step 7, construct the expression 
specifying the receptions for each node. 

Again, we use the concept of bags, because in alternative expressions, the 
same output parameter name may be used in either branch at the same 
place. 

3.2.3 Definition of the Derivation Algorithm. We first of all give an 
algorithm to check for Rl, R2 and R3. It is based on the derivation tree of 
service expressions and uses attributes R12, Rl,, Rl,, R3, and R3,, which 
have the following meaning: 

R12 

Rll 

Rlr 

R3a 

R3b 

collects the names of output parameters available after the 
services of the corresponding subtree are executed (synthesized). 
collects the names of output parameters available before the 
services of the corresponding subtree are executed (inherited). 
ensures that only output parameters from the same branch are 
collected as available outputs by Rl, in case of successive ele- 
ments in alternatives (restriction Rl). 
collects parameter names used to denote inputs in the corre- 
sponding subtree (synthesized). 
collects parameter names which have been used to denote inputs 
before the services of the corresponding subtree are executed 
(inherited). 

R12(x) := (opar(x)) for all x E SP 
R3,(x) := (ipar( for all x E SP 

The attribute evaluation rules for R12, Rl, and Rl, are shown in Table III. 
Rl,, Rl, and R3, are initialized with the empty set at the root node. R12 
and R3, are initialized as follows: 
Here, { opar(x)} denotes the set of formal output parameters, { ipar( the 
set of formal input parameters of the service primitive x. 

I’he attributes R3, and R3b are evaluated like R12 and Rlt, respectively, except 
- rule 4 for R3a which is R3,(e) := R3a(el) u R3,(e2) 
- rule 1 for R3b which is R&(x) := R&(e) u (ipar( for all x E SP 

- and rule 2 for R3b which is R$,(el) := R&(e) 

R&(ez) := R&(e) u R3,(el) 

Now we can define the restrictions Rl, R2 and R3 precisely, as shown in 
Table IV. 

Note that the case where input parameters are supplied by the service user 
is not taken into account by this definition of Rl. This is done automatically 
when the “dummy” service primitive ip is introduced in Section 4. 
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Table III. Evaluation Rules for the Attributes R12, Rl, and Rl, 

RI2 R~I RI, 

R12(e) := R12(x) Rll(x) := Rll(e) 
for all XE SP for all XE SP 

R12(e) := RlZ(el) u R12(e2) Rll(el) := RlI(e) 
Rll(ez) := RI,(e) u RlZ(el) 

R12(e) := R12(el) u R12(e2) Rll(el) := Rll(ez) := Rll(e) 

R12(e) := R12(el) n R12(ez) RlI(el) := Rll(e2) := Rll(e) 

Rl,(x) := Rll(e) 
for all XE SP 

Rl,(el) := RI,(e) 
Rl,(ez) := RI,(e) u R12(el) 

Rl,(el) := Rlr(e2) := Rll(e) 

Rl,(el) := Rl,(ez) := ( ) 

Remarks: 

1. The evaluation rule for R12 and produclion rule 4 expresses [hat only ourputs occurring 

in Oaf/l branches of the alternative are assunled 10 be available afterwards. 

2. The evalualion rule for RI1 and production rule 4 expresses that previous outputs are 

permitted as inputs for dlefirsr service primiCve of each branch of’the alternative. 

3. The evaluation rule for Rl, and produclion rule 4 expresses theI only outputs of the same 

branch are available as inputs for subsequent services/service primitives (restriction RI). 

Therefore, all names of previous output parameters are removed. 

4. In the definition of RI] and Rl, for produclion rule 2, Rl,(e) u R12(el) is exactly the 

set of output parameter names available aflcr the preceding part of the current branch 

according to restriction RI. 

Table IV. Definition of the Restrictions Rl, R2 and R3 

RI R2 R3 

1 (ipar( c Rll(x) R31h) n (opar(x)l = ( I 
for all XE SP 

2 RlZ(el) n R12(e2) = ( ) 

3 R12(el) n R12(e2) = ( ) 
4 

The following attributes are defined in Table V: 

S* 

F* 

constructs a bag containing all tuples (i, xj), see Step 1 in Section 
3.2.2 (synthesized). 
selects tuples according to Step 2 in Section 3.2.2 (inherited). 
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Table V. Evaluation Rules for the Attributes S* and F* 

S*(e) := S*(x) 
for all XE SP 

S*(e) := S*(el) +b S*(et) 

S*(e) := S*(el) +b S*(ez) 

S*(e) := S*(ei) +b S*(et) 

F*(x) := F*(e) \b ( <i,xj> 1 i is a place A xj e (opar(x)) ) 
for all XE SP 

F*(et) := F*(e) 
F’(e2) := F*(e) -b S*(et) 

F*(et) := F*(e) -b S*(ez) 
F*(ez) := F*(e) -b S*(et) 

F*(et) := F*(e) -b S*(e2) 
F*(e2) := F*(e) -b S*(et) 

Remarks: 

1. WC Use Operators “-b”, “+b”alld ‘\‘I to express operations on bags: “-b” subtracts a bag 

from a bag; “+b” denotes the union of two bags; ‘lb” subtracts a set from a bag. “( lb” 

denotes the empty bag. 

2. S* is initialized with ( <i,xt>,...,<i,x,,> )l, for all xi ESP, where ipnr(xi)=xt,....xn, at all 

leaf nodes. 

3. F* is initialized with the value of S* at the root node. 

4. The evaluation rule for F* and production rule 2 could be simplified to F*(ez) := F*(e), 

because RI enforces that outputs may occur only /x$ore they am needed as inputs. 

However, the given rule yields shorter attribute values. 

5. The evaluation rule for F* and production 3 could be simplified to F*(et,z) := F*(e), 

because Rl enforces that outputs in one branch must not be inputs in the other branch. 

However, the given rule yields shorter attribute values. 

6. The evaluation rule for I;* and production rule 4 expresses that one alternative has been 

chosen, and therefore the inputs for the otbcr brawl1 arc not needed. 

Step 3 of Section 3.2.2 is included in the new definition of TP; see Table VIII. 
The following attributes are defined in Tables VI and VII: 

1 * s collects input parameter names as needed to define Ii’ (synthesized) 

Ii* constructs a set of input parameter names as required by step 4 in Section 3.2.2. 

(inherited) 

E* constructs bags of tuples <i,xj> according to step 5 in Section 3.2.2. (synthesized) 
0” selects tuples according to step 6 in Section 3.2.2. (inherited) 
P* selects tuples according to step 7 in Section 3.2.2. (synthesized) 

Step 8 of Section 3.2.2 is included in the new definition of TP (Table VIII). 
This is an extension of the definition given in Table II. It is extended by 
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Table VI. Evaluation Rules for the Attributes 1: and If 

I* s 

Is*(e) := Is*(x) 

for all XE SP 

Is*(e) := Is*(el) Ji*(et) := Ji*(e) 

Ji*(ez) := Js*(et) 

Is*(e) := &*(et) u I,*(e2) Ji*(el) := Js”(el) 

Ji*(e2) := Js*(ez) 

I,*(e) := Is*(et) u Js*(e2) Ji*(el) := Ii* := ( ) 

Remarks: 

1. Is* is initialized with (ipnr(x)) at each leaf, where XE SP is the service primitive 

attached to that leaf. 

2. Ii* is initialized lo he empty at the root node. 

adding transmissions and receptions of parameter values using the attributes 
F* and P*, respectively. 

Both the parameter values to be sent and their destination are determined 
by the attribute F*. A parameter value should be sent immediately after it is 
produced as an output. If more than one parameter value results from a 
service primitive or one value has to be sent more than once, the required 
messages may be sent in arbitrary order. Therefore, we transform the value 
of F* into the following string which is then included into the protocol 
specification (Table VIII, production Rule 1): 

trans(F*(.)) := 
“empty” if F*(.) = ( )b 

“Si,(Xj,)lllSi,(Xj,)Ill~~.lllSi~(Xj~)” if F*(.)=(<i,,xj,>,...,<i,,xjn>)b f ( lb 

Both the parameter values to be received and their source are determined 
by the attribute P*. Each of these parameter values may only be produced by 
one service primitive, except in case of alternatives where it has to be 
produced in either branch (restriction R2). Since only one branch is executed 
dynamically, this choice must be reflected in the string to be incorporated in 
the protocol specification. Each parameter may be received from different 
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Table VII. Evaluation Rules for the Attributes E*, 0* and P* 

E’ 

E*(e) := E*(x) 

for all XE SP 

E*(e) := E*(el) +b E*(e2) 

E*(e) := E*(el) +b E*(el) 

E*(e) := E*(el) +b E’(e2) 

Remarks: 

0’ 

o*(x) := O*(e) -b E’(x) 
for all xE SP 

o’(el) := o*(c) -b E*(et) 

O*(e2) := O’(e) 

O’(el) := o*(e) -b E*(er) 

O’(e2) := O’(e) -b EYeI) 

O*(el) := o’(e) -b E’(ez) 
O’(e2) := o’(e) -b E*(el) 

P* 

P*(e) := ( ]b 

P*(c) := ( )b 

P*(e) := ( )b 

P*(e) := O+(e) b ( <i,Xj> 1 i is a place 

A Xj SZ Ii*(C) I 

1. E’ is initialized with ( <i,xi>,...,<i,xm> )b, where xkSP is the service primitive 

attached to that leaf, and opar(xt)=xi,...,x,. 
2. O* is initialized with the value of E* at the root node. 
3. P* is initialized with O*(x) \b ( <i,xj> 1 i is a place /\ xj GZ Ii*(X)) at each leaf. 

4. The evaluation rules for I,* express that only the input parameter names of the 
first element (see production rule 2) of both alternatives (see production rule 4) 

are considered. 

5. The evaluation rules for O* and production rules 2, 3 and 4 reflect the fact that 
outputs of el (e2) are not available as inputs for e2 (el) and therefore are no 

potential receptions. Exception: e2 in production rule 2. 

places according to the chosen branch. Therefore, we regroup and transform 
the value of P* as follows: 

“empty” if P*(.) = ( lb 

rec(P+(.)) := ( 
“(ri, ,(xj,)[l...[lrin ,(xj,))lll(ri, ,~~j,)~l~~~~lr~n~~~xj~~~lll~~~ 

Illiri, m(xj,)[l...ilrin ,(“i,iY’ 
ii P*(.) = (<i, ,:xj,> ,..., <i n,,, xjl> ,..., <in,mtxj,>)b f (lb 

A (Vk,l)(l 5 k < I <m * Xjk f Xj) 

As shown in Table VIII, receptions have to be incorporated before a service 
primitive (production Rule 1) and before an alternative (production Rule 4). 
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Table VIII. Definition of the Function Tp Including Transmission of Parameters 

reduction rule 

1 Tp(e) := if place(x) = “p” 

then “(‘I P(x) “111” rec(P’(x)) “) ; x ; (” 

F(x)lz/N(x)) “111” trans(F*(x)) ‘I)” 

else “empty” 

for all xE SP 

2 

3 

4 

Tp(e) := TP(eI) “;” Tp(ez) 

Tp(e) := Tp(el) “III” Tp(ed 
Tp(e) := if (S(et) = S(Q) = “SD(z)” ) 

then “(“P(e) “Ill” rec(P*(e)) “) ; (” Tp(el) “[I” Tp(et) “)” 

else Tp(el) “[I” Tp(ez) 

In the latter case, the definition of T, assures that all necessary receptions 
occur before the choice is made, which means that input parameter values for 
both branches are received. 

3.3 Assumptions about the Communication Medium 

In this paper we assume that the underlying communication medium pro- 
vides for reliable message transmission between different service access 
points (called places). Concerning the order of message reception, the follow- 
ing three schemes may be assumed: 

(1) For every given pair of source and destination places, the messages 
are received in the same order as they have been sent. However, at 
each place, there is single queue with FIFO discipline through which 
all incoming messages are received by the protocol entity. 

(2) As above, but at each place there is a separate input queue for each 
source. 

(3) Messages from any source, as they arrive at the destination place, 
are stored in a reception buffer from which they may be received by 
the local protocol entity in an order determined by the behavior of 
the protocol entity. No assumption about the transmission order is 
made. 

The reception scheme (1) may lead to an unspecified reception in the sense 
of 1241 for certain protocols derived by this method; an example is given in 
1121. The reception scheme (2) is compatible with the derived protocols as 
long as no parameters are involved. In the presence of parameters, unspeci- 
fied receptions may occur in some cases. These problems can be avoided by 
deriving protocol specifications based on an optimized message exchange 
protocol 1121, or by using the reception scheme (3). 
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4. COMPOSITION OF SERVICES 

So far, we have assumed that services are described by expansions which are 
composed of service primitives and operators. By giving names to these 
expressions we extend our service language: The names of already defined 
(composed) services in addition to service primitives, may be used to compose 
new service expressions. Note that a composed service, like service primi- 
tives, is associated with the place where its execution is initiated. 

The inclusion of parameters into this concept is straightforward. A service 
may have formal input and output parameters just as a service primitive. 
Input values are assumed to be available at the place where the service is 
accessible. Output values will be made available by the service at the same 
or a remote place after execution. Thus, we can abstract from the fact that 
the execution of the service might actually involve several places. 

Since we allow output values of a service to be available at a remote place, 
we have to extend our notation. Instead of writing xp (Section 2), we write 
xp,P’, meaning that the service x is accessible at place p and provides its 
results at place p ’ . For notational convenience, we continue writing xp 
instead of ~~3~. 

Example: yfv2( x1 1 x3) := b'( x1 1 x2); c2( x2 1 x3) 
z2(x4 1 x5, x6):= y1v2(xq 1 x5) III d3(x, ) x6) 

In the example, a service y1y2 is defined as the sequential execution of the 
service primitives b1 and c2 at the places 1 and 2, respectively. This service 
is then used to specify another service z 2. Inputs on the left side of the service 
definition may occur as inputs on the right side. Outputs on the left side 
must be produced by the right side. Additionally, parameters denoting inter- 
mediate results may be used on the right side. In the case of service ylP2, for 
instance, the x2 parameter produced as output by the b' service primitive 
must be transfered to place 2 where it is used as input for the c2 service 
primitive. 

A service primitive is a unit which can not be decomposed further. It is 
important to note that while service primitives have to be executed at the 
place where they are made available, this is not the case for (composed) 
services. As can be seen in the example, the service z2 is made available at 
place 2, but uses services and service primitives accessible via places 1 and 3. 

How can we handle this concept of abstraction with our derivation algo- 
rithm? Recall that we assume input parameter values to be available at the 
place where the (composed) service is initiated. We want output parameter 
values to be made available at the same or a remote place after termination. 
To incorporate this assumption and requirement into the derivation process, 
we rewrite an arbitrary service expression as follows: 

xP>PT (Xl,..., &1X,+1,..., XJ := expression 

xP>P’ 
(Xl,..., x,lx,+1,..., xJ:= ip() xi,. . . ,3c,); 

(expression;oP’(x,+,, . . . ,x, I)) 

Here, ii’ is a “dummy” service primitive whose only purpose is to make the 
input values to xp,p’ formally available at the place p, such that the 
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derivation algorithm can handle it. Also, this convention makes restriction 
Rl as defined in Section 3.2.3 applicable to user-supplied inputs. Similarly, 
the only purpose of op’ is to enforce a data exchange such that output values 
become available at place p’ independent of where they actually were pro- 
duced. Both ip and op’ can later be removed from the resulting protocol 
specification. 

Some minor changes to the definition of the attribute evaluation rules and 
the definition of Tp (Section 3) become necessary, because we allow services 
providing their results at a remote place. Let SP’ =Df { arvr’, b”+‘, . . . , Zaps’}: 

a) Instead of a single function place (see Section 3.1.2.). we define two functions places and 

place, from the set SP’ to the set of places: pIace, = “p”, place,(xtw’) = “p’“. 

b) The attributes S and E (see Section 3.1.2.) are initialized at all leaf nodes as follows: 
S(x) := “s”place,(x)“(2)” for all x E SI” 
E(x) := “r”ptacce(x)“(“N(x)“)” for all x E SP’ 

c) The definition of T, covering production rule 1 (see Table 2) is changed to: 

Tp(e) := if places(x) = place,(x) = “p” 

then P(x) “; x ;” F(x)[z/N(x)J 

else if places(x) = “p” 

then P(x) “; x” 

else if place,(x) = “p” 

then F(x)lz/TVx)l 
else “empty” 

d) The attributes S* and E* (see Section 3.2.3.) are initialized at all leaf nodes as follows: 

S*(xij) := (4,x,> ,..., <i,x,n>)b for all xii E SP’ 

where ipar(xki) = xt,...,xm 

E*(xiJ) := (<j.xm+,> ,..., <i,xn>]b for all xtJ E SP’ 

where opar(xt.i) = xm+.t,...,xn 

e) The definition of Tp covering production rule 1 (see Table 8) is changed to: 
Tp(e) := if places(x) = place,(x) = “p” 

then “(“P(x) “111” rec(P*(x)) ‘I); x ;(” F(x)[z/N(x)] “111” trans(F*(x)) ‘I)” 

else if place,(x) = “p” 

then “(“P(x) “111” rec(P’(x)) ‘I); x” 

else if place,(x) = “p” 

then “(“F(x)[ z/N(x)] “111” trans(F*(x)) “)” 

else “empty” 

The approach described above includes a nice property. The abstraction 
established on the service level is maintained on the protocol level. There- 
fore, we can apply our algorithm to each service expression separately 
independent of its usage in other service expressions. 
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Example. The service definitions above lead to the following protocol 
specifications: 

Tl(y~4x1lx-j)) = “(sl(l) Ill SI(XI)) ; (rl(l) Ill Al) ; bl(x1lx2) ; (s2(2) Ill %(X2))” 

Tz(y1.2(~11~3)) = “(u(2) Ill rl(x2N ; c2(x2lx3) ; (s2(3)llls2(x3)) ; (u(3) Ill rdv))” 

Ti(z2(~4lx5,~6)) = “@2(l) Ill r2tx4)) ; y1,2(x41x5Y 

-b(Z2(X41X5,X6)) = %I( 1) 111 Sg(l) 111 Q(X4) 111 S3(X4)) ; 62(z) III S2@5)) ; 

(r2(2) Ill r$) Ill r,+5)) Ill r&6))” 

TJ(z~(x~~x~,x~)) = “kdl) Ill rz(x4)) ; d3tX41X6) i (S2(3) Ill S2(X6))” 

5. EXAMPLES 

In the following, we give some additional examples intended to demonstrate 
both the application and the capabilities of the algorithm. Example 1 consid- 
ers synchronization between places only. Examples 2 and 3 also take parame- 
ters into account. 

Example 1. 
sl := (al Ill b2) ; (c3 11 d3) 

Tl(S’) = “(sl(l) Ill Q(I)) ; u(l) ; al ; ~(2) ; (r3(4) [I q(5))” 
TtW) = “q(1) ; b2 ; s3(3)” 

T3(sl) = “h(2) Ill r2(3)) ; (c3 ; s](4) [I d3 ; s1(5))” 

Here, a service s1 is defined which is accessible via place 1. The derived 
protocol specification clearly defines that the initiative for the execution of 
the service comes from place 1 (Ti(s’)), and after the service is completely 
executed, control returns to place 1. This is obtained by inserting “dummy” 
service primitives i’ and o1 as described in Section 4 before starting the 
derivation process. 

Example 2. sl(xl 1 x,) := al(xl 1 x2) ;b2(x2 1 x3). In the derivation tree 
(Figure lo), the values of the attributes S*, F*, I:, IT, E*, 0* and P* are 
shown for each node. The derivation leads to the following protocol expres- 
sions: 

T1Whlx3)) = “h(l) Ill SI(XI)) ; h(l) Ill rl(xi)) ; d(xllx2) ; 

@2(2) III 9(X2)) ; tr2t3) Ill r2tx3))” 

TZWxllx3)) = “(n(2) Ill rl(x2)) ; Wx2lx3) ; (s](3) Ill sl(x3))” 

Example 3. sl(xl 1 x4) := 
#(x1 I x2) 111 b2(x, I x3)); (c3(3c2 I ~1 [I d3(X3 I x4)) 

T1Whlx4N = “(sl(l) Ill ~~(1) Ill sI(xl) Ill s2(x1)) ; h(l) Ill r&d) ; al(xilx2) ; 

h(2) Ill ~3(X2)) ; ((r3(4) 11 u(5)) Ill (r&4 11 r3W))” 
T2Wxllx4)) = “(u(l) Ill ri(xi)) ; b2(xllx3) ; b3(3) Ill ~~(~31)” 

T3W(xdx4)) = “(ri(2) Ill r2(3) Ill r&X2) Ill r2tx3)) ; 

(C3(X21X4) ; (sl(4) 111 sl(X4))) 11 (W&4) ; (Q(5) ill S&W)))” 

Here, we have augmented the service of Example 1 by parameters. The 
derived protocol specification clearly shows how the entity associated with 
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1 l-----l q4 - 
r1(6) - 

s#) 5(4X33(5> 

rl(6) - 

lQ 
sl(z) rI(l) 

r1G9 %Cz> 

a1 14 2 r- sl<z) rl’l( 1) 

r1(2) s3(z) 

Fig. 9. Derivation tree with attributes for Example 1 

place 1 initiates the service execution and how it collects the results after- 
wards. 

6. DISCUSSION, EXTENSIONS, AND APPLICATIONS 

We have presented an algorithm that fully automates the derivation of 
protocol specifications from service specifications. Since it is a constructive 
approach, the algorithm aims at avoiding certain design errors a priori. For 
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/ \ 
2 

il 
s 

1 ItI II ; 1<1,x~>.~2.x2>,~1,x~l~ 
l<l.X~>,<2,X2>,<1,X3>~~ I I I<l,x,>.t2,x~>,tl.x,>l~ 
l<lJl>l~ I<l,xp.<2.rplb 
I<LX,>lb 1 Ill I<l.x,>,tl,x~,<2.x3~, 

s 
1x21 

~~l,x~~.<2.x~>,tl.x3f~ 1x11 1<2,x2>.<1.x,>1, IXZl 
l<Lxz>~b 1<2,x3>1 
I<l,x~>sl,r~>l, I ItI ~<l,x,>,<l,xz7.C2.x,>~~ 1 I, 

al(~~lx~) UT 
I<$>l b Ix,1 

I 
k2.94 b Ix,l 
l<l*x,>l b 
W.q>l b W.q>l b 

Fig. 10. Derivation tree with attributes for Example 2. 

instance, unspecified reception errors are avoided if a particular reception 
scheme is chosen. For each sent message, the protocol specification contains a 
corresponding reception such that all messages in transit will eventually be 
consumed, Also, conformance with the service specification is achieved by 
construction, and the specifications of the protocol entities are free of nonexe- 
cutable interactions, deadlocks and state ambiguities. 

We assume the availability of a reliable message transmission service 
between participating protocol entities. This assumption also appears, 
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explicitly or implicitly, in earlier, less general approaches to synthesizing 
protocols [8, 241 and is not unrealistic for high-level protocols. The service of 
the transport protocol, layer 4 of the OS1 reference model, is designed to 
enable communication preserving the correct order and avoiding unnoticed 
loss of messages. For lower level two party protocols, it is possible to first 
assume correct delivery and later augment the derived protocol with means 
for error recovery incrementally 1181. 

Subsystem failures are not handled by the algorithm. Such failures may 
prevent successful completion of services in execution, if they go along with a 
loss of the entity’s memory. Here, the introduction of a stable store, a store 
that can survive subsystem crashes, is a possibility to enable a restart and 
successful completion of the service [Ill. However, a treatment of these 
aspects is beyond the scope of the paper. 

The protocol derivation algorithm may be applied in different areas. Logi- 
cal connections would be established between involved protocol entities be- 
fore the derived protocol is executed. Within the OS1 reference model, this 
situation can be satisfied for the application layer. It is therefore expected 
that the algorithm could be useful in areas such as distributed databases, 
process control, etc. The situation is also satisfied for message exchange via 
interprocess communication facilities. Here, entities would be associated 
with processes running within the same, possibly distributed, operating 
system. 

Application of the derivation algorithm could also be attractive in systems 
where services are defined dynamically during the operation of the system. 
This is the case for distributed data base management systems, where the 
end users issue queries or update commands. Since the view of the end user 
would be centralized, his queries typically would not indicate at which places 
the required operations (selection, projection, join, division) have to be exe- 
cuted. This decision would have to be made on the basis of information 
available only to the database management system before the derivation 
algorithm can be applied. 

Further research should include the following areas: 

(a) It would be desirable to formally define the semantics of the language 
used to specify services and protocols and to give a formal proof that the 
presented algorithm always yields correct results. 

(b) Extensions should concern the optimization of traffic necessary to syn- 
chronize operations and to pass parameter values. It is for instance not 
necessary to pass messages to synchronize subsequent operations at the 
same place. Also, synchronization messages and data messages may be 
combined. 

(c) To define a service, we have used operators for sequence, parallelism and 
alternatives. Such operators can also be found in languages like LOTOS 
1101, CCS 1161 or CSP 191. The presented algorithm could therefore be 
applied to certain specifications in those languages. 

(d) It could be useful to include recursion or iteration into our language for 
the specification of services. The impact of this extension on the deriva- 
tion algorithm must be carefully examined. 
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(e) The derivation algorithm should be extended to cope with an unreliable 
medium. It could then be applied to lower level services. 

From a systematic point of view, synthesis certainly has its advantages 
over analysis. However, it is not easy to find an algorithm for the construc- 
tion of correct protocol specifications that is sufficiently general. We hope 
that the algorithm presented here will lead to the practical application of 
protocol synthesis methods. 
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