
Method of analysing
extended finite-state machine

specifications

Beh et Sarikaya, Vassilios Koukoulidis and Gregor V Bochmann* develop
a technique for self-consistency analysis of complex protocol/service specifications

Formal specifications are the basis for automated verifi-
cation and implementation in communication software.
The paper gives a method of dynamic analysis for modular
specifications which is based on symbolic execution and
reachability analysis. Symbolic execution is a technique for
static analysis and applied first to the specification. It is
effective in detecting syntactic and semantic errors. A form
of reachability analysis, called limited reachability, is used
to dynamically analyse the intermodule communication. It
has two applications: combining modules and detecting
any errors in intermodule communication. The technique
is first applied to the specifications in a nondeterministic
finite-state machine model and then applied to an
extended finite-state machine model for which two
standard formal description languages exist.

Keywords: specification, implementation, communication
software, symbolic execution, limited reachability, finite-
state machine model

Formal specification of communication systems is
considered to be of prime importance in both software
and hardware development. This is because formal
specifications are not ambiguous and they describe the
system precisely, as opposed to natural language specifi-
cations which often suffer from being ambiguous and

Concordia University, Department of Electrical and Computer Engineer-
ing, 1455 De Maisonneuve W. #915, MontrEal, QuEbec, Canada H3G
1M8
*UniversitE de MontrEal, DEpt d'lRO, CP 6128, Succ. 'A', MontrEal,
QuEbec, Canada H3C 3J7

0140-3664/90/020083-10 $03.00 ©

imprecise. It is also possible to base the automated
system verification and implementation on formal
specifications.

An area in which formal specifications are finding
widespread use is communication protocols for Open
Systems Interconnection (OSI). Formal techniques are
being used for the specification of the proposed protocols,
and the development and testing of the new protocol
implementations. Three FDTs are presently being used:
Estelle 12, Lotos 15, and SDL 23. Estelle is based on a finite-
state machine model extended by Pascal data structures,
expressions and statements for the description of inter-
action parameters, additional state variables and related
processing. Lotos is based on a calculus of communicating
systems extended with a formalism for abstract data
types. SDL is also based on an extended finite-state
machine model. At present, SDL is more widely used due
to its graphical syntax called SDL-GR.

Formal specifications of standardized protocols and
services are being developed to be used as reference or as
specifications complementary to the traditional reference
specifications given in natural language. Since all sub-
sequent phases depend on the formal specification,
validation of formal specifications is of prime importance.

Validation of specifications can be classified into two
activities: validation of self-consistency and validation of
consistency with another specification. In both cases, the
validation could be based on static analysis or dynamic
analysis. Static analysis looks for syntactic and semantic
errors in the specification without considering an execution
of the specification. Dynamic analysis looks for system
deadlocks, unspecified receptions and other problems
arising from the dynamic behaviour of the specified
system 5.

1990 Butterworth & Co (Publishers) Ltd

vol 13 no 2 march 1990 83

In this paper a method is described for self-consistency
validation of specifications written in an extended finite-
state machine model. The basic techniques used are
symbolic execution, a well-known method used in
analysis of sequential programs 1° and reachability
analysis 24'13, a well-known technique used in protocol
verification for protocols specified as finite-state machines.
Two techniques are then used to dynamically analyse
modular specifications.

The paper is organized as follows: we first introduce
the limited reachability analysis, a reachability analysis
with the consideration of the queues of length one. An
algorithm is given for limited reachability analysis of
modular specifications in which modules are specified in
a nondeterministic finite-state machine model. The
symbolic execution of formal specifications in an extended
FSM model is then discussed, and then extended to the
limited reachability analysis to this model.

REACHABILITY ANALYSIS FOR
COMMUNICATING FSMs

Reachability analysis

Reachability analysis is a technique often used to analyse
the dynamic behaviour of multiprocess systems defined
as a collection of interacting finite state machines (FSMs).
Traditionally, models of directly interacting FSMs g'17 as
well as models involving FSMs communicating through
(unlimited) FIFO queues 18'24 have been considered. In
order to partly reduce the state space explosion involved
with a straightforward exploration of all attainable global
states of the system, the concept of 'reduced' reachability
has been proposed 18'25. In general, there remains the
possibility of unlimited build-up of messages in the
queues, which makes the general validation problem
undecidable. In many restricted cases, however, many
validation problems can be decided even in the case of
unlimited queue lengths TM.

The application of this technique for protocol vali-
dation usually implies the analysis of a system, as shown in
Figure 1 a, of two interacting protocol entities (PEs). Only
the protocol data units (PDUs) exchanged between the
two entities are considered. For a complete protocol
validation, based on a protocol specification also involving
the interactions with the service users, a configuration as
shown in Figure 1 b must be considered. In addition, it is
shown in this paper that the specification of a single
protocol entity is partitioned into several communicating
FSMs. This corresponds to typical specifications written in
FSM-oriented FDTs, such as Estelle or SDL, which typically
contain several (sometimes dynamically created) inter-
acting processes (see, for instance, Reference 4).

Reachability analysis for embedded systems

Consider the case of a system consisting of a large number
of communicating FSMs; interest lies in validating the
interactions between FSMs belonging to a certain sub-
system, independently of the other parts of the system.
An example is the validation of the specification of a
protocol entity given as a collection of interacting FSMs, as
shown in Figure 2, or two adjacent protocol entities within

PE1 PE2

a

T
userl

PE1

T
b

Figure 7.

user2

PE2

Architectures for protocol validation

Layer_N TS TS

I I
AP

PDU TP

Map

I
NS

a b Ns

Figure 2. Modular system structure (a) and its combined
representation (b)

a given host computer. If teachability analysis is considered
for such an embedded (sub)system, independently of the
other system components, one will not be able to detect
errors which relate to the interactions between the
subsystem and the other parts of the system, e.g. the same
information is not obtained as in the case of traditional
protocol reachability analysis which considers the inter-
actions with the peer entity; however, one will still be able
to validate those aspects of the specification which relate
to the interactions among the FSMs wi th in the same
subsystem.

The traditional work on reachability analysis uses a FSM
formalism with what are called 'simple' transitions, that is,

84 computer communications

each transition is either an input transition, i.e. a transition
forwhich an input is defined and no output is specified, or
a spontaneous transition, i.e. a transition for which no
input is defined and an output is specified. In the case of
directly interacting FSM (i.e. rendezvous), the reachability
analysis reduces to the construction of a coupled product
of the interacting machines, as explained in Reference 17.
The result of the teachability analysis is called in the
following simply the 'product machine'. In the case of
direct interaction, the product machine is again finite. In
the case of FSMs interacting through queues, the product
machine is not necessarily finite, unless the size of the
queues is artificially limited.

The initially obtained product machine contains in
general a certain number of transitions which involve the
input/output between the interacting machines. These
interactions are not visible from the environment of the
analysed subsystem and can be considered spontaneous
transitions without output to the environment. A straight-
forward simplification of the product machine can be
performed in order to obtain an equivalent machine
without such spontaneous transitions.

Limited reaehability analysis

In the following a more general FSM model is considered,
corresponding to the FDT's Estelle and SDL, where a
single transition (for input or spontaneous) may involve
one or more outputs. These FDTs use queued communi-
cation between the FSMs.

A reachability analysis is considered which assumes
direct interaction between the machines, which is called
'limited reachability analysis'. An investigation is carried
out in the following into what extent limited reachability
analysis can be considered complete, that is, what kind of
errors are not detected by such analysis and could be
detected by reachability analysis taking into account
message queueing.

Figure 2a depicts an example specification containing
two modules: AP connected to the environment with the
channel TS, and Map connected to the environment with
the channel NS. In Figure 2b the product machine, called
TP, is shown with the internal interaction point eliminated.
AP and Map are interconnected with the channel PDU.
Map FSM is shown in Figure 3 and AP FSM in Figure 4wi th
the state 'closed' represented twice to increase readability.
This system models a transport protocol (TP) organized in
two modules: an abstract protocol (AP) module handling
protocol operations and a mapping (Map) module to map
the transport protocol interactions to the network and
vice versa.

In what follows, the notation for input/output:

channel.interaction (parameters) or
interaction(parameters if any)

is used for internal channels (PDU in Figure 2) and external
channels (TS and NS in Figure 2), respectively. Interaction
is the name of the input/output which may have one or
more parameters. Note that a textual syntax can be used
to express the transitions in the FSMs using four different
clauses: when, from, to and output. As an example, the
transition in Figure 3 from the 'closed' state can be written
as follows:

when PDU.transfer__CR

PDU terminated PDU.trartsf~ CR/ NDi~o~c ~¢q

NDATAind_CR/PDU.Uar~fer C R
NDATAind_CCIPDU.~fer_CC
NDATAind_DT/PDU.tram fe~DT
NDATAind_I~2/PDU J~Lrd fer_DC
NDATAind_DR/PD U.~ms fer_DR
NDATAind_AKJPD U.tr ~ fm AK

Figure 3. Map machine

from closed to open__inprogress
output NS. NConnectreq.

Firstly, a simple example is given and then an algorithm for
limited reachability sketched. Consider the following
transition from Figure 4:

when TS.TCONreq
from closed to wait for~CC

output PDU.transfer__CR

This transition when fired (upon the input TCONreq from
the channel TS) places the interaction called transfer__CR
into the queue. A corresponding transition from Map is
immediately considered that consumes this input:

when PDU.transfer__CR
from closed to open__inprogress

output NS.NConnectreq.

PDU u~f~ CP, ffCONind

TCONreq]PDU u~fer CR

PDU =~f~ DR/TEISind~
PDU ~ma~d

TCONresp/PDU ~ fer CC
PDU.u~ fe r CCHCON :ord / / PDU .u~ fer CC:TDISind,

PDU ~fer DR

PDU ~fer Al~lnull ~ / TDATA~cOjPDU.~ f~
null/PDU~a~fer AK ~ PDU U~sfer_DT/TDATAmd
PDU readyhaull PDU ~fer_DT/nuU
null/READY U READYAauI]

PDU u~f~ DR/ nu tllTDiSin~Up ~ ~ R ~ D R TDISmd,PDU tt~sfer DC TDISreqJPDU tr~sfe~ D

Figure 4. AP machine

vol 13 no 2 march 1990 85

Thus, the combined behaviour of the two modules can
be expressed as a transition:

when TS.TCON req
from (closed,closed) to (wait__for___CC,

open_ inp rog ress)
output TS.NConnectreq

which corresponds to the case that after AP places
transfer___CR into the queue, transfer__CR is consumed
by Map, which in turn produces an output to the NS
channel•

Algor i thm for l imited reachabi l i ty

An algorithm is presented to analyse modular specifi-
cations with each module specified as a FSM. The
algorithm contains three steps of processing.

First, all transitions which take input from external
channels or spontaneous transitions are considered• If
they produce an output to the internal channel, then these
transitions are combined with the transitions in the other
module which consume this output. This constitutes the
first part of the Step 1 of the algorithm•

Next, the transitions combined in Step I are considered•
The combined transitions that generate output to the
internal channels need to be processed. These transitions
are combined with the corresponding transitions that
consume the output, completely eliminating the
communication in the internal channel. This constitutes
the second part of the Step 1 and corresponds to the case
of double handshaking between the modules.

In Step 2, the transitions that neither take input nor
produce output to the internal channels are considered
next. These transitions generate more than one transition
in the final product machine, i.e. one for each state value
of the other FSM.

Since not all the state pairs occur in the product
machine, the algorithm generates a combined transition
for all reachable state pairs. Then null transitions (input
and output are null) could also be eliminated• These
actions constitute Step 3 of the algorithm listed in the
Appendix. The algorithm is repeatedly applied to other
channels interconnecting the FSMs (if any).

Error cases are not considered in the above algorithm,
but they could easily be added so that the algorithm
generates a list of erroneous cases in the combined
behaviour. The types of errors that can be detected by the
algorithm are:

• unspecified receptions, when there exists no transition
for an output,

• handshaking loops, when for example, FSM 1 generates,
upon input A the output B to the internal channel and
FSM2 generates, upon input B the output A to the
internal channel,
deadlocks, when the product machine goes to a state
with no outgoing transitions and the global state is not
composed of the final states of the individual FSMs (if
any).

• For systems with more than two modules, it is straight-
forward to obtain the product machine by first combining
any two interconnected modules and then combining the
product machine with a third interconnected module,
and so on.

I m p l e m e n t a t i o n

The above algorithm has been implemented on a
workstation in Prolog. The program takes an Estelle
specification of the embedded system in which the
interconnected modules can be described as FSMs as
input and produces another Estelle specification with
modules combined• Description of FSMs in Estelle form is
straightforward 6. The user provides the names of the input
file and.the names of the modules to be combined• The
program finds the channel name over which these
modules communicate from the IP (interaction point)
definitions of the modules and then follows the algorithm
to generate combined transitions.

Example

It is shown how the implementation above analyses the
combined behaviour of by way of the FSMs of Figures 3
and 4. The input Estelle specification looks like;

specification example systemprocess;
channel PDU__c (user, provider);

by user: terminated; transfer~AK; . .• ; ready;
by provider: terminated; transfer__AK; •.• ;
transfer_DT;

channel TS(user, provider);
by user: TCONreq; . . . ; U_READY;
by provider: TCONind; . . • ; READY;

channel NS(user, provider);
by user: NGONNECTind; • . . ; NDATAind__DT;
by provider: NCONNECTreq;.. • ; NDATAreq__DT;

• . . (*module header definitions for the englobing
module and its two submodules*)

. . . (*rename the channel PDU_c as PDU in the ip
definitions*)

• .. (*body definition for the FSM of Figure 3*)
. . . (*body definition for the FSM of Figure 4*)
modvar AP:A; MAP:M;
initialize

begin
init AP with AA; init MAP with MM;
connect AP.PDU to MAP.PDU

end(*of initialize*)
end; (*of body*)
end. (*of specification*)

An example processing in Step 1 is combining
when NS.NDATAind_DR
from open to open

output PDU.transfer__DR

in Figure 3 with

when PDU.transfer__DR
from open to closing

output TS.TDISind
output PDU.transfer__DC

In Figure 4 to obtain:

when NS.N DATAind_DR
from open__open to closing~open

output TS.TDISind
output PDU.transfeLDC

where the from or to lists contain first a state from the AP
and next another state from the Map machines with the

86 computer communications

names separated with ' ' to have syntactically correct
Estelle state names.

The combined transition is furthermore processed in
Step 1 to be combined with the transition in Figure 3:

when PDU.transfer__DC
from open to closing

output NS.N DATAreq__DC

resulting in the combined transition:

when NS.NDATAind_DR
from open open to closing_closing

output TS.TDISind
output NS.N DATAreq_DC.

One of the transitions processed in Step 2 is:

when NS.NConnectind
from closed to open

output NS.NConnectresp

of Figure 3. This transition generates six transitions
corresponding to six states of the AP module. In Step 3
only the transition:

when NS.NConnectind
from closed_closed to closed__open

output NS.NConnectresp

is kept since closed__closed is the only possible state pair.
Since there are no errors detected we represent the

procl'uct machine in graphical form in Figure 5.

Comparison with full reachability analysis

Limited reachability analysis can be seen as a reachability
analysis technique in which transitions taking input from
the internal channel(s) have higher priority of consider-
ation. Since the queues are eliminated from the global
state, it is not possible to consider parallel progress of the

NC~ct~d~
NCo~ec~¢sp

/

NDATAmd CFU

TCONreq/NCo~eq

NDATA~q_DR/ waa_for_CC,open in progress . . ~
TDISmd, ~ - - - ~
NDi~o~cq NCo~uesp/

NCo~onf,
NDATAreo CR

TCONconf

TCONresp/
NDATA,'m _CC

TDISmd,
NDATAZo:LDR

NDATAL, Xl D ~ TDATAIcqINDATA~:L DT
TDISLBd, NDATA~d DT/rDATAb~d
NDATA/Bo~DC nulI/NDATA/~,_AK

NDATAmd AKinulI
U READy/null
nUIFREADY

TDISreq/NDATATeq_DR
~. nulI/NDATAt e~LDR

,.closhlg

nulbTDISconf,

~____~t_f~ DC.~ . ._ .~

NDATAmd_DC/
NDi~¢c~q,TDlSconf

Figure 5. Combined FSM TP

component modules with limited reachability analysis. A
consequence of this is that the resulting combined
machine represents a part of the overall behaviour of the
system.

An example case will be presented in which the
combined machine does not represent the complete
behaviour. For example, in Figure I, the AP can receive an
input from TS and the Map can receive another input from
NS at the same time while this situation is not permitted in
Figure 2. It seems that the only behaviour that is missing in
the combined machine of Figure 5 is the call collision
case, i.e., a connection establishment request arriving at
the same time at both service boundaries.

Reduced reachability analysis can also handle collision
cases since queues of equal length are considered as part
of the global state. So far, it can only be applied to two-
process communication while limited reachability analysis
can consider any number of machines.

Use of limited reachability analysis for
embedded systems

Embedded systems can be validated using limited
reachability analysis. Each subsystem is assumed to be
modelled with FSMs which makes our analysis technique
applicable. In the next section, it will be shown that a
similar analysis is possible even when the specification
technique is based on an extended finite-state machine
model.

Limited teachability analysis first looks for any errors in
the embedded system and then obtains a product
machine. The product machine can be used in test
sequence generation since only external channels are of
interest for testers. The product machine could also be
used in further verification of layered systems.

Since limited reachability analysis cannot handle
collision cases, the product machine does not fully
represent the embedded system. Therefore, collision
cases should be handled separately when the product
machine is used, i.e. test sequence generation should
consider making a test for call collision.

LIMITED REACHABILITY FOR EFSM

In this section, the limited reachability analysis is extended
to apply to the specifications written in an extended
finite-state machine model (EFSM). This model first
introduced in Reference 2 specifies a system using finite-
state machines to represent major state changes with
each transition of the system and context variables to
represent actions attached to each transition. There exist
two languages which are based on EFSM: Specification
and Description Language (SDL) of CCITT 23 and Estelle of
ISO 12.

In general, the specifications in the EFSM model may
contain:

• major state lists or sets in FROM clauses,
• local procedures and functions which can be called

anywhere from the transitions (PROVIDED clauses or
the actions),

• statements changing the control of execution such as
IF and CASE or loop statements (such as WHILE and

vol 13 no 2 march 1990 87

FOR) which can be included in the actions and/or in
local procedures/functions,

• statements for dynamic module creation/release e.g.,
connect/disconnect and attach/detach clauses in
Estelle,

• multiple modules with channels interconnecting them
for inter-module communication. These channels are
double queues in Estelle and single queues in SDL.

Symbolic execution

Symbolic execution is a technique in which a program is
executed over symbols rather than actual values 1°. It has
been used to statically analyse sequential programs as
well as in automated test data selection. The result is the
output in symbolic form along with path predicates of the
path that generates this output•

Symbolic execution can also be used to dynamically
analyse the program behaviour for the verification
purposes 9. It has been used for protocol verification in
Reference 7, in which a proof tree is built by symbolically
executing various processes specified as sequential
programs. The proof is completed with respect to the
assertions added to various points in the programs.

In order to apply the results of the previous section to
the modular specifications in the EFSM model, it is
desirable to have the specification in a form that clearly
identifies the execution paths that generate outputs• It
will be shown that it is possible to transform (using a form
of static symbolic execution) a given specification into a
normal form where transitions contain single paths• Such a
specification is called a normal form specification
containing normal form transitions (NFT) 19' 22.

The process of obtaining a normal form specification is
performed by a set of basic transformations which are
explained below• The example specification used is the
simplified Class 2 transport specification in Reference 4.
This specification written in Estelle is structured in two
modules called AP (Abstract Protocol) and Map (Mapping).
FSM representation of the AP module is given in Figure 4.
The FSM representation of the Map machine has a single
state (open), but as far as symbolic execution is concerned
it is more complex than the AP module due to the use of
several for and while loops• This specification will be
referred to in the following as TP2 specification.

Basic transformations can be automated 1 and may
detect various syntactic and semantic errors in the
specification since syntactic and semantic checks must be
done to ensure a correct specification. The resulting
normal form specification facilitates test sequence
generation 21. It will be shown later in this section that the
same technique can be used to analyse modular
specifications•

Basic transformations

Major state lists/sets in FROM clauses such as:

[AKWAIT, OPEN, OPEN_WFEA]

are used to specify multiple initial states for transitions in
the EFSM. Therefore these lists/sets can easily be
eliminated by generating one N FT corresponding to each
possible state value (state values of AKWAIT, OPEN and
OPEN~WFEA in the above example)•

IF and CASE statements are removed by generating an
NFT for each path they define. Symbolic execution
should be applied to the assignment statements in cases
where conditional statements occur in places other than
the first statement and their condition is on variables
assigned before the conditional statements in the same
transition. Such a case occurs for example in the transition
(extracted from the TP2 specification):

WHEN Map.transfer
FROM open TO same
PROVIDED PDU.kind = AK

var new__credit:pos_integer;
BEGIN

new__credit:= credit~value
+ expected_send__sequence - - TSseq;
if new__credit > = S_credit
then S__credit:= new__credit
else (*error*)

END;

which, when symbolically executed transforms into the
following two normal form transitions:

WHEN Map.transfer
from open to same
PROVIDED PDU.kind = AK and (credit__value
+ expected__send~equence --TSseq > = S__credit)
1 :BEGIN

S_credit: = credit~value
+ expected__send_sequence - - TSseq;

END;
WHEN Map.transfer
from open to same
PROVIDED PDU.kind = AK and (credit~value
+ expected_send_sequence - - TSseq < S_credit)
2:BEGIN
(*error*)
END;

The loop statements are eliminated by repeating the
body of the loop for even/index variable value. As an
example, the FOR statement:

for kind := CR to AK do PDU__buffer[kind].
is last PDU:=false;

generates, with the enumeration of all possible values for
the variable Kind:

PDU__buffer [CR] :is last~PDU: =false;
PDU_buffer[CC].is_last__PDU: = false;

PDU__buffer [AK].is last~PDU: =false;

In cases where exhaustive enumeration is~ not possible, a
limited number (usually three) executions of the loop
body is considered. For example, the statement:

ref := 1;
while ref in active__refs do ref := ref + 1;

where active__refs is of type set of integers, could be
transformed to:

ref := 1; for active__refs = ¢
ref := 2; for active r e f s= { l }
ref := 3; for active__refs = [1, 2}.

Local procedure/function calls are eliminated by

88 computer communications

symbolically executing the local procedure/function
body. Local variables of the procedures/functions are
made global. More details on the treatment of parameters
in procedure/function call elimination can be found in
Reference 1.

The basic transformations described have been
implemented on a workstation. The resulting system
takes an Estelle specification as input, does lexical and
semantic analysis on the specification. Only the correct
specifications are subjected to the transformations. The
transformations part of the system has been implemented
in Prolog 16.

Analysing modular specifications in EFSM

Dynamic behaviour of different modules of a specification
in EFSM can be analysed using limited reachability
analysis explained above. The analysis looks for possible
problems such as deadlocks, unspecified receptions,
blocking receptions, tempo-blockings, etc. It is assumed
that the specification is transformed into a normal form.
The same steps are applied to the N FTs as in the algorithm
given in the Appendix to find the combined transitions.

Modified algorithm

In Step 1, the spontaneous NFTs and the NFTs that
consume input from external channels are considered. If
any of these NFTs produce an output to the internal
channel (called combiner NFT) it is combined with the
NFT which consumes this output (called combinee NFT).
Combining two NFTs is done as follows.

First the combinee NFT is processed by symbolic
replacements for parameter values from the output
statement of the combiner NFT in the PROVIDED clause
and possibly in the action. Then the combined NFT is
formed from the modified combinee NFT and the
combiner NFT.

FROM and TO clauses are processed as in the
algorithm of the Appendix. The PROVIDED clause of the
combinee NFT is added in conjunction to the PROVIDED
clause of the combiner NFT. The action of the combinee
NFT replaces the output statement in the action part of
the combiner NFT.

The processing in Steps 2 and 3 is essentially the same
as in the algorithm of the Appendix with N FT combination
as explained above. Since the combined transitions
access to the context variables of the individual modules,
these variables are made global to the combined module.

This modified algorithm has been implemented on a
workstation. The program takes a transformed specifi-
cation containing two interconnecting modules and
obtains an output specification with these modules
combined. It is also written in Prolog 16. The resulting
system is being used as part of a test generation system
based a methodology which takes single module specifi-
cations as input 2°.

Example

As an example, the TP2 specification is considered, and it
is shown how the modified algorithm applies to it.
Consider the following transition of the AP module:

when TS.TCONreq
from closed to w a i t f o L C C
begin

options:= proposed_options;
output Map.transfer(CR~PD U (to T__address,
options, R__credit));

end;

where C L P D U is a local function defined as:

function CLPDU(to_adr :TAddrType, o:OptType,
c:Seq N umType):TPDUandCtrlln f;
var PDU: TPDUandCtrllnf;
begin with PDU do

begin kind := CR;
peer__address := to__adr;
options i n d : = o ;
credit__value : = c;
order := first

end;
CR__PDU := PDU;
end;

After the CR__PDU is symbolically replaced:

when TS.TCONreq
from closed to w a i t ~ f o L C C
begin

options := proposed__options;
PDU.kind := CR;
PDU.peeLaddress := to_T_address;
PDU.options ind := options;
PDU.credit value := R__credit;
PDU.order := first;
output map.transfer(PDU);

end;

The output statement is removed in Step 1 by combining
it with the transition of the Map module:

when AP.transfer
begin

TC[T__suf, EP__id]. PDU__buffer[PDU.CR] := PDU;
TC[T suf,EP id]. PDU buffer[PDU.CR]
.full := true;

end;

yielding:

when TS.TCONreq
from (closed, idle) to (w a i t f o r ~ C C , idle)
begin

options : = proposed_options;
PDU.kind := CR;
. . . (*same as above*)
TC[T_suf,EP_id]. PDU__buffer[PDU.CR] := PDU;
TC[T suf,EP id].PDU__buffer[PDU.CR]
.full := true;

end;

After the modules are combined, control and data flow
graphs of the resulting specification can be obtained if
there are no errors detected. For our example protocol
specification, the FSM model of the product ~EFSM (after
errors are corrected, see below) is similar to Figure 4, since
the map module has a single major state, therefore this
graph is not shown to save space.

vol 13 no 2 march 1990 89

Errors resulting from intermodule communication

Limited teachability analysis gives rise to detecting various
problems in intermodule communication, thereby in the
design of entity (such as the protocol/service) specifi-
cations. These problems can be classified as deadlocks,
unspecified receptions and channel overflows. These
problems are analysed by giving examples from an earlier
version of the TP2 specification.

Deadlock arises when the channel is empty and either
of the modules is unable to progress due to major and
context state values, i.e. none of the transitions can be
fired. In TP2 such a deadlock is detected when the AP
module goes to 'closing' state after receiving a TDISreq
from TS channel in 'wai t~for_TCONresp' state and
transfers a DR PDU to the 'map' module (see Figure 4) and
the 'is last~PDU' parameter is mistakenly set to false.
The 'map' module in turn sends a NDATAreq to the NS
channel instead of a 'terminated' output to the internal
channel (since 'is_last__PDU' is set to false). The result is
a deadlock since the AP module will indefinitely wait for
'terminated' signal to arrive in the internal channel.

Unspecified reception occurs when one of the modules
places an input to the channel for which the other channel
has no internal transition to consume. This case can also
occur for external channels, i.e. an input primitive arriving
in an unexpected state is usually left unspecified. On the
other hand, there are transitions that must exist in the
specification. If they are somehow forgotten, the result is
unspecified receptions. In TP2, limited reachability
detected unspecified reception errors in two cases: The
AP module in 'wait~for__CC' state goes to 'waiL__for_DC'
upon reception of TDISreq at the TS channel and
produces a DR PDU for 'map' module (see Figure 4) and
sets (mistakenly) the 'is_last__PDU' parameter to true.
This makes the 'map' module output a NDATAreq to the
NS channel and a 'terminated' to the internal channel.
The 'terminated' signal in 'wait__for__DC' state is an
unspecified reception for the AP module. The second
case occurs when the AP module goes to 'wait__for__DC'
state from 'open' state with TDISreq input at TS channel.

In case one of the modules can repeatedly fire a
transition which outputs an interaction to an external or
internal channel, there is channel overflow. Channel
overflows usually result from spontaneous transitions that
generate an output. These transitions usually reflect an
abstraction level in which the specifier is trying to capture
various possible implementation behaviours. An example
is the acknowledgement policy. The formal specification
accepts all possible policies by letting the protocol entity
to output an acknowledgement any time. A channel
overflow related to external channels occurs in the TP2
specification where the AP module is allowed to send
READY message on the TS channel indefinitely. Another
channel overflow related to internal channels exists
where the AP module sends AK PDU to the internal
channel indefinitely. In limited reachability analysis this
transition is combined with the corresponding reception
transition in the 'map' module which in turn enables a
transition that outputs a NDATAreq to the NS channel.
These interactions produce, in the product machine, a
spontaneous transition that outputs a NDATAreq to the
NS channel. Thus the limited reachability analysis converts
the channel overflows related to internal channels
channel overflows related to the external channels.

The above discussion abstracts out the parallel

behaviour description in Estelle by way of systemprocess
and systemactivity properties of the modules. This aspect
of Estelle is discussed in References 8 and 11.

CONCLUSIONS

A method was developed for self-consistency analysis of
complex protocol/service specifications. Static validation
based on symbolic execution reveals syntactic and some
semantic errors while dynamic analysis based on reach-
ability analysis reveals problems in inter-module com-
munication such as deadlocks, channel overflows,
unspecified receptions, etc. while the translator of the
specification language could only detect static errors. The
specification is first transformed into a form called normal
form specification by the basic transformations of symbolic
execution. Then modules are combined by a limited
reachability analysis in order to eliminate internal
communication and obtain a single module specification.
The resulting single module specification can be used for
test sequence generation as well as for further validations
of complicated system specifications.

There is a need for developing a tool that will assist the
specification developers by automatically doing most of
the analysis described in this paper. This need becomes
more evident in coping with volumunious specifications.
Parts of the automatic processing can also be incorporated
in the translators for the specification language. It would
also be interesting to investigate if a similar technique
would apply for self-consistency analysis of Lotos
specifications.

The paper assumes the existence of queues of internal
interactions that may contain a maximum of one message.
Further theoretical investigations are required to extend
our technique to the case where internal queues may
have an arbitrarily large number of messages.

ACKNOWLEDGEMENTS

The authors are grateful to Rick To of McGill University for
implementing the limited reachability algorithm. This
research was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

1 Barbeau, M and Sarikaya, B 'A computer-aided
design tool for protocol test design' Proc. INFOCOM
"88 (March 1988) pp 1 D.3.1-10

2 Bochmann, G v and Gecsei, J 'A unified method for
the specification and verification of protocols' Proc.
IFIP 77 (1977) pp 229-234

3 Bochmann, G v 'Finite state description of communi-
cation protocols' Compuf- Netw. Vol 2 (1978)
pp 361-372

4 Bochmann, G v 'Specifications of a simplified
transport protocol using different formal description
techniques' Comput. Netw. ISDN SysL

5 Bochmann, G v 'Usage of protocol development
tools: the results of a survey' Proc. 7th IFIP Syrup. on
Protocols North-Holland, The Netherlands (May
1987) pp 139-161

90 computer communications

6 Bochmann, G v and Vaucher, J 'Adding performance
aspects to specification languages' Proc. 8 th IFIP
Syrup. on Pro toco ls North-Holland, The Netherlands
(June 1988) pp 19-31

7 Brand, D and Joyner, W H 'Verification of protocols
using symbolic execution' C o m p u L Netw. Vol 2
(1978) pp 351-360

8 Budkowski, S and Dembinsky, P 'An introduction to
Estelle: a specification language for distributed
systems' C o m p u L Netw. ISDN SysL Vol 14 No 1
(1987) pp 3-23

9 Cheatham, T E, Holloway, G H and Townley, J A
'Symbolic evaluation and the analysis of programs'
IEEE Trans. Softw. Eng. Vol SE-5 No 4 (July 1979)
pp 402-417
Clarke, L A and Richardson, D J 'Symbolic evaluation
methods for program analysis' in Muchnick, S S and
Iones, N D (Eds) Program F low Analysis Prentice Hall,
USA (1981)

11 Courtiat, J P 'Estelle*: a powerful dialect of Estelle for
OSI protocol description' Proc. 8th Symp. on Protocols
North-Holland, The Netherlands (1988) pp 171-186

12 'Estelle: A FDT based on an extended state transition
model' ISO TC97/SC16/WG1, IS 9074 (November
1988)

13 Gouda, M and Yu, Y T 'Maximal progress state
exploration' Proc. S I G C O M M '83 Austin, Texas
(March 1983) pp 68-73

14 Finkel, A and Rosier, L 'A survey on FIFO nets'
Technical Report Univ. de Montreal (October 1987)

15 'Lotos: A FDT based on the temporal ordering of
-observational behaviour' ISO TC 97/SC 16/WG1 IS
8807 (1988)

16 Koukoulidis, V 'Full implementation of a test design
methodology for protocol testing' MSc Thesis
Concordia Univ. (March 1989)

17. Merl in, P and Bochmann, G V 'On the construction
of submodule specification and communication
protocols' A C M TOPLAS Vol 5 No 1 (January 1983)
pp 1-25

18 Rubin, I and West, C H 'An improved protocol
validation technique' C o m p u L Netw. Vol 6 (1982)
pp 65-73

19 Sarikaya, B 'Test design for computer network
protocols' PhD Thesis, McGill University (March
1984)

20 Sarikaya, B, Barbeau, M, Eswara, S and Koukoulidis,
V 'A formal description based test generation tool'
Technica l Report. Conco rd i a Univers i ty (July 1988)

21 Sarikaya, B, Bochmann, G v and Cerny, E 'A test
design methodology for protocol testing' IEEE Trans.
Softw. Eng. (May 1987) pp 710-721

22 Sarikaya, B and Bochmann, G v 'Obtaining normal
form specifications for protocols' Proc. C O M N E T '85
Budapest, Hungary (October 1985) pp 601-612

23 'Specification and description language (SDL)--
CCITT Recommendation Z100 Geneva, Switzerland
(October 1987)

24 Zafiropoulo, P, West, C H, Rudin, H and Cowan,
D D 'Towards analyzing and synthesizing protocols'
IEEE Trans. C o m m . Vol COM-28 No 4 (April 1980)
pp 651-661

25 Zhao, I R and Bochmann, G v 'Reduced reachability
analysis Of communication protocols: a new approach'
Proc. 6th IFIP W o r k s h o p on Protoco ls North-Holland,
The Netherlands (June 1986) pp 243-254

10

Behcet Sarikaya received a BSEE
degree from the Middle East
Technical University (METU), Ankara,
Turkey in 1973, a MS degree in
Computer Science from METU in
1976, and a PhD degree in Computer
Science from McGill University,
Montreal, Canada in 1984. He was an
assistant professor at the Universit~
de Sherbrooke, Sherbrooke, Canada.
He is presently an Assistant Professor
in the Department of Electrical and

Computer Engineering, Concordia University, Montreal, Canada. His
current research interests lie in communication protocol specification
and testing, and formal specification of communication systems. Dr
Sarikaya is a member of the IEEE Computer Society and the Association
for Computing Machinery.

Gregorv Bochmann received a
Diploma degree in Physics from the
University of Munich, Munich, West
Germany, in 1968 and a PhD degree
from McGill University, Montreal,
PQ, Canada, in 1971. He has worked
in the areas of programming
languages, compiler design, com-
munication protocols, and software
engineering and has published many
papers in these areas. He is currently
a Professor in the D?~partement

d'lnformatique et de Recherche Op~rationelle, Universit~ de
Montreal, Montreal. His present work is aimed at design models for
communication protocols and distributed systems. He has been
actively involved in the standardization of formal description
techniques for OSI. From 1977-78 he was a Visiting Professor at the
Ecole Polytechnique Federale, Lausanne, Switzerland, followed by a
similar position in the Computer Systems Laboratory, Stanford
University from 1979-80. The period 1986-87 saw Professor
Bochmann take up the post of Visiting Researcher at Siemens, Munich.

APPENDIX: AN ALGORITHM FOR LIMITED
R EACHABI LITY ANALYSIS

I npuL Component FSMs, FSMI and FSM2; EIPL (external
interaction point list), IIPL (internal interaction point list).
Assume the following functions: input (Ti) returns null for
a spontaneous Ti otherwise to the result returned we
apply the functions ip and int to get the interaction point
and the interaction, respectively; output (Ti) returns the
next output to which the functions ip and int apply the
same way as in input (Ti). The output function returns null
when there is no more output left. Similarly, the functions
to (Ti) and from (Ti) return the state values.
O u t p u L Combined FSM, FSM12, or list of errors.

STEP 1.
For each transition Ti in FSM1 do
If (input(T/) = null) or (ip(input(Ti)) in EIPL) then
repeat

out1 = output(T/);
i foutl {~null then

if ip(out l) in IIPL then
begin

for each transition Tj in FSM2 do
if ip(input(Tj)) = ip(out l) then
begin
create a combined transition from Ti and Tj;
tag the combined transition if T i has any

Vol 13 no 2 march 1990 91

output to an internal interaction point
end

end
until out l = null;
For each transition Ti in FSM2 do
. . . similar processing as above . . .
For each tagged combined transition Tij do

repeat
out l = output(T/j);
i foutl ~}null then

if ip(out l) in IIPL then
begin

for each transition Tk in FSMI or FSM2 do
if (ip(input(Tk)) = ip(outl)) and (to(T/j) =
from (Tk)) then
begin

to(T/j) := to(Tk);
write output(Tk) to the output list of Tij

end
end
until out1 = null;

STEP 2.
For each transition Ti in FSM1 that has no input or
output with any internal interaction points do

for state1 in States(FSM2) do
begin

add Ti to the list of combined transitions to
be processed in Step 3 by pairing its from and
to states with state 1

end
For each transition Tk in FSM2 that has no input
or output with any internal interaction points do
. . . same as above . . .

STEP 3.
StateList := f;
For each combined transition Tij do
begin

StateList := StateList + from(T/j);
StateList := StateList + to(T/j)

end;
For each transition Ti output from Step 2 do

if the pair (from(T/), to (Ti)O in StateList then
output Ti to the list of combined transitions

else
eliminate Ti;

End of the Algorithm.

92 computer communications

