
Protocol Specification for OSI * 

167 

Gregor v. BOCHMANN 
D$partement dTnformatique et de recherche opdrationnelle, 
Universit~ de Montreal, Montrdal, Quebec, Canada H3C 3J7 

Abstract. The collection of Open Systems Interconnection 
(OSI) standards are intended to allow the connection of het- 
erogeneous computer systems for a variety of applications. In 
this context, the protocol specifications are of particular im- 
portance, since they represent the standards which are the 
basis for the implementation and testing of compatible OSI 
systems. This paper has been written as a tutorial on questions 
related to protocol specifications. It provides certain basic 
definitions related to protocol specifications and specification 
languages. Special attention is given to the specification for- 
malisms used for OSI protocol and service descriptions, includ- 
ing semi-formal languages such as state tables, ASN.1 and 
TTCN, and formal description techniques (FDTs) such as 
Estelle, LOTOS, and SDL. The presentation is placed within 
the context of the general protocol and software development 
life cycle. An outlook to available methods and tools for 
partially automating the activities during this cycle is given, 
and ongoing research directions are discussed. 

Keywords. Communication protocols, specifications, open 
systems interconnection, formal specifications, specification 
languages, protocol validation, conformance testing, protocol 
design, formal description techniques, protocol standards. 

Gregorv. Bochmmm (M'82-SM'85) re- 
calved the Diploma degree in Physics 
from the University of Munich, 
Munich, West Germany, in 1968 and 
the Ph.D. degree from MeGiU Univer- 
sity, Montreal, P.Q., Canada, in 1971. 

He has worked in the areas of pro- 
gramming languages, compiler design, 
communication protocols, and soft- 
ware engineering and has published 
many papers in these areas. He is cur- 
rently a Professor in the Drpartement 
d'Informatique et de Recherche 

Op&ation¢lle, Universit~ de Montreal, Montrral. His present 
work is aimed at design models for communication protocols 
and distributed systems. He has been actively involved in the 
standardization of formal description techniques for OSI. From 
1977 to 1978 he was a Visiting Professor at the Ecole Polytech- 
nique Federale, Lausanne, Switzerland. From 1979 to 1980 he 
was a Visiting Professor in the Computer Systems Laboratory. 
Stanford University, Stanford, CA. From 1986 to 1987 he was 
a Visiting Researcher at Siemens, Munich. 

* Work supported in part by the Natural Sciences and En- 
gineering Research Council of Canada. 

North-Holland 
Computer Networks and ISDN Systems 18 (1989/90) 167-184 

1. Overview 

1.1. Introduction 

The interworking between the different compo-  
nents of  a distr ibuted system is controlled by  the 
protocols used for the communica t ion  between the 
different system components .  These components  
must  be compat ible  with one another,  that  is, 
satisfy the defined communica t ion  protocols.  In 
order  to facilitate the implementa t ion of  compati-  
ble system components ,  it is impor tant  to have a 
precise definit ion of  the communica t ion  protocol  
to be used. The  protocol  specification is used for 
this purpose.  

A collection of  s tandards  of  communica t ion  
protocols  and services are being developed for 
Open  Systems In terconnect ion  (OSI) [53] which is 
intended to allow the interworking of  heteroge- 
neous compute r  systems for a variety of  applica- 
tions. In  this context,  the protocol  specifications 
are of  part icular  importance,  since they represent 
the s tandards which are the basis for the imple- 
menta t ion  and testing of  compat ible  OSI  systems. 
The s tandard  specifications are usually written in 
natural  language, augmented  with certain for- 
malisms. In  addition, formal description tech- 
niques have been developed for application to OSI  
(see Section 3) and have been used for the descrip- 
t ion of  certain OSI  protocols  and services. The 
formal  nature of  the specifications make it possi- 
ble to apply certain au tomated  tools during the 
protocol  development  life cycle. 

This paper  has been written as a tutorial on the 
questions related to protocol  specifications. This 
first section provides some definitions and addres- 
ses some general questions related to protocol  
specifications and specification languages. It  is 
impor tan t  to note that  specifications are not  on ly  
impor tan t  for communica t ion  protocols,  but  also 
in general for software and hardware develop- 
ment.  Therefore  the system development  life cycle 
is discussed in Section 2, first in general terms and 
then in the specific context  of  protocol  and service 
specifications. Section 3 gives an introduct ion to 
the various specification formalisms that  are used 
for OSI  protocol  and services. Section 4 provides 

0169-7552/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland) 



168 G. v. Bochmann / Protocol specification for OSI 

an overview of the kinds of tools that may be used 
for automating some of the activities of the proto- 
col development cycle, based on formal and semi- 
formal specifications. This is a very broad subject 
area which is covered in more detail in other 
publications. Section 5, finally, gives an outlook 
on ongoing research related to specification lan- 
guages and their use, and suggests certain areas 
which seem to be of particular importance to 
protocol specifications. 

1.2. What is to Be Specified? 

Communication protocols within a distributed 
system are usually organized in a hierarchy of 
several layers. As an example, Fig. 1 shows the 
7-layer OSI architecture [26]. In this context, 
specifications are required for the following ob- 
jects: 

(a) The communication service of a particular 
protocol layer. This is the behavior of the black 
box shown in Fig. 2, including local properties 
pertaining to a single service access point and 
global properties relating the interactions at differ- 
ent access points, 

(b) The protocol to be followed by the protocol 
entities of a given protocol layer. This is the 
required behavior for the protocol entity, repre- 
sented by the black box shown in Fig. 3, and 

(c) The interface through which the communi- 
cation service is provided to the user at a particu- 
lar service access point. 

Application 

Presentation 

Session 

Transport 

Network 

Data-link =IF 

Physical ~ ~ Physical 

Physical media 

Application 

Presentation 

Session 

Transport 

Network 

Data-link 

Fig. 1. Layered OSI protocol architecture. 

I 
...... ! ........ - ° - -  ........ ] ....... t 

Fig. 2. Communication service. 

The specifications for the communication 
services and protocols have a global relevance. 
The interface properties, on the other hand, could 
be different for different service access points; in 
each case, however, they must be consistent with 
the local properties included in the corresponding 
service specification. 

The primitive interactions between a protocol 
entity providing a service and a service user, at a 
high level of abstraction, are called service primi- 
tives [26]. They are invoked at the service access 
points between the user and the communication 
service. In the more detailed view of the protocol 
specification (see Fig. 3) the protocol entity plays 
the role of the communication service to be pro- 
vided; at the same time, it is the user of the 
communication service below. Each service primi- 
tive usually includes several parameters which are 
exchanged between the service user and the proto- 
col entity during the execution of the service 
primitive. Some of these parameters may represent 
user data which is transmitted by the communica- 
tion service to the remote user without interpreta- 

I 

I 
Fig. 3. Communication protocol entity. 



G. v. Bochmann /Protocol specification for OSI 169 

I I I I 
. . . . .  l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  "1 

P ,r 
I ° 

I 

I v 
I 
b 
b 

Fig. 4. Communication protocol entity: role of PDUs. 

tion. The interactions exchanged through the un- 
derlying communication service between the peer 
protocol entities are called protocol data units 
(PDUs). It is important to note that abstract prop- 
erties of a protocol entity are often described in 
terms of the exchange of PDUs with the peer 
entity and service primitives with the user. How- 
ever, the PDUs are not exchanged directly with 
the peer but by coding the PDUs and their param- 
eters in the user data exchanged through the un- 
derlying communication service. This is indicated 
in Fig. 4, were the upper part of the box repre- 
senting the protocol entity corresponds to its ab- 
stract properties, and the lower part to the map- 
ping of the PDUs to the service primitives of the 
communication service below. 

As an example, we consider in the following the 
OSI Transport layer. Figure 5 shows a system 
including two Transport entities providing the 
Transport service through the access points T1 
and T2, and communicating through the underly- 
ing Network service using the service access points 
N1 and N2, respectively. Figure 6, called a time 
sequence diagram, shows an example of possible 
exchanges of Transport service primitives and 
Transport PDUs. 

T21 r lL~  
Transport 

Entity Entity 

[- ] 
Fig. 5. Architecture of system providing the transport service. 

TCONreq 

T C ~  

DATA (SD.U) 

® Q 

,...~.°.°'''" 

@ @ 

TCQN~ 

~ r e s p  

"=~'~'(S D U) 

Fig. 6. Time sequence diagram showing an example sequence 
of interactions. 

Figure 6 is useful for providing an understand- 
ing of the basic exchanges leading to the establish- 
ment of a Transport connection between two users 
of the Transport service. The left side is called 
"initiator" and the right side "responder". The 
initiating user invokes a TCONreq (Transport 
connection request) service primitive and waits for 
a confirmation. The initiating Transport entity 
sends a CR PDU and waits for return of a CC 
PDU. After this exchange, the connection is 
established and data can be sent in both direc- 
tions. As shown in the figure, one "service data 
unit" (SDU) provided by the user may be frag- 
mented into several DT PDUs for transmission 
between the two protocol entities. 

1.3. Behavior Aspects to Be Specified 

The specification of a communication service, a 
protocol, or another system component should 
define all the relevant behavior aspects of the 
specified object, but nothing more. The other 
aspects should be left undefined, such that they 
could be chosen to fit particular implementation 
requirements. 

For the subsequent discussion, it seems useful 
to distinguish the following aspects of behavior 
(the term "interaction" stands for service primi- 
tives and PDUs): 

(a) Temporal ordering of interactions: This aspect 
defines the order in which the different interac- 
tions may be executed. This includes the distinc- 
tion between the different types of service primi- 



170 G. v. Bochmann /Protocol specification for OSI 

tives and PDUs, and the allowed temporal order- 
ing for these interactions. A distinction is also 
made whether the interaction is initiated by the 
protocol entity or "received" from its partner. 

(b) Range of possible values for interaction 
parameters: This is the range that these parame- 
ters of service primitives and PDUs may take. 

(c) Rules for interpreting and selecting values of 
interaction parameters: This aspect represents a 
refinement of aspect (b); it defines (i) for each 
interaction that may be initiated by the protocol 
entity, the allowed parameter values as a function 
of the interaction history of the entity, and (ii) for 
each interaction received, the significance of the 
received parameter values for the subsequent 
processing by the protocol entity. 

(d) Coding of PDUs: While aspect (c) defines 
possible parameter values for the exchanged 
PDUs, this aspect defines the format in which the 
PDUs and their parameters are coded for trans- 
mission through the underlying communication 
service. 

(e) Liveness properties: Liveness properties are 
defined in contrast to safeness properties [3]. The 
latter defines the rules that must be satisfied for 
all interactions that occur. In this sense, the aspects 
(a) through (d) are safeness properties. Liveness 
properties define that certain interactions will ac- 
tuaUy happen, usually in the sense that "some- 
thing useful will eventually happen" [43]. A simple 
example is the statement that an implementation 
of a transport protocol will not refuse all connec- 
tion requests. (Aspects (a) through (d) of the 
specification only state that an implementation 
may accept or refuse a connection request.) 

(f) Real-time properties: While liveness proper- 
ties state that certain interactions will actually 
happen (qualitative properties), real-time proper- 
ties provide quantitative measures. For communi- 
cation protocols and services, they are usually 
related to communication delay and attainable 
throughput. Other real-time properties are related 
to reliability, mean-time between failures and 
probabilities for refusing service requests. 

dable by humans. However, in many cases it is 
advantageous to define certain aspects of the 
specified behavior in a more formal manner. 

While specifications written in natural language 
are readily accessible to the human reader, they 
present the following disadvantages compared to 
specifications written in some formal language: 

(a) Natural language specifications often con- 
tain ambiguities and are difficult to check for 
completeness and consistency. 

(b) They are not helpful for the automation of 
the implementation or conformance testing 
processes, because they cannot be processed by 
automated tools. A further discussion of these 
issues is given in Sections 2 and 4. 

Many different formal specification languages 
have been developed for various purposes, and 
many of them have been applied to the descrip- 
tion of distributed systems and communication 
protocols. The most important approaches and 
their suitability for the different behavior aspects 
defined above can be summarized as follows: 

(1) finite state machines (aspect (a)), 
(2) formal grammars (aspect (a)), 
(3) Petri nets (aspect (a)), 
(4) algebraic calculi, e.g. CCS (aspect (a)), 
(5) high level programming languages (aspects 

(a), (b) and (c)), 
(6) abstract data types (aspects (b) and (c)), 
(7) temporal logic (aspects (a) and (e)). 
Various extensions of the approaches (1) 

through (4) have been defined by combining them 
with programming language or abstract data type 
approaches for the description of parameter values 
(aspects (b) and (c)). Various extensions have also 
been developed for handling real-time aspects. 
The aspect of PDU coding is not addressed di- 
rectly by any of the methods, except by ASN.1 
(see Section 3.1.3). However, it can be expressed 
by most methods, though often in a very clumsy 
manner. 

Section 3 contains a more detailed discussion of 
the specification languages used for OSI com- 
munication services and protocols. 

1.4. Specification Languages 1.5. Historical Perspective 

An important issue related to "specification" is 
the question in which language a specification is 
written. Most specifications are written in natural 
language, since this language is easily understan- 

The principle of layered protocol architectures 
was clearly stated in the work on the French 
Cyclade network in the early seventies [45]. This 
also lead to the recognition of the importance of 



G. o. Bochmann / Protocol specification for OS1 171 

service specifications (see for instance [58]). Most 
of the formal specification approaches mentioned 
above are much older. Since the mid seventies, 
they have been applied in various research pro- 
jects to the specification of communication proto- 
cols and their validation, implementation or test- 
ing (for an early review, see [13]). 

With the beginning work on the standardiza- 
tion for OSI at the end of the seventies, some 
people recognized that formal specifications could 
be useful in the development of OSI standards, 
since the specifications of protocol standards 
should be unambiguous and are used by many 
people for the implementation and testing of pro- 
tocol implementations. Special groups discussing 
"formal description techniques" (FDT) for appli- 
cation to OSI were formed within ISO and CCITT 
in 1980 [47,57]. These groups developed three 
specification languages, EsteUe, LOTOS and SDL, 
which are further discussed in Section 3. Some 
trial specifications of OSI protocols using Estelle 
and LOTOS were also developed within ISO. The 
present version of SDL, developed within CCITT, 
is based on a version already defined in 1980 
(without support for formally describing parame- 
ter values) which has been used for the description 
of switching systems in certain CCITT recom- 
mendations. 

'nf°rre~r f :n :~° :a l  L 

functional 
specification 

' \ ~ ¢  test  c a s e s  

s:e~ite~t.on r \ / 

+ 
implementation ~ 

cede iC 
=5. 

(a) creation of functional specification 
(b) creation of detailed specification 
(c) cre~on of implementation code 
(d) validation of functioncl specification 
(e) valida~on of detailed specification 
(f) validation of implementation code by informal walk-throughs 

and debugging tests 
(g) design of test cases 
(h) validation of implementation code through formal testing procedures 

Notation: I I design/implementation document 

design/implementation activity 

A ]~ B information of (,6,) is used for activity (B) 

B ~ A activity (B) creates or modifies document (B) 

Fig. 7. Software development activities. 

2. The System Development Life Cycle 

2.1. System Development Life Cycle in General 

Software development is usually supported by a 
methodology which is a systematic procedure that 
can be followed to produce the required software 
product (see for instance [23]). A methodology can 
be characterized in several ways: major types of 
activities that must be performed, fundamental 
concepts, and techniques/tools utilized with the 
methodology. Usually, the following phases of de- 
velopment are foreseen: 
- requirement analysis: definition of the problem 

to be solved and development of the functional 
specification, 

- design phase: development of a detailed specifi- 
cation, 

- system implementation, and 
- system maintenance. 

During the requirement analysis, the functional 
specification of the system is created from an 
informal description of the system, which is given 
in plain text, possibly augmented by diagrams or 
flowcharts. As shown in Fig. 7, this phase also 
includes a validation activity which has the objec- 
tive of ensuring that the functional specification 
corresponds to the requirements, and that the 
specifications are internally consistent. This vali- 
dation activity is very important, since errors in 
the specifications are very expensive to eliminate 
if they are found during the later phases of the 
system life-cycle. 

The following phases represent step-wise refine- 
ments of the specifications until the system imple- 
mentation is reached. Usually, there is at least one 
intermediate, more detailed system description, 
called "detailed specification", as shown in Fig. 7. 
Each of these more detailed descriptions must be 
validated in respect to the more abstract descrip- 
tion. The validation of the implementation code is 
mainly performed through testing. In addition to 



172 G. v. Bochmann / Protocol specification for OSI 

informally applied debugging tests performed by 
the implementation team, larger software develop- 
ment projects usually involve the development of 
test cases from the specifications and the applica- 
tion of these test cases to the implementation by a 
separate team of people. 

It is important to note that each validation 
activity may lead to some update of the more 
abstract specification which serves as a reference, 
since errors in the latter may be detected. Also 
during the system maintenance phase, which cor- 
responds to the usage of the system, errors are 
detected occasionally and must be corrected. In 
addition, after longer periods of usage, the re- 
quirements for the systems may change. This may 
lead to a revision of the whole system, which 
would be performed through separate phases of 
analysis of the changed requirements, changes to 
the design, and implementation. 

2.2. The Use of Formal Specifications 

The role of the specifications goes far beyond a 
particular development activity. As shown in Fig. 
7, the functional and detailed specifications are 
used in most development activities during the 
system development life-cycle. Therefore the de- 
scription techniques and languages used for these 
specifications also have a strong impact on the 
system development life-cycle. The use of formal 
specification languages makes it possible to par- 
tially automate some of the activities in the devel- 
opment cycle. 

The following paragraphs indicate how the dif- 
ferent activities can profit from the use of formal 
specifications. These approaches are quite general 
in nature and can be applied outside the protocol 
area. A more detailed discussion in the context of 
OSI protocols is given in Section 4. 

(1) Specification validation: In this paper, the 
term "validation" is used for any activity which 
serves for obtaining a valid specification or imple- 
mentation, that is, a specification or implementa- 
tion which satisfies its more abstract requirements 
and does not contain any internal errors or incon- 
sistancies. It includes approaches through testing 
and verification. For the validation of specifica- 
tions through testing, the approaches described 
under points (3) and (4) below can be applied if 
the specification is executable, at least in a simu- 
lated mode. Through the testing approach, unfor- 

tunately, one is never sure whether all errors have 
been detected. On the contrary, validation through 
verification implies the consideration of all possi- 
ble execution paths. Depending on the language 
used for the specification, various tools exist for 
automating, at least partially, the verification pro- 
cess (see also [44]). 

(2) Step-wise refinement of specifications and 
implementations: Implementation-oriented speci- 
fications may be developed from the original sys- 
tem specification, using the same language. The 
refined specification may be used for semi-auto- 
mated code generation. (See Section 4.3 or [52] for 
more details). 

(3) Test case selection: Partly automated meth- 
ods exist for the selection of test cases based on 
the formal specification of the system to be tested 
(see Section 4.4). 

(4) Test result analysis: The results of tests 
performed on the implementation must be 
analysed and compared with the specification of 
the system, or the implementation-oriented speci- 
fication (if implementation-dependent characteris- 
tics are tested). In the case of formal specifica- 
tions, this comparison can be largely automated 
(see Section 4.5). 

2.3. The Role of Service and Protocol Specifications 

In the case of communication system develop- 
ment, there is an additional important aspect to be 
considered: At the level of detail where the com- 
munication between different systems is consid- 
ered, two kinds of specifications are of prime 
importance, namely the communication service 
and protocol specifications. As shown in Fig. 2, 
the specification of the service of layer N describes 
the communication service provided to the user 
entities residing in the layer (N + 1). The protocol 
specification for layer N describes certain rules for 
the behavior of each protocol entity in layer N. 
The protocol specification should define those 
aspects of the entities' behavior which are required 
for compatible communication among the differ- 
ent communicating systems and the provision of 
the defined communication service. Additional 
aspects of their behavior are usually left unspeci- 
fied in the protocol specification; they can be 
chosen differently in each system implementing 
the protocol. 



G. v. Bochmann / Protocol specification for OSI 173 

In the context of the software fife-cycle dis- 
cussed in Section 2.1, the service and protocol 
specifications can both be considered as func- 
tional specifications; they define the behavior of 
different parts of the overall system. The protocol 
specification defines the behavior of a protocol 
entity, which is located in each communicating 
system component. It is therefore of prime interest 
for any implementation project. The protocol 
specification is the most abstract specification 
from which the implementation proceeds, usually 
through more detailed specifications taking into 
account various aspects of the particular system to 
be implemented, such as performance objectives 
and interface requirements. It is also the reference 
for the selection of test cases for conformance 
testing and the analysis of test results. 

The corresponding service specification is im- 
portant for the following reasons: 

(a) Abstract specification of the interface at a 
service access point: The service specification for 
layer N includes the definition of the service 
primitives, which are the basis for the protocol 
specifications for layers N and ( N +  1). It also 
includes the local rules (for a given service access 
point) about the temporal order of their execution 
and the allowed parameter values. The service 
primitives and these local rules provide an ab- 
stract specification of the local interface between 
the layers N and ( N +  1), and is therefore the 
basis for the design of the real layer interfaces 
within the systems implementing the protocol 
hierarchy. 

(b) Validation of the protocol specifications: The 
service specifications for layers N and ( N - 1 )  
serve as a reference for the validation of the 
protocol specification for layer N. As shown in 
Fig. 8, the protocol specification may be consid- 
ered as a refinement of the service specification, 
exhibiting the internal structure shown in Fig. 
8(b). As shown in the figure, one can distinguish 
four concerns for validation: 

(1) Verifying that the use of the underlying 
communication service by the protocol entity is 
consistent with the local rules of the underlying 
service specification for layer ( N -  1). 

(2) Verifying that the interactions specified 
for the protocol entity with its user are con- 
sistent with the local rules of the service specifi- 
cation for layer N. 

(3) Verifying that the protocol system con- 

I 

IUT (level n) ( ~  IUT (level n) 

" . . . . .  Level (n-l) J 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(a) Service specifica~on. 
Co) C.,orre~orcllng system specification inCuding proZ¢ol entrdes and 

underlying service. 

(1) C o n ~  of protocol with underlying slm4¢e. 
(2) p r o ~  ~ (C#mr~ p r o p ~ ) .  

Fig. 8. Different aspects of protocol validation. 

(a) 

(b) 

sisting of the protocol entities communicating 
through the underlying communication service 
(as shown in Fig. 8(b)) satisfies the usual "nice" 
properties, such as absence of deadlocks, ab- 
sence of non-specified receptions or undesired 
blocking, and absence of loops without pro- 
gress. This is sometimes called the validation of 
"general properties" [13]. 

(4) Verifying that the global rules of the layer 
N service specification (relating the execution 
of service primitives at the different service 
access points) are satisfied by the protocol sys- 
tem. 
(c) Development of protocol conversion strate- 

gies: The service specifications of two different 
distributed systems using different protocols for 
similar functions are the natural basis for desig- 
ning interworking strategies between the incom- 
patible systems. If similar communication services 
can be identified within the two systems, it is 
possible to design a communication gateway pro- 
viding a protocol conversion function (see [6,24] 
for more detail). If the services are compatible, the 
design of the protocol converter can be derived 
from the two protocol specifications [7]. 



174 G. v. Bochmann /Protocol specification for OSI 

3. Specification Languages for OSI 3.1. Informal and Semi-formal Methods 

The standardization of OSI involves the defini- 
tion of a large number of communication proto- 
cols and services. The corresponding ISO stan- 
dards and CCITT recommendations are mainly 
written in natural language, sometimes comple- 
mented with formal and/or  semi-formal elements. 
This section gives an overview of different specifi- 
cation languages which are being used in the OSI 
standardization context. 

We use in the following the distinction between 
informal, semi-formal and formal specification 
techniques. This distinction is somehow arbitrary. 
In Section 3.2, we discuss the so-called "formal 
description techniques" (FDTs) which were devel- 
oped for the description of OSI communication 
protocols and services. These languages have a 
well-defined syntax, and for each specification 
satisfying the syntax rules, the language semantics 
defines, in a formal manner, the meaning of the 
specification. Several of the languages mentioned 
in Section 1.4 also satisfy the criterion. Those 
techniques which have a precisely defined syntax, 
but no formally defined semantics are in the fol- 
lowing called "semi-formal". Some existing pro- 
gramming languages also belong to this class. 
Other techniques used within the context of OSI, 
finally, are only defined in an informal manner. 

Most OSI service and protocol specifications 
are written in natural language augmented with 
tables and other forms of organized information. 
The following notations are used in many cases. 

3.1.1. Service Primitives 
The primitive interactions between layers are 

called service primitives. Their names and parame- 
ters are defined in the service specifications. 
Service primitives are grouped into service ele- 
ments, as for example the TCON primitives for 
the establishment of a Transport connection. The 
different primitives within a group are dis- 
tinguished by name suffixes such as "request", 
"indication", "response" or "confirmation". Cer- 
tain general rules apply to the order in which these 
different primitives are executed by the initiating 
and responding protocol entities [27]. Sometimes 
such rules are described by time-sequence di- 
agrams, such as shown in Fig. 6. It is important to 
note that such diagrams define only certain exam- 
ples of sequences. This is not sufficient for a 
specification which should define all possible se- 
quences of interactions. 

3.1.2. State Tables 
The specification model of a state transition 

machine is often used for describing systems. In 

cc EDDT °r / /""-""----  \ Nco~ r~or  

( T C O N r e s n  )-....----.-----"~CgN~so 

CR 

Notation: 
/X means "output of X" 

Fig. 9. Partial state diagram for a single transport connection. 



w
e 

st
at

e 
W

FN
C

 
W

FC
C

 
W

BL
C

 

(c
la

ss
 2

 
O

PE
N

 

TC
O

N
re

sp
 

m
Tr

eq
 

',3
] 

O
PE

N
 

W
:X

re
q 

P
7:

H
] 

O
P

E
N

 
!N

C
O

co
~ 

C
R

 
W

FC
C

 
C

R
 

P
9:

op
en

 

C
C

 
P

8:
TC

O
N

co
nf

 
P

5:
(3

) 
O

PE
N

; 
N

D
IS

re
q 

P
6 

an
d 

P5
: 

C
LO

S
E

D
; 

TD
IS

in
d 

N
D

IS
re

q 
P7

: D
R

 
C

LO
S

E
D

; 
C

LO
SI

N
G

 
P

6 
an

d 
P7

: 
"lO

S
~d

 D
R

 
C

LO
SI

N
G

 
ED

 
D

oa
s 

n~
 E

xi
st

 in
 C

la
ss

 0
 (2

) 

IO
P

E
N

 
O

T 
I[~

E"
 

N
O

T
E

S
 

1 -
 A

n 
E

R
 "

I'
~

U
 

sh
al

l 
b

e 
se

n
t 

~ 
ce

rt
ai

n 
ca

se
s 

- 
se

e 
6.

6 
2-

 it
 re

ce
iv

ed
 i

t s
ha

it 
be

 p
ro

co
ss

ed
 a

s 
a 

pr
ot

oc
ol

 e
rr

or
 - 

se
e 

6.
22

. 
3-

 A
 C

R
 w

ifh
 d

as
s 

2 
ha

s 
be

en
 s

as
t a

nd
 a

 C
C

 d
as

s 
0 

is
 re

ce
iv

ed
. 

4-
 If

 D
C

 is
 n

ot
 a

va
ila

bl
e 

(i.
e.

 c
la

ss
 0

 o
nl

y 
im

pl
em

en
te

d)
 o

f S
R

C
-R

E
F 

is
 z

er
o.

 

C
LO

SI
N

G
 

(c
la

ss
 2

 
on

e, I 

Pg
cl

os
in

g 

W
FT

R
E

S
P

 

C
C

 
O

P
E

N
 

Pg
: 

W
FT

R
E

S
P

 

C
LO

S
E

D
 

P
O

:T
D

IS
in

d 
C

LO
S

E
D

; 
P

2:
N

C
O

N
re

q 
VW

N
C

; 
P

3:
C

R
 W

FC
C

; 
P

4:
W

FN
C

 

P
I:D

R
(1

) 
C

LO
S

E
D

 
N

O
T 

P
1:

 
TC

O
N

in
d 

W
'IT

tE
SP

 

D
R

 

C
LO

S
E

D
 

C
LO

S
E

D
 

C
LO

S
E

D
 

S
oe

ci
fic

 a
ct

io
ns

 fo
r d

a~
 

O
 a

nd
 ~

' 

N
A

M
E

 

[1
] 

[2
] 

[3
] 

[4
] 

[S
l 

D
E

S
C

R
IP

TI
O

N
 

If 
th

e 
ne

tw
or

k 
co

nn
ec

tio
n 

is
 n

ot
 u

se
d 

by
 a

n 
ot

he
r 

tm
ns

po
ll 

co
nn

ec
tio

n 
as

ld
gn

ed
 t

o 
it,

 it
 m

ay
 b

e 
di

sc
on

na
te

d 

S
ee

 6
.2

2 
(r

ec
ei

pt
 o

f a
n 

E
R

 T
P

D
U

) 

S
ee

 d
at

a 
tra

ns
fe

r W
oc

ed
ur

e 
of

 th
e 

da
is

 

S
ee

 e
xp

ed
ite

d 
da

ta
 tr

an
sf

er
 p

ro
ce

du
re

 o
f t

he
 d

as
s 

A
n 

N
-R

E
S

E
T 

re
sp

on
se

 h
as

 to
 b

e 
is

su
ed

 o
nc

e 
fo

r t
he

 n
et

w
or

k 
co

nn
ec

tio
n 

if 
th

e 
ne

tw
or

k 
co

nn
ec

tio
n 

ha
s 

no
t b

e~
 

re
le

as
ed

. 
In

 d
as

s 
0,

 a
n 

N
-D

IS
C

O
N

R
E

C
T 

re
qu

es
t 

ha
s 

to
 b

e 
is

su
ed

. 

• 
M

 

N
A

M
E

 

P
0 

P
I 

P
2 

!P
3 

P
4 

P
5 

P
6 

P
7 

P
8

 

P
9

 

D
E

S
C

R
IP

TI
O

N
 

T~
-,

O
N

N
E

C
T 

re
qu

ea
t 

u
n

~
 

U
na

cc
ep

ta
bl

e 
C

R
 "r

P
D

U
 

N
o 

N
et

w
or

k 
co

nn
ec

tio
n 

av
ai

la
bl

e 

N
et

w
or

k 
co

nn
oc

tio
n 

av
ai

la
bl

e 
an

d 
op

en
 

N
et

w
or

k 
co

nn
ec

tio
n 

av
ai

la
bl

e 
an

d 
op

en
 in

 p
ro

gr
es

s 

C
lu

s 
is

 c
kw

s 
0 

(c
le

as
 s

at
ec

te
d 

in
 C

C
) 

U
na

cc
ep

ta
bl

e 
C

C
 

C
la

ss
 is

 d
a~

 2
 

A
cc

ep
ta

bl
e 

C
C

 

C
le

ss
 4

 C
R

 

Fi
g.

 1
0.

 E
xt

ra
ct

 o
f 

st
at

e 
ta

bl
e 

fr
om

 t
ra

ns
po

rt
 p

ro
to

co
l 

st
an

da
rd

 (
cl

as
se

s 
0 

an
d 

2)
. 



176 G. v. Bochmann / Protocol specification for OSI 

this model, a component of the system is de- 
scribed by defining the possible states of the com- 
ponent and the state transitions the component 
will do in relation with interactions with other 
components in the system. The simplest such 
model is a finite state machine (FSM) for which 
the number of possible states and the number of 
different interactions (ignoring parameters) is 
finite. Various notations can be used to represent 
the transitions of a FSM, such as transition di- 
agrams, regular grammars, or transition tables. 
Figures 9 and 10 show such a diagram for a 
simplified Transport protocol and part of the state 
tables included in the OSI standard. The table 
also refers to certain predicates and actions which 

are listed in a separate table and defined infor- 
mally. 

3.1.3. ASN. 1 Notation for Interaction Parameters 
The ASN.1 notation [33] was originally devel- 

oped in conjunction with the CCITT recom- 
mendations of 1984 on message handling systems. 
It is a notation which allows the definition of data 
types, similar to the data type definitions available 
in programming languages such as Pascal or ADA. 
The notation includes a number of predefined 
data types, such as integers, reals, booleans, bit 
strings, octet strings and various kinds of char- 
acter strings. It also allows the definition of com- 
posed data types, such as groups of dements 

TRANSPORT-PDU DEFINITIONS ::- 

BEGIN 

TPDU ::- CHOICE { 
cr-pdu 
cc-pdu 
dr -pdu 
dc-pdu 
dt-pdu 
ed-pdu 
ak-pdu 
ea-pdu 
rJ-pdu 
er-pdu 

CR ::- SEQUENCE { 
code 
credit 
dest-ref 
source-ref 
class 
option 
var-part 
user-data 

) 

CR, 
CC, 
DR, 
DC, 
DT, 
ED, 
AK, 
EA, 
RJ, 
ER 

[0] CR-CODE, 
[1] BIT STRING, --only 4 bits 
[2] ADDRESS-TYPE DEFAULT {0000000000000000B}, 
[3] ADDRESS-TYPE, --2 octets indicating source address 
[4] CLASS-TYPE, 
[5] OPTION-TYPE, 
[6] VARIABLE-PART-TYPE OPTIONAL, 
[7] OTCET STRING DEFAULT {} 

--4 bits only 

VARIABLE-PART-TYPE ::- SET { 
tsap-id 
tpdu-size 
version-number 
security 
checksum 
add-opt-select 
alt-class 
ack-time 
throughput 
residual-error 
priority 
transit-delay 
reassign-time 

} 

END -- of TP_PDU definitions -- 

[0] OCTET STRING OPTIONAL 
[1] OCTET STRING OPTIONAL 
[2] OCTET STRING OPTIONAL 
[3] OCTET STRING OPTIONAL 
[4] OCTET STRING OPTIONAL 
[5] OCTET STRING OPTIONAL 
[6] OCTET STRING OPTIONAL 
[7] OCTET STRING OPTIONAL 
[8] OCTET STRING OPTIONAL 
[9] OCTET STRING OPTIONAL 
[I0] OCTET STRING OPTIONAL 
[Ii] OCTET STRING OPTIONAL 
[12] OCTET STRING OPTIONAL 

Fig. 11. TPDUs expressed inASN. l (Note :Thi s  definition reflects the logical structure of the transport PDUs, but not the coding 
used bythe protocol.) 

-- Similar for other TPDUs 

CR-CODE ::- BIT STRING DEFAULT {1110B} --TPDU code for CR 
-- Similar for other TPDU-CODE. 

ADDRESS-TYPE ::- OCTET STRING --2 octets only 

CLASS-TYPE ::- INTEGER {class0 (0), class1 (1), class2 (2), 
class3 (3), class4 (4)} --only 4 bits 

OPTION-TYPE ::- BIT STRING {extended-format (2), explicit~flow-ctl (I)] 



G. v. Bochmann / Protocol specification for OSI 177 

(called SEQUENCE, corresponding to RECORD 
in Pascal), sequence of identical types (called SE- 
QUENCE OF), a type of alternatives (called 
CHOICE, corresponding to Pascal's variant re- 
cords), a TAG defining a code for distinguishing 
between different alternatives, and others. 

This notation therefore covers the specification 
aspect (b) mentioned in Section 1.3, i.e. the defini- 
tion of the range of possible values of parameters. 
It is mainly used for defining the range of values 
for the PDU parameters of OSI Application layer 
protocols. But it could also be used for describing 
the parameters of service primitives. As an exam- 
ple, Fig. 11 shows a possible definition of the data 
structure of Transport PDUs. 

The main reason for the success of ASN.1 as 
specification language is probably the fact that it 
is combined with a standard encoding scheme for 
PDUs [34] which has been adopted for OSI Appli- 
cation layer protocols. Based on the information 
contained in the ASN.1 definition of the PDU 
structure, this scheme completely determines the 
PDU encoding, and can be used for implementing 
the coding and decoding functions in a systematic 
manner (see also Section 4.3). 

ASN.1 also includes a macro definition facility 
which allows the definition of additional nota- 
tions. One such notation is for instance defined 
for specifying the parameter data types of remote 
operations [36] which are used for many Applica- 
tion layer protocols. 

3.1.4. TTCN Notation for Test Case Specification 
The TTCN (Tree Table Combined Notation) is 

relatively recent, and has been developed for the 
description of test cases for OS! conformance test 
suites [31]. As its name indicates, the language 
includes several different notations. The overall 
organization of the language is in terms of a 
collection of tables defining different aspects of a 
test, such as service primitives, PDUs, and their 
parameters, order of interactions, and constraints 
on parameter values. The interaction ordering is 
defined in terms of a conceptual tree where each 
branch represents a possible execution order. In 
addition to the tabular notation, a linear form of 
TTCN is being developed for the exchange of test 
cases in machine-readable form. The ASN.1 nota- 
tion can also be used for certain aspects of the test 
descriptions. 

TTCN is being used for the description of OSI 
test cases. In the opinion of the author, the lan- 
guage is not well structured and in many respects 
quite "ad hoc". The semantics of the language is 
defined informally without reference to other 
specification languages. In order to formally relate 
the defined test cases to the corresponding proto- 
col specification, a definition of the semantics in 
terms of one of the FDTs discussed in Section 3.2 
would be useful [50]. 

3.2. Formal Description Techniques 

In addition to the semi-formal methods dis- 
cussed above, CCITT and ISO have developed 
so-called Formal Description Techniques (FDTs) 
for the description of OSI protocols and services, 
namely Estelle [29], LOTOS [30] and SDL [17] . 
(For a tutorial introduction to these languages, see 
[16], [14] and [47], respectively.) Although these 
languages are specifically intended for the descrip- 
tion of OSI protocols and services, they have 
potentially a much broader scope of application. 
However, their effective use in the OSI area, so 
far, has been relatively slow. This may be partly 
explained by the competition between these three 
languages, which each have certain advantages, 
and by the difficulty many people have in learning 
a new language. 

3.2.1. Characterization of the Techniques 
In Estelle, a specification module is modelled 

by an extended FSM. The extensions concerning 
the aspects (b) and (c) of Section 1.3 are covered 
by type definitions, expressions and statements of 
the Pascal programming language. In addition, 
certain "Estelle statements" cover aspects related 
to the creation of the overall system structure 
consisting in general of a hierarchy of module 
instances. Communication between modules takes 
place through the interaction points of the mod- 
ules which have been interconnected by the parent 
module. Communication is asynchronous, that is, 
an output message is stored in an input queue of 
the receiving module before it is processed. 

SDL, which has the longest history, is also 
based on an extended FSM model. For the aspects 
(b) and (c) it uses the concept of abstract data 
types with the addition of a notation of program 
variables and data structures, similar to what is 
included in Estelle. However, the notation for the 



178 G. v. Bochmann / Protocol specification for OS! 

latter aspects is not related to Pascal, but to 
CHILL, the programming language recommended 
by CCITT. The communication is asynchronous 
and the destination process of an output message 
can be identified by various means, including pro- 
cess identifiers or channel names. 

LOTOS is based on an algebraic calculus for 
communicating systems (CCS [41]) which includes 
the concepts of finite state machines plus parallel 
processes which communicate through a ren- 
dezvous mechanism which allows the specification 
of rendezvous between two or more processes. 
Asynchronous communication can be modelled by 
introducing queues explicitly as data types. The 
interactions are associated with gates which can be 
passed as parameters to other processes participat- 
ing in the interactions. These gates play a role 
similar to the interaction points in Estelle. The 
aspects (b) and (c) are covered by an algebraic 
notation for abstract data types, called ACT ONE 
[21], which is quite powerful, but would benefit 
from the introduction of certain abbreviated nota- 
tions [9,28] for the description of common data 
structures. 

In contrast to the other FDTs, SDL was devel- 
oped, right from the beginning, with an orienta- 
tion towards a graphical representation. The lan- 
guage includes graphical elements for the FSM 
aspects of a process and the overall structure of a 
specification. The aspects (b) and (c) are only 
represented in the usual linear, program-like form. 
In addition, a completely program-like form is 
also defined called (SDL-PR) which is mainly 
used for the exchange of specifications between 
different SDL support systems. Presently, there is 
also a joint work item in ISO and CCITT for the 
development of a graphical representation of 
LOTOS. 

A comparative evaluation of the three FDTs is 
difficult to do. The following subjective state- 
ments address some of the issues: It seems that 
Estelle and SDL have the advantage of using 
well-known concepts of FSM and programming 
languages which make the initial understanding of 
the languages easier. The graphics aspects of SDL 
are also helpful in this respect. On the other hand, 
LOTOS has relatively few, but powerful language 
constructs which makes the learning of the com- 
plete language easier. LOTOS specifications often 
tend to be more abstract than specifications writ- 
ten in Estelle or SDL, which are often implemen- 

tation-oriented. The concepts in the latter lan- 
guages can be more directly related to typical 
implementation constructs. For the description of 
service access points, the rendezvous mechanism 
of LOTOS is better than the asynchronous mes- 
sage passing of Estelle and SDL, since the latter 
do not allow a complete specification without 
including implementation choices [12]. The 
LOTOS syntax seems to be more natural than the 
FSM-oriented syntax for the description of test 
cases. The formal definition of Estelle and LOTOS 
seem to be more readily usable for the construc- 
tion of tools than the formal definition of SDL 
(which is given as an annex of the Recommenta- 
tion). An attempt of a critical evaluation and 
comparison of the three languages can be found in 
[551. 

This discussion only covers specification meth- 
ods which are used by ISO and CCITT for the 
description of communication protocols and 
services. There are a number of other important 
specification methods and associated tools. Many 
tools are based on Petri nets and their extensions, 
or logic-based methods. Other languages are im- 
portant because of their application in large scale 
projects (e.g. FAPL [51]). 

3.2.2. Specification of OSI Concepts, Services and 
Protocols 

It is clear that a given system can be described, 
using the same language, in several different 
equivalent manners [59]. With three different 
FDTs, there are even more possibilities. In order 
to orient the development effort for formal OSI 
specifications and for providing a better basis for 
comparing the three FDTs, ISO and CCITT have 
jointly developed a document [32] which contains 
guidelines for the application of the three FDTs. 

This document includes in particular a discus- 
sion of how the different OSI concepts can be 
modelled in the Estelle, LOTOS, and SDL lan- 
guages. This includes concepts, such as service 
access point, connection end point, service primi- 
tives, protocol entities, multiplexing, concatena- 
tion and backpressure flow control. In a second 
part of the document, a number of examples are 
described in each of the FDTs. These examples 
a r e  

(a) The "deamon game", a simple self-con- 
tained system which can be taken as a lead-in to 
the more complex examples that follow. 



G. v. Bochmann /Protocol specification for OSI 179 

Table 1 
Formal specifications of OSI communication protocols and 
services 

This is a (necessarily incomplete) list of formal specifications 
which are intended to precisely reflect the requirements de- 
fined in the OSI standards. 

Link Layer 
LAP-D of ISDN (FSM aspects) in SDL: CCITT Rec- 

ommendation Q.931 
LAN Logical Link Control (IS 8802/2) in ADA: Annex of 

standard 
Idem, in LOTOS: ESPRIT project (see [22]) 

Network Layer 
OSI Network Service in LOTOS: ESPRIT project (see [22]) 
Idem, in Estelle: ESPRIT project (see [20]) 
X.25 Packet Level in SDL: [25] 
Connectionless Internet Protocol (IS 8473) in Estelle: Annex of 

standard 

Transport Layer 
Transport Service (ISO 8072) in Estelle: ESPRIT project (see 

t20]) 
Idem, in LOTOS: ESPRIT project (see ISO TC97/SC6/WG4 

N-138, see also [22]) 
Transport Protocol (ISO 8073), classes 2/4 in Estelle: ESPRIT 

project (see [20]) 
Idem, in Estelle: ISO TC97/SC6 N3576 
Idem, in LOTOS: ISO Technical Report ISO TC97/SC6/W64 

N-117 (see also [22]) 
Teletex Transport protocol (OSI class 0) in Estelle: ESPRIT 

project (see [20]) 

Session Layer 
Session Service (ISO 8326) in Estelle: ESPRIT project (see 

[201) 
Idem, in LOTOS: ISO Technical Report ISO-SC21 DTR-9571 

(see also [22]) 
Session Protocol (ISO 8327) in Estelle: ESPRIT project (see 

[201) 
Idem, in LOTOS: ISO Technical Report ISO-SC21 DTR-9572 

(see also [22]) 

Presentation Layer 
Presentation Service (ISO 8822) in ESTELLE: ESPRIT project 

(see [20]) 
Idem, in LOTOS: ESPRIT Project (see [22]) 
Presentation Protocol (ISO 8823) in Estelle: ESPRIT project 

(see [201) 
Idem, in LOTOS: ESPRIT Project (see [22]) 

Application Layer 
Virtual Terminal Protocol (IS 9041.2) in Estelle: [4] 
File Transfer, Access and Management (IS 8571) in Estelle: in 

the context of a conformance test system developed in 
Estelle [54] 

Idem, in Estelle: ESPRIT project (see [20]) 
Message Handling System (MHS) protocols in Estelle: in the 

context of a conformance test system developed in Estelle 
[371 

Transaction Processing(ISO/DP 10026-3) in Estelle: Annex of 
DP 

Idem, in LOTOS: ESPRIT Project (see [22]) 

(b) A sliding window protocol  which demon-  
strates flow control  and error recovery techniques 
present in m a n y  real protocols.  The relation with 
the underlying service is described. 

(c) The " A b r a c a d a b r a "  protocol  and service 
includes the well-known alternating-bit  protocol  
and demonstrates  in addit ion the features of  a 
connect ion-or iented communica t ion  service. 

(d) The Teletex Transpor t  protocol  (similar to 
the OSI  Transpor t  protocol  class 0) based on 
C C I T T  Recommenda t ion  T.70. 

These examples can be helpful for a better 
unders tanding of  these languages and for their 
comparison.  Unfor tunate ly ,  the specifications in 
the different languages do not  always describe the 
example at the same level of  detail. Another  com- 
parative example is given in [8] where an effort 
has been made  to present similar specifications in 
the different languages. 

In  addit ion to the tutorial specifications men- 
tioned above a number  of  formal specifications of  
OSI  protocols  and services have been developed 
with the purpose  of  precisely reflecting the natural  
language description given in the s tandard docu- 
ments  defining these protocols  and services. The 
s tandardizat ion communi ty  has stated that formal 
specifications of  s tandard  OSI  protocols  and 
services could be included in the s tandard docu- 
ments  as annexes, which in some cases may  be 
included without  being formally par t  of  the stan- 
dard, or  in other  cases could play the role of  the 
s tandard reference. 

Table 1 lists a number  of  presently available 
formal specifications of  OSI  protocols  and services, 
some of  which were developed within the stan- 
dardizat ion committees.  

4. Tools for Using Formal and Semi-formal Speci- 
fications 

While Section 2.1 gave an overview of  the role 
the specification plays during the system develop- 
ment  life cycle, this section gives an overview of  
the tools that  can be used for the different devel- 
opment  activities. A summary  is shown in Table 2. 
The interested reader may  find a more detailed 
survey about  techniques and existing tools in [5]. 

4.1. Creation o f  Specifications 

Specifications are writ ten in some form of natu- 
ral or formal language. Their creation cannot  be 



180 G. v. Bochmann / Protocol specification for OSI 

Table 2 
Automated tools and methods depending on description language 

Specification Specification Tools for the Tools for Tools for testing 
language used aspects handled validation of code creation 

(see Section 1 . 3 )  specifications 

Natural All Cross referencing Support packages - 
language (1) 
FSM (2) (a) Dynamic analysis: Creation of Trace analysis (FSM) 

- exhaustive (FSM) program skeleton test case selection 
- simulation (FSM) (FSM) 
Static analysis PDU creation 

and viewing 
trace analysis 
(coding only) 
Trace analysis 
(complete) 
test case selection 

ASN.1 (3) (b),(d) 

FDTs (4) (a),(b),(c) 

(De-)coding 
routines data 
structures 

Static analysis and Complete 
dynamic analysis: translation of 
- exhaustive specification into 
- simulation executable form 

Notes: The terms used are explained in Section 4. 
(1) Tools and methods available if specifications are informal. 
(2) Tools and methods available (in addition to case (1)) if state tables (state diagrams, or other equivalent FSM notation) are used to 

specify certains aspects of the protocol. The automated tools/methods apply only to the aspects covered by the FSM formalism. 
(3) Tools and methods available (in addition to case (1)) if the PDU structure is specified in ASN.1. 
(4) Tools and methods available (in addition to those for cases (2) and (3)) if the full protocol specification is written in an FDT, 

such as Estelle, LOTOS, SDL. (It is noted that many existing protocol specifications written in SDL only cover the FSM aspects 
formally, the other aspects being covered in an informal manner.) 

automated,  however, certain computer  based tools 
can be useful, such as text editors, spelling check- 
ers and cross-reference tools. For  the case that 
graphic representations are used, for example in 
the case of  SDL, specialized graphic editors are 
very useful. 

4.2. Validation of Specifications 

Once a specification has been created in its 
initial form, it must  be validated. This is usually a 
difficult task. In  the case of formal specifications 
the following methods  and tools can be used for 
this purpose. 

(a) Static analysis: B a s e d  on the text of  the 
specification, static analysis is quite useful to find 
clerical errors. Tools, normal ly  related to a par- 
ticular specification language, exist for the check- 
ing of  context-free syntax, scope rules, type con- 
formance, and other semantic conditions. The 
analysis corresponds to a part  of  what  compilers 
do for p rogramming languages. 

(b) Dynamic analysis: In  contrast  to static anal- 
ysis, the dynamic  analysis of specification consid- 
ers some kind of  "execut ion"  of  the specified 

system. Because of  the large number  of  possible 
situations that may  occur  during an execution of 
the system, dynamic  analysis is usually much more  
difficult to do than static analysis. However,  it can 
detect errors which are not  detectable by static 
methods.  A more  detailed tutorial of  this topic can 
be found in [44]. 

The dynamic  methods  can be classified into 
exhaustive and simulation methods.  The exhaus- 
tive methods  consider all possible situations that 
may  occur during the execution of  the specified 
system. In  most  cases, however there are too many  
cases to be considered. Therefore these methods 
are usually applied to a simplified description of 
the system. The bes t -known methods are related 
to the exhaustive reachabili ty analysis for systems 
specified as a collection of  finite state machines. 
The verification of  programs and assertions, and 
other  methods  involving theorem proving, also 
belong to this class. They  can be applied to the 
complete  specifications; they are, however, dif- 
ficult to apply to specifications of the size that are 
found in mos t  practical  applications. 

The simulation methods  validate only certain 
selected paths  among  all the possible executions. 



G. v. Bochmann / Protocol specification for OSI 181 

However, they can be applied to real-size specifi- 
cations, provided that the specification language 
allows some form of simulated execution (which is 
the case for the FDTs mentioned in Section 3.2). 
A number of simulation tools exists for this pur- 
pose (e.g. [38,39]). In order to reduce the large 
stage space to be explored by exhaustive reacha- 
bility analysis, certain authors have proposed ran- 
dom and probability-based exploration proce- 
dures [40,61]. 

Methods and tools for performance evaluation 
also belong to the area of dynamic analysis. In the 
area of OSI, this aspect is of secondary impor- 
tance, since the OSI standards are primarily con- 
cerned with compatibility between heterogeneous 
systems. 

4.3. Developing Implementations 

As mentioned in Section 2.1, the implementa- 
tion development proceeds in several steps of re- 
finement starting with the specification of the 
protocol to be implemented. For the validation of 
the more detailed system descriptions, some of the 
methods mentioned above could be used. In ad- 
dition, the code generation process can also be 
partly automated. The following types of tools can 
be used: 

(a) Automatic generation of program skeletons 
from finite-state-oriented descriptions: Many code 
generation tools for SDL are of this nature. 

(b) Automatic generation of program source code 
from FDT specifications: As explained in [11], the 
abstract formal protocol specification must usu- 
ally be refined before the program generation tool 
can be applied. Large parts of the implementation 
code can be automatically generated from detailed 
formal specifications [52,60]. 

(c) Automatic generation of coding and decoding 
routines from ASN.1 specification of PDUs: Be- 
cause of the regular coding scheme used with 
ASN.1, the (de-)coding function can be auto- 
mated. Existing tools either interpret the given 
ASN.1 description of the protocol dynamically, or 
generate, in source code, the specialized coding 
and decoding routines for the given protocol. 

(d) Support packages: Software packages for 
buffer management, inter-task communication and 
other run-time support are very useful, if availa- 
ble, for a protocol implementation project. How- 
ever, they are usually not very portable. 

4. 4. Selecting Test Cases 

For the validation of an implementation (or 
specification) through testing, it is important to 
select appropriate test cases in order to cover all 
aspects of the behavior to be tested. The resulting 
set of tests, sometimes called "test  suite", should 
also be as small as possible. In the case that an 
implementation is tested for conformance with its 
specification, the tests are usually determined 
based on the specification. 

While in the area of OSI, standard test suites 
are developed for testing implementations for con- 
formance to the protocol standards [46], the selec- 
tion of test cases remains an important issue since 
additional requirements, performance and robust- 
ness of implementations must be asserted, aspects 
which are not covered by protocol conformance 
tests. Most existing tools for automating the selec- 
tion of test cases for given protocol specifications 
are based on finite-state-machine specifications 
(e.g. [2,48]). They do not take into account the 
testing of the parameter values of service primi- 
tives and PDUs. Software test methods, based on 
data flow analysis, can be adapted for this pur- 
pose and combined with the former methods 
[18,49,56]. 

4.5. Analysing Test Results 

Each test case defines the input to be applied to 
the system under test, which sometimes may also 
depend on observed outputs. The purpose of test 
result analysis is to determine whether the trace of 
interactions observed during a test satisfies the 
requirements of the reference specification. This 
result, sometimes called verdict, is not easy to 
obtain in general; one sometimes refers to an 
"oracle" to provide an answer. Clearly, such an 
oracle should be automated in order to make 
conformance testing manageable. 

In the context of OSI, standardized test suites 
have been developed which also include verdicts 
for different test outcomes foreseen [31]. Never- 
theless, the automation of test result analysis re- 
mains an issue in the OSI area because the de- 
termination of these verdicts in the first place, and 
the analysis of test results in the case that other 
kinds of tests are applied, is not easy. The auto- 
matic comparison of the observed test trace with 
the specification of the system under test can be 



182 G. v. Bochmann / Protocol specification for OSI 

performed if the specification is given in a formal 
language (see for instance [10]). However, it is not 
clear to what extent such analysis tools are capa- 
ble of handling the complexity and speed of pro- 
tocol implementations in real time. 

It is expected that similar tools will also be 
available to validate, in respect to the protocol 
specification, the verdicts of the conformance test 
cases which were developed in an ad hoc manner. 
This requires, however, a well defined translation 
between the language used for the definition of 
the test cases (e.g. TTCN) and the FDT used for 
the formal protocol specification. 

4.6. Overview of Tools for OSI  Specification Tech- 
niques 

As mentioned earlier, an advantage of using 
formal specifications is the possibility of using 
semi-automated methods in the system develop- 
ment life cycle. Among the different specification 
languages mentioned in Section 3, several do not 
cover all specification aspects and therefore do not 
provide automation of those aspects not covered. 
Table 2 gives an overview of specification aspects 
covered by the different languages and the kind of 
automated tools that can be used. 

It is important to note that the FSM models 
and the ASN.1 notation cover different aspects. 
The former describe "major" states and kinds of 
input /output  interactions, ignoring parameters, 
while the latter describes the possible range of 
values (data types) of the interaction parameters 
and the coding of these parameters in the PDUs. 
However, even taken together (as for instance in 
the OSI FTAM specification [35]), they do not 
cover the aspect (c) (see Section 1.3) of defining 
allowed parameter values for particular instances 
of communication and the interpretation of these 
values. For example, they cannot describe how the 
parameter value of an output interaction of a 
protocol entity depends on its state and /o r  previ- 
ously received interaction parameters. All these 
aspects are however covered by the FDTs. 

5. Research Directions 

It is difficult to describe all directions of re- 
search related to protocol specifications. Much 
work is presently undertaken for developing meth- 

ods and tools for the automation of the protocol 
development life cycle, and the application of 
these methods and tools in the context of real 
development projects. In addition, much work goes 
into the development of better specification lan- 
guages. Further details can be found in existing 
surveys (e.g. [5]) and in the proceedings of an 
IFIP-sponsored conference series (e.g. [1,15]). The 
following paragraphs comment on the develop- 
ment of specification languages. 

In the OSI context, ongoing research centers 
around the semi-formal specification languages 
ASN.1 and TTCN and the FDTs Estelle, LOTOS, 
and SDL. Main issues are the relations between 
the semi-formal languages with the FDTs, and 
their use for the formal specification of the proto- 
cols and services. Based on experience with the 
different FDTs, it is also expected that some 
pragmatic decisions on the use within OSI of one 
or the other FDT will be made. 

In the meantime certain researchers propose 
improvements to the existing, standardized FDTs. 
Such proposals include for instance the introduc- 
tion of rendezvous interactions to Estelle together 
with certain simplifications concerning the parallel 
processes within Estelle specifications [19], the 
introduction of abbreviated notations for defining 
common data structures, such .as enumerations, 
records and arrays, in LOTOS [28,9], and the 
extension of SDL to handle non-determinism and 
separate input queues [42]. It is not clear what 
impact these proposals will have on the use of the 
respective FDTs. 

In a larger context, the use of formal specifica- 
tion for software and hardware development for 
various kinds of applications is an active research 
area. It seems that the following concepts devel- 
oped in this more general context will also have an 
impact on future applications of formal methods 
to protocol specifications: 

(1) Object-oriented specifications: ObJect-ori- 
ented programming languages have recently had a 
strong impact on development methods for intelli- 
gent workstation software and corresponding 
knowledge representations. For adapting existing 
databases of real-time transaction systems for such 
kinds of applications, the concept of object-ori- 
ented databases has been developed. These con- 
cepts seem also to become important for the 
standardization work on distributed processing 
and system management. 



G. v. Bochmann /Protocol specification for OS1 183 

(2) The cons idera t ion  o f  l iveness  proper t ies :  Most 

specification languages, inc luding  the FDTs,  do 

not  address liveness properties explicitly. In  fact, 

m a n y  properties concerning fairness (or the ab- 
sence of starvation) cannot  be expressed in these 

languages. Tempora l  logic conta ins  an operator  
(with the mean ing  "wil l  happen  eventual ly")  which 
is useful for these purposes (see point  (e), Section 

1.3). However, it is not  clear how this formalism 

can best be combined  with the existing specifica- 

t ion languages. 

(3) P r o c e d u r a l  versus  dec lara t ive  spec i f ica t ions:  

This dis t inct ion is part ly a quest ion of specifica- 

t ion style [59], bu t  also a quest ion of the language. 
For  example, p rogramming  languages are desig- 

ned for suppor t ing  an algorithmic, procedural  
specification style and are sometimes combined  

with a declarative specification language which 

allows the def ini t ion of i n p u t / o u t p u t  assertions. 
This latter style is also supported by the algebraic 

formalism for abstract  data  types in LOTOS and  

SDL. Research is oriented towards the (semi-)au- 

tomatic  t rans la t ion  of non-executable  declarative 
specifications into equivalent  specifications in  an 

executable, more algori thmic form, and  the use of 

certain logic-oriented languages that are directly 

executable, such as Prolog. 

R e f e r e n c e s  

[1] S. Aggarwai and K. Sabnani, eds., Protocol Specification, 
Testing and Verification VIH (North-Holland, Amster- 
dam, 1989). 

[2] A.V. Aho, A.T. Dahbura et al., An Optimization Tech- 
nique for Protocol Conformance Test Generation Based 
on UIO Sequences and Rural Chinese Postman Tours, in: 
Proc. IFIP Symposium on Protocol Specification, Testing 
and Verification, Atlantic City (1988). 

[3] B. Alpern and F.B. Schneider, Recognizing Safety and 
Liveness, Distr. Comput. 2 (1987) 117-126. 

[4] P. Amer and (~e~eli, Estelle Formal Specification of the 
ISO Virtual Terminal, Comput. Standards Interfaces 9 (2) 
(1989) 85-104. 

[5] G. v. Bochmann, Usage of Protocol Development Tools: 
The Results of a Survey (invited paper), in: Proc. IF1P 
Symposium on Protocol Specification, Testing and Verifica- 
tion, Zurich (1987) 139-161. 

[6] G. v. Bochmann and P. Mondain-Monval, Design Princi- 
ples for Communication Gateways, IEEE Trans. Select. 
Areas Comm., to appear. 

[7] G. v. Bochmann, Deriving Protocol Adapters for Com- 
munication Gateways, IEEE Trans. Comm., to appear. 

[8] G. v. Bochmann, Specification of a simplified Transport 
Protocol Using Different Formal Description Techniques, 
Comput. Networks ISDN Systems, to appear. 

[9] G. v. Bochmann and M. Deslauriers, Combining ASN1 
Support with the LOTOS Language, in: Proc. IFIP Sym- 
posium on Protocol Specification, Testing and Verification 
I X  (1989). 

[10] G. v. Bochmann, R. Dssouli and J.R. Zhao, Trace Analy- 
sis for Conformance and Arbitration Testing, IEEE Trans. 
on Software Engrg. 15 (11) (1989) 1347-1356. 

[11] G. v. Bochmann, G. Gerber and J.M. Scrre, Semiauto- 
matic Implementation of Communication protocols, IEEE 
Trans. Software Engrg. 13 (9) (1987) 989-1000; reprinted 
in: D.P. Sidhu, ed. Automatic Implementation and Confor- 
mance Testing of OSI Protocols (IEEE, New York, 1989). 

[12] G. v. Bochmann and A. Finkel, Impact of Queued Inter- 
action on Protocol Specification and Verification, in: Proc. 
Internat. Syrup. on Interoperable Information Systems 
(1SIIS), Tokyo (1988) 371-382. 

[13] G. v. Bochmann and C.A. Sunshine, Formal Methods in 
Communication Protocol Design (invited paper), 1EEE 
Trans. Comm. 28 (4) (1980) 624-631. 

[14] T. Bolognesi and E. Brinksma, Introduction to the ISO 
Specification Language Lotos, Comput. Networks ISDN 
Systems 14 (1) (1987) 25-59. 

[15] E. Brinksma et al., eds., Protocol Specification, Testing and 
Verification I X  (North-Holland, Amsterdam, 1990). 

[16] S. Budkowski and P. Dembinski, An Introduction to 
Estelle: A Specification Language for Distributed Sys- 
tems, Comput. Networks 1SDN Systems 14 (l) (1987) 
3-23. 

[17] CCITT SG X, Recommendation Z.100, 1987. 
[18] E. Cemy and G.v. Bochmann, Testing Implementations of 

an Application-level Communication Protocol: Inter- 
library Loan, in: Proc. IEEE FTCS '85 (1985). 

[19] J.P. Courtiat, "Estelle*: A Powerful Dialect of Estelle for 
OSI Protocol Description", in: Proc. IFIP Symposium on 
Protocol Specification, Testing and Verification, Atlantic 
City (1988). 

[20] M. Diaz et al., The Formal Description Technique Estelle 
(North-Holland, Amsterdam, 1989). 

[21] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifi- 
cations 1 (Springer, Berlin, 1985). 

[22] P.H.J. van Eijk et al., The Formal Description Technique 
LOTOS (North-Holland, Amsterdam, 1989). 

[23] C. Gane and T. Sarson, Structured Systems Analysis: Tools 
and Techniques (Prentice-Hall, Englewood Cliffs, N J, 
1979). 

[24] P.E. Green, Protocol Conversion, IEEE Trans. Comm. 34 
(3) (1986) 257-268. 

[25] D. Hogrefe, Protocol and Service Specification with SDL: 
The X.25 Case Study, Technical Report FBI-HH-B- 
134/88, Universit~it Hamburg, 1988. 

[26] ISO IS 7498, Reference Model for OSI, 1982. 
[27] ISO TC97/SC16, Service Conventions, TR 8509. 
[28] ISO 97/21 N1540, Potential Enhancements to Lotos, 1986. 
[29] ISO IS9074, Estelle: A formal description technique based 

on an extended state transition model, 1989. 
[30] ISO IS8807, LOTOS: A Formal Description Technique, 

1989. 
[31] ISO TC97/SC21, DIS 9646/1, DIS 9646/2, DIS 9646/3, 

OSI Conformance Methodology and Framework, Part 1: 
General Concept, Part 2: Abstract Test Suite Specifica- 
tion, Part 3: The Tree and Tabular Combined Notation 
(TTCN), 1989. 



184 G. v. Bochmann / Protocol specification for 0S1  

[32] ISO Technical Report DTR-10167, Guidelines for the Use 
of Formal Description Techniques for OSI Specifications, 
1989. 

[33] ISO IS 8824, Information Processing-Open Systems In- 
terconnection- Specification of Abstract Syntax Notation 
One (ASN.1). 

[34] ISO IS 8825, Information Processing-Open Systems In- 
terconnection-Basic Encoding Rules for Abstract Syntax 
Notation One (ASN.1). 

[35] ISO TC97/SC21, File Transfer, Access and Management, 
IS 8571. 

[36] ISO IS 9072, Remote Operations. 
[37] A. Iwabuchi, R.J. Lirm and J.P. Favreau, Application of 

Formal Specification Techniques to the Specification of 
the MHS Test System, in: Proc. International Symposium 
on lnteroperable Information Systems (INTAP), Tokyo 
(1988) 255-262. 

[38] C. Jard, R. Groz and J.F. Monin, VEDA: A Software 
Simulator for the Validation of Protocol Specifications, 
in: Proc. COMNET '85 (IFIP), Computer Network Usage: 
Recent Experiences (North-Holland, Amsterdam, 1985). 

[39] L. Logrippo et al., An Interpreter for LOTOS: A Specifi- 
cation Language for Distributed Systems, Software Prac- 
tice and Experience 18 (4) (1988) 365-385. 

[40] N.F. Maxemchuk and K. Sabnani, Probabilistic Verifica- 
tion of Communication Protocols, in: Proc. 1FIP Sym- 
posium on Protocol Specification, Testing and Verification 
VIII (1988) 307-320. 

[41] R. Miiner, A calculus of Communicating Systems, Lecture 
Notes in Computer Science 92 (Springer, Berlin, 1980). 

[42] F. Orava, Formal Semantics of SDL Specifications, in: 
Proc. IFIP Symposium on Protocol Specification, Testing 
and Verification VIII  (1988). 

[43] S. Owicki and L. Lamport, Proving Liveness Properties of 
Concurrent Programs, A CM Trans. Progr. Languages and 
Systems 4 (3) (1982) 455-495. 

[44] B. Pehrson, Protocol Verification for OSI, Comput. Net- 
works ISDN Systems 18 (1989/90) 185-201, this issue. 

[45] L. Pouzin, Presentation and Major Design Aspects of the 
CYCLADES Computer Network, in Proc. 3rd A CM-IEEE 
Communication Symposium, Tampa, FL (1973) 80-87. 

[46] D. Rayner, OSI Conformance Testing, Comput. Networks 
ISDN Systems 14 (1987) 79-98. 

[47] R. Saraco and P.A.J. Tilanus, CCITT SDL: Overview of 
the Language and its Applications, Comput. Networks 
ISDN Systems 13 (1987) 65-74. 

[48] B. Sarikaya and G. v. Bochmann, Synchronization and 
Specification Issues in Protocol Testing, IEEE Trans. 
Comm. 32 (4) (1984) 389-395. 

[49] B. Sarikaya, G. v. Bochmann and E. Cerny, A Test Design 
Methodology for Protocol Testing, IEEE Trans. Software 
Engrg. 13 (April 1987) 518-531. 

[50] B. Sarikaya and Q. Gao, Translation of Test Specifica- 
tions in TI'CN to Lotos, in: Proc. IFIP Symposium on 
Protocol Specification, Testing and Verification, Atlantic 
City (1988). 

[51] G.D. Schultz, D.B. Rose, C.H. West and J.P. Gray, Ex- 
ecutable Description and validation of SNA, IEEE Trans. 
Comm. 28 (4) (1980) 661-677. 

[52] D.P. Sidhu and T.P. Blumer, Semi-automatic Implementa- 
tion of OSI Protocols, Comput. Networks ISDN Systems 
18 (1989/90) 221-238, this issue. 

[53] Special Issue on Open Systems Interworking, Proc IEEE 
(December 1983). 

[54] Test System for Implementations of FTAM/FTP Gate- 
ways, Final Report, National Inst. of Standards (US), 
ICST, 1988. 

[55] The SPECS Consortum and J. Bruijning, Evaluation and 
Integration of Specification Languages, Comput. Networks 
ISDN Systems 13 (1987) 75-89. 

[56] H. Ural, A Test Derivation Method for Protocol Confor- 
mance Testing, in: Proc. IFIP Symposium on Protocol 
Specification, Testing and Verification VIII (1988) 347- 
358. 

[57] C. Vissers, Formal Description Techniques for OSI, in: 
Proc. IFIP Congress 1986, Dublin (1986). 

[58] C. Vissers and L. Logrippo, The Importance of the Con- 
cept of service in the design of Data Communications 
Protocols, in: Proc. IFIP Workshop on Protocol Specifica- 
tion, Verification and Testin~ Toulouse (1985). 

[59] C. Vissers, G. Scollo and M.v. Sinderen, Architecture and 
Specification Style in Formal Descriptions of Distributed 
Systems, in: Proc. IFIP Symposium on Protocol Specifica- 
tion, Testing and Verification, Atlantic City (1988). 

[60] S.T. Vuong et al., An Estelle-C Compiler for Automatic 
Protocol Implementation, in: Proc. 1FIP Symposium on 
Protocol Specification, Testing and Verification, Atlantic 
City (1988). 

[61] C.H. West, Protocol Validation by Random State Ex- 
ploration, in: B. Sarikaya and G. Bochmann, eds., Proto- 
col Specification, Testing and Verification VI (North-Hol- 
land, Amsterdam, 1986). 


