
Test result analysis and validation of test verdicts

G. v. Bochmann, D. Desbiens, M. Dubuc, D. Ouimet and F. Saba

Université de Montréal

August 1990

Abstract

Formal description techniques (FDT's) are useful in the protocol development cycle,

particulary in the conformance testing area. In this paper, we present TETRA, a test and

trace analysis tool based on the LOTOS FDT which can be used to automatically

compare the specified verdicts of a conformance test case with a protocol specification,

or to analyse results of a test run with the reference specification. We also describe our

experience with this tool for the validation of a X.25 TTCN test suite and for the testing

of an ACSE implementation.

1. Introduction

In recent years, ISO and CCITT have developed various languages for the description of

communication protocols and services [Boch 90g]. On the one hand, so-called formal

description techniques (FDT's) [Este 89, Loto 89, SDL 87] are intended for writing

formal specifications for the OSI protocols and services to be used during the protocol

development process [Boch 87c]. On the other hand, semi-formal methods, such as

ASN.1 [ASN1], are used in many existing OSI standards and proposals. Another

language, TTCN [ISO C3], is used for the description of OSI conformance test suites.

We consider in this paper the use of an FDT tool for two different aspects of

conformance testing: (1) the validation of TTCN test suites, (2) and test trace analysis in

respect to the corresponding protocol specification described in an FDT language.

- 2 -

Conformance testing of an implementation under test (IUT) usually involves a test suite

consisting of a large number of test cases, each defining a certain number of execution

paths, in the following called scenarios. Each scenario contains a so-called verdict which

indicates whether the IUT "passes" or "fails" the test in question. A third verdict called

"inconclusive" is also possible which indicates that the observed behavior of the IUT

satisfies the rules of the specification, but the particular behavior to be tested could not be

observed.

Although certain methods for automatically developing a test suite have been described

(see for instance [Sari 89c]), most test suites are developed manually. It can therefore be

expected that proposed test suites contain certain errors which should be detected as soon

as possible. In particular, the verdicts of the test cases should be consistent with the

protocol specification. This means that any scenario with verdict pass or inconclusive

should correspond to a sequence of observed input and output interactions which is valid

according to the protocol specification, and the sequence of interactions corresponding to

a scenario with verdict "fail" should not be valid according to the specification. This is

indicated in Figure 1 by the arrows (1) and (3). The translation of a TTCN test case into

an equivalent LOTOS test case (arrow (2)) will be addressed in Section 3.

- 3 -

Test case
(LOTOS)

Protocol spec.
(LOTOS)

Test case
(TTCN)

Test results

(3)

(2) (1)

(5)

(4)

Checking consistency of
test case with protocol
specification
Translation from TTCN
into LOTOS
Same as (1) for test case
described in LOTOS
Execution of test case
Analysis of test results
in respect to protocol
specification

Explanations:

(1)

(2)

(3)

(4)
(5)

Figure 1. Validation Steps

In addition to test suite validation discussed so far, we consider in this paper also the

analysis of test results during the testing of an IUT . Again, the protocol specification can

be used as reference, this time for the analysis of the observed interaction trace, as shown

by arrow (5) in Figure 1. In the case of standardized test cases including verdicts, the

analysis of the test results can be performed based on the verdicts, however, such an

approach is not possible when other test cases are used which may be required for

additional test coverage or the testing of implementation-dependent features. In all such

cases, including random test inputs, the test results can be analysed directly in respect to

the specification using automated tools [Boch 89m].

In Section 2 we describe a tool, called TETRA, which can be used to automatically

compare the specified verdicts of a conformance test case (arrow (3) in Figure 1) with

protocol specification, or to analyse results of a test run (arrow (5) in Figure 1) with the

- 4 -

reference specification. The latter is especially useful if non-standard test cases are used

which do not contain verdicts [Boch 89j].

In Section 3, we describe an experiment of validating the verdicts of a real OSI

conformance test suite with a formal protocol specification. A large number of the test

cases of the ISO/CCITT test suite for the LAP-B of X.25 was validated against a

protocol specification written in LOTOS [Guer 89a]. The result of this experiment is

threefold: (1) The translation of the test cases into LOTOS turned out to be relatively

straightforward, as discussed in [Dubu 90], (2) the TETRA tool was debugged and

improved, and (3) a number of errors were detected, not only in the translated test cases

in LOTOS, but also in the original TTCN test case definitions [ISO 8882] and the formal

protocol specification .

In Section 4, we describe an experiment with test result analysis for an Application layer

protocol. The purpose of this experiment was at the same time to demonstrate tools for

ASN.1 which were developed for implementation support in conjunction with the FDT

Estelle [Boch 90f], and for the support of ASN.1 in relation with LOTOS [Boch 89h].

The Association Control protocol (ACSE) was used in this experience because of its

relative simplicity. The experiment consisted of having two ACSE implementations

communicate with one another and having the exchanged PDU’s observed and

automatically analysed by the trace analysis tool TETRA, as shown in Figure 2.

Section 5 contains a discussion of our conclusions based on the practical results obtained

in the two described experiments and on another experiment with the OSI Transport

protocol. We also comment on the feasability of our approach for more complex

protocols.

- 5 -

ACSE
(IUT)

Arbiter
(TETRA)

: ASN.1

: LOTOS

Simulated Presentation Service

ACSE

Test
Program

Test
Program

ASN.1
Decoder

ACSE Protocol
Specification

⇑

Figure 2. ACSE Test Experiment

2. The TETRA tool

We have modified an existing LOTOS interpreter [Logr 88] in such a way that it checks

whether a given trace of observable interactions g1, ..., gn is valid in respect to a given

reference specification S[g1, ..., gn]. The original interpreter requires interactions with the

user for the selection of the next event to be interpreted, which may be an observable

interaction at the gates g1 through gn, the internal event i, or an internal interaction at one

of the gates hidden by the specification. Another version of the interpreter generates an

overview of all possible sequences of observable interactions using backtracking over all

possible internal events in case that several non-deterministic choices exist [Guil 89].

However, this latter version does not handle any interaction parameters. Our modified

interpreter for test trace analysis, called TETRA, takes interaction parameters into

- 6 -

account and uses backtracking to determine whether the tree of possible execution

histories defined by the specification includes a history which gives rise to the trace T of

observed interactions.

Backtracking is necessary for all those occasions where the reference specification allows

for non-deterministic choices which are not directly visible. These choices relate to one

of the following cases:

(a) Execution of internal events, i.e. event i or internal interactions on hidden gates,

which appear as alternatives within a choice of subexpressions.

(b) Idem, when appearing within a choice statement relating to alternative gates.

(c) Selection of a data value associated with a choice statement.

(d) Expansion of recursive definitions in case of non well-guarded expressions, i.e.

alternatives not beginning with a visible interaction.

In the cases (a) and (b), only a finite (usually small) number of alternatives are available,

and they can be explored by the trace analysis interpreter, through backtracking, without

excessive loss of efficiency. For case (c), however, the number of possible choices is

sometimes not even bounded, as for instance in the case of the choice of a natural

number. The trace analyzer has to determine whether a suitable choice of value exists

which makes the given trace acceptable by the specification.This problem is in general

undecidable.

- 7 -

TETRA also has an option for checking the consistency of a test case, written in LOTOS,

with a reference specification. For this purpose, first the scenarios, or branches, of the

test case are identified, and then each scenario is checked against the specification. In

order to limit the number of scenarios when the test case contains a loop, the loop is

expanded only a limited number of times. Each scenario is checked like an interaction

trace for conformance with the specification. The test case is consistent with the

specification if each scenario with verdict "pass" or "inconclusive" conforms to the

specification, and each scenario with verdict "fail" does not conform.

Since our initial experiments with TETRA [Boch 89j], the system has been improved in

several respects (for more details, see [Boch 90h]). First, an on-line version has been

built which analyses the trace of interactions one by one [Saba 90]. Second, certain

options allow the processing of specifications with unlimited number of choices, as

mentioned above, by arbitrarily limiting the depth of exploration of the tree of

alternatives unless an observable interaction is involved.

In addition, the system has been modified in order to instantiate interaction parameters as

late as possible. Input parameters of test case scenarios, as well as parameters of internal

interactions, may not be defined directly. In this case, the analysis must be performed for

all possible parameter values. The situation is similar for the variable representing the

value selected by a choice statement. The improved system leaves such parameters or

variables uninstantiated until their value can be determined from the constraints of the

specification and/or subsequent observed input or output values. This avoids

backtracking over all possible values, which would make the processing much more

complex and inefficient.

- 8 -

Finally, we mention that TETRA provides error diagnostics in the case that an error has

been found during trace analysis or test case consistency checking [Boch 89j]. During the

optional error diagnostic phase, various fault hypothesis are checked for consistency with

the given test trace (or scenario) and the specification. Each consistent hypothesis gives

rise to a diagnostic message, which may be of the form "The second interaction is wrong

and should be such and such", "The third interaction of the scenario should be absent", or

"The verdict should be ’pass’ ". Each diagnostic message represents a possible

interpretation for the reason of the problem.

3. Validation of X.25 test cases

We have validated the verdicts of a large number of the ISO/CCITT conformance test

cases for the link layer of X.25 [ISO 8882] against a specification of the corresponding

protocol, the LAP-B, as mentioned in the introduction. We used for this purpose an

existing LOTOS specification of LAP-B which had already been validated through

extensive simulations [Guer 89a]. This is a quite sizable specification of approximately

2500 lines of LOTOS code.

It is difficult to directly compare a test case written in TTCN with a protocol

specification written in another formalism. In order to automate such a comparison, it is

necessary that first, the protocol be specified formally, and second, that the language

used to specify the test case, e.g. TTCN, be comparable with the language used for the

formal protocol specification. In the case that the protocol specification is written in

LOTOS, as assumed in this paper, we have to relate TTCN and LOTOS. A methodology

for translating TTCN into LOTOS is described in [Dubu 90]. The translation turned out

to be relatively straightforward.

- 9 -

As shown in Figure 3, the test cases are validated according to a simulated remote test

architecture. We chose this architecture because the test cases of the ISO document were

conceived to be executed within such an architecture. The test cases only describe the

interactions with the lower tester (the upper tester is "empty"). The medium is a reliable

full duplex queue.

phl

Medium

Lower TesterLAP-B

Upper Tester

dl

Reference Specification

L

Figure 3. Remote Test Architecture

The complexity of the behaviour tree increases (dramatically) when we model the

medium between the specification and the lower tester explicitly in the form of two FIFO

queues in LOTOS. For simple test cases, the analysis time increases by a factor of up to

ten. In more elaborated test cases, the analysis aborts due to a lack of memory. In order

to obtain our results, we have bypassed the queue. Table 1 shows preliminary results for

the validation time of some of the test cases. Note that TETRA is written in PROLOG

and that these results were obtained on a Sun 4/330 with 32 Mb of RAM. The following

paragraphs discuss particular aspects of our results.

- 10 -

Depth of the
Behaviour Tree

Group DL1
(Disconnected)

Group DL2
(Link

Disconnection)

Group DL4
(Information

Transfer)
5 About 1 min About 30 min About 1 h
6 - > 1 day > 4 h
7 - - > 3 days

Table 1. Statistics on Validation Time

- 11 -

(a) Detected error in LAP-B test suite: We have found an error in one of the test cases

of the original TTCN document. Test case DL1_306 says that the trace:

L ! DISC (P:=1)

L ? DM [F=1]

L ! UA (F:=1)

L ? DISC [P=1]

should have a fail verdict, but it is accepted by the specification. We found that this

sequence of actions is valid with respect to the LAP-B standard. We believe that the last

test step of the test case DL1_306 (L ?Otherwise) should have an inconclusive verdict

instead of a fail verdict.

(b) Detected error in the specification: Test case DL1_207 indicates an error in the

specification which does not include all details concerning error processing. The branch:

L ! DISC (P:=1)

L ? DM [F=1]

L ! Hex (string:=’03F??’H)

L ? Otherwise

has a fail verdict, but is accepted by the specification (string ’03F??’H is a SABM/P=1

with an non-empty information field).

(c) Preambles for arbitrary initial states: We were surprised to see that TETRA

rejected certain branches of preambles which are considered valid according to the test

suite

- 12 -

[ISO 8882]. For instance the branch:

L ! DISC [P:=1]

L ? UA [F=1]

of the subtree DL1_STATE is not accepted by the LAP-B specification. Later we noticed

that the ISO test cases do not necessarily assume that the IUT is initially in the

disconnected state. For instance, the above branch is valid starting in the data transfer

phase.

(d) Error diagnostics: As an option, TETRA provides diagnostics for locating the fault

if an error is detected. While this facility works well for smaller specifications, we found

that in our case the number of fault hypothesis (each indicated by a diagnostic message)

was often too large to be useful. For instance, a fault in the first actions of a branch could

lead to about hundred diagnostics messages.

4. Test result analysis for the ACSE protocol: Support for ASN.1

The parameter data structures of Application layer PDU’s are usually described with

ASN.1. The various FDT’s use different notations for the description of data structures,

which must also be used for the description of PDU’s in a formal specification of the

protocol in a given FDT. For the application of FDT’s to the description of OSI

Application layer protocols, it is therefore necessary to define a mapping from ASN.1 to

the FDT language elements used for the description of data structures. Such mappings

have been defined for Estelle [Boch 90f] and LOTOS [Boch 89h] in such a manner that

the data structure definitions resulting from the ASN.1 translation are relatively readable.

Example 1 shows the ASN.1 representation of a particluar ACSE APDU and the

- 13 -

corresponding representation in the form of a LOTOS expression. A similar translation

exists between data

- 14 -

Example 1: An ASN.1 ARRQ PDU and its LOTOS translation

The ACSE AARQ PDU expressed in ASN.1 :

{
aarq {

protocol-version {version2(1)},
application-context-name "a",
called-AP-title "d",
called-AE-qualifier "e",
calling-AP-title "b",
calling-AE-qualifier "c",
user-information {"f"}

}
}

Corresponding LOTOS description :

ACSE_apdu(ACSE_apdu_generated_0(AARQ_apdu(
protocol_version(Bit(0)+Bit(1)),
application_context_name(a),
called_AP_title(d),
called_AE_qualifier(e),
called_AP_invocation_id(Not_Present),
called_AE_invocation_id(Not_Present),
calling_AP_title(b),
calling_AE_qualifier(c),
calling_AP_invocation_id(Not_Present),
calling_AE_invocation_id(Not_Present),
implementation_information(Not_Present),
user_information(f+ <>)

)))

type definitions in the two languages. Tools for the automatic translation of

specifications and the generation of ASN.1 encoding and decoding routines in

conjunction with related FDT tools have also been described. In order to demonstrate

these tools, and at the same time demonstrate the automatic analysis of test results for an

Application layer protocol, we have performed the experiment described below.

- 15 -

As shown in Figure 2, two ACSE protocol entities were connected over a (simulated)

Presentation service. These implementations written in C were obtained through the

automatic translation of an ACSE Estelle specification which contained the PDU

definitions automatically obtained through translation from the original ASN.1

definitions found in the standard [ISO 8650]. The implementation also contained

automatically generated PDU encoding and decoding routines.

The exchanged PDU’s were recorded into a trace file and at the same time analysed on-

line by the TETRA tool using as the reference an ACSE LOTOS specification which also

contained PDU definitions automatically obtained through translation from the ASN.1

definitions. Before being analysed by the TETRA tool, which accepts the analysed

interactions in LOTOS action format, the ASN.1 encoded PDU’s were translated into the

form of LOTOS expressions by the ASN.1 Decoder (see Figure 2) automatically

generated by our ASN.1/LOTOS tool.

The ACSE protocol specification is relatively simple. Nevertheless, the length of the

PDU definitions in ASN.1 is 100 lines. This is translated into 200 lines of Estelle type

definitions and 1000 lines of LOTOS data type definitions. The total size of the ACSE

LOTOS specification used by TETRA as a reference is 2400 lines. The control part is

small (approximatively 200 lines) which gives a simple behaviour tree. The on-line

version of TETRA validates each interaction in matters of seconds. A certain number of

test scenarios were run and the resulting traces of PDU’s were analysed. TETRA detected

one error in the implementation and one error in the specification. In all those cases, the

diagnostic part located the erroneous behaviours. Example 2 shows an execution trace of

TETRA which points out an error in the implementation.

- 16 -

Example 2: Execution trace of TETRA (on-line version)

Observed new interaction ->
 P !Input:IO !PCONind : primitive !ACSE_apdu(AARQ_apdu(protocol_version(Bit(0)+Bit(1)) ,
application_context_name(a), called_AP_title(d), called_AE_qualifier(e), called_AP_invocation_id(Not_Present),
called_AE_invocation_id(Not_Present), calling_AP_title(b),
calling_AE_qualifier(c),calling_AP_invocation_id(Not_Present), calling_AE_invocation_id(Not_Present),,
implementation_information(Not_Present), user_information(f+ <>))) : ACSE_apdu

... Valid ...

Observed new interaction ->
 P !Out : IO !PCONrspAcceptance : primitive !ACSE_apdu(AARE_apdu(protocol_version(Bit(1)) ,
application_context_name(a), result(0), Associate_source_diagnostic(acse_service_user(0)),
responding_AP_title(Not_Present), responding_AE_qualifier(Not_Present),
responding_AP_invocation_id(Not_Present), responding_AP_invocation_id(Not_Present),
implementation_information(Not_Present), user_information(Not_Present)))) : ACSE_apdu

... Invalid ...

--- Next Possible Actions --

 <1>- P !Out:IO !PCONrspUserRejection:primitive
!ACSE_apdu(ACSE_apdu_genere_1(AARE_apdu(protocol_version(protocol_version(Bit(1)) ,
application_context_name(a), result(Succ(0)), Associate_source_diagnostic(acse_service_provider(Succ(Succ(0)))),
responding_AP_title(Not_Present), responding_AE_qualifier(Not_Present),
responding_AP_invocation_id(Not_Present), responding_AP_invocation_id(Not_Present),
implementation_information(Not_Present), user_information(Not_Present))) : ACSE_apdu

 <2>- P !Out:IO !PUABreq : primitive !ACSE_apdu(ABRT_apdu(abort_source(Succ(0)),
user_information(Not_Present))) : ACSE_apdu

 <3>- ...

In this example, we wanted to test if the called implementation reacts properly when an

AARQ APDU is sent with an unsupported protocol version (first interaction of Example

2). In this test scenario, the called implementation should respond with a rejection, i.e.

AARE APDU (Result = 1), but instead, it responds with result = 0 (acceptance, second

interaction of Example 2). In a first analysis phase, TETRA diagnoses an invalid

interaction from the implementation. In a second phase, TETRA provides a list of actions

that could have taken place instead of the erroneous behaviour. This includes the AARE

APDU (Result = 1) shown as last interaction in Example 2 (note that "Succ(0)" is the

notation for 1 in LOTOS).

- 17 -

One of our test cases (collision of two release requests) highlights a problem with remote

and distributed testing architectures, which may also apply to local testing. According to

the specification, the IUT may generate a RLRQ (release request) PDU just before

receiving a RLRQ from its peer, as shown for the initiator in Figure 3, but not after it has

received such a PDU. However, the latter sequence may be observed by an observer that

resides at the peer site, or somewhere between the two communicating entities, as shown

by the dashed line in Figure 4.

A-RLSreq

A-RLSind

A-RLSreq

A-RLSind

A-RLSresp
RLREI

A-RLSconf

A-RLSresp

RLRER

A-RLSconf

Initiator Responder

Hypothetical Observer

RLRQRRLRQI

Figure 4. Sequence of ASPs and APDUs in the release collision scenario

- 18 -

Although we performed local observation, as shown in Figure 2, we sometimes observed

the wrong sequence of PDU’s. This is due to the fact that our point of control and

observation (PCO) was at the Presentation service interface, and included queues for

PDU buffering within the ACSE entity implementation. It seems that this is a quite

normal situation. Unfortunately, this makes the observation of certain timing and

ordering errors, such as the one above, difficult to observe and diagnose [Dsso 90].

The presence of such queues between the PCO and the state machine of the protocol

implementation can be taken into account during the test result analysis by including

queues in the reference specification used for the analysis, as discussed for X.25 in

Section 3. We did not do this exercise in the case of ACSE.

5. Concluding discussion

This paper describes our experience with a trace analysis tool, called TETRA, for the

validation of OSI conformance test cases, and for the analysis of conformance test results

in respect to the reference specification. Another experience involving the validation of a

Transport protocol in respect to the OSI Transport service written in LOTOS is described

in [Saba 90]. These experiences show that TETRA is a practical tool for the analysis of

test result and for the validation of test verdicts. Although there are still some limitations

when the behaviour tree of the specification is complex, it is possible to handle real-life

protocol specifications which cover several thousand lines of LOTOS code. We hope that

further optimizations of the analysis algorithm will lead to an improved tool which can

handle all the test cases which are encountered in OSI conformance testing. The

diagnostics facility should also be improved.

- 19 -

The errors found during our experiences indicate, as could be expected, that even well

studied specifications still contain a few errors. This shows that the automatic checking

of conformance test cases in respect to the corresponding protocol specification is a

useful activity for increasing the confidence in the OSI specifications. It is important to

note that the automation of this activity is only possible when a formal specification of

the protocol is available. Unfortunately, at present, there are only few formal

specifications of OSI protocols or services that have been generally recognized to

faithfully represent the OSI standards.

Acknowledgements: The authors would like to thank Fabrice Lavier for writing the first

draft of the ACSE LOTOS specification, O. Bellal for helpful discussions concerning the

development of TETRA, L. Logrippo for the understanding of the LOTOS specification

for LAP-B and Pierre Mondain-Monval for helpful discussions on protocols of the

Application layer. The projects described in this paper were mainly funded under the

IDACOM-NSERC-CWARC industrial research chair on communication protocols.

Financial support from the Ministry for Education of Quebec is also gratefully

acknowledged.

References

[ASN1] ISO 8824 (1987) Specification of Abstract Syntax Notation One (ASN.1).

[Boch 87c] G. v. Bochmann, Usage of protocol development tools: the results of a

survey, (invited paper), 7th IFIP Symposium on Protocol Specification,

Testing and Verification, Zurich, May 1987, pp.139-161.

[Boch 89h] G. v. Bochmann and M. Deslauriers, Combining ASN.1 support with the

LOTOS language, Proc. IFIP Symp. on Protocol Specification, Testing

and Verification XI, June 1989, North Holland Publ.

- 20 -

[Boch 89j] G. v. Bochmann and O. Bellal, Test result analysis in respect to formal

specifications, Proc. 2nd Int. Workshop on Protocol Test Systems, Berlin,

Oct. 1989, pp. 272-294.

[Boch 90f] G. v. Bochmann, D. Ouimet and G. Neufeld, Implementation support

tools for OSI application layer protocols, submitted to Software Practice

and Experience.

[Boch 90g] G. v. Bochmann, Protocol specification for OSI, Computer Networks and

ISDN Systems 18 (April 1990), pp. 167-184.

[Boch 90h] G. v. Bochmann, O. Bellal, F. Saba and M. Dubuc, Automatic test result

analysis, in preparation.

[Dubu 90] M. Dubuc, G. v. Bochmann, O. Bellal and F. Saba, Translation from

TTCN to LOTOS and the validation of test cases, submitted to FORTE

’90 (IFIP), Madrid, (November 1990).

[Este 89] ISO 9074 (1989), Estelle: A formal description technique based on an

extended state transition model

[Guer 89a] D. Gueraichi, Derivation of test cases for LOTOS LAP-B specification,

M.Sc. Thesis, University of Ottawa, 1989.

[Guil 89] R. Guillemot and L. Logrippo, Derivation of useful execution trees from

LOTOS by using an interpreter, in "Formal Description Techniques",

(Ed.) K.J.Turner (Proceedings of the First International Conference on

Formal Description Techniques Stirling, Scotland, 6-9 September, 1988),

pp.311-325.

[ISO 8650] ISO 8650 (1988) Protocol Specification for the Association Control

Service Element (ACSE).

[ISO 8882] ISO DP 8882-2 (1989) X.25 DTE Conformance Testing, Part 2: Data

Link Layer Conformance Tests.

- 21 -

[Logr 88] L. Logrippo and e. al., An interpreter for LOTOS: A specification

language for distributed systems, Software Practice and Experience, Vol.

18 (4), pp.365-385, April 1988.

[Loto 89] ISO 8807 (1989), LOTOS: a formal description technique.

[Saba 90] F. Saba, Validation en ligne de traces d’execution appliquee au protocole

de Transport, M.Sc. thesis, Universite de Montreal, summer 1990.

[Sari 89c] B. Sarikaya, Conformance Testing: Architectures and Test Sequences,

Computer Networks and ISDN Systems 17 (1989), pp. 111-126.

[SDL 87] S. X. CCITT, Recommendation Z.100, (1987).

