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1. Introduction 

Networks are becoming widely used with new applications appearing one after another.  
Today, information transfer, and its supporting telecommunication infrastructure is the 
hearth of any large organization. Yet, the majority of this work is still based on simple 
client/server architectures.  As network size increase by orders of magnitude, simple 
peer-to-peer communication models, must be replaced by true distributed applications.  
For example, a simple translation table mechanism sufficient to serve an E-MAIL 
application on a LAN, may be unsuitable for an E-MAIL international service.  Such 
services requires a distributed and global naming scheme, enabling to find users in 
different countries. 

This paper's objective is to examine the field of distributed processing system 
specifications, in the context of Open System Interconnection (OSI).  Many distributed 
applications are presently developed in the application layer of the OSI reference model.  
Two of them are briefly described to give examples of the type of information that needs 
to be specified for such systems. 

Emphasis is put on the Object Oriented paradigm, because this approach seems 
particularly suited to distributed systems.  It enables to define self-contained pieces of 
data and associated behavior, called objects, which form building blocks for describing 
distributed components.  

Layout of the paper: 
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- Section 2 looks at object oriented specification, and introduces concepts 
that will be used in the rest of the paper (such as subclassing, encapsulation, 
etc.) 

- Section 3 presents an high level design methodology to model systems 
according to Object-Oriented Paradigms 

- Section 4 outlines 2 OSI applications: The X.500 Directory, and the 
network management standard.  The management framework is then use to 
show an application of the methodology described in Section 3. 

- Section 5 examines different formal and semi-formal description technique, 
and their applicability to distributed systems, and to support Object 
Oriented concepts. 

- Section 6 concludes this paper. 

2. What are Object-Oriented specifications 

Formal specification techniques have been used for a long time in the protocol 
specification community [Boch **]. The benefits of using FDTs are: 

- formal, unambiguous and readable descriptions of the algorithms, 

- verification using several complementary proof methods, 

- compilation into real world implementations, and 

- consistency checking of the implementations with respect to the formal descriptions 
using systematic test methods. 

In this paper, we are interested in object-oriented techniques. Much literature exists about 
the advantages of the object-oriented approach [Meye 88]. We believe that the following 
characteristics of the object-orientation are of particular importance: 

The concept of object  

In the object oriented approach, the application domain is conceptualized as a set of 
dynamic entities called object instances. This concept of object leads to software that are 
easier to understand because objects naturally corresponds to the concepts of the 



application domain. This set of object instances is structured into a set of object classes. 
An object class groups objects of the same kind or with similar structure.  

Inheritance of properties 

Classes of objects are organized into a class hierarchy, or inheritance structure, which 
shows how every class is related to the others as a specialization or/and generalization of 
one or more classes. In software engineering, this inheritance structure makes possible 
reutilisation and extension of descriptions of classes of objects. 

Object instances are normally related to one another through different kinds of 
relationships. Extended Entity-Relationship diagrams can be used to show the classes of 
objects, the classes of relationships and the inheritance structure. 

Encapsulation 

At a lower level of abstraction every object may be seen as a structure of components 
objects. This decomposition leads to a second type of hierarchy called the class 
composition hierarchy. Every object instance normally offers a fixed set of services to the 
other objects. Services are modeled as operations on objects. Operations are defined such 
that every object encapsulates all the operations required for acting on its internal 
structure. Using objects as building blocks for specifications allows hinding of aspects 
related to the implementation of services and the structure of an object providing 
therefore information hinding [Parn 72]. 

3. Specification Methodology 

It is well known that methodologies are required, or at least useful, to guide the designer 
of an application. Traditional methodologies are either function-oriented [Ward 85] or 
data structure design oriented [Chen 76]. Object-oriented methodologies integrate both 
``orientations". The basic concept is the one of object. A software application is 
developed following the principle of aggregating entities together with the operations that 
can be performed on them. Functions are syntactically grouped at the level of their 
domain object-type. Entity-relationship diagrams from the field of databases are used to 
represent the structure of the objects. 

The object-oriented methodology used for this experience has originally been proposed 
in [Mond 90]. It consists of a preliminary analysis step and three modeling steps.  

Preliminary Step: Problem Definition 



The preliminary step consists of analyzing the requirements and identifying the aspects 
that need to be handled. 

Step 1: Domain Definition 

The result of the first step is a conceptual model of the structure of the domain. The 
conceptual model is described by an entity-relationship diagram which shows the 
relevant classes of entities together with the relevant classes of relationships among the 
entities. Entity-relationship diagrams can be translated in a structure of objects. Classes 
of entities become object types and classes of relationships become either object types or 
attribute definitions within object types. 

Step 2: Identification of Functions 

In conformity with the object-orientation, functions, processes or transformations are 
defined as operations on objects. The second step is concerned with the identification of 
functions and the allocation of operations to objects. They are allocated such that every 
object encapsulates all the operations required to modify its internal structure, including 
its state variables and behavior. 

Step 3: Definition of Behaviors 

At Step 3, we define the behavior of the objects. At this stage we associate a meaning to 
the operations. We may also define in which order the operations will be performed. 

The design process is iterative.  During the development of an application, it is normally 
necessary to go back and resume a previous step. 

Specification languages can be used right from Step 1. The conceptual model becomes 
clearly defined. Moreover, a certain degree of consistency can be insured by using a 
compiler that checks the syntax and the static semantics properties of the preliminary 
design. 

Object-oriented software development is both top-down and bottom up. On the one hand, 
identification of top level objects and their refinement into component objects is a top-
down activity, on the other hand, reutilisation of old object definitions in a new design is 
a bottom-up process. 

For example, let us consider the object-oriented design of the database of a small 
manufacturing company. The problem is defined as follows: Design a database for 



managing the inventory of the company. The inventory is divided into two categories of 
parts, namely, base parts and composite parts. The former are imported whereas the latter 
are manufactured within the company.  

A logical model of the database, developed during Step 1, is represented as the Entity-
Relationship diagram pictured in Fig. 1. The classes of objects "BasePart" and 
"CompositePart" inherit from the class "Part". The "UsedIn" relationship shows how a 
part, either base or composite, can enter in the composition of a composite part. Suppliers 
of base parts are also represented. 

Part

Composite PartSupplier Base Part

UsedIn

Component

Composite

Supplied Cost Inheritance
 

Fig. 2 The Entity-Relationship diagram 

Among the required functions, is the capability to compute the total cost of a composite 
part. In Step 2, we therefore allocate the operation "compute cost" to the class 
"CompositePart". The actual definition of the operation "compute cost" is developed 
during Step 3. The cost of every base part is stored in the attribute  "cost". For computing 
the cost, the operation recursively searches through the "UsedIn" relationships until base 
parts are reached. 

4. Application in OSI and distributed processing 

This section examines two OSI distributed applications namely, the Directory (X.500) 
and management of large telecommunication network.  The OSI network management 



framework will also be used to present a small example of an application of the 
methodology to alarm surveillance. 

4.1 The Directory Services and Concepts 

The first version of the X.500 series of standards [x1] has been published in 1988.  A 
1992 version (extending the original) is also in the work.  The goal of this standard is to 
define a global Directory (supporting unique naming) which enables users (processes or 
humans) to find information about other users, organizations and other entities, etc.  The 
X.500 designers used a top-down approach and started by defining what is the Directory 
system service (i.e. the external view) 

DUA

DUA

THE 
DIRECTORY

DUA = Directory User Agent

Access Point  

Figure 4.1 User view of the Directory 

As shown in Figure 4.1, a user accesses the Directory through an application process 
called a Directory User Agent (DUA).  A user wanting to query the system must first get 
connected through the bind/unbind services.  This step may involve access control and 
authentification procedures.  The user can then use the service read, compare, list and 
search to find the desired information.  From the user point of view, the Directory looks 
like a large database  which contains information.  The services are used  to look through 
the entries  contained in the Directory to find the wanted data.  The access to specific 
entries may also be subject to access control limitations. 
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Figure 4.2 Information held in the Directory 

As shown by figure 4.2 each entry is of a specific class, and comprises a certain number 
of (mandatory and optional) attributes.  Each attribute is also of a certain type which 
contains values of a defined syntax.  One example of the classes defined in X.500 is the 
class "organization" which contains the mandatory attribute organizationName, and may 
contain information such as : business category, postalAddress, description, telephone 
number, FAX number, E-MAIL address.  Recognizing the need for many different types 
of entries, the standard contains an information model (based of object oriented 
principles) which defines techniques to structure and represent the information that needs 
to be stored in the Directory.  X.500 uses object oriented techniques to enable users and 
administrators to define additional classes/attributes.  X.500 is thus extensible and may 
encompass any desired information.  These entries are organized into a tree structure 
called the Directory Information Tree (DIT).  Figure 4.3 presents an example 
hypothetical DIT. 

root

C= US C=CA

O=  BellCore O = Bell CanadaPoS = Florida

OU = Research OU = SalesO = DisneyWorld

CN = Mickey Mouse

C = Country 
O = Organization 
PoS = Province or State

CN = Common Name 
OU = Organizational Unit

 

Figure 4.3 Distinguished Names 



The tree hierarchy is used to order entries based on natural relationships that exist 
between them, such as a person working for a company,  which is in a StateOrProvince 
which is in a country.  Because of this structure, the name of a single entry is made of a 
sequence of names, called a Distinguished Name (DN), starting from the root and 
migrating downard the desired entry.  For example, in Figure 4.3 the DN of the Sales unit 
of Bell Canada is < <C=CA>, <O=Bell Canada>, <O=Sales> >.  Under the same 
superior, entries need to be distinguished by separate names.  This last part of the DN is 
called the Relative Distinguished Name (RDN).  This name must be unique relative to the 
same superior.  For example only one entry with <CN= "Mickey Mouse"> can exists 
under the entry < <C=US>, <PoS= "Florida">, <O = DisneyWorld>>.  Applying this 
principle recursively up to the entries under the root, insures a unique name for each 
entry2.  This also enables the fragmentation of the naming space into sub-spaces which 
can be administered separately  (e.g. an entry Mickey Mouse could also exist under < 
<PoS= California> , <O= DisneyLand> >).   

The next part of the Directory standard is the distributed framework.  Although the 
Directory looks like a unified database from the outside, it is not practical (for technical 
and political reasons) to assume that all that information can be stored into a single 
system.  The distributed model, illustrated in Figure 4.4, introduces the notion of 
Directory System Agents (DSAs).  Each DSA holds a small part of the Directory.  The 
sets of DSAs cooperate together to give the illusion of a global system. 
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the same entry an alias can be used.  This soften the restrictions imposed by a rigid tree structure. 
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Figure 4.4 Distributed View of the Directory 

X.500 defines a Directory System Protocol (DSP) used between the DSA to exchange 
information.  For example a DSA unable to directly answer a query (because it does not 
hold the desired entry) may "chain" the request to another DSA more susceptible to hold 
the entry.  To perform this delegation, the originator DSA will use its "knowledge" about 
other DSAs.  Minimal knowledge rules for DSA are described in the standard, as well as 
mechanisms to insure that this knowledge can be updated and that "wrong" (or outdated) 
knowledge can be corrected. 

The Directory has a  "static" view of the entries it holds, which is not the case for our 
next example application:  Network Management.  But one of the important question in 
Network management is to be able to identify these object by a global name.  It will be 
made clear in the next section that the X.500 framework was used in network 
management. 

4.2 Network Management 



Network management is our second example of an OSI area where distributed 
applications and the Object Oriented paradigm have been used.  In this paper the term 
"network management" is meant in it's larger sense of managing a complete network, 
typically owned by a telecommunication provider.  In telephony, network operation is 
often designated by the expression OAM&P (Operation  Administration Maintenance & 
Provisioning).  It is a complex field due to the intertwining of different functions, such 
as: data transmission, configuration management, error recovery, service optimization, 
alarm detection, alarm correlation, accounting, security and many others. 

Due to the geographical distribution of networks, management application must be 
distributed by definition.  The next figure (extracted from North America/CCITT 
standards on network management) present a summary of the intended TMN 
(Telecommunication Management Network) architecture.  
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Figure 4.5 Proposed TMN Architecture 

As shown by Figure 4.5, it is proposed that the many "Network Elements" (NEs) will 
communicate through a TMN to various Operation Systems (OSs) which are 
computerized systems used to manage the network.  NEs may communicate management 
information to one another, and OSs can also inter-communicate and/or be organized in 
hierarchies.  An additional level of complexity in network management, is the fact that 
these NEs are very different in terms of functionality provided (from a simple repeater to 



a complex digital switch supporting thousand of communication channels).  These NEs 
are also made by a variety of manufacturers. 

For all these reasons, a model of the network used as a base for specifying 
communication interfaces between various network components must be able to achieve 
at the same time, a high level of abstraction (for generic management), and be powerful 
enough to express specific information precisely when detailed information is needed.  
For example, an application setting up a dedicated "voice" circuit across a number of NEs 
may not be interested into the detail working of each individual NEs.  On the other hand, 
an application analyzing some alarm report coming from a specific NE may need internal 
details of that NE to be able to correlate the problem to a specific hardware component. 

For these reasons, the Object Oriented approach seems to be talor-made for network 
management.  The network is made of cooperating entities which can be modelled as 
objects, which can be refined into various level of details. depending of the view needed.   
Complex NEs can be decomposed into various component objects (e.g. line card, line 
termination, power supply, etc.), while at the same time higher level "functions" (e.g. 
service provisioning option such as call forwarding, "dial-in" circuit, etc.) may be 
represented by higher level objects. 

Inheritance is also a powerful tool. A generic concept can be defined as an object class 
such as a logical "termination point" (TP) where a signal is originated or terminated.  
This concept can be refined into a point where a modulated signal is terminated, e.g. a 
line termination (LT).  This can be refined further into a point where a specific carrier 
signal  called T1 is terminated: a " T1"LT". Figure 4.6 illustrates this process. 
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Figure 4.6 Small Inheritance example 

Inheritance can be seen as having advantages both from a top/down and a bottom/up 
design.  From a top/down point of view, it permits to obtain high level object classes that 
can be instantiated in OSs which manages at a generic level.  From a bottom/up point of 
view it permits to define specific classes which express the details of systems at a level 
useful for full management operations.  These specific classes are derived from the 
generic ones, which maximizes commonality across them. 

Because of these advantages, all the bodies involved in network management 
standardization are now following this approach.  ISO SC21/WG4 created the OO 
framework now used in OSI for network management.  The Common Management 
Information Service (CMIS) and protocol (CMIP) is the "ASE" (Application Service 



Element) created by WG4 to transport and access management information.  Figure 4.7 
illustrates the approach used in ISO system Management. 

OAM
services

OAM
Applications

Managing System (eg OSS) Managed System (eg NE)

CMISE
p-stack

CMISE
p-stack

MIB

CMIP

M_GET, M_SET 
M_ACTION, M_CREATE

M_EVENT_REPORT  
Figure 4.7 CMIS and System Management 

CMIS/CMIP is better understood by looking at the system view.  CMIS assumes the 
existence of a Management Information Base containing an object representation of the 
managed system.  All CMIS messages apply to one or more object (instances) contained 
in the MIB.  Example of CMIS services are M_GET to get attribute values of one or 
more object (read), M_SET to change values.  CMIS also includes an asynchronous 
service M_EVENT_REPORT which is used to signal events happening in the managed 
system (such as alarms, automated performance report, etc.). Another important factor is 
that CMIS assumes that the MIB is structured as a tree similar to the Directory approach 
(see section 4.1). 

Assuming the ISO framework, and the use of CMIS/CMIP for network management, the 
next step is to decide what objects will reside in the MIB for a given system. For the 
management of OSI protocol stacks, this work is done by WG4 itself.  For the telecom 
network at large, this work is done by standard bodies grouping the telecommunication 
carriers and equipment vendors.  One such body is the committee T1M1.5 (part  of ANSI 
accredited committee T1) which is responsible for developing OAM&P interfaces for the 
TMN in North America3.  T1M1 produced a Generic Network Model (GNM) standard 
[x2] and a fault management [x3]. 

One author of this paper having been heavily involved into the development of these T1 
standards, it is no coïncidence that the methodology proposed in this paper has also been 
reflected into these documents.  

                                                 
3 The work of T1M1 is submitted at the international level to CCITT SG IV committee which is 

working on a M.gnm recommendation for 1992.  The work of T1M1 and SG IV are used by 
technology specific groups to create subclasses.  For example, a model of SONET/SDH OAM&P 
is presently developed. 
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Figure 4.8 Partial E-R Diagram 

The T1M1 GNM contains an E-R depiction of the proposed model.  During model 
development,  E-R diagrams were used to document an high level view, and to keep track 
of the needed relationships between object classes.  Figure 4.8 presents an extract from 
the more complete figure contained in the standard.  One example of the use of such 
diagrams is that T1M1 designers were keen on separating a logical view of network 
equipment (common functionality) from an equipment view which is different  from one 
manufacturer to another.  This explains that on this diagram, the function of terminating a 
line (line termination), is not directly embedded/linked to the hardware which supports it.  
This relationship is illustrated by the supportedBy diamond between termination and 
hardware.  In a specific equipment, the function of terminating a T1 line may be 
implemented by 2 circuitPacks, in another, two T1 line terminations may be implemented 
in one hardware component. 

The question of creating a naming tree (as in Section 4.1), is also solved by using 
existence dependent relationships.  For example the simple naming tree of Figure 4.9 can 
be derived by using the is-part-of (containment) relationships between lineTermination 
Equipment, NE, and Network.  Line can be named by network, but it can also be named 
by its two end-points (in traditional telephony a dedicated circuit is often named by its 
two end-points). 
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Figure 4.9 Naming Tree example 

4.3. Application of the methodology 

Using the framework of network management, this section will present a small 
application of the  methodology  on the subject of Alarm Reporting. 

Preliminary Step: Problem definition: 

The objective is to produce  a specification covering alarm surveillance between a small 
network element and a managing system (OS).  This specification must include 
asynchronous alarm reports, log of alarms (history) and filtering of alarms (inside the 
NE). 

Step 1: Domain definition: 

Alarm maybe detected/emitted by objects such as those listed in Figure 4.9.  But 
additional objects are required to hold the alarm history, and to filter the alarms going to 
the managing system. 
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Figure 4.10 Support object for alarm surveillance 

The additional entities presented in Figure 4.10 are often called support objects because 
they are required for OAM&P, but do not represent actual "real" objects inside the 
managed system.  The event discriminator is an object which "filter" outgoing message to 
the managing system, it contains a "discriminator" construct which is a boolean 
expression controlled by the managing system.  An alarm message respecting the 
condition expressed in that filter (e.g. severity is critical) will be send to the system  The 
log object is used to hold a number of alarm records and reflects history information.   

Step 2: Identification of operations: 

Figure 4.11 summarizes the operations exchanged "between objects" (this is not meant to 
imply any specific implementation), and between the managed system and its manager.  
The control of the discriminator may be obtained by using a discriminator object. 
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Figure 4.11 



The content of the interactions exchanged in Figure 4.11 must also be defined.  For the 
alarm reporting here is an example of some useful information such a message could 
carry: 

Parameter Name Mandatory/
Optional 

Example 

ProbableCause M TransmissionAlarm: 
ReceiverFailure 

PerceivedSeverity M Major 
Back Up Status O True (failed unit was 

backed up) 
Trend O moreSevere 

ThresholdInfo O Counter: 
value:  40 

MonitoredValue 0 BitErrorRate/Second 
 

Figure 4.12 Some Alarm report parameters 

Figure 4.12 presents a non-exhaustive list of useful information for an alarm message.  
ProbableCause indicates the probable reason for the alarm.  The perceivedSeverity 
indicates the relative importance of the alarm (minor, major, critical) or the clearing of a 
previous alarm.  This attribute can be very useful to filter out all small (minor) alarms. 
Backed up status shows if the object failed was backed up by another object.  When 
multiple alarms of the same type occurs (on the same object) it may be useful to show 
that this is a problem that is getting worse (or better).  Threshold info and monitored 
value are used when a threshold crossing is "alarmed" by the OS.  In this case, the type of 
threshold and its value is indicated in threshold info, and the monitored value is indicated 
by the type of the measured attribute.   

Step 3 Behavior of the definition 

The following figure illustrates the transition state table for the combination of 
operational state (disabled/enabled), and of alarm status (cleared, minor, major, critical, 
underRepair). 

The possible combination are Ec (EnabledCleared, Em (EnabledMinor), EM 
(EnabledMajor), DM (DisabledMajor), DC (DisabledCritical), and Dur (Disabled 
underRepair). 

Res State 
----------- 
Init State 

 
Ec 

 
Em 

 
EM 

 
DM 

 
DC 

 
Dur 

Ec  1 2a 2b 3 4 
Em 5 1 2a 2b 3 4 
EM 5 7 2a 2b 3 4 
DM 5 7 8 2b 3 4 
DC 5 9 10a 10b 3 4 



Dur 6      
 

Figure 4.13 State Table of Operational State and Alarm Status 

The event labelled in the state table are: 1 Minor alarm sent, 2 Major alarm a)stay 
enabled, b)become disabled, 3 Critical alarm sent, 4 Set to under Repair (either remotely 
or locally), 5 Last alarm cleared, 6 Repair Terminated, 7 last major alarm cleared, minor 
remaining, 8 last major alarm causing disabled cleared, other major remaining, 9 last 
critical alarm cleared minor remaining, 10 last critical cleared major remaining a) 
enabled b) still disabled. 

The reader interested in actual implementation of management network based on the 
information in this chapter may want to consult [x4, x5] 

Discussing a small example such as alarm reporting, implies defining many types of 
information;  object, attributes, operations, behavior, communication.  The subject of the 
next chapter is to explore which techniques are available to describe the information 
required to specify, verify, implement and maintain such object oriented distributed 
systems. 

5. Object Oriented Specification Language 

5.1. Overview 

In this section we give an overview of various description  techniques that may be used 
for the development of object-oriented  specifications. Description techniques in use vary 
considerable as  far as their formality is concerned. While informal methods have  the 
advantage of being easily adopted, however, the resulting  descriptions may lead to 
difficulty of interpretations,  ambiguities and misunderstanding. Therefore formal 
techniques are  advocated. So-called formal languages have a formally defined  syntax 
(rules defining what descriptions are valid) and semantics  (rules defining the meaning of 
a valid description). The  standardized "formal description techniques" (FDT) discussed 
in  Section 5.3 belong to this category. Most programming languages have  a formally 
defined syntax, but an informally defined semantics. We  call such language semi-formal; 
the ASN.1 notation described below  belongs for instance to this category.  

The concepts of object-orientation were first introduced in the  context of programming 
languages. Much after the pioneering design  of the Simula language in 1967, Smalltalk 
was the first widely  used language in this respect. Other important examples are  Eiffel 
and C++. Eiffel is a strongly typed language,  which  facilitates the detection of design 
errors by the compiler before  the execution of a program.  

As a specification language for distributed systems, sequential  programming languages, 
such as the above, have the disadvantage  that (1) they cannot describe concurrency, (2) 
the description  tend to be implementation-oriented because it is difficult to  describe 
non-determinism or to leave certain aspects undefined.  Because of these difficulties, so-
called formal and semi-formal  specification languages have been introduced, as 
discussed in more  detail in the subsections below. 



Certain specification languages only cover certain aspects of a  system description. For 
instance, a finite state machine model  only covers those aspects of the behavior of an 
object which are  related to the temporal ordering of input and output interactions.  The 
important aspect of interaction parameters is ignored. Figure  XX (#49 revised) shows the 
major aspects for object-oriented  descriptions of distributed systems. It also shows that 
most  specification languages do not cover all aspects. For instance,  existing FDT's cover 
the object-oriented aspects only partly and  the ASN.1 extensions described below do not 
cover the  behavior aspect, as discussed in more detail below. 

5.2 ASN.1 and extension for Remote Operation and Object Description 

ASN.1 (Abstract Notation One) is a specification language defined by CCITT and ISO.  
It is part of the OSI series of standards [x6].  Its goal is to permit heterogeneous system, 
having different ways to represent data structures, to exchange information in a 
standardized format.  First the basic ASN.1 will be introduced, then example of 
extensions to the language (through the use of MACROs and Templates) will be 
examined. 

The intent of this section is not to present a tutorial on ASN.1 (see for instance [Neuf 
**]), however it may be useful to briefly recall the two main features of ASN.1, the 
notation, and the encoding of values obtained by using the associated encoding rules. 

The ASN.1 language is based on a small number of basic types such as INTEGER, 
REAL, OCTET STRING, different type of character string, bit string, and others.  More 
complex types are derived by using "constructor" types such as SEQUENCE which is an 
ordered list of "more" elementary types, and SEQUENCE OF which is an unlimited 
ordered list made of elements of the same types.  The language also consists of operators 
such as the type assignment operator "::=",  and conventions, for example,  that type 
identifier must begin with an uppercase letter and constant must begin with a lowercase 
letter. 

PersonelInfo  ::= SET { 
 age     INTEGER, 
 married     BOOLEAN 
 } 
 
Name ::= SEQUENCE {  first IA5String, 
        middle IA5String OPTIONAL, 
        initials IA5String SIZE (1..2) OPTIONAL, 
        last IA5String  
  } 
PDU ::= CHOICE { CR, CC, DT, DR, DC, EX, EA } 
         
Figure 5.1 Small sample of ASN.1 notation 

The second part of ASN.1 consists of a set of rules to encode/decode any value specified 
using the ASN.1 notation to/from a byte stream that can be transported through high level 
protocols.  The designers of ASN.1 separated the notation from the encoding rules.  



Therefore,  different encoding rules can be selected according to needs.4  The next figure 
illustrates the coding principle used for the Basic Encoding Rules (BER). 

                 
                                      Figure 5.2 ASN.1 BER Encoding  

The encoding works on the principle of "Type Length Value" (TLV), as illustrated in 
Figure 5.2, the value in the case of constructed types can be made (recursively) of other 
types, until a basic type has been encoded. 

ASN.1 is a semi-formal language because it provides means of specifying precisely data 
structures, as well as the encoding/decoding of values to/from a byte stream (but no 
formally defined semantics).  This process can be automated with the help of an ASN.1 
compiler.  Many such compilers are available today either as shareware or from 
commercial sources [**]. 

The 1988 version of the ASN.1 standard has a facility called MACRO which allows 
(sophisticated!) users to define additional notation  to create language construct tailored 
to specific needs.  An example of such notation is the Remote Operation Service Element 
(ROSE) defined in [x7].   

OPERATION MACRO  ::=- 
BEGIN 
 TYPE NOTATION  ::= Argument Result Errors LinkedOperations 
 VALUE NOTATION  ::= value(VALUE CHOICE{ 
    localValue INTEGER, 
    globalValue OBJECT IDENTIFIER}) 
 Argument  ::= "ARGUMENT" NamedType | empty 
 Result  ::= "RESULT" ResultType | empty 
 ResultType ::= NamedType | empty 
........... 
END 

Figure 5.3 ROSE Operation Macro 

 

                                                 
4 In 1988 the standard contained only the BER described here.  The 1992 version will include in 

addition PER (Packed Encoding Rule), and DER (Distinguished Encoding Rule).  Work has also 
started on a light-weight encoding rule.  The selection of the desired encoding rule can be done 
through the presentation layer protocol at layer 6 of the OSI model. 



This Operation Macro defines an ASN.1 Macro called OPERATION which has a value 
of either type INTEGER, or type OBJECT IDENTIFIER.  The notation can be used to 
define a remote operation (e.g. a remote procedure call) with a list of types as input 
parameter (in the ARGUMENT clause) and output parameters (in the RESULT clause). 

The MACRO notation of 1988 ASN.1 can be used to create useful notation like the 
Remote Operation.  Nevertheless, it is difficult to create a generic parser that can 
recognize/analyze every possible type of MACRO, and at best this covers only the 
syntactic aspects.  In the example of  the ROSE operation, the only thing the operation 
MACRO really implies is the association a code (integer or object identifier) to an 
"operation". The semantic consists of the link between this code, and the parameters of 
the operation, the position of this information in a ROSE APDU, and the effect of the 
operation itself.  Part of this semantic is described in the ROSE standard, the rest is the 
responsibility of the operation designer.   A possible solution is to create compilers which 
recognizes a few specific MACROS, but this looses the generality searched by the 
conceptors of ASN.1. 

By the end of 1989 the member of the ISO JTC1/SC21/WG4 were struggling with 
developing different ASN.1 MACROs to represent managed objects.  MACROs were 
needed for object classes, attributes, notifications, actions, name bindings, and the 
notation was becoming quite complex.  There was fear that it was becoming too difficult 
to built automated tools to support such a notation.  Another factor was that in term of a 
ROSE operation, the semantic related to the operation is still tied with the resulting 
APDU (plus the semantic of the operation itself).  When a MACRO is used to define an 
object "inheriting" from another object (attributes, behavior, notification/action), this 
semantic is far from any direct relationship with an APDU5. 

For these reasons it was decided to create a "template" notation which is defined in a 
document called Guidelines for the Definition of Managed Object (GDMO) [x8].  
Because of this, the set of templates defined in this document are often designated as 
"GDMO" templates.  The document defines (informally!) the semantic implied by using 
these templates.  The base of the notation is the managed object class template which is 
used to define classes made of attributes (mandatory and optional), actions (which can be 
processed by this class), and notifications (which can be send by this class depending on 
certain events).   

<class-label> MANAGED OBJECT CLASS 
[DERIVED FROM <class-label>    [,<class-label>]*; 
] 
[CHARACTERIZED BY      <package-label>      [,<package-label>]*; 
] 
[CONDITIONAL PACKAGES ,package-label>   PRESENT IF condition-definition 
                   [,package-label>  PRESENT IF condition-definition]* ; 

                                                 
5 Since then, the ASN.1 MACRO feature has been replaced by the "Information Object Class" 

mechanism which enables the creation of "template" like construct, and more importantly, which 
can link part of APDUs to such construct.  This seems a great advantage in terms of building 
tools.  The 1992 directory (see section 4.1 will be using this notation.  It will be interesting to see 
if this will also deprecate GDMO templates. 



] 
REGISTERED AS object-identifier ; 
 

Figure 5.4 Managed Object Class Template 

A managed object class template can refer to another managed object class (inheritance) 
and is made of mandatory and optional packages.  Optional package presence is 
controlled by a condition which is written in natural language.  Although not ASN.1 
proper, the GDMO notation refer back to ASN.1 to define elementary components .  For 
example, a managed object class can be registered as an object identifier. 

Packages can be used to group a number of related attribute/action/notifications for 
modularity reasons.  Figure 5.4 shows how the different types of templates relates to one 
another.  For example a package template refers to attribute, attribute group, notification, 
action, behavior and parameter. Is is referred to by the managed object package. 

PARAMETER

BEHAVIOUR

ATTRIBUTEACTION

NOTIFICATION

NAME BINDING
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OBJECT CLASS 

PACKAGE

ATTRIBUTE 
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Figure 5.4 GDMO Templates  

As an example of the use of the GDMO notation figure 5.5 is a line termination proposal6 
using GDMO.  The lineTermination object inherits from another object called 
"trailTerminationPoint".  It contains a mandatory package named lineTTPPkg (defined 
using the "on-line" style) which contain behavior statements.  These statements explain 
the behavior of the object (in addition to the behavior of trailTerminationPoint).  It has 
also one (mandatory) attribute called "lineCoding".  This attribute is qualified with a 
"GET" qualifier which indicates that a CMIP M_GET message can be used to read the 
attribute (but an M_SET cannot be used to change it).  This object is also made of 4 
conditional packages, the first one called signalRatePkg.  It contains one optional 
attribute called signalRate which is there if the condition specified is true.  This condition 
can be verified at implementation or instantiation time, but is not changed after the 
creation of the instance. 

                                                 
6 This was part of a Northern Telecom input to T1M1 GNM, at the time of this writing, T1M1 is 

presently working on the next version of the GNM standard which will be using the GDMO 
notation. 



This notation is limited by its close link with ASN.1.  It is very good in term of 
specifying syntax, but the behaviour is specified outside the template notation itself, 
currently in natural language.  What this means concretely, is that a formalism that can be 
linked back to ASN.1 will be very useful in the context of OSI, but such formalism 
should be more powerful than ASN.1 in terms of semantic.  This brings us to the issue of 
behavior descriptions which will be discussed in the next two sections. 

 

lineTrailTerminationPoint MANAGED OBJECT CLASS
DERIVED FROM trailTerminationPoint;
CHARACTERIZED BY
lineTPPkg PACKAGE
BEHAVIOR

lineTTPBhv  BEHAVIOR
DEFINED AS
* The "Line Trail Termination Point" is a class of managed object

representing TTP at which a modulated/encoded signal is inserted and/or
terminated.  In addition to product independent modeling, this class may be
used in the modeling of  PDH carrier system, access system, radio system, etc.
The connectivity pointer, if the direction attribute has a value receive, is used to
point to one of the following:  a trail termination point object with direction
transmit or both, connection termination point object with direction transmit
or both. If the direction attribute has a value transmit, the pointed-to object
has the direction value of  either receive or both. The pointed-to object shall
have the same layer characteristic (signalRate, and Line coding) as the line trail
termination point. In a technology specific subclass (e.g., T1 line TTP), a
naming attribute which is specific to the subclass may be defined
(e.g.,t1LineTTPId).*;;

ATTRIBUTES
lineCoding  GET;;

CONDITIONAL PACKAGES
signalRatePkg PACKAGE

ATTRIBUTES
signalRate GET;
REGISTERED AS {ccittPkg xx};
PRESENT IF "the signalRate is not implied by the value of the 
object class attribute",

lineTTPInstancePkg PACKAGE
ATTRIBUTES

signalTTPidGET,
REGISTERED AS {ccittPkg xx};
PRESENT IF "the name binding used to create an instance of this 
class  requires this attribute ";

lineTTPSinkPkg PRESENT IF
"the direction attribute has a value of sink, or bidirectional",

lineTTPSourcePkg PRESENT IF
"the direction attribute has a value of Source or bidirectional";

REGISTERED AS {t1M1ObjectClass  x};
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Figure 5.5. The line termination object definition. 

 

5.3 Standardized Formal Description Techniques  



Several so-called Formal Description Techniques (FDT's) have been developed within 
ISO and CCITT for writing formal specifications of OSI protocols and services. These 
languages are called Estelle [Este 89], LOTOS [Loto 89] and SDL [SDL 87]. All three 
FDT's essentially contain three basic components:  

(1) Facilities for describing the temporal ordering of  interactions among "processes" 
(called "modules" in Estelle). 

(2) Facilities for describing the structure of a systems as a  composition of processes. 
Estelle uses the concept of "interaction  points" connected through "channels". SDL also 
uses "channels",  and in addition the concepts of a "block", which represents a  
subdivision of a system, and a "route" which is used for  describing the routing of 
messages within a block. LOTOS uses the  concept of a "gate" which corresponds to 
several interconnected  interaction points.  

(3) Facilities for describing data. Estelle uses elements of the  Pascal programming 
language to describe data structures and  operations, including variables and procedures. 
SDL uses a similar  notation, but also provides for the description of abstract data  types 
with operations the semantics of which can be defined  through the specification of a set 
of axioms. LOTOS is a  functional language (without variables) and uses abstract data  
types. 

In the following we discuss how the concepts of object instance,  encapsulation, class 
hierarchy and inter-object communication are  supported by these FDT's.  

In Estelle or SDL, an object instance may be represented by a module  instance or 
process, respectively. In LOTOS, the situation is less  clear since LOTOS processes have 
no identity, and they are also  used to represent states or transitions (see for instance 
[Boch  ]). These constructs of the FDT's also provide for encapsulation  of the inner 
aspects of the "objects", which only communicate with  other "objects" through 
interactions. In addition, LOTOS uses  the concept of gates, which seem to be natural 
candidates for  representing such objects as service access points. However, LOTOS  
does not support encapsulation, nor the concept of classes for  gates. Various ways to 
introduce the concept of objects into LOTOS  have been discussed in the literature [***].  

The existing FDT's do not support very well the description of class  hierarchies through 
specialization. In Estelle, several different  behaviors (called "body") may be defined for 
a given type of  module, but there is not explicit concept of specialization. The  situation 
is similar for SDL, although some form of specialization  is available for abstract data 
types. LOTOS also provides provides  such a facility, and in addition allows for the use 
of the so- called constraint-oriented specification style [***] allows the  definition of 
specializations of behaviors by specifying  additional constraints about the allowed order 
of interactions. 

Within CCITT, under the question of SDL maintenance, an object- oriented version of 
SDL is being developed [**]. The present  proposal includes explicit inheritance for 
process types and  certain aspects of behavior specialization through the  specification of 



additional transitions and states, and the use of  unspecified "inner" parts of procedures, 
as already included in  the Simula language.   

Concerning the aspect of inter-object communication, there seems  to be no generally 
agreed approach. While some school of thought  prefers the message passing paradigm 
(as used in Estelle and SDL),  many object-oriented languages use a (remote) procedure 
calling  mechanism. The object-oriented language Mondel mentioned below  also 
supports rendezvous communication similar to LOTOS. It is to  be noted that 
synchronous communication is preferable to message  passing for the development of 
system descriptions at a high level  of abstraction [Boch **]. The main difficulty with 
message passing  is the possibility of message cross-over between two communicating  
objects. Communication is an important consideration for the  comparison of FDT's and 
other languages. 

5.4. Other object-oriented specification languages 

As mentioned before, object-oriented languages support  encapsulation of modules, 
which are objects. The interface of the  modules of a system are defined in terms of the 
available  operations, as developed during step 2 of the design methodology  described in 
Section **. In the context of programming  languages, the behavior of the operations, as 
considered during  step 3 of the design methodology, is often considered an  
implementation issue, but it is important to note that a complete  module specification 
must include a definition of the behavior.  Besides the FDT's discussed above, there are a 
number of other  specification languages that include facilities for the definition  of 
behavior. In the following, we mention a few such languages  that are object-oriented. 

The specification formalism called Traces [***] emphasizes that  the behavior of a 
module (or object) should be described in terms  of the externally visible interactions, 
more precisely, in terms  of the possible sequences (traces) of interactions and their  input 
and result parameters. This approach is object-oriented  since all interactions considered 
within one trace pertain to the  same object instance. The formal notation for defining the  
behavior of an object is related to predicate calculus. A  methodology for systematically 
presenting the behavior definition  of a module in the form of a readable document 
including tables  and predicates has also been proposed [***]. 

Another specification language based on predicate calculus is Z  [**]. Recently, certain 
extensions to Z have been defined which  facilitate the description of object-oriented 
specifications  [***]. Applications in the area of ODP have also been presented  [**].  

Finally, we mention the object-oriented specification language  Mondel [**] which uses a 
high-level algorithmic language and  assertions to describe object behavior. During the 
design of the  language, attention was paid to the representation of entity- relationship 
models with class specialization as used during Step  1 of the design methodology 
described in Section **, and to a  close relation with ASN.1 (as described in Section 5.2) 
in order  to facilitate the translation between standard OSI descriptions and  Mondel 
specifications. The language also supports certain aspects  related to object-oriented 
databases, such as the retrieval of  objects instances and transactions. Various 
applications to OSI  protocols have also been done [***].  



5.5. Support tools 

As shown in Figure 5.6, a system specification is used in the  various activities of the 
system development cycle, such as the  validation of the specification, the development 
of an  implementation, the selection of test cases for the  implementation, and the analysis 
of test results. In order to  build support tools which may automate part of these different  
activities, it is necessary to use a specification which is  written in some formal notation. 
The languages discussed above are  good candidates for this purpose. 

    Figure 5.6 

A tutorial on specifications for communication protocols and  services, formal and 
informal, is given in [Boch **]. The  principles described there remain valid for object-
oriented  specifications as considered in this paper. Instead of repeating  this discussion 
here, we present in the following shortly the  support tools that have been developed for 
the Mondel language. 

The semantics of a Mondel specification is formally defined in  terms of an abstract 
machine which is obtained from the  specification through given inference rules which 
are written in  first order logic restricted to Horn clauses. Since the translation of  these 
inference rules to Prolog is straighforward, we were able to  obtain a simulation 
environment in a relatively short time period  [Will 90]. This environment allows the 
interactive and automatic  exploration of selected execution paths according to the given  
specification, and facilitates the debugging of specifications.  

For a large subset of the language, it was possible to translate  the semantic definition 
into an equivalent form based on coloured  Petri nets [**]. The latter was then used to 
build a verification  tool which makes an exhaustive analysis of all possible execution  
paths allowed by a given specification. This tool can be used for  **** 



The automatic translation of Mondel specifications into C++  implementation code is 
under study. In order to elaborate a  translation scheme, we work on the hand translation 
of a Mondel  X.500 specification [***] into a C++ implementation. No Mondel  tools 
related to testing have been developed. However, as for most  specification languages, 
testing tools related to finite state  machine models can be adapted if the specification 
under  consideration has an important finite state machine aspect. 

7. Conclusion 

(To be completed) 
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