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Abstract 
The selection of appropriate test cases is an important issue in the development of 
communication protocols.  Various test case selection methods have been developed for the 
case that the protocol specification is given in the form of a deterministic finite state 
machine (FSM). This paper present a new method which applies in the case of non-
deterministic specifications and implementations. The testing process is more complex if 
the specification, or even the implementation, is non-deterministic. Nevertheless, under 
appropriate assumptions, the described test case selection method leads to a finite set of 
finite test cases for a given specification which guarantees that any deviation of the 
implementation from the specification will be detected. The paper presents the new test 
selection method in a framework for testing non-deterministic systems and demonstrates its 
use with small examples. 
 
1. Introduction 
Testing plays an important role during the development of computer hardware and 
software. The selection of appropriate test cases is an important issue in this context. We 
assume in this paper that a specification of the desired behavior of the system component to 
be tested is available. Such a specification can be taken as the basis for the development of 
a suite of test cases, or for evaluating the coverage of a given test suite. This paper deals 
with the development of a test suite covering the behavior of a system component defined 
by a finite state machine specification. In contrast to most methods described in the 
literature, we allow for non-deterministic specifications and implementations. 
 
The issue of testing implementations in respect to a specified behavior has recently 
received much attention in the area of communication protocols [Rayn 87, Sari 89]. In 
order to validate the protocol implementation, a set of test cases, usually called a "test 
suite",  is needed to determine whether an implementation conforms to its specification.  In 
the case that a formal specification of the protocol is available, the test selection and fault 
analysis can be based on this specification [Sari 89, Boch 89m]. 
 
This paper considers the case that the specification and its implementation may have non-
deterministic behaviors. We assume that both the specification and the implementation can 
be modelled by finite labelled transition systems.  In addition to finite state machines, there 
are many languages which are based on (in general infinite) labelled transition systems, 
such as CCS [Miln 80], CSP [Hoar 85], and LOTOS [Bolo 87].  The test method described 
in this paper can be adapted to (subsets of) these languages. 
 
Most test selection methods for (deterministic) finite state machines [Nait 81, Chow 78, 
Gone 70, Sabn 88] assume that the purpose of testing is to demonstrate that the behavior of 
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the implementation under test  (IUT) is equivalent to the behavior defined by the 
specification. In the case of non-deterministic machines, however, it is more appropriate to 
demonstrate that the IUT implements the specification, where "implements" is an ordering 
relation which, in general, allows several different implementation to satisfy a given 
specification. There are many "implements" relations that have been proposed in the 
literature,  such as conformance [Brin 88], failure [Deni 84], reduction [Brin 87], extension 
[Brin 87], failure trace and generalized failure [Lang 89], and conformance based on 
acceptance [Henn 85, Boch 89f].  In this paper we are concerned with the failure preorder 
which is the intersection of the conformance relation and the preorder of trace inclusion 
[Tret 89].  The corresponding equivalence relation is testing equivalence. 
 
In the case of testing for the conformance relation between the IUT and the specification, 
the concept of a "canonical tester" has been introduced [Brin 88] which can be derived 
from the specification which is assumed to be given in LOTOS [Bolo 87]. However, such a 
tester has in general an infinite behavior and is therefore not suitable as a test suite. The so-
called CO-OP method [Weze 89] can be used to construct finite canonical testers in the 
case of finite behaviors. 
 
The purpose of this paper is to describe a new method for developping a finite test suite 
which checks whether an implementation satisfies the failure preorder in respect to a given 
specification, which is given in the form of a non-deterministic FSM. Assuming that the 
behavior of the implementation can also be described by a non-deterministic FSM with a 
limited number of states, and assuming that a reset function is correctly implemented, the 
derived test suite guarantees that any deviation from the failure preorder relation will be 
detected.  
 
Section 2 introduces the basic notation for labelled transition systems which is the 
theoretical framework in which the specifications and implementations to be tested are 
described. It also introduces the notation of "multi-state" which corresponds to the set of 
states in which a given system may be after a given sequence of interactions. This notion 
simplifies the treatment of the non-deterministic behavior of the specified systems.  
 
Section 3 introduces an abstract framework for the testing of non-deterministic systems and 
discusses the failure preorder relation which is taken as the implementation relation to be 
verified through testing. Finally, an algorithm is presented which allows to verify the 
failure preorder relation if both the specification and the implementation are given in the 
form of (non-deterministic) finite state machines. Section 4 considers the case that the 
description of the implementation is not known, and its conformance to the specification 
must be checked through testing. It is shown that the above algorithm can be combined 
with methods for the identification of the states in the implementation and a systematic 
coverage of the possible behaviors in order to obtain an algorithm for the development of a 
test suite with guaranteed fault detection power.  
 
This paper is a shortened version of [Fuji 91] which contains a more detailed discussion of 
these issues and the proofs of the mentioned theorems. It also includes the application of 
the same approach to the case of testing for testing equivalence. 
 
2. Notations for non-deterministic state machines 
2.1 Labelled transition systems 
We use a labelled transition system to model state machines which represent the 



specification or an implementation. A labelled transition system (LTS) is defined as a 4-
tuple <St, L, T, S0> where: 
- St is a (countable) non-empty set of states; 
- L is a (countable) set of observable actions; 

- T = {-  St  St |   L  {}} is a set of binary relations on St; 

- S0  St is the initial state of the system. 

We write P-P'
  for a pair of states P and P' that belongs to the relatiøn -; it is also 

called a transition.  -   represents internal, non-observable transitions. In this paper, we 
use a LTS with finite number of states (St), actions (L) and no t-transitions to model the 
system behaviors. We often make no notational distinction between a state S and a 
transition system consisting of all states accessible from S. In the later sections, we often 
consider a transition system consisting of a component S, representing the specification, 
and a component I representing an implementation. Further notations are defined in the 
tables 2A and 2B. 
 
Table 2.A. Notation for labelled transition systems 
notation  meaning 
 
L   set of observable actions; a,b,c,... denote elements of L 
L*   set of strings over L;  denotes such strings;  is the empty string 

L'   L  {};  denotes elements of L' 
St   set of states; P,Q,S, and I denote such states 
S   set of states reachable from S 

P-1... n  Q there exist Pi for 0   i   n such that  

    P = Po - 1  P1 ... - n  Pn = Q 
P-1... n   there exists Q such that P-1... n Q 

P+1... n   no Q exists such that P-1... n Q 

P =    Q  P - n  Q (1  n)  or  P = Q 

P = a   Q  there exist P1 ,P2  such that P =   P1 - a  P2 =   Q 

P = a1 ... an  Q there exist Pi for 0  i  n such that 

    P = Po = a1  P1 ... = an  Pn = Q 
P =   Q  P = a1 ... an  Q with  = a1 ... an 

P =     there exists Q such that P =   Q 

P       no Q exists such that P =   Q 

Tr(P)   {   L* | P =   }, i.e. the set of traces accepted starting in state P 

out(P)  {a  L | P = a  }, i.e. the possible next actions from state P 
 
Table 2.B: Notation related to multi-states and transitions between them 
notation  meaning 
 
S, I   set of all multi-states reachable from S0 and I0, respectively 



S, Si, Sj  multi-states included in S, in particular, S0={S0} 
I, Ik, Il  multi-states included in I; I0={I0} in particular 

S i  S j   S j = {Sj | Si  S i, Si =   Sj}, S j   

S i     there exists Sj such that S i =   S j  

S i   no Sj exists such that S i =   S j  
 
2.2. Example specification 
Figure 1 shows a transition diagram defining a non-deterministic FSM. The initial state is 
S0. In this state, the action a is possible and may lead to the states S1 or S2. In these states 
the action b is possible and leads deterministically to states S3 and S0, respectively. The 
action c is also possible in state S2, etc. We use the notation where fat arrows represent 
deterministic transitions, that is, there is only one transition for the given action in the given 
state. 
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Figure 1:  Specification S 

 
2.3. Describing non-determinism by multi-states 
In the case of non-determinism, the state machine may reach one out of several states for a 
given sequence of actions. In order to simplify the notation concerning all these 
possibilities, we introduce the notion of a multi-state which is a set of state in which the 
transition system may be after a given sequence of actions. This approach is similar to the 
classical proof that for each non-deterministic FSM, there is an equivalent deterministic 
FSM that accepts the same language of input sequences. 
 
We define (S after ) to be the set of states which can be reached by applying sequence  

starting from state S, that is,  S after   = {Si | S =   Si} . For the example of Figure 1, 

for instance, we have (S0 after a)={S1,S2}, (S0 after a.b) ={S0,S3}, (S0 after a.d)= . 
The set of states (S0 after s) may be considered, in some sense, as a single "state" from the 
system behavior point of view. If we explore the LTS starting in S0 by applying the test 
sequence s, we will reach one state of (S0 after s). The behavior which will be observed 
after s is determined by the set of possible states. The notion (S0 after s) contains the non-
determinism because it includes all possible states that can be reached. We use notations 
analogous to those for states, as given in the tables 2A and 2B. 
We can define a testing tree for a non-deterministic machine in terms of multi-states which 
are reached after a given sequence of interactions, similar as described for deterministic 
FSM's [Chow 78]. It is important to note that this tree is deterministic (at each node, there 
is only one branch with a given action label), however, in contrast to the case of 



deterministic machines, each node represents a set of possible states (a multi-state). As an 
example, Figure 2 shows a testing tree for the specifications of Figure 1. A testing tree can 
be derived using the following algorithms, which proceeds in several stages: 
Algorithm 2.A (testing tree) 
The algorithm constructs the tree in a breadth-first manner.  We write Gk  for the set of 
multi-states (i.e. nodes) derived up to the depth k. 
(a) k : = 0 ; G0 = { {S0} }  

(b) k : = k+1; for each multi-state of Gk which is not included in Gk-1  ...  G0 , derive 

all possible next multi-states by using the transition rule S i = a  S j ; add the derived 
multi-states to Gk+1 . 

(c) If Gk+1  G0  G1  ...  Gk  (no new multi-set was included), then stop. Otherwise 
go back to step (b) and continue. 
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Figure 2: Testing tree for  specification S (shown in Figure 1) 
 
3. Testing non-deterministic state machines 
3.1 Abstract testing framework 
We use a framework for the discussion of the testing process described in [Brin 89] (see 
also [Fuji 91] for more details). In particular, we use the concepts of a test process t which 
is a LTS with a finite set of traces Tr (t).   denotes the set of all test processes over the set 

of actions L. A test run of a LTS P with t is a derivation  P || t =   P' || t'   which 
corresponds to the coupled execution of P and t yielding the interaction sequence .   A test 

run is completed if the derived  P' || t'  satisfies    L' : P' || t' +   .  The observations 
of a test run yield a result which is either successful (also written as T) or  deadlock (also 
written as F). A completed test run is successful if the derived t' of  P' || t'  satisfies 
   L' :  t' +   and deadlock if not successful. The set {successful, deadlock} is the 
set of observations. The set of all possible observations of P || t  is denoted as O (P || t) , 
which is a subset of  .  
 
We also use the concept of a verdict for a test t, which is a mapping 
t : Power ()  {pass, fail} with the meaning that an implementation P passes a test t, if 



t (O) = pass, where O is the set of all observations obtained through successive test runs 
with the test process t. For the case of failure preorder testing, as discussed below, the 

following verdict can be used: t (O) = pass     if     O  O (S || t)    and  = fail otherwise. 
Finally, we use the concept of a test suite, which is a set of tests, also called "test cases". 
We say that an implementation I passes a test suite if it passes all test cases in the suite. 
It is important to note that for a given system P which is tested, there may be several 
possible observations that may be obtained for a given test process. This is due to the non-
determinism of the tested system. In order to obtain all possible observations for a given 
system, it is therefore necessary, in general, to repeat several test runs for each test process. 
However, if the obtained set  of observations for a given test case is not the complete set  
(in our case {T,F}), one can never be sure that all possible observations have been 
obtained, because of the non-deterministic nature of the tested system. In the following, we 
assume that the set of all possible observations for a given test case can be obtained by 
repeating test runs a certain, limited number of times. We assume a certain fairness 
between the different behaviors allowed by the non-determinism of the tested system.  
 
3.2 Failure preorder as implementation relation 
If we want to test an implementation, we need to define an implementation relation which 
answers such questions as: 
 - What is the meaning of a valid implementation? 
 - What is the condition for valid implementation? 
In the case of deterministic specifications, the relation is usually equal behavior, that is, the 
implementation should provide the same traces of interaction sequences.  For non-
deterministic specifications, however, several implementation relations have been proposed 
in the literature,  such as conformance [Brin 88], failure preorder [Deni 84], reduction [Brin 
87], extension [Brin 87], failure trace preorder and generalized failure preorder [Lang 89] 
and conformance based on acceptance [Hern 85, Boch 89f]. In this paper, we use the failure 

preorder relation (written F) as an implementation relation.  It is noted that failure 

preorder can be constructed from trace preorder  (T)  and the conformance relation as 

follows  [Tret 89]:   I F S  iff  (I T S)   (I conf S). 
 
In the following, we usually assume a LTS consisting of two disconnected parts, 
representing a specification S and an implementation I.  We use S and I also to represent 
the initial state of the specification and implementation, respectively. Si and Ik are states 
which are reachable from S and I respectively. The failure preorder relation between two 

states I and S holds, written I F S ,  iff    L*:   A  L: 

   if  Ik :   a  A :  I =   Ik  a  

   then  Si :   a  A :  S =   Si  a   
 

The testing equivalence relation between two states of I and S holds, written I F S,  iff 

 (I F S ) and (S F I)  
By using the notion of testing described above, we can derive the theorem below which 

gives us the means to check by testing whether I F S . This theorem can be interpreted as 
follows. If O (S || t) = {T}, then O (I || t)  should be {T}. If O (S || t) = {F}, then O (I || t) 



should be {F}. That is, if a process t is always successful with a specification S, then t must 
also be always successful with the implementation. And the same should hold for deadlock. 
Theorem 3.A (check failure preorder by testing) 

I F S  iff   t   :  O (I || t)  O (S || t) 
 
3.3. Comparing observations on multi-states 
In Section 2.3, the notion of multi-states was introduced to model the fact that a non-
deterministic machine, after a given sequence of actions, may be in any one of a set of 
states. Since we are often interested in testing a system after a given sequence of observed 
actions, we can use the following concepts which are extensions of those above.  
 
Given a multi-state S, the observation set of S is defined as: 
O (S  || t) = SiS   O (Si || t) if S is not empty, and empty otherwise. The failure preorder 

relation between multi-states is written as S i F S j and is true iff

  t   :  O (S i || t)  O (S j || t)
. We also have the following theorem which links 

the failure preorder relations between single states (or LTS's) and multi-states. According 

to this theorem, I F S implies that after observing a certain trace of actions, the 
corresponding multi-states in S and I also satisfy the failure preorder relation. 
Theorem 3.B (relation between states and multi-states concerning failure preorder) 

I F S  iff    L*:  (I after ) F (S after ) 
 
3.4. An approach to testing failure preorder 
The following theorem states that an implementation I satisfies the failure preorder to a 
specification S exactly if a certain type of mapping exists from the multi-states of I to sets 
of multi-states of S. The existence of such a mapping can be checked by testing, as 
explained in Section 4. This theorem is therefore the basis for the test suite development 
described in this paper.  

Theorem 3.C (mapping for I F S) 

I F S iff  there exists a mapping f: I  Power (S) which satisfies the following three 
conditions: 

  (0) {S0}  f({I0}) 

  (1)  S i  f (Ik) : Ik < S i 

  (2) If  Ik = a  Il , then   S i  f (Ik):  S j  f (Il)  such that S i = a  S j 
where < is a relation, which we call  local action preorder, which holds between I and S, if 
the following two conditions hold: 

   (i)  Ik  I    Si  S  such that out (Si)  out (Ik) 

   (ii) out(I)    out(S).  

Here the so-called outset is defined by : out(S) = SiS  out(Si), where out(Si) is the set of 
possible next actions in state Si . 
 
3.5. Algorithm for checking failure preorder 
The theorem above is the basis for the algorithm described below, which can be used for 
checking the failure preorder relation between two labelled transitions systems. This 



algorithm can be used for comparing an implementation I with its specification S if we 
assume that the description of the implementation, in terms of a labelled transition system, 
is given. In Section 4, we will show how we can use the same algorithm for deriving a test 
suite for a given specification, without using the knowledge about the internal structure of 
the implementation. 
 
We will explain the following algorithm with an example using the specification S of 
Figure 1 and the implementation I-1 of Figure 3. The testing tree for I-1 is shown in Figure 
4. It has 4 distinct multi-states {I0}, {I1}, {I0,I1}, and {I2}. We start by checking condition 
(0) of Theorem 3.C which can be satisfied by posing f({I0}) = { {S0} }. Then we check 
that condition (1) is satisfied for this pair {I0} and {S0}, which is clearly true. Then we 
consider condition (2) and construct the mapping accordingly. In this case, the only action 
to be considered is the action a, which leads to the multi-state {I1} for the implementation 
I-1 and to {S1,S2} for the specification. We therefore pose f({I1}) = { {S1,S2} }. Since 
this is a new element of the mapping, we have to consider conditions (1) and (2) for this 
element, and the checking continues recursively. In some instances, it may be necessary to 
add another multi-state to an element of the mapping, for instance, the mapping for {I0} 
must be extended to f({I0}) = { {S0}, {S0,S2} } (see below). In general, the following 
algorithm can be used. 
 
Algorithm 3.A (checking failure preorder) 

This algorithm checks whether the relation I0 F S0
 holds. The mapping f: I  Power (S )  

is represented by a set G of pairs of multi-states (S,I), where G contains exactly those pairs 
(S,I) for which S is included in f(I). The algorithm constructs the set G in several steps, 
starting with the initial set G0 = ({S0}, {I0}). 
 
In each step (say k+1), we derive a new set of pairs (S, I), written as Gk+1, from the set Gk. 
G is the union of all these Gk.  In the step (k+1), we choose a pair (S, I)ŒGk that is not 

included in G0  G1  ...  Gk-1 .  For each a  out (I) we consider the new pair (S', I' ) 

where I = a  I'  and  S  = a  S '.  If S   a  then I F S  is not satisfied.  If the new pair 
(S', I' ) is not in the set  Gk then we check that I' < S ' .  If this is satisfied the pair (S', I' ) 

is included in Gk+1, otherwise I F S  is not satisfied.  If Gk+1 remains empty (i.e. all new 

pair have already been encountered) then the algorithm terminates and I F S  holds. 
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Figure 3: Valid implementation I-1 Figure 4: Testing tree for implementation I-1

 
As an example, Figure 5 shows the application of this algorithm to the checking of 
I-1 F S. We start with the pair G0 = ({S0}, {I0}) . In step 1, since {I0} = a  {I1}, we 
derive the next pair ({S1 , S2}, {I0}) . In step 2, since 
{I1} = b  {I0 , I2} and {I1} = c  {I2}, we derive the next pairs 
({S0 , S3}, {I0 , I2}) and ({S3} , {I2}) .    We continue this procedure until we find 
G4 = . A second example showing a faulty implementation is given in [Fuji 91]. 
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Figure 5: Test procedure for implementation I-1 

 
4. Testing for failure preorder 
In this section we consider the implementation under test as a black box. For a given 
specification, we want to develop a test suite which verifies whether the implementation 
satisfies the failure preorder relation in respect to the specification. In order to use 
Algorithm 3.A above, we need some means for identifying the current multi-state of the 
implementation and a method for verifying whether the current multi-state Ix satisfies Ix < 
Sx for the corresponding multi-state Sx of the specification.  



 
For the first problem, we propose the use of a distinguishing set Z, which is a 
generalization of the distinguishing set used for deterministic machines. In fact, it can be 
shown [Fuji 91] that the concept of characterization set W as introduced in the context of 
deterministic FSM's [Chow 78] and the concept of minimality, can be adapted to the 
context of a set of multi-states, corresponding to a non-deterministic FSM. A distinguishing 

set  Z = ({}  L  L2  ...  Lm-k). V
 can be defined which can distinguish m multi-

states if the set of test processes V can distinguish k different multi-states in the 
implementation. 
 
For the second problem, we use so-called mandatory test processes, as explained in Section 
4.1, which are inspired from the COOP test method [Weze 89]. In Section 4.2, we describe 
our test selection method and give an algorithm for selecting a test suite. An example is 
considered in Section 4.3. 
 
4.1. Mandatory test processes 
For checking the local action preorder relation, we introduce a set of so-called mandatory 
test processes, similar to those defined in [Weze 89], which can be used for this purpose.  
Definition 4.E (Compulsory set of a multi-state) 
Let S be a multi-state.  Then the compulsory set for S, written CO(S), is defined as  
CO (S ) = {out (Si) | Si  S}.  
Definition 4.F (mandatory processes) 
Let S be a multi-state. The set of mandatory processes of S, written M(S), is the following 

set of processes: M (S ) = MT (S )  {MF (S )}  where: 

  MT (S ) = {CHOICE (V) | V  orth (CO (S ))} 
  MF (S ) = CHOICE (L - out (S )) 
where CHOICE(V) is a test process which has a transition out of its initial state for each 

action a  V which all lead to a deadlock state with no further transitions. The function 
orth(C) provides as result the set of all sets that can be formed by choosing precisely one 
member from each element of the set C. 
 
The following theorem gives us the means for checking the local action preorder relation 
by testing. It states that the relation I < S can be tested by using all mandatory processes 
M(S). 
Theorem 4.C (testing for local action preorder) 
Let S and I be two multi-states.  
I < S iff  I  passes M(S) 
 
4.2 Algorithm for test suite development 
In this section, we describe our test procedure by using the means introduced in the 
previous sections. We adopt a two-phase approach where Phase 1 derives a suitable set Z 
for multi-state identification in I, Phase 2 checks the existence of a mapping f. In the 
following, we describe the procedure of each phase in more details. 
 
The purpose of Phase 1 is to determine a set of test processes, called Z, which would be 
able to distinguish m different multi-sets in the implementation (if there are that many). In 
order to find such a set, we begin with a set of test processes, in the following called U, 
which we believe to identify many multi-states. We also need a set of test sequences T 



which leads the implementation from the initial state I0 to the different multi-states. These 
sequences are called transfer sequences. Since we do not know the structure of the 
implementation, we select these sets U and T based on the known specification S.  
 
We propose to use for U the characterization set W of S, and for T the set of transfer 
sequences which lead the specification S from its initial state to its different multi-sets. 
This set T can be easily obtained from S by deriving its testing tree, as shown in Figure 2. 
Note that any other choice of U and T would also lead to correct test results, however, the 
resulting set Z may be less optimal. 
 
The testing Phase 1 consists of applying each transfer sequence in T followed with each 
test process in U. For each pair, the transfer sequence is first applied, and if the test run is 
successful, the test process from U will be applied subsequently. Because of the possible 
non-determinism, each of these pairs must be tested repeatedly, as explained at the end of 
Section 3.1. These tests will give rise to the identification of a certain number of multi-
states in the implementation. Let us assume that their number is k. Then we choose the 

distinguishing set Z = ({}  L  L2  ...  Lm-k) . U
 which is known to distinguish up to 

m different multi-states in the implementation (see [Fuji 91]). 
 
The testing procedure in Phase 2 follows largely Algorithm 3.A, however, instead of 
relying on the knowledge about the structure of the implementation, the testing procedure 
explores the multi-states and the transitions of the implementation through testing. Instead 
of a pair (S, I), we consider now a pair (S, OZ(I0 after )), where the notation OX(I) means 
the list of observation sets obtained for the list of test processes in X, that is, for a set of test 
processes X = {t1, t2,., tn} we have OX (I) is defined as: 
 OX (I) = (O (I || t1) , O (I || t2), ... , O(I || tn)); and   is a sequence leading from the initial 
state I0 to a multi-state I for which we have observed OZ. (I).  The experimentally 
obtained list of observation sets OZ(I0 after ) identifies the multi-set reached after the 
application of  from the initial state of the implementation. 
 
The procedure of Phase 2 proceeds in several steps. During the first step, we apply Z to the 
initial state I0 and observe OZ(I0).  We form the set of pairs G0 consisting solely of the 
pair ({S0}, OZ(I0)). In the (k+1)-th step, we do the following for each of the pairs 

(S  , OZ (I0 after ))  Gk that are not included in G0  G1  ...  Gk-1 . 
 
For each action a in out(S), that is, each action that may follow according to the 
specification, we determine the next multi-state S' (according to the specification) to be 

such that {S0} =  . a  S ' . We test that (I0 after  . a) passes M(S') by applying each 
test process of M(S') after the sequence .a.  If (I0 after  . a) fails with a certain test 

process of M(S'), then we conclude that not (I F S). We then apply each test process of Z 
to (I0 after .a). Through these test we observe OZ(I0 after .a), and the pair (S', OZ(I0 
after .a)) is added to the set of pairs Gk+1. 
 

If the set Gk+1 is included in Gk+1  G0  G1  ...  Gk  then the testing procedure 
terminates successfully, otherwise another step must be executed.  
 



It is shown in [Fuji 91] that the above algorithm terminates after a finite number of steps 

and that it terminates successfully if and only if    I F S. It is also noted that the number of 

steps in the algorithm may be reduced by considering the fact that  S i  S j implies S i F S j  
(see [Fuji 91]).  
 
4.3 An example 
In order to demonstrate the above algorithm, we use again the specification S of Figure 1. 
We consider the valid implementation I-3 shown in Figure 6. Figure 7 shows the testing 
tree of I-3. The implementation I-3 has 5 multi-states which are {I0}, {I1}, {I2,I4}, {I3}, 
and {I4}.  The number of multi-states in the specification is 5; we choose m = 5, that is, we 
assume that the number of multi-states of the implementation is less or equal to 5. 
 

Figure 7. Testing tree for implementation I-3 Figure 6. Valid implementation I-3
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We use the characterization set W={a; stop, b; stop} of S as U, and the transfer sequence 
set T={r, r.a, r.a.b, r.a.c, r.a.b.d}. The results that will be observed in Phases 1 and 2 are 
given in Tables 4.A and 4.B, respectively. 



 
Table 4.A:  Observation set for I-3 (Phase 1) 

 
transfer 
sequence 

S CO(S) a b I CO(I) a b 

r. {S0} {a} {T} {F} {I0} {a} {T} {F} 
r.a {S1,S2} {b},{b,c} {F} {T} {I1} {b,c} {F} {T} 
r.a.b {S0,S3} {a},{d} {T,F} {F} {I2,I4} {a},{d} {T,F} {F} 
r.a.c {S3} {d} {F} {F} {I4} {d} {F} {F} 
r.a.b.d {S0,S2} {a},{b,c} {T,F} {T,F} {I3} {b} {F} {T} 

 
 
 

Table 4.B:  Observation set for I-3 (Phase 2) 
 CO(S) CO(I) a b a.a a.b b.a b.b c.a c.b d.a d.b Ob

s 
r {a} {a} T F F T F F F F F F OA 
r.a {b},{b,c} {b,c} F T F F T,F F F F F F OB 
r.a.b {a},{d} {a},{d} T,F F F T,F F F F F T,F F OC 
r.a.c {d} {d} F F F F F F F F T F OD 
r.a.b.a {b},{b,c} {b} F T F F F F F F F F OE 
r.a.b.d {a},{b,c} {a} T F F T F F F F F F OA 
r.a.c.d {a},{b,c} {a} T F F T F F F F F F OA 
r.a.b.a.b {a},{d} {d} F F F F F F F F T F OD 

 
 
The results in the right part of Table 4.A show that during Phase 1 only 4 multi-states are 
identified, since {I1} and {I3} produce the same results.  Therefore we use 
Z = (    L). U = a, b, a.a, a.b, b.a, b.b, c.a, c.b, d.a, d.b . 
 
Figure 8 shows how our test procedure will work during Phase 2 with the implementation I-
3. In step 3, we get the pair ({S0 , S2} , OA). Since we have ({S0} , OA) in step 0, we can 

stop further development considering that Si  Sj implies Si FSj  (see [Fuji 91]).  For the 
same reason, we do not have to develop the pair ({S0 , S3} , OD) of G4. Finally we have 
G4  G0  G1  ...  G3  and I passes all mandatory test processes.  Therefore we can 

conclude that (I-3) F S. 
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Figure 8. Test procedure for implementation I-3 
 
5. Concluding discussion 
In this paper, we have developed a method and algorithm for the development of test cases 
for testing an implementation in respect to a specification, which is given in the form of a 
state transition machine. It is assumed that both, the specification and the implementation, 
may have non-deterministic behavior. This makes the testing and the test case development 
much more difficult than in the case where specifications and implementations are 
deterministic. We assume that the objective of the testing is to check that the 
implementation satisfies a certain "implementation relation" in respect to the specification. 
The failure preorder relations are considered for this purpose. The underlying formalism of 
our testing approach is based on the observation that for non-deterministic machines, the 
specification (or implementation), after a given sequence of observed actions, may be in a 
set of different states, which we call "multi-state". For non-deterministic machines, these 
multi-states take the same role as states in deterministic machines. 
 
Under the assumption that the number of multi-states of the implementation is bounded, 
and that a reset function is correctly implemented, our test suite development algorithm 
guarantees that any fault in the implementation is detectable by the derived set of test 
processes. This set of test processes is finite, and each of the test processes has only a finite 
behavior. Therefore the required testing effort is bounded. 
The testing approach described here is based on many ideas [Brin 87, Brin 88, Brin 89,Tret 
89, Weze 89] that have been introduced in relation with the LOTOS specification language 
[Loto 89] which allows for non-deterministic specifications. However, we take a different 
approach by insisting that a test suite should consist of a finite number of test cases, each of 
which having only a finite behavior. With this approach, it is impossible to have a 
guarantee of fault detection unless certain assumptions are made about the complexity of 
the tested implementation. We follow here the approach previously taken for the testing of 
deterministic finite state machines [Chow 78, Gone 70] where it is assumed that the number 
of states of the implementation is limited. While the canonical testers introduced in [Brin 
88] provide for the possibility of detecting all faults, in practice they are not so useful since 



they have infinite behaviors which cannot be completely explored during a finite testing 
session. To our knowledge, the here described algorithm for test suite development is the 
first of its kind by combining the guarantee of error detection (under certain assumptions) 
with a finite test suite in the context of non-deterministic specifications and 
implementations. 
The following issues require further study: (1) optimization of the length of the derived test 
suite, (2) generalization for specifications including spontaneous t-transitions, and (3) 
adaptation of this testing approach to other implementation relations. We note that the 
testing equivalence relation is treated in [Fuji 91], and that specifications including -
transitions can be generally transformed into equivalent specifications without such 
transitions [Luo 91b]. 
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