
A Framework for Dynamic Evolution of
0 b j ec t -0 r ien t ed Specifications

Mohammed Erradi, Gregor v. Bochmann, and Rachida Dssouli

Universie de Montdal, Dkpartement d’Informatique et
de Recherche Operationnelle, CP. 6128, Succ. “A”

Mont&al, (QuCbec) Canada H3C-3J7
Email: {erradi, bochmann, dssouli) @iro.umontreal.ca

Abstract
The evolution of specifications is necessary to
accommodate the evolution of requirements and design
decisions during the software development and
maintenance process. We are concerned here with formal
description techniques that allow the development of
executable specifications, especially executable object-
oriented specifications of distributed systems. In this
paper, we propose a two-level model for the evolution of
large object-oriented specifications. The first level deals
with the dynamic modification of types (classes), while
the second level deals with the modification of modules.
To allow for dynamic modification of types and modules,
we have developed a reflection based technique using meta-
objects where the modijication operations are defined. In
our approach we have defined a set of structural and
behavioral constraints to ensure the specification
consistency after its modification at both levels.

Key words: Distributed systems evolution, type
modification, object-oriented specifications, modules
compatibility, reflection, dynamic change.

1. Introduction and motivations

Most of the software development cost is spent in the
maintenance phase [13. Specification modifications are
most costly because they imply modifications in the other
phases. Therefore, software design practice should include
criteria for maintainability [2], such as: design software
with maintainability in mind, develop design criteria for
achieving maintainability, and provide a change
management strategy. We believe that maintenance costs
can be reduced when formal methods are used at the
specification level, and that facilities for modification are
provided at that level. This can provide a systematic way
for change propagation from the specification level to the
implementation level, and make it easier to check system
consistency.

The object oriented approach is known by its flexibility
for system construction, and allows to cope with the

problems related to software development. This is partly
due to the inheritance property which permits class reuse
and incremental construction of systems. We have
developed a new object-oriented specification language,
called Mondel [3], that has important concepts as a
ipecification language to be applied in the area of
distributed systems. The motivations behind Mondel are:
(a) writing system descriptions at the specification and
design level, (b) supporting concurrency as required for
distributed systems, (c) supporting persistent objects and
transaction facilities, and (d) supporting the object
concept. Presently, our language Mondel has been used for
the specification of problems related to network
management [4] and other distributed applications [5].

When specifications are large, their manipulation,
understanding, and maintenance become difficult.
However, the availability of modules is of great practical
use for the production of structured specifications that are
easier to manipulate, understand, analyze and maintain.
Specification modularity is essential, and permits the use
of composition to form a specification from reusable and
independent modules. Therefore, the use of well defined
module interfaces allows for the validation of module
interconnections.

To achieve our goal that is the construction of
dynamically modifiable specifications, and having the
above criteria in mind, in this paper we propose a two-
level generic model for managing large specifications
evolution. This model consists of the in-the-small and the
in-the-large levels. We will present each of these levels
and describe various uses that are made of these levels to
aid the evolution process. In addition to the means for
specifying and performing changes, it is also necessary to
provide facilities for controlling change in order to
preserve specification consistency. Some properties of
distributed systems such as blocking should be considered
for preserving consistency. In our model, the consistency
requirements are addressed at the in-the-small and at the in-
the-large levels.

The paper is structured as follows: Section 2 introduces
the two-level generic model for large specifications
evolution. The first level describes the evolution of object-
oriented specifications by considering classes as the basic

96
0-81862980-0192 $03.00 0 1992 IEEE

units of specification construction. The needed
requirements to maintain the consistency at this level are
also addressed. Then we describe the second level that
presents the module concept as the unit of large
specifications composition, and the needed requirements
needed to maintain consistency at the module boundaries.
In Section 3, after an overview of Mondel and RMondel (a
reflective version of Mondel) we will show how the two
levels of modification, introduced by the generic model,
are supported in the Wondel language. In addition, we
will show how the structural and the behavioral
consistencies are supported at both levels. In Section 4 we
discuss related works. Conclusions are drawn in Section 5.

2. A generic model at two levels

Specifications may be too large, and therefore very
complex and difficult to understand. Therefore, we assume
in our approach that we have modular specifications. This
notion of modularity provides the module concept as a
structuring concept for large specifications. Based on that
concept, modules will be interconnected to form new
modules. The entire specification is also a module.
Fig.2.1 gives a global view of the two levels of
specification evolution. The in-the-large level deals with
the specification modules and their interconnections while
the in-the-small level deals with classes and their
relationships.

2.1. In-the-small level

For object-oriented systems to fulfill their promise as
vehicles for fast prototyping, ease of maintenance, and
ease of modification, a well defined and consistent
methodology for class modification must be developed. At
the in-the-small level we consider that a specification
consists of a class lattice. A node in the lattice represents a
class and an edge between a pair of nodes represents the
inheritance relationship; that is the lower level node is a
specialization of the higher level node. The inheritance
structure of object classes (found in most object-oriented
languages) is a useful concept for the structuring of
complex specifications and programs. It also plays an
important role for the issues of software reusability and
extendibility. In this section we will enumerate the
allowed modifications at the in-?he-small level, and we
discuss the consistency requirements at this level.

2.1.1. Class evolution: Software developers or
database designers working with an object oriented system
are frequently led to modify existing class definitions so
that they suit their needs. In the area of object oriented
databases, schema modifications have been extensively
studied in the recent literature [61, 171, [81, and [91. The
available methods determine the consequences of class
changes on other classes and on the existing instances, so

that possible violations of the integrity constraints can be
avoided. A major concern in designing a methodology for
class modification is how to bring existing objects in line
with a modified class definition.

In the large level - userelation

-. Inheritance
relation

/
Fig.2.1. Two-level view

The class updates are classified into three categories [61:
(1) updates to the contents of a node in the class lattice,
(2) updates to an edge in the class lattice, and (3) updates
to a node in the class lattice. In the following we
enumerate the most important update operations on
classes.
(1) Modifications to the contents of a node in the lattice.
(i) Modifications to an instance variable of a class.

- Add/Drop an instance variable A to/from a class T.
- Change the class T of an instance variable A.

- Add/Drop the method m to/from the class T.
-Change the signature S of the method m.

(ii) Modifications to a method of a class.

(2) Modifications to an edge of the lattice.
(i) Make a class T a superclass of class S.
(ii) Delete a parent S (superclass) of the class T.

(3) Modifications to a node of the lattice structure.
(i) Add a new class T.
(ii) Delete an existing class T.

2.1.2. Kinds of consistency: At the in-the-small
level three kinds of consistencies must be addressed
structural consistency, semantical consistency, and
instance-of relationship consistency.

-Structural consistency: It ensures that the structure of
the specification (class hierarchy) is maintained according
to the inheritance relation. This is widely investigated in
object-oriented databases where some invariants are used to
define the consistency requirements of the class hierarchy
[61*

91

-Semantical consistency: While most existing
approaches [a], [7], and [9] have focused on preserving
structural consistency, we believe that the semantical
consistency which deals with object behaviors must be
addressed. The methodology of Skarra and Zdonik [8] goes
a long way toward preserving behavior. In effect, their
methodology implements class modification by the use of
versions and exception handling mechanisms. However,
we are exploring solutions to class modification that do
not require versioning. As we are interested in distributed
systems, we believe that additional constraints such as
blocking must be add~ssed.

-Instance-of relationship consistency: While classes
evolve, their existing instances must be changed in order
to remain in line with their classes. This kind of
consistency can be defined according to the allowed class
modifications. For instance the addition of an attribute
within a class involves changes to the existing instances
of this class. In the case of behavior change, object
behaviors must conform to their behavior before the
change.

2.2. In-the-large level

The importance of decomposing large specifications
into modules is widely recognized within the software
engineering community [lo], [ll], 1121. Modular systems
are interconnections of modules with matching import and
export interfaces [13], [14], e.g., the imported modules’
export interfaces must match with the importing module’s
import interface. However, the precise manner in which
modules should be combined, refined, modified, and
organized during the evolutionary development of a system
is not well understood.

2.2.1. Modules and their interconnections: A t
the in-the-large level we consider that a large specification
consists of a hierarchy of interconnected modules. A node
in the hierarchy represents a module, and an edge between
a pair of nodes means that the upper level module employs
the module of the level below. A module consist of three
parts: an export interface, an import interface, and a
module body. For the sake of simplicity, we do not
consider parameterized modules.

(1) The export interface is the visible part which must be
known for using this module in connection with other
modules. It allows different aspects of information hiding
such as:
- It prevents a user from looking into the internal structure
of a module.
- It protect some of the resources that exists internally
from their use from outside the module.
(2) The import interface contains reference to one or a
number of other modules. However, modules may not
import each other cyclically.

(3) The module body is intended to define the construction
of the export interface using the import interface, and may
contain auxiliary hidden resources such as class and object
definitions, which do not belong to any other part of the
module.

For large specifications, the development process
consists of a sequence of alternating incremental
completions of incompletely developed modules and
refinements through successive decompositions and
compositions for the top-down or bottom-up continuation
of the development process. Therefore, a set of
fundamental operations on module specifications is
developed in [131.

-The composition of two modules M1 and M2
connects the import interface of M1 with the export
interface of M2. The composite module (M1 comp M2)
will have the same import interface as M2, the same
export interface as M1, while the body of (M1 comp M2)
is given by the union of the body parts in M1 and M2.

-The extension extE(M) of a module M is the result of
extending some or all constituent parts of the module M
by additional items, where E denotes the collection of all
extended items. The extension construction is used to
augment a given module by adding items in the export,
import or body part of a module. This construction is
important to build up modules step by step, adding more
and more operations.

-The union (M1 U M2) of two modules M1 and M2
is the disjoint union of M1 and M2. The constituent parts
of the resulting module (M1 U M2) are the union of the
corresponding parts of the original modules. For instance
the export interface of (M1 U M2) is the disjoint union of
the export interface of M1 and the export interface of M2.

2.2.2. Module modifications and consistency:
Since each module forms a small, rather independent piece
of the whole specification, then modules can be developed,
implemented, and modified individually. As specifications
evolve, designers can be led to modify modules so that
they suit their needs. This is typically achieved by
modifying modules constituent parts. We classify module
modifications into the following categories:

(1) Modification of the export interface: Adding or
removing a named object or a class to/from the export
interface of the module.
(2) Modification of the import interface: Adding or
removing a named object or a class to/from the import
interface of the module.
(3) Modification of the body part of a module: As a
consequence of the import and/or the export interface
modifications, the body of the module can be changed.
Sometimes, one needs to modify the body of a module
without modifying the interface (e.g., performance
enhancement) .
(4) Addition andor deletion of a module.

98

According to the allowed modifications of modules,
there are two kinds of consistencies to be considered. First,
the structural consistency deals mainly with type checking
at the module boundaries, e.g., the extension of a module
should ensure type compatibility at the import and export
interfaces between the original module and its extended
version. Second, the semantical consistency deals with the
behavior aspect of modules. That is, an extended version
of a module should provide the behavior that is required by
the system (i.e., the extended version should provide at
least what the original module provides).

These two kinds of consistency must be addressed at
two levels, i.e., at the module level and at the whole
specification level. At the module level we should ensure
that the allowed modifications, of the import and the
export interfaces of a module, will not violate the static
semantics rules, e.g., a resource must not be imported and
exported by the same module. Moreover, the modifications
of the body part of a module must be done without
resulting in run-time errors, blocking, or any
uncontrollable situation. At the whole specification level,
one needs to check the impact of the module modification
on the other modules. This should preserve the
specification in a consistent state after the modification of
one or more modules.

3. Specification evolution in RMondel

According to the generic model presented in Section 2,
we will show how the features of such a model are
supported by RMondel. RMondel is a reflective object-
oriented specification language, suitable for the
specification and modeling of distributed systems. It
provides facilities for building dynamically modifiable
specifications [15]. After an overview of the original
language Mondel, we introduce the main characteristics of
RMondel language. Then we describe evolution at the in-
the-small level and the in-the-large level as supported in
RMondel.

3.1. Mondel overview

We have developed Mondel an object-oriented
specification language 131 with certain particular features,
such as multiple inheritance, type checking, rendezvous
communication between objects, the possibility of
concurrent activities performed by a single object, object
persistence and the concept of transaction. Mondel is
particularly suitable for modeling and specifying
distributed applications. An object is an instance of a type
(i.e., called class in most object-oriented languages) that
specifies the properties that are satisfied by all its
instances. Each Mondel object has an identity, a certain
number of named attributes (i.e., each object will have
fixed references to other objects, one for each attribute),
and acceptable operations which are extemally visible and
represent actions that can be invoked by other objects.

In the formalism used to define the semantics of
Mondel types are static and used as templates for instance
creation. Only the instances of a type are considered as
objects. To support the construction of dynamically
modifiable specifications, we need to have access to, and
modify the specification during run time. For this
purpose, reflection is a promising choice. Recently, in
object-oriented languages, reflection has gained wider
attention. A language is called reflective if it uses the
same structures to represent data and programs. The
original model of reflection was proposed in [16]
following Smith's earlier work [17], where a meta-object
is associated with each object in the system to represent
information about the implementation and the
interpretation of the object.

3.2. RMondel facilities

To define a reflective architecture, one has to define the
nature of meta-objects and their structure and behavior. In
addition, one has to show how the handling of objects
communications and operations lookup are described at the
meta-level. In RMondel, types are used for structural
description (i.e., for the definition of the structure of
objects and of applicable operations), and interpreters are
used for the behavioral description (i.e., how the
rendezvous communication is interpreted and the
operations are applied). One can say that types are
suuctural meta-objects, while interpreters are behavioral
meta-objects.

In RMondel we distinguish two main features:
Structural reflection (SR) and behavioral reflection (BR).
The most important aspect of SR, is that each object is an
instance of a type, and types are objects of a meta-type
called TYPE. Another aspect of SR is that the RMondel
statements and expressions are objects. The structure of
RMondel is supported by an instantiation and an
inheritance graphs [18]. The instantiation graph represents
the instance-of relationship, and the inheritaice graph
represents the subtype-of relationship. The objects TYPE
and OBJECT are the respective roots of these two graphs.

Beside the structural reflection, the behavioral
reflection (B R) must be represented. Therefore, an
interpreter object (i.e., behavioral meta-object) is
associated to each object. An interpreter object deals with
the computational aspect of its associated object called
referent. Interpreter objects are defined as instances of the
type INTERPRETER. Also an interpreter object may have
its own interpreter object which in its turn may have its
own interpreter etc.. leading to an infinite tower of meta-
interpreters. Specialized interpreters can be defined for
monitoring the behavior of objects, or for dynamically
modifying their behaviors. More details on the RMondel
definition, and the specification of OBJECT, TYPE,
INTERPRETER, and other kemel objects, are given in
[W.

99

The reflection facilities of RMondel together with the
principles introduced by the generic model in Section 2,
form the basis of the dynamic evolution of large
specifications written in RMondel.

3.3. In-the-small level in RMondel

We are mainly interested in the modifications of a
specification S which lead to a consistent specification S’
using an incremental approach. The incremental approach
consists of dynamically extending the specification S to
get a consistent specification S’ such that the latter
conforms to the former. The modification of S can be done
through the modification of its types.

In RMondel specifications, which mainly describe
distributed applications, objects’ dynamic behaviors are of
extreme importance. Therefore, our interpretation of type
modifications takes into account the dynamic behavior of
objects. Then the type modifications involve not only the
type structures but the dynamic behavior of objects as
well. According to the generic model, the in-the-small
level in RMondel is concerned about type modifications
and the consistency requirements, which ensure both
structural and behavioral consistencies at the type level and
at the specification level. The structural consistency deals
with the compiling constraints (e.g., type checking),
while behavioral consistency deals with the dynamic
behavior of objects (e.g., possibility of blocking).

3.3.1. Consistency at the type level: Before
addressing the in-the-small modifications of RMondel
specifications, an understanding of types and their
relationships is required.

Definition 1: A type t consists of an interface It and a
behavior Bt, t = <It, Bt >. It = c At, Opt > where ‘ t .-
the set of attributes and Opt is the set of operations. L
the behavior specification of the objects of type t. 0

Types’ interfaces are used as a basis for the traditional
inheritance scheme of object-oriented languages. Thus, a
type has at least all attributes and operations defined for the
more general type, where the types of the operations result
must be conforming and the types of the input parameters
must be inversely conforming (see for instance [201).
Based on this aspect of inheritance, we give a recursive
definition of the structural consistency relation as follows.

Definition 2: The type t’= c c At’, Opti > , Bt’ > is
structurally consistent with the type
t = < < At, Opt >, Bt > if:
(1) Ati a At t’ has at least all the attributes of t.
(2) For each operation o in Opt there is a corresponding
operation 0’ in Opt such that

- o and 0’ have the same name
- o and 0’ have the same number of parameters.

- The result type of o’, if any, is structurally consistent

- The type of the i-th parameter of o is structurally
with the result type of 0.

consistent with the type of the i-th parameter of 0’. 0

The following definition introduces our notion of
behavior extension. According to Mondel formal
semantics, the behavior of objects is formally specified by
a translation to labeled transition systems [21]. Both
RMondel and Lotos have their formal semantics defined
based on labeled transition systems. Therefore, If we
ignore operations parameters, our definition of the
behavior extension corresponds to the extension relation
defined for Lotos specifications [22].

Definition 3: The type t’= <It, , Bti > extends the type
t = <It, Bt >, if the following properties are satisfied:
property 1. Bt* may perform any trace of actions that Bt
may perform (Bt’ may do more).
property 2 . What Bt. refuses to do (i.e., blocking), can
be refused according to Bt (Bt- may not refuse more than
Bt). 0

It is important to note that for many authors the
concept of inheritance is only concerned with the names
and parameter types of the operations that are offered by
the specified type, e.g. in Emerald [20] and Eiffel 1231.
However, there are other important aspects to inheritance
related to the dynamic behavior of objects [24], including
constraints on the results of operations, the ordering of
operation execution, and the possibilities of blocking [251.
Therefore, our definition of inheritance takes into account
the dynamic behavior of objects as follows:

Definition 4: A type t’ = <It* , Bt’ > conforms-to a
type t = <It, Bt > if:

and t’ extends t. 0
t’ is strcturully consistent with t.

If type t’ conforms to type t then we say that t’ is a
subtype of t and t is a supertype oft’. In order to provide
the facilities for the dynamic modification of object types,
and to ensure type consistency, we deduce from the
previous definitions a set of invariants [26]. These
invariants check the type interfaces compatibility and the
behaviors extension, respectively.

The constraints introduced in Definition 4 allow to
ensure that an object type can be extended to get an object
type which inherits from the former. Recall that types are
objects in RMondel. Therefore, our strategy for type
modification allows the modification of types without
changing the type object identity. This implies that the
whole specification remain structurally consistent i.e., we
do not need to recompile the whole specification. This
assertion can be proved according to two situations, which
are assignment and parameter passing. However, the
conform-to relation do not ensure that the whole obtained

100

specification remains behaviorally consistent (i.e., the
specification after modifications is not necessarily an
extension of the initial specification). An example which
illustrate this situation is given in [26].

,3.3.2. Structure and behavior modifications

In the following we give a classification of type
modifications that are supported in RMondel. As we are
concerned by the incremental approach for specification
evolution, and in comparison with the classification of the
class modifications in ORION [6], we will consider only
those type modifications that lead to new types which
conform to old ones. For structure modifications we
distinguish the following: . Add an attribute A to a type T . Change the type T of an attribute A

. Add the operation 0 to the type T . Change the signature S of the operation 0

.Makea type S asupertype of type T . Add a new type T
In RMondel, types are objects (i.e., types are instances

of the TYPE object which is defined at a meta-level). The
TYPE object provides the primitive operations for type
modifications, and holds invariants which define the static
semantic rules of the language (e.g., all attribute and
operation names of a type, whether explicitly defined or
inherited, must be distinct). These invariants must be
satisfied by each type and its related types in the type
lattice.

The behavior of objects is to some degree dependent
upon preserving structural consistency. For instance, when
an operation is called on an object, the associated code to
be executed is determined by the object’s type or
supertypes. Additionally, once the operation code is
located, its implementation is dependent on the called
object’s structure. This structure has to be present in all
objects that are instances of the type where the operation
is defined. So, changes to the type interface may lead, in
most cases, to changes in the behavior definition,
accordingly. The possibilities of behavior definition
modifications are based on the language constructs which
can be involved in such modifications. The behavior
obtained after modification, should be an extension of the
original behavior. An algorithm for systematic
construction of object behavior extensions is given in
[271.

3.3.3. Instance-of relationship consistency:
While types evolve, their existing instances must be
changed to remain in line with their types. Therefore, two
problems should be addressed: when and how objects can
be converted, accordingly. We consider that the
modifications of type objects are performed within a
transaction. This ensures that no conversion is done until
the whole modifications have been completed. A
transaction is constructed based on the modification

operations which consist of several successive
modification of an object type. We assume that each
object can be active, passive, or locked, and that all the
objects involved in a type modification transaction must
be in their passive state. Within a transaction, the type
(and its subtypes) to be modified and its existing objects
will be locked if they reach their passive state. A locking
protocol [19] is used to ensure that the objects behave
according to their types, and to maintain the specification
in a consistent state.

3.4. In-the-large level in RMondel

A modular language has to suffice several requirements.
First, to enhance the independent development, analysis,
and compilation of modules, they should be represented as
syntactical components in the language. Second, the
composition of modules to build a complete specification
should be simple (e.g.. this aspect can be realized by
means of the impodexport mechanism). In the following,
we will show how these features are supported in
RMondel using units. Then we introduce the structural and
behavioral consistency requirements which allow for the
construction of valid specifications. Afterwards, we
introduce the unit modifications and their semantics as
defined in RMondeL

3.4.1. The u n i t concept in RMondel: I n
RMondel, a unit consist of the following constituent
parts: an import interface, an export interface, types, and a
unit body. There are two forms of the import interface:
(1) Use U1, U2,, Un.
(2) From Uj, Use N1, N2, ..., Nm, where the Ui are
unit identifiers and the Ni are named objects or type names
defined within the Ui. The first form makes the names of
the units Ui visible. This implies that exported objects
and types of Ui are visible. The second form makes only
the names N1, N2, ..., Nm visible from the unit Uj. This
assumes that the names Ni are available in Uj.

Export N1, N2, ..., Nm, where the Ni are named objects
or type names. The export interface is intended to be the
visible part of the module. The types of a unit: Like a flat
RMondel specification, a unit contains a type lattice
where types are linked by means of the inheritance
relation. The body part of a unit must include the
definition of the exported objects . It can includes also a
collection of types that can be used only within the unit.

3.4.2. Structural consistency: An important issue
in large specification developments is interface control, to
establish and maintain consistent interfaces between the
numerous components. The unit construct is defined in
accordance with a set of constraints that must hold in order
to have a structurally correct specification configuration. A
configuration is a combination of two or more units by
means of the composition and/or the union operations

The export interface has the form:

101

which are defined in Section 2.2. A specification
configuration corresponds to an internal node in the
hierarchy.

C = (Cl,C2, ..., Cn] where each Ci may be a unit or
another configuration. According to our definition of the
unit we introduce the following notations:

is the set of objects exported by the unit U,
E X 0 is the set of types exported by the unit U,
1 0 0 is the set of objects imported by the unit U, and
I T 0 is the set of types imported by the unit U.

Definition 5: A spec i f ica t ion conf igura t ion
C=(Cl,C2, ..., Cn) is well-formed if it satisfies the following
conditions:
(1) Every type and every object that are exported by C are
exported by some Ci.

(EqC) U ET(C)) G U i (EO(Ci) U ET(Ci)) for i=l,.., n.
(2) C imports those types and objects imported by all Ci
except for types and objects already exported by some other
component of C.
IO(C) U IT(C) 2 (U i (Io(Ci)U IT(Ci)))- (U i(EO(Ci)U ET(Ci)))
for i=l,.., n.
(3) C does not export and import the same types and objects

(4) No type or object is exported by more than one
component. (EO(Ci) U ET(Ci)) n (EO(Cj) U ET(Cj)) = 0
for all Ci, Cj E C, i # j .
(5) All Ci (for i =l,.., n) are well-formed

We write a specification configuration as:

(IO(C) U E(C)) n (EO(C) U ET(C)) = 0

0

3.4.3. The behavioral consistency: In the
following, we define the constraints that must hold to
maintain the specification behavioral consistency after the
unit modifications. This must preserve some behavioral
constraints as the extends relation of Definition 4.

Definition 6 [28]: A unit U2 is UpWurdComputible to the
unit U1 if and only i f U2 exports at least what U1 exports,
and imports not more than what U1 does. That means that U2
can be used instead of U1, but not vice versa:
(EO(U2) U ET(U2)) 2 (EO(U1) U ET(U1)) and
(IO(u2) U rr(U2)) G (IO(U1) U IT(U1)) 0

This definition is based only on imported and exported
object and types. However our interpretation of the upward
compatibility relation is not satisfied by this definition.
We need to take into account the conforms-to relation as
defied among object types in Definition 4, and consider
the dynamic behavior of the units. Therefore, we define the
UpWardConform relation as follows:
Notation: t l e: t2 means that the object type t l
conform-to the object type t2.
Definition 7: A unit U2 is UpWurdConform to U1 if the
following conditions are satisfied:
(1) U2 is UpWurdCompatible with U1.
(2) The type of an object exported by U2, conforms-io the
type of an exported object by U1.

V 01 E EO(Ul), 3 0 2 6 EO(U2) suchthat

(3) The type of an imported object in U1, conforms-to the
type of an imported object in U2.
V 0 2 ~ IO(U2). 301 E IO(U1) suchthat

(4) Every exported type by U2, conforms-to a type exported
by U1.

V t l E ET(U1). 3 t2 E ET(U2) such that (t 2 <: t l)
(5) Every imported type in U1, conforms-to a type imported
by U2.

(6) The behavior of U2 (specified by its body part) conforms-
ro the behavior of U1.

type (02) <: type (01))

type (01) <: type (02)

V t2 E IT(U2), 3 tl E IT(U1)

0

such that (t l <: t2)

3.4.4. Semantics of the unit modifications: W e
allow only those unit updates that lead to an extension of
the original unit, according to Definition 7. We
distinguish the following categories of modiications:
(1) modification of the export interface: Adding a named
object or a type to the export interface of the unit. (2)
modification of the import interface: Removing a named
object or a type from the import interface of the unit. (3)
modification of the types: these are the same as those
allowed by the type level, as has been shown in Section
3.3. (4) modification of the body part of a unit: similar to
the behavior modifications of types.

(1) Add a named object or a type to the export interface of
a unit: this update should not cause a name conflict, and
the added object or type must be defined within the unit.
This modification has no impact on the existing modules.
(2) Delete a named object or a type from the import
interface of a unit: This is the case where a unit can
produce the same service with less resources. This implies
that the unit behavior andor the types, where the removed
object or type is used, must be changed accordingly.
(3) Modification of types and unit bodies is performed by
using those modification operations defined for the
modification of types at the “in the small level”.
(4) Add a unit: The added unit must be previously created,
and can import the existing units. It can also, exports
named objects or types which should be eventually used
by other added units.

Note that we allow only those modifications which
preserve the constraints of Definition 7. The deletion of an
exported object or type, the addition of an object or type
to the import inteiface of a given unit, and the deletion of
a unit may be useful for changing the configuration of the
specification.

3.4.5. Dynamic modification of a modular
specification: In order to allow the construction of
dynamically modifiable large specifications, we need to
have access, and to be able to modify units during the
specification execution. We believe that modifications
should be supported dynamically, without interrupting the
processing of those part of the specification which are not

102

directly affected. Therefore, in a similar way as our
reflection based model used to support dynamic type
modifications [26], we consider that a unit is an object of
type UNIT which is defined at the meta-level. The type
UNIT provides some primitive operations for unit
modifications.

Fig.3.1. shows a possible RMondel specification of the
UNIT type. The unit components are defined as variable
attributes (UnitName, Import, Export. Types, and Body).
The constraints defined by Definition 7, are introduced as
invariants which must hold for each unit. The invariants
are checked at creation time and after the unit
modifications. The allowed modification primitives, are
defined as operations which can be accepted by the units
(units are objects). The semantics of these primitive
operations is specified in RMondel within the “Behavior”
clause of the UNIT type.

I tvm UNIT = OBJECT with
- 1

UnitName : string;
Import : set [Usedunit];
Export : set [NamedObject];
Types : set [TypeDefJ;
Body : var [statement];

Invariant
{the constraints of Definition 7 are specified as invariants]
Operat ion

DelImp(Unit);
AddExp(Named0bj); {add the NamedObj object

* Type update: for type modifications see [26].
AddStat(statement);

B e h a v i o r

Endtype Unit

(drop a unit from the import list]

to the export interface]

(add a statement to the unit body}

{we specify here the semantics of the above operations]
I

Fig.3.1. The type UNIT specification.

4. Related works
Our work adapts and extends some of the concepts

introduced by different researchers. The problem of
maintaining the integrity of an evolving configuration has
been addressed recently using module interconnection
languages [29]. The approach reported in [29], allows that
one component of a modular software system can be
substituted for another provided that the specification of
the new component is an upward compatible extension of
the specification for the original component. Such
approach introduces a separate language, the module
interconnection language, for configuration descriptions.
In our approach we use one language for both writing the
system components as well as their interconnections,
rather than introducing a special language for recording
module dependencies. The work reported in [29], is limited
to sequential systems and does not provide any facility for
dynamic evolution of distributed systems.

Kramer and Magee have addressed the problem of
dynamic change management for distributed systems [301.
Their approach focuses mainly on changes specified in
terms of the system structure and provides a separate

language for changing specifications. Unlike their
approach, which concentrates on the logical structure of a
system, we consider the dynamic behavior of a
specification and we take into account the inheritance
property which is inherent to the object-oriented aspect of
our language. Their approach deals with configuration
change, however, our approach deals also with the way the
component can be changed

In the area of object oriented databases, class
modifications have been extensively studied in the recent
literature [61, [7], [8], and [9]. The available methods
determine the consequences of class changes on other
classes and on the existing instances, so that possible
violations of the integrity constraints can be avoided.
These approaches deal mainly with sequential system and
have focused on preserving only structural consistency. In
our approach, we address both the structural and behavioral
consistencies. For the behavioral consistency we deal
mainly with object behaviors and we consider some
properties of distributed systems such as blocking.

5. Conclusions
We have studied dynamic modifications within an

object-oriented language that is particularly suitable for
distributed systems modeling and specification. Dynamic
module and type modification is a difficult problem. Using
module hierarchies and performing associated structural
consistency checks is well researched and practiced for non
object-oriented systems. Its application for dynamic
modification of object-oriented systems is equally fruitful.
We believe that object-oriented systems in conjunction
with reflection, allow us to approach problems that
conventional systems have not been able to address in a
uniform way. A generic model with two levels for
dynamic modification of distributed systems specifications
is presented. This model allows for the evolution of large
specifications at both the type and the module levels.

We have shown how such a model is supported by the
RMondel reflective language. Therefore, we gain more
flexibility for the modification of large specifications by
considering that both types (classes) and units (modules)
are objects, and by defining the modification operations at
a meta-level. In order to maintain the consistency of a
specification after its modification, we have introduced a
set of constraints at both levels. In order to validate the
actual effectiveness of our approach, we are implementing
an interpreter of RMondel using Mondel environment. Our
approach gives an interesting framework based on a formal
approach, for the development of corresponding CASE
tools.

Acknowledgement
This research was supported by a grant from the Canadian
Institute for Telecommunications Research (CITR) under
the NCE program of the Government of Canada. We wish
to thank M. Faci for his stylistic comments. We
gratefully acknowledge the comments of the reviewers.

103

References
[l] Schneidewind, N. F., The state of sofrware maintenance,
IEEE Trans. on Soft. Eng. Vol. SE-13, No.3, pp. 303-310,
March 1987.

[2] McClure, C. L., Managing software development and
maintenance., New York: Van Nostrand, 1981.

[3] Bochmann, G. v., Barbeau, M., Erradi, M., Lecomte, L.,
Mondain-Monval, P. and Williams, N., Mondel: An Object-
Oriented Specification Language, 90.

[4] Bochmann, G. v., Lecomte, L. and Mondain-Monval, P.,
Formal Description of Network Management Issues, Proc. Int.
Symp. on Integrated Network Management (IFIP), Arlington,
US, April 1991, North Holland Publ., pp. 77-94.

[5] Bochmann, G. v., Pokier, S. and Mondain-Monval, P.,
Object-oriented design for distributed systems and OSI
standards, Proc. of IFIP Int. Conf. on Upper Layer Protocols,
Architectures and Applications, Vancouver, May 1992.

[6] Banejee, J., Kim, W., Kim, H. J. and Korth, H. F.,
Semantics and implementation of schema evolution in object
oriented databases, in Proc. ACM SIGMOD Int. Conf. On
Management of Data, San Fransisco, CA, May 1987, pp. 311-
322.

[7] Penney, D. J. and Stein, J., Class Modification in the
Gemstone object-oriented DBMS, 00PSLA87.

[8] Skarra, A. H. and Zdonik, S. B., Type evolution in an
Object-Oriented Databases, Research directions in object-
oriented programming, Eds. Peter Wegner and Bruce Shriver,
MIT press, pp.393-415.

[9] Delcourt, C. and Zicari, R., The design of an integrity
consistency checker (ICC) for an object oriented database
system, ECOOP9 1.

[lo] Brinksma, E., Specification Modules in LOTOS,
FORTE'89, pp. 137- 156.

[l l] Weber, H. and Ehrig, H., Specification of modular
systems, IEEE Trans. on Soft. Eng. V. SE-12, N. 7, July

[12] Parnas, D. L., A technique for software module
specification, CACM, Vol. 15, No.5, pp.330-336, 1972.

[13] Blum, E. K., Ehrig, H. and Parisi-Presicce, F., Algebraic
specification of modules and their basic interconnections,
Journal of Computing and System Sciences, V.34, pp. 293-
339, 1987.

1986, pp.784-798.

[14] Cardelli, L., Donahue, J., Glassman, L., Jordan, M.,
Kalsow, B. and Nelson, G., Modula 3 Report, DEC 1988.

[15] Erradi, M., Bochmann, G. v. and Hamid, I., Dynamic
Modifications of Object-Oriented Specifications,
CompEurop'92, IEEE Int. Conf. on Computer Systems and
software Engineering, The Hague, May 1992.

[16] Maes, P., Issues in Computational Reflection, Meta-
Level Architectures and Reflection, eds. P.Maes and D. Nardi,
1986.

[17] Smith, B. C., Reflection and Semantics in a Procedural
Programming Language, Ph.D. Thesis, MIT, MIT/LCS/TR-
272, 1982.

[18] Erradi, M. and Bochmann, G. v., RMondel: A Reflective
Object-Oriented Specification Language, The OOPSLA90
First Workshop 0n:Reflection and Metalevel Architectures in
00 Programming, Ottawa 1990.

[19] Erradi, M., Bochmann, G. v. and Hamid, I. A., Type
Evolution in a Reflective Object-Oriented Language,
Publication departementale #827 DIRO, University of
Montreal, July 1992.

[20] Black, A., Hutchinson, N., Jul, E., Levey, H. and Carter,
L., Distribution and abstract types in Emerald, IEEE TSE, Vol
SE-13, no.1,1987, pp.65-76.

[21] Erradi, M. and Bochmann, G. v., Semantics and
definition of RMondel A Reflective Object-Oriented
Language, Internal report DIRO, University of Montreal 92.

[22] Brinksma, E. and Scollo, G., Lotos specifications, their
implementations and their tests, PSTV VI (IFIP Workshop,
Montreal, 1986), North Holland Publ.

[23] Meyer, B., Object Oriented Software Construction,
C.A.R. Hoare Series Editor, Prentice Hall, 1988.

[24] America, P., A Behavioral Approach to subtyping in
object-oriented programming languages, Philips Journal of
Research, Vo1.44, Nos. U3, pp. 365-383,1990.

[25] Bochmann, G. v., Inheritance f o r objects with
concurrency, Publication departementale # 687, Departement
IRO, Universit6 de Montrgal, Septembre 89.

[26] Erradi, M., Bochmann, G. v. and Dssouli, R., Dynamic
Modification of Types f o r Evolving Specifications,
submitted.

[27] Erradi, M., Khendek, F., Dssouli, R. and Bochmann,
G. v., Dynamic Extension of Object-Oriented Distributed
System Specifications, To appear in Proceeding of the
International Workshop on Feature Interactions in
Telecommunications Software Systems, Florida, Dec. 3-4,
1992.

[28] Tichy, W. F., A data model for programming suppolt
environments and its application, In Automated Tools for
Information System Design and development, Eds. H. J.
Schneider and A. I. Wassexman, Amsterdam, the Netherlands:
North-Holland, 1982, pp. 31-48.

[29] Narayanaswamy, K. and Scacchi, W., Maintaining
Configurations of Evolving Software Systems, IEEE
Transactions on Software Engineering, Vol. SE-13. No.3,

[30] Kramer, J. and Magee, J., The evolving
philosophers problem: Dynamic change management, IEEE,
trans. on Soft. Eng. Vo1.16, No.11, November 1990.

March 1987, pp.324-334.

104

