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Abstract 

We present in this paper test selection criteria for Prolog 
programs which are based on control flow. The control 
jlow in Prolog programs is not obvious because of the 
declarative nature of Prolog. We present two types qf 
control flow graphs to represent the hidden control flow 
of Prolog programs explicitly. A fault model is 
developed for Prolog programs for guidance on test 
selection. Test selection criteria are given in terms of the 
coverage on these control pow graphs. Under the given 
fault model, the effectiveness of these criteria is analyzed 
in terms of fault detection capability of the test cases 
produced with these criteria. 

1. Introduction 

A lot of research has been reported about program testing 
for conventional procedure-oriented programming 
languages [8, 9, 10, 13, 16, 17, 221, but little has been 
said about program testing of logic programming 
languages, such as Prolog. Several Prolog-related issues 
in the area of software quality assurance have been 
studied, such as Prolog program debugging [20, 19, 121, 
recursive program termination checking [21, 181, and the 
detection of data type anomaly [l]. In particular, the 
issue of generating test data from Prolog-like 
specification has been investigated in [2, 3, 6, 7, 51. 
Those articles, however, address only the case where logic 
programs are used as specifications, that is, specification- 
based testing, but they do not address testing logic 
programs as implementation. The issue of testing a logic 
program as an implementation has received very little 
attention. Because of the wide use of Prolog, this issue 

There exist a few differences between specification- 
based and implementation-based test selections. With 
specification-based test selection, one can generate both a 
set of test data and the expected results from a 
specification. With implementation-based test selection, 
one can only generate a set of test data from an 
implementation, but cannot obtain the expected results 

seems important. 
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mainly concentrate on generating test cases automatically, 
by taking advantage of the declarative nature of Prolog. 

We first present in Section 2 a fault model for Prolog 
programs. A fault model consists of a set of fault 
types; a fault type is a set of faults; and a fault is a 
textual problem with programs. The fault model serves 
as a guide to developing test selection criteria. The fault 
model is defined with respect to the syntactic structure of 
Prolog Programs. 

Guided by the given fault model, we give several test 
selection criteria in terms of control-flow coverage. 
Although control-flow-based testing is not a new idea in 
program testing, control flows in Prolog programs are 
hidden because of the declarative nature of Prolog. We 
first introduce in Section 3 two graphs which we call P -  
flowgraph and reduced global P-flowgraph to represent 
the hidden control flow structure in Prolog programs. We 
then give some test selection criteria based on the two 
graphs. The soundness of the above test selection criteria 
is analyzed under the fault model . 

Furthermore, we investigate in the Section 4 an 
instrumentation method and tool which facilitates the 
generation of test data. We conclude in Section 5 by 
discussing possible future work. 

2. Fault model for prolog programs 

We give in this section a fault model for Prolog 
programs, which serves as a guide to developing test 
selection criteria, and a quality measure of determining 
when one test (or testing strategy) is better than another. 
[16] presented a software quality measure in terms of the 
detection of prescribed faults, which serves as the basis of 
his fault-based testing strategy. Testing is fault-based 
when it seeks to demonstrate that prescribed faults are not 
in a program [16]. Furthermore, a "fault" is a textual 
problem with the code, resulting from a mental mist'ake 
by a programmer or designer, and the mental mistake is 
defined as an "error" [l 11. We use a fault model to 
classify the prescribed faults into a set of fault types. 
Each fault type represents a subset of prescribed faults. 
The fault types are defined with respect to the syntactic 

We assume in this paper that the computation orders 
in Prolog are fixed. Computations are conducted from 
left to right within a rule, from the first to the last rule 
within a predicate. For implementation-based testing, we 
assume that no written formal specification is available, 
and that a specification in the human mind serves as an 
oracle. Furthermore, we only consider the faults which 
cannot be detected easily by an ordinary compiler. Hence, 
we consider the following fault types in the 
implementations: 

structure of programs. 

(1) missing or extra cut, 
(2 )  missing or extra rule, 
(3) missing or extra predicate in a rule, 

(4)  wrong order of called predicates in a rule, 
(4) wrong order of rules in a predicate, 
(6) missing or extra pair of "[" ana' "1" for a list, 
(7) wrong intermediate variable name in a rule, 
(8) wrong replacement between a variable ana' a value. 

Each of the above fault types represents a set of faults. 
For example, let R1 and R2 be two rules in a predicate. 
Therefore, "missing a cut in R1" and "missing a cut in 
R2" are two faults in the above fault type (1). The 
ordinary Prolog compiler may leave the faults in the 
above fault types undetected. Most of the fault types 
which are not in the above list can be modeled as 
multiple faults from the above lists. 

Of these fault types, (6), (7) and (8) are much more 
difficult to detect than the first five, as discussed in 
Section 3. Since there exist no methods to ensure the 
absence of fault types (6), (7) and (S), the best we can do 
is to find as many faults in these fault types as possible. 

3. Test selection based on prolog 
control-flow 

Control-flow oriented testing is not a new idea in the area 
of software testing; the statement coverage, branch 
coverage and path coverage for conventional program 
testing [17] belong to this category. On the other hand, 
the control flows in Prolog programs are not so obvious 
as in conventional programs because the control flows in 
Prolog are hidden. These hidden control flows result fkom 
the declarative nature of Prolog which avoids a lot of 
procedure-oriented programming details to facilitate 
programming. For the purpose of control-flow-based 
testing, therefore, a means is needed to present the 
control flow explicitly . The automaton which was 
proposed in [5] to control recursion is one kind of abstract 
description far Prolog control flow, but it does not 
present the control flows of Prolog program in enough 
detail; in particular, it fails to present backtracking in 
Prolog. 

We propose in this section two kind of graphs to 
represent Prolog's hidden control flow explicitly. One 
graph is the so-called P-flowgraph ( Prolog control flow 
graph ) which is defined by Algorithm 1 in Section 3.1 
and represents the control flow in a given predicate at the 
top level. The other is the so-called reduced global P-  
flowgraph which is defined by Algorithm 3 in Section 
3.2 and represents a portion of the global control flow in 
a set of predicates which may be called by a given 
predicate. 

Guided by the fault model, we present several test 
selection criteria in terms of coverage of the P-flowgraph 
and the reduced global P-flowgraph. However, many 
other kinds of coverages can be defined based on the two 
graphs. We therefore have to answer the question of what 
kinds of coverages is good and why the proposed 
coverages are good. Answering these two questions, we 
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analyze the goodness of the given test selection criteria on 
the basis of how many faults can be ensured to be absent 
under the fault model. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
This is a simplified definition of regular expressions: 

<exp> ::= <term> I <term> + <exp> 
<term> ::= < f a 0  I d a o  <term> 
< f a 0  ::= <name> I <name>* I (<exp>) I (<exp>)* 
same> ::=a I b 1 c Id 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* The predicate exp is the main predicate in this program, and is used to do the syntax analysis of regular expression. *I 

/* exp-bff, -bbf, -bfb exp succeeds only when (1) the first parameter is <exp>, (2) the second parameter is some left part of 
the f i s t  parameter and also a <exp>, (3) the concatenation of the second parameter and the third parameter is equal to the 
first parameter. For the case of expbff, exp finds the longest <exp> from the first parameter and put it into the second 
parameter. *I 
exp(EXP,TERM,REST): - term(EXP,TERM,REST). 
exp(EXP,EXPl,REST):- term(EXP,TERM,[+ I RESTl]), exp(RESTl,EXP2,REST), appendl(TERM, [+ I EXPZ], EXP1). 

I* term-bff, -bbf, -btb term succeeds only when (1) the first parameter is <term>, ( 2 )  the second parameter is some left par( 
of the first parameter and also a <term>. (3) the concatenation of the second parameter and the third parameter is equal to 
the f i s t  parameter. For the case of term-bff, term finds the longest <term> from the first parameter and put it into the 
second parameter. */ 
term(EXP,FAC,REST):- fac(EXP,FAC,REST). 
term(EXP,TERM,REST):- fac(EXP,FAC,RESTl ), term(REST1 ,TERM 1 ,REST), appendl(FAC,TERM 1 ,TERM). 

I* fac-bff, -bbf, -bfb fac succeeds only when (1) the first parameter is <fat>, (2) the second parameter is some left part of 
the f i s t  parameter and also a <fac>, (3) the concatenation of the second parameter and the third parameter is equal to the 
fist parameter. For the case of fac-bff, fac finds the longest < f a 0  from the first parameter and put it into the second 
parameter. */ 
fac( [X I EXP] ,[X],EXP): -name(X). 
fac([X I [* I EXP]],[X I [*]],EXP):-name(X). 
fat(["(" I EXP], FAC, REST):- exp(EXP,EXPl, [")" I REST]), appendl(["(" I EXPl], [")"I, FAC). 
fat(["(" IEXP].FAC,REST):- exp(EXP,EXPl, [")" I [* I REST]]), appendl(["(" IEXPl], [")" I [  *]I, FAC). 

I* appendl-bbf, -bbb append1 is used to replace the built-in predicate append *I 
appendl([l,L,L). 
appendl([X I Ll],LZ,[X I L3]):-appendl(Ll,L2,L3). 

I* name-b,-f Database facts*/ 
name(a). 
name(b). 
name(c). 
name(d). 

Figure 2: An example of Prolog program 

traditional programming languages. The semantics of 
Prolog implies the following additional features: (1) 
Several types of backtracking, caused by the failure of 
subgoal matching and by the requirement for multi- 
answers (maybe all answers sometimes) for one single 
goal. (2) Next answer searching for a subgod to which 
control is transferred after backtracking. (3) Enforced 

3,l.Test selection based on P-flowgraph 

3.1.1. Construction of P-flowgraph 

The control flow in Prolog programs is significantly 
more complex than control flow in &e programs of 
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control flow change by the predicate "cut". These features 
must be considered from the testing point of view. 

We therefore use the so-called P-flowgraph to provide a 
means to describe these features explicitly. We will 
present in the following an algorithm to construct the P- 
flowgraph for a predicate, and explain the algorithm 
through the two Prolog programs in Figures 2 and 4. 
The algorithm takes a Prolog program as input and 
produces the corresponding P-flowgraph. The Prolog 
program in Figure 2 is used to explain Algorithm 1. The 
Prolog program in Figure 4 is used to explain the 
problems related to the existence of deterministic 
predicates and "cuts". 

The Prolog program in Figure 2 only serves as an 
example which is meaningful and able to describe the 
mutually recursive definition of predicates. The reader 
does not need to fully understand the meaning of the 
Prolog program, as long as heJshe understands the 
relationship among the mutually recursively defined 
predicates and the subgoal-solving order. 

w 
Figure 3: The P-flowgraph of the predicate exp 

ALGORITHM 1: Constructing the P-flowgraph for a 
given predicate "p" . 
Input: Prolog program containing p 
Output: P-flowgraph of p 
Step 1: Create nodes for P-flowgraph: 

(1.1) For the head of each rule, create a node and label 
the node with <predicate namexrule number>. 

(1.2) For every called predicate in each rule, create a 
node and label it with the predicate name. 

(1.3) For every rule, create a node to indicate the 
successes of the unifications of all subgoals, and 
label it with Tcrule numben. We call this type of 
nodes T-nodes. 

(1.4) Create a node to represent the failure of the 
predicate execution and label it with F. We call 
this node an F-node. 

Step 2: Identify whether each predicate, which is used in 
the definition of the predicate to be tested, is 
deterministic or nondeterministic. 

Step 3: Create a directed edge (i.e. a branch) for each 
possible control transfer between two above-created 
nodes as follows: 

(3.1) For each control transfer from the head of every 
rule to the first called predicate of the rule, create a 
branch to link the corresponding nodes. 

(3.2) For the control transfer from each called 
predicate of every rule to the right side predicate 
next to it, create a branch to link the corresponding 
nodes. 

(3.3) For successful unifications of all subgoals of 
every rule, create a branch from the node of the 
rightmost predicate of the rule, to the T-node of 
the rule. 

(3.4) For each nondeterministic predicate node of 
every rule and for every T-node, create a 
backtracking branch from the node to: 
(3.4a) the node of the nondeterministic predicate 

next to it if there exists such a predicate and 
there is no "cut" between them. 

(3.4b) the node of the head of the next rule or F- 
node if no nodes has been found in (3.4a). 

(3.5) For the direct control transfer from the head of 
each rule to the head of the next rule, create a 
branch to link the corresponding nodes if the head 
of the first rule can fail, or create a branch from its 
corresponding node to the F-node if the rule is the 
last rule of a predicate. 

[ End of algorithm I ] 

Taking the Prolog program of Figure 2 and the 
corresponding P-graph of Figure 3 as examples, we 
explain the above algorithm as follows: 

Step 1: During (l.l),  for the heads of two rules of the 
predicate exp, create the nodes a and d with labels expl 
and exp2 respectively in the P-flowgraph. During 
(1.2), for the second rule of exp in Figure 2, resulted 
nodes are e, f and g in the P-flowgraph. During (1.3), 
for the predicate exp, the resulting T-nodes are nodes c 
and ti with labels T1 and T2 respectively. During 
(1.4), the created F-node for exp is node j with label 
F.  

Step 2: Every predicate in the example of Figure 2 is 
nondeterministic, but the predicate "write" of Figure 
4a is deterministic. 

Step 3: During (3.1), we create branches 1 and 6 in the 
P-flowgraph. The resulting branch represents the fact 
that control is transferred from the head of the rule to 
the first called predicate of a rule, after rhe successful 
unification of the head. During (3.2), we create 
branches 10 and 11 in the P-flowgraph. During (3.3), 
we create branches 2 and 12 in the P-flowgraph. 
During (3.4a), we have branches 3,9,13 and 14 in 
Figure 3. In the case of the existence of deterministic 
predicates, for the example in Figure 4a, we create 
branch 7 in Figure 4b. The backtracking from T-node 
represents the fact that another answer is required after 
a successful answer is produced. During (3.4b), we 
create branches 5 and 7 in Figure 3. For the 
deterministic predicates, in the example of Figure 4a, 
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we create branches 6 and 8 in Figure 4b. During 
(3.5), we have branches 4 and 8 in Figure 3. The 
resulting branches represent the direct transfer from the 
head of a rule to the head of the next rule when the 
unfication of the head of the former rule fails. 

Comments on Algorithm 1: 
(1) T-nodes and F-node created in Step 1 are used to 

represent the successes and failure of the predicate, and 
they are needed for revealing the control flow in Prolog 
although they do not have textual correspondences in the 
Prolog program. 

(2) Generally a predicate of Prolog is 
nondeterministic, and the corresponding subgoal has two 
entries(CALL and REDO) and two exits(EX1T and FAIL), 
as shown in Figure 1. But some of the predicates are 
deterministic, and each of them only has one 
entry(CALL) and one exit(EX1T) like subroutines of 
conventional programs, such as some predicates for 
printing and so on. Therefore, we need to identify for 
each predicate in the definition of the tested predicate 
whether it is deterministic, or not, in order to present the 
control flow precisely. 

(3) The branches resulting from Step 3 reveal the 
implied control transfers of Prolog. 

(4) This algorithm is polynomial with respect to the 
number of nodes in the P-flowgraph and it terminates 
after a finite number of steps. 

(5 )  The node in the P-flowgraph which corresponds 
to the head of the first rule, is the root of the P- 
flowgraph. A directed path from the root to a T-node 
represents the execution trace with an answer yes ; and a 
directed path from the root to the F-node represents the 
execution trace with an answer fa i l .  For the example 
shown in Figure 2, executing exp( [ a, +, b,e ],Term,[ I), 
the path "1, 5, 6, 10, 9, 7" in the P-flowgraph shown 
Figure 3 is traversed, which corresponds the following 
execution trace: the success of the head of the first rule ( 
branch l), the failure of the term in the first rule (branch 
9, the success of the head of the second rule ( branch 6), 
the success of the term in the second rule (branch lo), 
the failure of the exp in the second rule (branch 9), the 
failure of the term in the second rule (branch 7). 

3.1.2. Test selection criteria 

We give in the following two test selection criteria for a 
Prolog predicate based on the P-flowgraph, and analyze 
the corresponding fault coverage. 

CRITERION 3.1 (Branch coverage of the P- 
flowgraph): For a given predicate, generate a set of test 
data such that every branch of the P-flowgraph of the 
predicate will be traversed by running these test data. 

Criterion 3.1 is similar to the branch coverage of 
conventional programs. According to the criterion all 
branches of the P-flowgraph should be traversed. 

Therefore, in the tested predicate, the heads of all rules and 
all called predicates in the rule bodies should be exercised, 
and all possible uansfers between above heads and called 
predicates should be exercised too. 

In order to analyze the fault coverage clearly, we make 
the following convention. For a given implementation 
and the corresponding specification ( an oracle in the 
human mind for implementation-based testing ), a P- 
flowgraph of the wrong implementation can be considered 
to be obtained by deleting and adding some edges in the 
P-flowgraph of the specification. Based on such a 
convention, therefore, we can talk about the question of 
whether a path in an implementation is a path in the 
corresponding specification, and vice versa. For 
analyzing fault coverage easily, we assume furtbermore 
that if the same input causes two different paths in a 
specification and its implementation, the two results will 
be different. This assumption will be called distinct path 
computation assumption . 
THEOREM 1: If the distinct path computation 
assumption holds, Criterion 3.1 can ensure the absence of 
the following fault types: 

(1) missing or extra cut, 
(2) missing or extra rule, 
(3) missing or extra predicate in a rule, 
(4) wrong order of called predicates in a rule, 
( 5 )  wrong order of rules in a predicate. 

Proof: Any fault of the five fault types causes the P- 
flowgraphs of the implementation and of the 
Corresponding specification to have different edges. In the 
case of implementation-based testing where test data are 
developed from the P-flowgraph of an implementation, 
there exists at least one path, say path A, among the 
paths resulting from Criterion 3.1, which does not exit in 
the P-flowgraph of the corresponding specification. The 
test data for this path A of implementation causes a 
different path from path A in the specification, therefore it 
will cause different results between the implementation 
and the corresponding specification under the distinct path 
computation assumption, i.e. a fault is found. 
[ End OfP~OOfl  

This criteria is fault-based. Similar to the branch 
coverage of conventional program, this criterion is still 
weak due to the following two problems. First, if the 
distinct path computation assumption does not hold, the 
criterion cannot ensure the absence of the above fault 
types. Second, it cannot ensure the absence of all the 
faults of the fault types (6), (7) and (8) of the fault model 
even if the distinct path computation assumption does 
hold. 

Theoretically, no method can solve these problems 
since they cover the problem of checking whether two 
Turing machines are equivalent. However, it is possible 
to go further than Criterion 3.1 and solve part of the 
problems using the following approach. 
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Many faults in Prolog programs result in the 
following situation : Wrong results can be produced only 
if a particular pair of successive edges of the P-flowgraph 
are exercised. A similar situation can be found in 
conventional procedure-oriented program testing, where a 
method called branch-to-branch pair or 1-switch coverage 
[4] is presented to deal with this situation. Inspired by 
this method, we give the following criterion to deal with 
a similar situation in Prolog programs. 

CRITERION 3.2 (B ranch-  t 0- branch pair 
coverage of the P-flowgraph): For a given 
predicate, generate a set of test data such that every 
branch-to-branch pair of its P-flowgraph will be traversed 
by running these test data. 

Meeting Criterion 3.2 implies meeting Criteria 3.1. 
Criterion 3.2 therefore has at least the fault detection 
power of Criterion 3.1. It furthermore can detect the 
faults which will cause some wrong control transfers, in 
particular, the wrong branch-to-branch transfers in the P- 
flowgraph. 

We explain in the following the form of test data for 
Prolog programs before we give an example to explain 
Criterion 3.2. Test data for Prolog programs consist of 
three parts: (1) the values of input variables (usually 
lists), (2) database facts, and (3) the order of the answer 
of interest among the altemative answers given by the 
Prolog program. The execution outcome of a Prolog 
predicate depends on the values of input variables, the 
content of the database, and the order numbers of answers. 
In particular, the order numbers of the answers are needed 
as a part of test data because of the following reason: B y  
solving a single goal during the execution of the Prolog 
program, many altemative answers may be produced 
depending on the user's requests, and the aiiswers are 
ordered according to their occurrence in time. During 
testing, in order to traverse a specific path in a control 
flow graph, maybe only the answer of a particular order 
number is interesting to us; we therefore require to 
specify the order numbers of the answers of interest as 
part of the test data. 

findteacher :- student(X), write("there exist students !"), 
teacher(Y), !, write("teacher is ' I ,  Y). 

(a) F" 

6 

Using the example shown in Figure 4a, we now show 
a fault which cannot be detected by Criterion 3.1, but can 
be detected by Criterion 3.2. The predicate "fmdteacher" 
shown in Figure 4a is supposed to print out only one 
"there exist students" as one or more "students" are in the 
database; it then finds a "teacher" for "students" and 
prints out "teacher is <name>" if there exist teachers in 
the database: and it prints nothing if there does not exist 
any teacher . According to the P-flowgraph of the 
predicate findteacher shown in Figure 4b, the different 
branch-to-branch pairs are the following: 

1-2, 1-8,2-3,3-4,3-7,4-5,5-6,7-2,7-8 

According to Criterion 3.1 the following test data can 
be adopted: 

Test-data 1: 
Input variable values: empty; 
Database facts: student(R. Roy). 
teacher(L. Clarke). 
Answers: 1st and 2nd. 

Test-data 2: 
Input variable values: empty; 
Database facts: empty; 
Answers: 1st. 

Test-data 3: 
Input variables values: empty: 
Database facts: student(R. Roy). 
Answers: 1 st and 2nd. 

Although Test-data 1, 2 and 3 cover all branches of the 
P-flowgraph, they do not cover all the branch-to-branch 
pairs, leaving the pair 7-2 uncovered. Test-data 4 given 
below is used to cover the pair 7-2. 

Test-data 4: 
Input variables values: empty; 
Database facts: student(R. Roy). 

Answers: 1st. 
student((;. Cobbert). 

By running Test-data 1, the following is printed 

"there exist students !" 
"teacher is L. Clarke" 

With the fiist answer being true and the second answer 
false, we find no fault by executing test data 1. We also 
cannot find any fault by executing Test-data 2 and 3. But 
by running Test-data 4, the output is: 

"there exist students !" 
"there exist students !" 

(b) P-flowgraph 
Figure 4: The P-flowgraph of the predicate findteaher 
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This is contrary to our specification that the predicate 
will print out only one "there exist students" if there exist 
more than one "students" in the database. A fault is 
therefore found. The correct version of predicate 
findteacher is the following, and the fault in the incorrect 
version is "missing a cut". 

fmdteacher :- student(][), write("there exist students !"), !, 

Step 2: For every ordered pair of nodes in G where the 
predicate of the fast node may call the predicate of 
the second node directly, create in G a directed edge 
(or branch) from the fmt node to tbe second node. 

[ End ofalgorithm 2 I. 

teacher(X). !, write("teacher is ", X). 

3.2. Test selection based on a reduced 
global P-flowgraph 

We give in this section a test selection criterion to detect 
the faults which can be exhibited only by exercising the 
recursive part of Prolog programs. A P-flowgraph only 
presents the top-level control flow of a tested predicate 
which does not reflect the recursive nature. Solving such 
a problem, we require to construct a kind of control flow 
graph to represent global control flow in order to capture 
the recursive nature. Test selection criteria will be 
presented in terms of coverage of the global control flow 

Ideally, a global control flow graph of a given 
predicate can be constructed in the following fashion: 
Let a modified P-flowgraph be the graph resulting from a 
P-flowgraph by removing all T-nodes and the F-node; for 
example, the modified P-flowgraph of Figure 6 
corresponds to the P-flowgraph of Figure 3. Starting 
from the P-flowgraph of the predicate, replace a node 
corresponding to a predicate by the modified P-flowgraph 
of the predicate (for instance, by replacing the node b in 
the P-flowgraph shown in Figure 3 by the modified P- 
flowgraph of the predicate term, we obtain the graph in 
Figure 7), and do such replacements repeatedly until no 
further progress can be made. 

Unfortunately, the graph thus resulted is usually 
infinite or very large so that we cannot use it directly to 
select test data. To compromise between the 
completeness and complexity for test selection, we use a 
so-called reduced global P-flowgraph to present a part of 
global control flow in the above ideal control flow graph. 
To determine the reduced global P-flowgraph, we require 
the Calling-graph (calling relation graph) to describe the 
relations among the recursively defined predicates. 

ALGORITHM 2: Constructing the Calling-graph for a 
given predicate "p". 
Input: Prolog program containing p 
Output: Calling-graph for p 
Step 1: Create a graph G of one node with label p. For 

every predicate which can be called directly or 
indirectly by the predicate p, create in the graph Cr 
a node labeled with the corresponding predicate 
name. 

graph. 

\@-*- 
Figure 5: The Calling-graph of the predicate exp 

REDO 

Figure 6: The modified P-flowgraph of the predicate exp 

Figure 5 shows the Calling-graph of the predicate exp 
in Figure 2. It is easy to identify a group of mutually 
recursively defined predicates by means of the Calling- 
graph, where the group of predicates corresponds to a 
group of nodes in a strongly connected component of the 
Calling-graph. For example, from the Calling-graph 
shown in Figure 5, we know that the predicates exp, term 
and fac are a group of mutually recursively defined 
predicates. 

However, although the Calling-graph represents the 
relationship among those mutually recursively defined 
predicates, it hardly presents any detailed information 
about the global control flow. But, it gives an idea of 
how to construct a reduced global control flow graph. By 
replacing the nodes of all strongly connected components 
of a Calling-graph with the corresponding P-flowgraphs 
or modified P-flowgraphs, a reduced global P-flowgraph 
can be obtained by using the following algorithm. ?be 
resulting reduced control flow graph is a compromise 
between the completeness of test coverage, the 
complexity of test generation and the size of the test set. 



I f'AT.1. TERM 

- 
Figure 7: Intermediate result in constructing the reduced global P-flowgraph 

ALGORITHM 3: Constructing a reduced global P- 
flowgraph for a given predicate "p". 
Input: (1) Prolog program containing p, (2) Calling- 
graph for p 
Output: Reduced global P-flowgraph 

Data structure: a stack 
Step 1: Put the predicate p into the stack. 
Step 2: If the stack is empty , then stop with G being 

the reduced global P-flowgraph. Otherwise: 



(1) Pop out a predicate, say q. Find all successive 
internal nodes of q in the Calling-graph which 
have never been pushed into the stack, and push 
them into the stack. 

(2) If q is the given predicate p, let the P-flowgraph 
of p be graph G. Otherwise, if the P-flowgraph 
or modified P-flowgraph of q has not yet been used 
in Step 2 to replace some node in G, find a node 
with label q in G and replace it by its modified P- 
flowgraph. Goto Step 2. 

[ End of algorithm 3 3. 

The algorithm is explained in the following by the 
Prolog program of Figure 2. Suppose that predicate exp 
in the program of Figure 2 is the given predicate p in 
Algorithm 3. We fust obtain the Calling-graph of exp 
shown in Figure 5.  During Step 1, exp is pushed into 
the stack. After Step 2 is executed the first time, the P- 
flowgraph of exp is created; the content of the stack is [ 
term 3 since exp has in the Calling-graph only one 
successive intemal node "term" and since node "append" is 
a leaf node. After Step 2 is executed the second time, we 
obtain the graph shown in Figure 7 with the content of 
the stack being [ fac 3. After Step 2 is executed the third 
time, we finally obtain the graph shown in Figure 8 
which is the reduced global P-flowgraph of the predicate 
exp. 

Based on the reduced global P-flowgraphs, we propose 
the following test selection criterion. 

CRITERION 3.3 (Branch coverage of the 
reduced global P-flowgraph): For a given predicate, 
generate a set of test data such that every branch of the 
reduced global P-flowgraph will be traversed by running 
these test data. 

The intent of the criterion is to find the faults which 
will cause wrong control transfer related to recursive 
definitions and the integration of predicates. The only 
way to exhibit this wrong control transfer is to exercise 
the paths of the global P-flowgraph. Since it  is 
impossible to exercise all different paths of the global P- 
flowgraph, it is adequate and necessary to generate test 
data on the basis of the coverage of the reduced control 
flow graph. Usually we f is t  generate test data according 
to Criteria 3.1 and 3.2 and find extra test data if the test 
data thus produced does not satisfy Criterion 3.3. 

4. Test data generation tool 

Given test selection criteria, one still needs to generate 
test data according to the criteria efficiently. In order to 
facilitate test generation, we propose in the following a 
program instrumentation tool which inserts special 
predicates ( probes ) into a given Prolog program. These 
probes make up a Test Generation Tool ( TGT) which 
generates test data semi-automatically. 

4.1. Monitoring execution traces by 
instrumentation 

In order to obtain the execution trace information for 
evaluating the coverage of the P-flowgraph and the 
reduced global P-flowgraph, the probes which are also 
Prolog predicates should be inserted into the given Prolog 
program to be tested. We study in this section which 
points in a given Prolog program the probes should be 
inserted by an instrumentation tool. 

In order to record traces, probes are inserted into the 
four following places: (1) the entry of a rule, (2) the exit 
of a rule, which is also a successful exit of a 
corresponding predicate, (3) the entry of a predicate, and 
(4) the failure exit of a predicate. The probes are used to 
record the information about the execution @ a m .  For 
example, according to the above description, the predicate 
exp shown in Figure 2 would be instrumented as follows: 

exp(EXP1, EXP2, ExP3):- probe(exp-in), fail. 
exp(EXP,TERM,REST):-probe(exp1-in), 

term(EXP,TERM,REST), probe(exp1-T). 
exp(EXP,EXPl ,REST):-probe(exp2-in). 

term(EXP,TERM,[+ I RESTl]), 

append(TERM,[+ I EXP2],EXPl), probe(exp2-T). 
exp(RESTl,EXP2,REST), 

exp(EXP1, EXP2, EXP3):- probe(exp-F), fail. 

probe(St):- "record St in some place". 

where the predicate "fail" always fails when it is called. 
For the Prolog program of Figure 2, the completely 
instrumented program is given in [15]. 

When we run this instrumented program with the goal 
exp([a],X,[]), TGT will record the following trace: 
exp-in, expl-in, term-in, terml-in, fac-in, facl-in, 
facl-T, terml-T, expl-T, and return with X = [a] 
successfully. From this trace, the TGT can find that this 
trace covers the path "1,2" of the P-flowgraph shown in 
Figure 3 and the path "1,2,3,4" of the reduced global P- 
flowgraph shown in Figure 8. In this example, 
prohe(exp1-T) and probe(exp2-T) are used to monitor the 
traversal of the T-nodes in the P-flowgraph and the 
reduced global P-flowgraph; and probe(expl3 is used to 
monitor the traversal of the F-node. 

If each predicate of a given Prolog program is 
instrumented in the above four places, the trace 
information obtained by the probes during the executions 
is enough to decide what parts of the P-flowgraph or the 
reduced global P-flowgraph have been traversed. 

4.2. Test selection with the help of TGT 

We explain in the following the test selection with help 
of TGT briefly. More details have been presented in [HI. 
By using TGT, we can generate test data in the following 
manner: 
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(1) The probes are inserted into the given Prolog 
program by the instrumentation tool automatically: the 
TGT consists of the probes. 
(2) Select some test data arbitrarily and run these test data 
on the instrumented program. 
(3) The TGT records the resulting execution traces, 
reports what part of the P-flowgraph (or the reduced 
global P-flowgraph) has not yet been exercised. The 
report provides a guidance for test selection according to 
the adopted test selection criteria. 
(4) According to the report from TGT, find extra test 
which may increase the coverage on the P-flowgraph (or 
the reduced global P-flowgraph) intuitively. Repeat this 
process until no more coverage has been achieved, or the 
full coverage has been achieved. 
( 5 )  In the case where the full coverage has been achieved 
in (4), no more test cases are needed. Otherwise, find 
extra test to achieve the full coverage by manual 
calculation. 

Using TGT, we can generate test case semi- 
automatically. In contrast to the case of procedure- 
oriented program testing, a single Prolog test case 
produces a much longer execution path because of 
backtracking and recursions. Thus, it is much more 
difficult to manually derive the resulting paths and the 
coverage of the control-flow-graph for a test. IJsing 
TGT, however, we can save a lot of manpower by an 
automatic evaluation of execution coverage provided by 
TGT. 

5. Conclusion 

We have presented several test selection criteria for Prolog 
programs, which are based on the control flow of Prolog 
programs. Future work could be done with respect to the 
data flow of Prolog programs. The test generation tool 
presented here provides a means to generate test cases 
semi-automatically. 
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