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Abstract 
 
The effort for adding features to a telecommunication system, like adding new 
functionalities to any large software system might be tremendous. Each new feature or 
added functionality may interact with many existing features. such interactions may lead 
to blocking situations (e.g., deadlock) or system breakdown. In addition, for large long-
life distributed systems, it may be not possible to stop the entire system to allow its 
extension. Therefore, an important and difficult problem is that of making modifications 
or extensions dynamically, without interrupting the processing of those parts of the 
system which are not affected. 
 
In the context of an object-oriented executable specification language Mondel, we study 
the dynamic extension of Mondel specifications. A Mondel specification consists of a set 
of interacting objects. The behavior of an object is formally specified by a translation to 
labeled transition systems (LTS). Using LTS formalism, we describe how objects 
behaviors and consequently Mondel specifications can be extended without interaction 
problem. To allow for the dynamic extension of specifications, we define RMondel a 
reflective version of Mondel, and we introduce a transaction mechanism in order to 
preserve the consistency of the whole specification. 
 

                                                 
* This research was supported by a grant from the Canadian Institute for Telecommunications Research (CITR) under 
the NCE program of the Government of Canada. 
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1. Introduction 
 
 

Distributed systems evolve by adding new functionalities according to new requirements, 

or modifying some existing functionalities. The addition of new functionalities to a given 

system may interfere with the existing and verified functionalities.  The interference may be 

caused by the overlapping of these new functionalities with the existing ones.  This is 

known as "features interaction" problem [Bowe 89].  

 

In this paper, we will consider the feature interaction problem at the specification level. We 

are interested in system extension by adding functionalities and studying the feature 

interaction problem from the formal point of view. Formal specifications allow formal 

reasoning about systems, analysis of correctness, systems equivalence, and transformations.  

 

Recently, the object-oriented approach to programming and designing complex software 

systems has  received tremendous attention in several disciplines of computer science. The 

objet-oriented approach is known by its flexibility for system construction. We have 

developed a new object-oriented specification language, called Mondel [Boch 90] that has 

important concepts as a specification language to be applied in the area of distributed 

systems. It has a formal semantics, expressed by means of a translation into a state 

transition system. The motivations behind Mondel are: (a) writing system descriptions at 

the specification and design level, (b) supporting concurrency as required for distributed 

systems,  (c) supporting persistent objects and transaction facilities, and (d) supporting the 

object concept. Presently, Mondel has been used for the specification of problems related to 

network management [Boch 91] and other distributed applications [Boch 92].   

  
Informally, given a specification Sold, we want to add a new behavior, corresponding to a 

new functionality, described by Sadded. This new behavior may interact with the behavior 

described by Sold.  In our approach, the features interactions problem between Sold and 

Sadded may have the following observable effects: 

  - the new specification Snew is not able to behave as Sold or Sadded,,  or 

 - Snew may block in some situations, where Sold or Sadded can not block.  

In order to prevent such problems, the new specification Snew has to be an extension of  

Sold and Sadded. The extension is a formal relation  between  behavior specifications [Brin 

86]. 
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In this paper, we present a systematic approach for the extension of individual objects, 
based on a formal technique. It consists of building a new object behavior S3 by adding a 

new behavior described by S2 to an object behavior S1 without features interactions 

problem  between the original behavior and the added one. The newly derived object 
behavior S3 extends S1 and also S2.  
 

In order to allow for the construction of dynamically modifiable specifications, we need to 

have access, and to be able to modify specifications during execution-time. Therefore, we 

developed RMondel, a reflective version of Mondel, that uses meta-objects to provide 

facilities for the dynamic modifications of specifications [Erra 92a]. The extension of 

individual objects of the specification do not ensure that the obtained specification is an 

extension of the original one. Therefore, it is necessary to provide facilities for controlling 

change in order to preserve the specification consistency. The specification consistency 

concerns both behavior and structure. We use a transaction based mechanism and a locking 

protocol to ensure that the specification remains consistent after its modification. 

 

The remainder of this paper is structured as follows. Section 2 gives an overview of Mondel 

language, the labeled transition system notations, and the definition of the extension 

relation. Section 3 is mainly devoted to the algorithm for objects behaviors extension. In 

Section 4, we introduce the facilities for the dynamic extension of Mondel specifications. 

Section 5 describes the locking protocol and the transaction mechanism necessary for 

maintaining the whole specification consistency. Before concluding, we review the related 

works. 
 
 
2.  The language and formalisms 
 
2.1.  Mondel  Overview 
 

We have developed Mondel: An object-oriented specification language [Boch 90] with 

certain particular features, such as multiple inheritance, type checking, rendezvous 

communication between objects, the possibility of concurrent activities performed by a 

single object, object persistence and the concept of transaction. Mondel is particularly 

suitable for modeling and specifying applications in distributed systems. Each Mondel 

object has an identity, a certain number of named attributes (i.e., each object instance will 

have fixed references to other object instances, one for each attribute), and acceptable 
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operations which are externally visible and represent actions that can be invoked by other 

objects. An object is an instance of a type definition (i.e., called class in most object-

oriented languages) that specifies the properties that are satisfied by all  its instances. Each 

object has its individual behavior which provides certain details as constraints on the order 

of the execution of operations by the object, and determines properties of the possible 

returned results of these operations. 

 

Mondel has a formal semantics which associates a meaning to the valid language sentences. 

Such a semantics was defined based on the operational approach. In this approach an 

abstract machine simulates  the real computer role. The meaning of a specification is 

expressed in terms of actions made by the abstract machine. We have particularly applied 

the technique of Plotkin [Plot 81] where state/transition systems are taken as machine 

models. The Mondel formal semantics was the basis for the verification of Mondel 

specifications [Barb 91b], and has been used for the construction of an interpreter [Will 90]. 

 

Example of a Mondel  specification 

 

In the following we show an example using Mondel language. This example will be used 

throughout the paper. Let us consider a vending machine which receives a coin and delivers 

candies to its user. We distinguish two types of objects: the type Machine and the type 

User, as shown in Mondel specification of Fig.2.1. The relation between the Machine  and 

the User is expressed by the fact that the user knows the machine. Such a relation is 

modeled by the attribute “m” defined in the User type. 

 

    The user is initially in a Thinking state, and when he decides to buy a candy he inserts a 

coin. After the coin has been accepted, the user enters the GetCandy state. Then the user 

pushes the machine's button to get a candy. Once the candy is delivered, the user enters the 

Thinking state again. The machine is initially in the Ready state, ready to accept a coin. 

Once a coin is inserted, the machine accepts the coin and then enters the DeliverCandy 

state. After the user has pushed the button of the machine, the latter delivers a candy and 

becomes Ready to accept another coin.  

 

    Note that object operations model the occurrences of events. The behavior of the vending 

machine system is defined as the composition of interacting objects (i.e., Machine and User 

objects, see lines 35 to 38 of Fig.2.1.). The object types are specified using a state oriented 

style [Viss 88]. Each object internal state is modelled as one Mondel procedure.  



5 

 

 

Fig.2.1. Mondel specification of the vending machine. 
 
 
 
2.2.  Labelled Transition Systems 

 

Labelled Transition Systems (LTSs) [Kell 76] are used as a model for a number of 

specification languages,  e. g. LOTOS [Bolo 87, ISO 8807],  CCS [Miln 80], CSP [Hoar 

85], Mondel [Boch 90].  For the remainder of this paper, an LTS is considered as a 

formalization of a Mondel object behavior.  We may refer to a Mondel object behavior by 

its corresponding LTS. 

 

Definition  [Kell  76] 
An LTS TS is a quadruple <S, L, T, So>, where 

S is a (countable) non-empty set of states. 

L is a (countable) set of observable actions.  
T: S x L " {}  S, is a transition relation, where a transition from a state Si to state Sj by 

an action  (�L"{}) is denoted by SiSj.  

So is the initial state of TS. 

represents the internal, non-observable action.  

0 unit spec = 
 
1 type Machine = object with 
2 operation 
3    InsertCoin; 
4     PushAndGetCandy; 
5 behavior 
6     Ready 
7 where 
8     procedure Ready = 
9          accept InsertCoin do 
10                return; 
11           end; 
12         DeliverCandy; 
13   endproc Ready 
 
14  procedure  DeliverCandy =  
15    accept PushAndGetCandy do 
16       return; 
17    end; 
18    Ready; 
19 endproc DeliverCandy 
 
20 endtype Machine

21 type User = object with 
22   m: Machine; 
23 behavior 
24     Thinking 
25 where 
26   procedure Thinking = 
27          m! InsertCoin; 
28          GetCandy; 
29   endproc Thinking 
 
30   procedure  GetCandy = 
31     m! PushAndGetCandy; 
32     Thinking; 
33    endproc GetCandy 
 
34 endtype User 
 
{the vending machine system behavior} 
35 behavior 
36      define Amachine = new (Machine) in 
37             eval  new(User (Amachine)); 
38      end; 
 
39 endunit spec      
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The LTS representing the behavior of an object of type machine is given in Fig. 2.2. The 

state "Ready" is the initial state. 

 

InsertCoinPushAndGetCandy

Ready

DeliverCandy

 
Fig.2.2. LTS  S1 representing the behavior of a vending machine object  

 

Intuitively, different LTSs may describe the same observable behavior. Therefore different 

equivalence relations have been defined based on the notion of observable behavior. They 

range from some coarse trace equivalence [Hoar 85] to a much finer bisimulation 

equivalence [Miln 80]. However,  for our considerations,  one does not need equivalence 

relations, but rather ordering relationships. The extension relation [Brin 86] is most 

appropriate for our purpose of specifications enrichment without feature interaction 

problem.   

 

Definition [Brin 86] 

S1 extends S2, (written S1 ext S2), if  

- S1 may perform any trace of actions that S2 may perform, and  

- S1 will not block where S2 do not block. 
 
 
3.  The extention of objects behaviors 
 

In this section we describe our approach for the extension of object behaviors. We assume 

that an object behavior is transformed to its corresponding LTS.  We also assume that these 

behaviors are finite state, and therefore they are represented by finite state LTS (FLTS).  

Our approach for behaviors extension consists of an algorithm for merging behaviors. 
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Given two FLTS S1 and S2, the merging algorithm deduces systematically a new FLTS  

S3. S3 is an extension of both S1 and S2.  Moreover,  the cyclic behaviors in S1 and S2 

remain cyclic in S3. The intial state of S3 is represented by a tuple composed by the intial 

states of S1 and S2.  Therefore, S3 offers behaviors of S1 (or S2) after behaving like S2 (or 

S1), alternatively.  

 

In the following, we summarize the FLTSs merging algorithm. For reason of simplicity,  we 

will only consider FLTSs without the internal action .  More formal and complete version 

of this algorithm has been developed in [Khen 92a] as well as its correctness proof.  Note 

that the notation 
Sj/ ais used to denote that there is no transition labelled by action "a" from state Sj.  

 

FLTSs merging algorithm 

 
Input: FLTSs S1 = <St1, L1, T1, S1o> and S2 = <St2, L2, T2, S2o>  

Output: FLTS S3 = <St3, L1 " L2,  T3, <S1o, S2o>> 

The initial state of S3 is represented by the tuple <S1o, S2o> composed by the initial states 

of S1 and S2.  

 
A state St in St3 may be a tuple <S1i, S2j> consisting of state S1i from St1 and S2j from St2 

as for the initial state <S1o, S2o> or simple state S1i from St1 or S2j from St2. These states 

and the transitions which reach them are added step by step into St3 and T3, respectively. 
Initially, St3 contains only the initial state <S1o, S2o>.   

 
The definition of the transitions from a state <S1i, S2j> in S3 depends on the transitions 

from S1i in S1 and from S2j in S2. We want to avoid any new non-determinism by 

construction. For instance, for a given state <S1i, S2j>,  if there exist a transition S1iaS1k 

in T1 and a transition S2jaS2m in T2,  then the state <S1k, S2m> is added into St3 and the 

two transitions are combined into one transition  <S1i, S2j>a<S1k, S2m> in T3. This is 

the case when S1 and S2 have a common trace from their initial state to S1k and S2m, 

respectively. Another illustration of this construction, if for a given state <S1i, S2j>,  there 

exists a transition S1iaS1k in T1, but  there is no transition labelled by "a" from  S2jin 

T2,  then the state S1k is added into St3 and the transition S1iaS1k in T1 yields the 

transition  <S1i, S2j>aS1k in T3.  The transitions from a simple state in St3, like state S1k 

for instance,  remain the same as defined in S1. The states reached by these transitions are 
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added into St3, except for the intial state which is replaced by the initial state <S1o, S2o> of 

S3. 

 

Begin of the algorithm 

The set of states St3 and the transition relation T3 are determined recursively as follows: 

For every state St in St3, 
- if St = <S1i, S2j> then 

for every transition S1iaS1k �T1, with S1k �St1 

 if S2jaS2m �T2, then add <S1k,S2m> to St3 and add <S1i, S2j>a<S1k, S2m> toT3  

 else if S1iaS1o �T1 and 

S2j

Error! 
 else if S1iaS1k �T1, with  S1k ≠ S1o and 

S2j/ a in T2, then add S1k to St3 and add <S1i, S2j>aS1k toT3   

 else if 
S1i

Error! 
and same for every transition S2jaS2m �T2, with S2m �St2. 

 
- if St = S1i�St1 - {S1o}  

for every transition S1iaS1o�T1, add the transition S1ia<S1o, S2o>toT3,  

for every transition S1iaS1k �T1, , with  S1k ≠ S1o, add state S1k to St3 and add transition 

S1iaS1k toT3. 

 
- if St = S2j�St2 - {S2o}  

for every transition S2jaS2o�T2, add transition S2ja<S1o, S2o>toT3,  

for every transition S2jaS2m �T2, , with  S2m ≠ S2o, add state S2m to St3 and add 

transition S2jaS2m toT3. 

 

- The construction of St3 and T3 ends, when these sets remain the same for two successive 

steps and all the transitions for all states in St3 have been considered.  

End of the algorithm 

 

To illustrate the FLTSs merging algorithm, we consider again the example S1 of Fig.2.2., 

which represents the behavior of a vending machine object offering a Candy to the user 

after the Coin insertion. We want to add a new functionality to our vending machine. The 
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FLTS S2 of Fig. 3.1.(a) describes this new functionality. Applying the FLTS merging 

algorithm described above leads to the new FLTS S3 of Fig.3.1. (b).  S3 is an extension of 

both S1 and S2. It has both functionalities, without feature interaction problem. 

 

InsertCoinPushAndGetChocolate

Ready

DeliverChocolate

InsertCoin
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 Fig. 3.1.    (a) FLTS S2                         (b) FLTS S3 an extension of S1 and S2 
 
 
4. Dynamic extension of object-oriented specifications 
 

4.1. RMondel facilities 
 

In the formalism used to define the semantics of Mondel, the type definitions are static and 

used as templates for instance creation. Only the instances of a type are considered as 

objects. To support the construction of dynamically modifiable specifications we need to 

have access to type definitions of the specification during execution-time. For this purpose, 

reflection is a promising choice [Ibrahim, 90 #963; Ibrahim, 91 #981]. 
 

 To define a reflective architecture, one has to define the nature of meta-objects and their 

structure and behavior. In addition, one has to show how the handling of objects 

communications and operations lookup are described at the meta-level. Therefore, we 

developped RMondel [Erra 90], a reflective version of Mondel. In RMondel, types are used 

for structural description (i.e., for the definition of the structure of object instances  and of 

applicable operations), and interpreters are used for the behavioral description of their 

associated objects called referents. This approach shows many advantages: 

- types are objects. 
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- operations for type modifications can be defined at the meta-level. 

- an object behavior can be monitored and/or modified by its interpreter. 

- new communication strategies can be defined. 

 

The most important aspect of reflection  in RMondel, is that each object is an instance of a 

type, and types are object instances of a meta-type called Modifiable-Type which is a 

subtype of the meta-typeTYPE. Some aspects of the TYPE  and Modifiable-Type definitions 

are given in Figure 4.1. Another aspect is that the RMondel statements and expressions are 

objects. More details on the RMondel definition and its semantics are given in [Erra 92b]. 

 
  type TYPE = OBJECT with 
 TypeName  : string; 
 BehaviorDef : var[Statement]; 
 DirectSuperTypes  : set [TYPE]; 
 Attributes : set [AttributeDef]; 
 Operations : set [Operation]; 
 Procedures : set[Procedure]; 
 . . . 
   operation 
 . . . 
 {the operation New creates an object according to RMondel object structure} 
 New  : OBJECT;  
 {the operation LookUp checks if the operation “OpName” is defined for an object’s type or for 
  one of its supertypes; then returns the associated statements}  
 LookUp (OpName : string) : Statement; 
 Behavior 
 { the semantics definitions of the above operations} 
endtype TYPE 
 
{ the class of modifiable types is defined as a subclass of TYPE as follows } 
type Modifiable-Type = TYPE with 
 FLTS-Merge(S: Statement); 
 AddAttr (A:Attribute);  
 AddOper(O:Operation);  
 AddProc(P:Procedure); 
 ... 
   invariant 
 { We define here, the structural consistency invariants which correspond to the static semantics rules  
    checked by the Mondel compiler. } 
  behavior 
 { The semantics definitions of the modification operations above . } 
endtype Modifiable-Type 

Figure 4. 1. Some aspects of the TYPE  object specification. 
 

Since the type and behaviors are objects, a given behavior can be extended by providing the 

additional behavior as a parameter of the FLTS-Merge operation as shown in Fig.4.1. The 

FLTS-Merge operation is the RMondel specification of the merging algorithm described is 

Section 3. When a type t accepts the operation FLTS-Merge, then its behavior defined by 

the attribute BehaviorDef  (see the definition of TYPE in Fig.4.1) will be merged with the 

behavior object given as a parameter of the FLTS-Merge operation. The result will be the 
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update of the BehaviorDef of t according the the extension accomplished by the FLTS-

Merge algorithm. 

 

 
 
4.2.  Maintaining the specification consistency 
 

The modification of the structure and behavior of types, must be done without resulting in 

type checking errors, run-time errors, new deadlocks, or any other uncontrollable situation. 

So the semantics of type changes should ensure that a modified type t leads to a type t’ 

which conforms to t.  The conforms to relation is defined in terms of both structure and 

behavior.  An object  type t' conforms to an object type t if the interface (i.e., attributes and 

operations signatures) of t' is compatible with the interface of t and the behavior of t' 

extends the behavior of t. Therefore, we distinguish the structural consistency (i.e., interface 

compatibility)  and the behavioral conformance (i.e., behavior extension) [Erra 92a]. 

 

The behavior of objects is to some degree dependent upon preserving structural 

consistency. For instance, when an operation is called on an object, the associated code to 

be executed is determined by the object’s type or supertypes. Additionally, once the 

operation code is located, its implementation is dependent on the called object’ structure. 

This structure has to be present in all objects that are instances of the type where the 

operation is defined. So, changes to the type interface may lead, in most cases, the user to 

change the behavior definition accordingly. In the following we address the issue of 

dynamic checking of structural and behavioral consistencies of the new  specification. 

 

Structural aspect: The main question here is: if we replace a type definition t by t’ in some 

specification S, where t’ is structurally consistent with t, does the resulting specification S’ 

remain consistent w.r.t. S? The specification S’ is consistent with S if the modification does 

not introduce compiling errors (type checking). Therefore we assert that the obtained 

specification S’ remains consistent. This assertion can be proved according to assignment 

and parameter passing where type checking is important. In addition we have defined a set 

of invariants which ensure the structural consistency of a created or modified type [Erra 

92b]. 

 

Behavioral aspect: Similarly, if we replace t by t’ such that the behavior defined by t’ 

extends the behavior defined by t, does S’ extends S? The answer is no, and this is proved 

by the following counter example: Consider the behavior of S, which is defined by the 
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parallel composition of two behaviors Bt1 and Bt2, where Bt1 is defined by a type t1 and 

Bt2 is defined by a type t2. Suppose we extend Bt2 to obtain Bt2’, see Fig.4.2. Now if we 

compose Bt1 with Bt2’, to obtain S’, the resulting behavior may refuse to perform action b 

after action a, whereas the original specification never refuses to perform action b after a. 

 

a

b

c

d

c

d

a

e

Bt1 Bt2 Bt2'  extends Bt2

 
Fig.4.2.  labelled transition systems of Bt1, Bt2, and Bt2’. 

 

In order to ensure the consistency of the whole specification after its modification, we use 

the concept of transaction to provide fail-safe specifications. The user formulates his 

requirements within a transaction which consists of type update operations.  In the 

following, we introduce a transaction mechanism and explain how the consistency of the 

whole specification can be dynamically checked. 

 

5. The transaction mechanism and the locking protocol 

 

To make dynamic specification modifications without interrupting the processing of those 

parts of the specification which are not directly affected by the change, we define a locking 

protocol to isolate the parts of the specification which are affected by the modifications. 

Such a protocol is incorporated within the transaction mechanism. 

 

According to the updates of a type T, its existing instances must be converted accordingly. 

When a type has to be updated, its instances must be locked until the type modifications are 

accomplished. If the updates do not succeed, e.g., because of invariant violation, then the 

type will be rolled back to its state before the updates, and the instances will be released to 

pursue their behavior progress. In the case where the type updates succeed, the instances 

will be converted accordingly, and released to behave normally. Each object can be active, 

passive or locked. The object state/transitions are shown in Fig.5.1. Object instances can be 

ready for convertion, only when they enter their locked state. 
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delete

lock unlock
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update

 
Fig.5.1. Object state/transitions 

 

    The fact that a specification is organized as a type hierarchy has a major impact on the 

locking protocol. The modification operations can involve a type and all its subtypes (e.g., 

if we have to add an attribute to a type, then the structure of its instances and of the 

instances of its subtypes has to be modified). Thus not only the instances of the modified 

type must be locked, but the instances of its subtypes as well. The instances of a locked 

type will be locked until their type becomes unlocked. Fig.5.1 shows the possible states and 

transitions of an object w.r.t. modifications. Note that objects (i.e., either types or their 

instances) can be modified only when they are locked. 

 

5.2. The transaction steps 

 

A transaction is constructed based on the modification primitive operations that consist of 

several successive modifications of one or more object types. The following steps show 

how the different actions (i.e., those involved in a type updates) work and lead to a 

consistent specification.  

 

Step 1: Transaction construction: through an interface object, the user formulate a 

transaction (called an atomic operation in Mondel) as an operation call, specifying his 

requirements.  In the case of behavior extension, the transaction mainly consists of a call to 

the operation FLTS-Merge defined within the meta-type Modifiable-Type as shown in Fig. 

4.1. The FLTS-Merge operation takes the new behavior which will be merged with an 

existing one.  The new behavior is specified as an object of type Statement. In addition, the 
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modification of the  type structure if any,  must be specified in terms of the type update 

primitive operations (AddAttr, AddOper...). For instance, in the example of Fig.3.1.(b) the  

extension of the machine behavior requires a change to the machine interface. Therefore, 

the interface of the type object Machine of Fig.2.1 will be updated by adding the operation 

PushAndGetChocolate. This update is accomplished by the following operation call:  

Machine ! AddOper(PushAndGetChocolate), where Machine is a reference to the type 

object Machine. 

 

Step 2: Checkpoint: This step consists of saving the state of the type subhierarchy and the 

object instances of those types in the subhierarchy. Then, apply the locking protocol to 

prevent inconsistent use of the type to be modified and of its instances.  

 

Step 3: Structural consistency checking: the checking process consists of maintaining the 

structural consistency, after the type modifications, according to the set of predefined 

invariants (See Fig.4.1). Such invariants correspond mainly to the static semantic rules of 

the language. The structure of a specification (i.e., modified or newly constructed 

specification) mustt comply with those invariants. Otherwise the user is informed of which 

part of his transaction does not satisfy the invariants. Then the user has to modify his 

transaction restarting from step 1 to make the specification comply with the invariants.  

 

Step 4: Behavioral conformance checking: The behavioral conformance deals with the 

dynamic behavior of objects. The behavioral conformance relation is dynamically checked 

using a dependency graph and the reachability analysis techniques. A dependency graph is 

constructed based on the relation of dependency between types. A type t1 depends on a 

type t2 if the former uses one or more operations of the later. If a unexpected deadlock 

situation is detected, then the system reflects the inconsistencies and the modified type must 

be revised again through step 1. 

 

Step 5: Instances conversion: when the type modification transaction succeeds, (i.e. the 

structural consistency and the behavioral conformance relations hold) then the instances 

(locked previously), must be converted to remain conform with their modified type. The 

conversion of the instances according to the semantics of each type evolution primitive 

operation, is described in [Erra 92b]. Then, the type subhierarchy and the instances are 

unlocked, after their modifications, and enter their passive state (see Fig.5.1).  
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6. Related Work 

 

In [Ichi 90], the problem of incremental specification in LOTOS has been approached. 

They have considered only a certain kind of non determinism. The internal action is not 

taken into consideration. They introduced a new LOTOS operator "&",  called specification 

merging operator.  Moreover, B1 & B2 describes a behavior where the environment has to 

choose behavior B1 or behavior B2 once and for all. B1 & B2 may behave only as B1 once 

the environment has chosen B1. It will not offer B2 after behaving as B1.  

 

In [Rudk 91] the notion of inheritance is defined for LOTOS. It is seen as an incremental 

modification technique. A corresponding operator is introduced and denoted by "&".  This 

operator is defined such that if s = t & m , then s extends t  and any recursive call in t or m 

is redirected to s. However strong restrictions are imposed on t and m, such that m should 

be stable (no internal action as first event), the initial events of m should be unique and 

distinct from initial events of t, and so on. There is no requirement such that s should also 

extend m, and no considerations to the structure of t or how this modification m is 

propagated to the processes in t.  

 

J. Kramer and J. Magee have addressed the problem of dynamic change management for 

distributed systems [Kram 90, Kram 89]. Their approach focuses mainly on changes 

specified in terms of the system structure and provides a separate language for changes 

specification. Our approach deals with type modifications and uses one language to specify 

types and their changes. Unlike their approach, which concentrate on the logical structure 

of a system, we consider the dynamic behavior of a specification and we take into account 

the inheritance property which is inherent to the object-oriented aspect of our language. The 

unit of change in our model is a type (class) unstead of a module.  

 

In the area of object oriented databases, class modifications have been extensively studied 

in the recent literature [Bane 87], [Penn 87], [Skar 87], and [Delc 91]. The available 

methods determine the consequences of class changes on other classes and on the existing 

instances, so that possible violations of the integrity constraints can be avoided. These 

approaches deal mainly with sequential systems and have focused on preserving only 

structural consistency. In our approach, we address both the structural and behavioral 

consistencies. For the behavioral consistency we deal mainly with object behaviors and we 

consider some properties of distributed systems such as blocking. The methodology of 

Skarra and Zdonik [Skar 87] implements class modification by the use of versions and goes 
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a long way toward preserving behavior for sequential systems. However, we are exploring 

solutions to type modification, in a distributed environment, that do not require versioning. 

Moreover, we use reflection which provides a flexible and uniform environment for 

dynamic type specifications as well as their modifications using specific meta-operations 

and meta-objects. 

 

7. Conclusions and discussions 

 

Dynamic type extension is an interesting and challenging research problem. Object oriented 

systems in conjunction with reflection and formal methods,  allow us to approach this 

problem that conventional systems have not been able to adress. 

 

In this  paper,  we have approached the features interactions problem from the formal point 

of view. We have developed an approach and mechanisms for the dynamic extension of 

distributed system specification,  especially,  object oriented system specifications in the 

context of Mondel language. We used the Labelled Transition Systems to model the objects 

behaviors and we have designed an algorithm for the extension of finite state Labelled 

Transition Systems. We introduced reflective version of Mondel and the transaction 

mecanism to allow dynamic extension and to preserve specification consistency. 

 

We are working toward applying this approach for adding new features dynamically to a 

telephone system specification. 

 

References 

 
[Bane 87] J. Banerjee, W. Kim, H. J. Kim and H. F. Korth, Semantics and implementation of schema 
evolution in object oriented databases, in Proceedings, ACM SIGMOD Int. Conf. On Management of Data, 
San Fransisco, CA, May 1987, pp. 311-322. 
 
[Barb 91b] M. Barbeau, Vérification de spécifications en langage de haut niveau par une approche 
basée sur les réseaux de Pétri, Ph.D. Thesis, Université de Montréal, 1991. 
 
[Boch 90] G. v. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-Monval and N. Williams, 
Mondel: An Object-Oriented Specification Language, Publication departementale #748, Departement IRO, 
Université de Montréal, November 90.,  
 
[Bolo 87] T. Bolognesi and E. Brinksma, Introduction to the ISO specification Language LOTOS, 
Computer Networks and ISDN Systems, Vol. 14, No. 1 pp. 25-59, 1987. 
 
[Bowe 89] T. F. Bowen et al., The feature interaction problem in telecommunication systems, 
Proceedings of the Software Engineering for Telecommunication Switching Systems, 1989, pp. 59-62. 
 



17 

[Brin 86] E. Brinksma, G. Scollo and S. Steenbergen, LOTOS specifications, their implementations 
and their tests, Protocol Specification, testing and verification, VI, Montréal, Canada, 1986, Sarikaya and 
Bochmann (eds.).  
 
[Delc 91] C. Delcourt and R. Zicari, The design of an integrity consistency checker (ICC) for an 
object oriented database system, ECOOP'91. 
 
[Erra 90] M. Erradi and G. v. Bochmann, RMondel:  A Reflective Object-Oriented Specification 
Language, The ECOOP/OOPSLA'90 First Workshop on:  Reflection and Metalevel Architectures in Object-
Oriented Programming, Ottawa 1990. 
 
[Erra 92a] M. Erradi, G. v. Bochmann and I. Hamid, Dynamic Modifications of Object-Oriented 
Specifications, CompEurop'92, IEEE Int. Conf. on Computer Systems and software Engineering, May 1992. 
 
[Erra 92b] M. Erradi, G. v. Bochmann and R. Dssouli, Semantics and implementation of type dynamic 
modifications, Publication #813, Department IRO, University of Montreal, March 1992. 
 
[Hoar 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985. 
 
[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in LOTOS, Protocol 
Specification, Testing and Verification X (1990), Ottawa, Canada, Logrippo, Probert and Ural (ed.).  
 
[ISO 8807] ISO - Information Processing Systems - Open Systems Interconnection, LOTOS - A Formal 
Description Technique Based on the Temporal Ordering of Observational Behaviour. 
 
[Kell 76]  R. Keller, Formal verification of parallel programs, Comm. of the ACM 19 July 1976, pp. 
371-384. 
 
[Khen 92a] F. Khendek and G. v. Bochmann, Extending finite state system specifications,  Technical 
report, UdeM. 
 
[Kram 89] J. Kramer, J. Magee and M. Sloman, Configuration support for system description, 
construction and evolution, IEEE Proc. of the Fifth Int. Work. on Soft. Spec. and Design, May 1989, pp.28-
33. 
 
[Kram 90] J. Kramer and J. Magee, The evolving philosophers problem: Dynamic change 
management, IEEE, trans. on Soft. Eng. Vol.16, No.11, November 1990. 
 
[Lang 90] R. Langerak, Decomposition of functionality : a correctness-preserving LOTOS 
transformation, Protocol Specification, Testing and Verification X (1990), Ottawa, Canada, Logrippo, Probert 
and Ural (ed.).  
 
[Miln 80] R. Milner, A calculus of communicating systems, Lecture Notes in Computer Science, No. 
92, Springer Verlag, 1980. 
 
[Penn 87] D. J. Penney and J. Stein, Class Modification in the GemStone object-oriented DBMS, 
OOPSLA'87, pp.111-117. 
 
[Plot 81] G. D. Plotkin, A Structural Approach to Operational Semantics, Aarhus University, Report DAIMI 
FN-19, 1981. 
 
[Rudk 91]  S. Rudkin, Inheritance in Lotos, Formal description technique (FORTE), Sydney, Australia, 
1991, pp. 415-430. 
 
[Skar 87] A. H. Skarra and S. B. Zdonik, Type evolution in an Object-Oriented Databases, Research 
directions in object-oriented programming, Eds. Peter Wegner and Bruce Shriver, MIT press, pp.393-415. 
 



18 

[Viss 88] C. Vissers, G. Scollo and M. v. Sinderen, Architecture and Specification Style in Formal 
Descriptions of Distributed Systems, Proc. IFIP Symposium on Prot. Spec., Verif. and Testing, Atlantic City, 
1988. 
 
[Will 90] N. Williams, Un simulateur pour un langage de spécification orienté-objet, MSc thesis, 
Université de Montréal, 1990. 
 


