
 -1-

Type Evolution in a
Reflective Object-Oriented Language

Mohammed Erradi , Gregor v. Bochmann and Issam A. Hamid1

 Université de Montréal, Département d'Informatique et de Recherche Operationnelle,
CP. 6128, Succ. “A” Montréal, (Québec) Canada H3C-3J7.

Email : {erradi, bochmann} @iro.umontreal.ca

1 Now with Tohoku Geijitsu Kouka University, Miurasa Miurasa nen Yamagata-shi,
 Shokoo Kaikan, Yamagata-shi, Nanoka Machi 3-1-9, 990, Japan.

 Email: hamid@cc.tohoku.ac.jp

Abstract

This paper describes the design of the reflective concurrent object-oriented specification

language RMondel. RMondel is designed for the specification and modeling of distributed

systems. It allows the development of executable specifications which may be modified

dynamically. Reflection in RMondel is supported by two fundamental features that are:

structural reflection (SR) and behavioral reflection (BR). Reflection is the capability to

monitor and modify dynamically the structure and the behavior of the system. We show how

the features of the language are enhanced, using specific meta-operations and meta-objects,

to allow for the dynamic modification of types (classes) and instances using the same

language. RMondel specifications can be modified by adding or modifying types and

instances to get a new adapted specification. Consistency is checked dynamically at the type

level as well as at the specification level. At the type level, structural and behavioral

constraints are defined to preserve the conformance of types. At the specification level, a

transaction mechanism and a locking protocol are defined to ensure the consistency of the

whole specification.

Keywords. Software evolution, Type evolution, meta-level architecture, reflection, object-

oriented programming, dynamic modifications.

 -2-

1. Introduction and motivations

 The object oriented approach is known by its flexibility for system construction. This is

partly due to the inheritance property which permits class reuse and incremental construction

of systems. We have developed a new object-oriented specification language, called Mondel

[Boch 90] that has important concepts as an executable specification language to be applied

in the area of distributed systems. The motivations behind Mondel are: (a) writing system

descriptions at the specification and design level, (b) supporting concurrency as required for

distributed systems, (c) supporting persistent objects and transaction facilities, and (d)

supporting the object concept. Presently, our language Mondel has been used for the

development of executable specifications of problems related to network management [Boch

91] and OSI directory system [Boch 92].

 In a wide spectrum of distributed applications, software systems require modifications to

accommodate evolutionary change, particularly for systems with long expected lifetime. In

general, evolutionary changes are difficult to accommodate because they cannot be predicted

at the time the system is designed. Therefore, systems should be sufficiently flexible to

permit arbitrary, incremental changes. The evolution of such systems is necessary to

accommodate the evolution of requirements and design decisions during the software

development and maintenance process. We believe that software system modifications are

most of the time incremental. They consist of adding new functionalities or extending some

existing ones. In this paper, we consider that an executable specification of a system is an

implementation model of such system. Therefore, we examine a method of supporting

extensions of distributed systems specifications in the context of the object-oriented

specification language Mondel. A difficult and important issue is that of making modification

dynamically, without interrupting the processing of those parts of the specification which are

not directly affected. There has been little suggestion as to how such dynamic modification

should be specified, managed, and controlled.

 To achieve our goal that is the construction of dynamically modifiable specifications, we

define a reflective object oriented language called RMondel (Reflective Mondel) which is

based on the Mondel language. Recently, reflection has gained wider attention as indicated

by the first and second workshops on reflection and meta-level architectures in object-

oriented programming [Work 91] held in conjunction with OOPSLA'90 and 91. A language

is called reflective if it uses the same structures to represent data and programs. In

conventional systems, computation is performed only on data that represent entities of an

application domain. In contrast, a reflective system contains another type of data that

 -3-

represent the structural and computational aspects of itself. The original model of reflection

was proposed in [Maes 87] following Smith's earlier work [Smit 82], where a meta-object is

associated with each object in the system to represent information about the implementation

and the interpretation of the object. Metaobjects for object-based concurrent systems must

represent not only an object's methods and state, but also object communication procedures

[Wata 88]. To define a reflective architecture, one has to define the nature of meta-objects

and their structure and behavior. In addition, one has to show how the handling of objects

communications and operations lookup are described at the meta-level.

 A Mondel specification consists of a type (class) lattice where nodes represent types and

edges represent the inheritance relation. To allow for the construction of dynamically

modifiable specifications, we need to access and modify types during execution-time.

Therefore, we developed RMondel that uses meta-objects to provide facilities for the dynamic

modifications of types. Reflection in RMondel is supported by two fundamental features

which are: structural reflection (SR) and behavioral reflection (BR). For the SR we consider

that a type is an object and types are instances of other types. For BR, a meta-object, called

interpreter object, is associated with each object at creation time. An interpreter object deals

with the computational aspect of its associated object. Specialized or different versions of

interpreters may be defined for monitoring the behavior of objects, or for dynamically

modifying their behaviors.

 In RMondel, modifications are explicitly specified by an agent external to the specification.

The specification may be modified by the application of modification transactions. In addition

to the means for specifying and performing changes, it is also necessary to provide facilities

for controlling change in order to preserve specification consistency. Consistency is checked

dynamically at the type level as well as at the specification level. At the type level, structural

and behavioral constraints are defined to preserve the conformance of types. At the

specification level, a transaction mechanism and a locking protocol are defined to ensure the

consistency of the whole specification. Structural consistency concerns mainly the compiling

constraints, i.e., checking dynamically the static semantics rules of the language in use.

Behavioral consistency deals with preserving the consistency of the behavior. This concerns

mainly some properties of distributed systems such as blocking.

 The paper is organized as follows. In Section 2 we introduce the definitions of types and

their relationships, which are mandatory for the understanding of object-oriented

specifications as considered in this paper. To preserve types consistency, a set of invariants is

defined in Section 3. In Section 4, we define a set of primitives which are used to modify the

structure and behavior of type definitions. In Section 5, we introduce RMondel, a reflective

 -4-

version of Mondel, and show how dynamic type modifications are supported. A transaction

mechanism and a locking protocol which ensure the consistency of the whole specification

are given in Section 6. Section 7 discusses related works. Conclusions are drawn in Section

8.

2. Type definitions and their relationships

 Before addressing the problem of specification modifications, an understanding of the

specification model, its components and their relationships is required. A specification is

defined as a type lattice where nodes represent types and edges represent an inheritance

relation. Our interpretation of inheritance considers both the structure and the behavior

aspects.

Definition 1: A type t consists of an interface It and a behavior Bt, t = <It , Bt >.

It = < At, Opt > where At is the set of attributes and Opt is the set of operations. Bt is the

behavior specification of the objects of type t. o

 Types' interfaces are used as a basis for the traditional inheritance scheme of object-

oriented languages. Thus, a type has at least all attributes and operations defined for the

more general type, where the types of the operations result must be conforming and the

types of the input parameters must be inversely conforming (see for instance [Blac 87]).

Based on this aspect of inheritance, we give a recurssive definition of the structural

consistency relation as follows.

Definition 2: The type t’= < < At', Opt' > , Bt’ > is structurally consistent with the type

t = < < At, Opt >, Bt > if:

 1. At' �At . t' has at least all the attributes of t.

 2. For each operation o in Opt there is a corresponding operation o’ in Opt' such that:

 - o and o’ have the same name

 - o and o’ have the same number of parameters.

 - The result type of o’, if any, is structurally consistent with the result type of o.

 - The type of the i-th parameter of o is structurally consistent with the type

 of the i-th parameter of o’. o

 The following definition introduces our notion of behavior extension. According to

Mondel formal semantics, the behavior of objects is formally specified by a translation to

labeled transition systems [Erra 92]. Both RMondel and Lotos have their formal

semantics defined based on labeled transition systems. Therefore, If we ignore operations

 -5-

parameters, our definition of the behavior extension corresponds to the extension relation

defined for Lotos specifications [Brin 86].

Definition 3: The type t’= <It' , Bt' > extends the type t = <It , Bt >, if the following

properties are satisfied:
property 1. Bt’ does what is explicitly allowed according to Bt (but it may do more).

property 2. What Bt’ refuses to do (i.e., blocking), can be refused according to Bt

 (Bt’ may not refuse more than Bt). o

It is important to note that for many authors the concept of inheritance is only concerned

with the names and parameter types of the operations that are offered by the specified

type, e.g. in Emerald [Blac 87] and Eiffel [Meye 88]. However, there are other

important aspects to inheritance related to the dynamic behavior of objects [Amer 89],

including constraints on the results of operations, the ordering of operation execution,

and the possibilities of blocking [Boch 89]. Therefore, our definition of inheritance takes

into account the dynamic behavior of objects as follows:

Definition 4: A type t’ = <It’ , Bt’ > conforms-to a type t = <It , Bt > if :

 t’ is strcturally consistent with t.

 and t’ extends t. o

If type t' conforms-to type t then we say that t' is a subtype of t and t is a supertype of t'.

3. Preserving consistency

 To maitain the conforms-to relation, we deduce from the definitions of Section 2, a set of

invariants which must be satisfied by each type and its related types in the lattice. These

invariants will be used for dynamic type checking after type updates.

We denote by the conforms-to relation introduced in Definition 4.

Corollary: The relation is a partial order , i.e., reflexive, transitive, and antisymmetric.

Proof: evident.

Definition 5: An executable specification S is a triple < T, , O> where T is a finite set of

types, is the conforms-to relation on T, and O is the set of objects created according to their

types in T. o

 -6-

(1) Type hierarchy invariant: The type hierarchy is a directed acyclic graph.

 ¢ t1, t2 [T with t1 t2 , then ™ t3 [T such that t2 t3 and t3 t1.

(2) Distinct attribute names invariant: All attribute of a type, whether explicitly defined or

inherited, are distinct.
 ¢ attr1, attr2 [At, such that attr1=(a1 : t1) and attr2=(a2 : t2)

 { attri = (ai:ti) means: ai is the attribute name and ti is the attribute type }

 then a1=a2 > attr1=attr2

(3) Distinct operation names invariant: All operation of a type, whether explicitly defined or

inherited, are distinct.
 ¢ op1 = <opname1, [p1:t1, ..., pi:ti, ...pn:tn],[r1]>,

 op2 = <opname2, [p1’:t1’, ..., pi’:ti’, ...pn’:tn’],[r2]>[Opt, [] means optional

 then opname1=opname2 > op1=op2

(4) The instance-of invariant: Each object is an instance of a type.

 ¢ i [O, ¡ t [T such that i is an instance of t.

(5) Full Inheritance invariant: A type inherits all attributes and operations from each of its

supertypes.

 (5.1) For attributes:

 ¢ t1, t2 [T with t1 t2 ,
 ¢ attri =(ai : ti) [At1,

 ¡ attrj =(aj : tj) [At2 such that ai = aj and ti tj

 (5.2) For operations:
 ¢ opi = <opnamei, [p1:t1, ..., pl:tl, ...pn:tn],[r1]> [Opt1

 ¡ opj = <opnamej, [p1’:t1’, ..., pl’:tl’, ...pn’:tn’],[r2]>[Opt2

 such that opnamei = opnamej opi and opj have the same name.

 (the covariant rule holds)

 r1 r2 the result of opi conforms to the result of opj.

 and (the contravariant rule holds)

 pl = pl’ for l=1,..,n parameter names are the same.

 tl’ tl for l=1,..,n parameter types are inversly conforming.

 -7-

4. Primitive operations for type modifications

 In the following we give a classification of type modifications that are supported in our

language, and we provide the description of their semantics. In comparison with the

classification of the class modifications in ORION [Bane 87] which considers structural

modifications only, our approach considers those type modifications, both structure and

behavior, that lead to new types which conform to old ones.

4.1. Structure modifications

 Add an attribute A to a type T: This update allows the user to append an attribute definition

to a given type definition. We suppose that the added attribute A causes no name conflicts in

the type T or any of its subtypes. Name conflict is not addressed here, but may be avoided in

a similar way as in [Delc 91].

 Change the type T of an attribute A by the type T1: This update is allowed only if

T1 conforms-to T.

 Add the operation O to the type T: This update allows the user to append the operation O to

the type T. We suppose that the added operation O causes no operations name conflicts in the

type T or any of its subtypes.

 Change the signature S of the operation O:

(i) Change the type T of the parameter p in S: This update allows the change of the type T of

the parameter p in S, to become T’. This update is allowed only if T conforms to T’.

(ii) Change the type T of the result, if any, of the operation O: This update allows the change

of the type T of the result to become of type T’. This update is allowed only if T’ conforms to

T.

 Make a type S a supertype of type T: This modification is allowed only if it does not

introduce a cycle in the inheritance hierarchy. The attributes and operations provided by S,

are inherited by T and by the subtypes of T.

 Add a new type T: If no supertype of T is specified, then the type OBJECT (i.e. the root of

the type hierarchy) is the default supertype of T. If a supertype is specified, then all attributes

and operations from the supertype are inherited by T. The name of the added type T must not

 -8-

be used by an already defined type. The specified supertype of T must have been previously

defined.

4.2. Behavior modifications

 For the modification of the behavior of types, we consider those modifications which

extend the existing behavior. This is similar to the notion of incremental specifications

proposed for a subset of basic LOTOS language [Ichi 90]. The modifications of behaviors are

based on the following language constructs: sequential, choice, and parallel composition.

 Sequential composition: An existing behavior may evolve into a new behavior by

appending an other behavior to the existing one. The consistency of this modification is

guaranteed by the conforms-to relation given in Definition 4.

 Choice composition: It has been shown that the choice operator does not guarantee

subtyping [Rudk 91], because non-determinism may be introduced. For instance, the

combination of recursion and choice may lead to a violation of the second property of

Definition 3. Also, if two behaviors are combined by the choice operator, and these two

behaviors have non-empty intersection of their initial actions, then non-determinism is

introduced. Examples of two possible cases, deterministic and non-deterministic, are given in

[Erra 92b].

 Parallel composition: Two behaviors may be composed, using the parallel composition

operation, to obtain a new behavior. The new behavior, whose construction is based on the

pure interleaving semantics (i.e., independent parallelism), preserves the ordering of

constraints of actions of the two initial behaviors. This kind of modification is guaranteed by

the conforms-to relation as well.

5. Configuration of reflection in RMondel

 So far, we have introduced primitives for structural and behavioral modifications and

invariants for preserving types consistency. To allow for the construction of dynamically

modifiable specifications, we need to access and to modify types during execution-time [Erra

92c]. In this section, we give an overview of Mondel and its characteristics. Then we discuss

reflection as supported in RMondel and show how dynamic type modifications and dynamic

checking of type consistency are implemented using RMondel facilities.

 -9-

5.1. Mondel overview

 We have developed Mondel: An object-oriented specification language [Boch 90] with

certain particular features, such as multiple inheritance, type checking, rendezvous

communication between objects, the possibility of concurrent activities performed by a

single object, object persistence and the concept of transaction. Mondel is particularly

suitable for modeling and specifying applications in distributed systems. It has a formal

semantics, expressed by means of a translation into a state transition system. Each Mondel

object has an identity, a certain number of named attributes (i.e., each object will have fixed

references to other objects, one for each attribute), and acceptable operations which are

externally visible and represent actions that can be invoked by other objects. An object is an

instance of a type that specifies the properties that are satisfied by all its instances.

 A Mondel specification corresponds to a type lattice. In such a lattice, nodes represent

types, and edges represent the inheritance relation. The execution of a specification consists

of a set of objects that run in parallel. Each object has its individual behavior which provides

certain details as constraints on the order of the execution of operations by the object, and

determines properties of the possible returned results of these operations. Among the actions

related to the execution of an operation, the object may also invoke operations on other

objects. Basically, communication between objects is synchronous, based on rendezvous

mechanism. The basic statement of Mondel is the operation call, which is syntactically

represented by the “!” operator. For instance in the statement m! InsertCoin (see line 27 of

Fig.5.1.), “m” designates the called object, and InsertCoin is an operation defined within the

type of “m” (i.e., the type Machine).

 Mondel has a formal semantics which associates a meaning to the valid language

sentences. Such a semantics was defined based on the operational approach. In this approach

an abstract machine simulates the real computer role. The meaning of a specification is

expressed in terms of actions made by the abstract machine. We have particularly applied the

technique of Plotkin [Plot 81] where state/transition systems are taken as machine models.

The Mondel formal semantics was the basis for the verification of Mondel specifications

[Barb 91], and has been used for the construction of an interpreter [Will 90].

5.1.1. Example of a Mondel specification

 The following example will be used throughout the paper. Let us consider a vending

machine which receives a coin and delivers candies to its user. We distinguish two types of

 -10-

objects: the type Machine and the type User, as shown in the Mondel specification of

Fig.5.1. The relation between the Machine and the User is expressed by the fact that the user

knows the machine. Such a relation is modeled by the attribute “m” defined in the User type.

 The behavior of the User type is specified within the behavior clause as shown in lines 23

to 33 of Fig.5.1. The user is initially in a Thinking state, and when he decides to buy a candy

he inserts a coin. After the coin has been accepted, the user enters the GetCandy state. Then

the user pushes the machine's button to get a candy. Once the candy is delivered, the user

enters the Thinking state again. The behavior of the Machine type is specified as shown in

lines 5 to 19 of Fig.5.1. The machine is initially in the Ready state, ready to accept a coin.

Once a coin is inserted, the machine accepts the coin and then enters the DeliverCandy state.

After the user has pushed the button of the machine, the latter delivers a candy and becomes

Ready to accept another coin.

 Note that object operations model the occurrences of events. The behavior of the vending

machine system is defined as the composition of interacting objects (i.e., Machine and User

objects, see lines 35 to 38 of Fig.5.1). The types are specified using a state oriented style

[Viss 88]. Each internal state of an object is modeled as a Mondel procedure.

Fig.5.1. Mondel specification of the vending machine.

0 unit spec =

1 type Machine = object with
2 operation
3 InsertCoin;
4 PushAndGetCandy;
5 behavior
6 Ready
7 where
8 procedure Ready =
9 accept InsertCoin do
10 return;
11 end;
12 DeliverCandy;
13 endproc Ready

14 procedure DeliverCandy =
15 accept PushAndGetCandy do
16 return;
17 end;
18 Ready;
19 endproc DeliverCandy

20 endtype Machine

21 type User = object with
22 m: Machine;
23 behavior
24 Thinking
25 where
26 procedure Thinking =
27 m! InsertCoin;
28 GetCandy;
29 endproc Thinking

30 procedure GetCandy =
31 m! PushAndGetCandy;
32 Thinking;
33 endproc GetCandy

34 endtype User

{the vending machine system behavior}
35 behavior
36 define Amachine = new (Machine) in
37 eval new(User (Amachine));
38 end;

39 endunit spec

 -11-

5.2. Reflection in RMondel

 In the formalism used to define the semantics of Mondel, types are static and used as

templates for object creation. Only the instances of a type are considered as objects. In order

to modify types dynamically, types must be objects. Therefore, types will be accessible and

may be modified during execution time. For this purpose, reflection is a promising choice.

 To define a reflective architecture, one has to define the nature of meta-objects and their

structure and behavior. In addition, one has to show how the handling of object

communications and operations lookup are described at the meta-level [Ferb 89]. In

RMondel, types are used for structural description (i.e., for the definition of the structure of

objects and of applicable operations), and interpreters are used for the behavioral description

(i.e., how the rendezvous communication is interpreted and the operations are applied) of

their associated objects, called referents. Types are considered to be structural meta-objects,

while interpreters are behavioral meta-objects. Types and interpreters are instances of the

kernel types TYPE and INTERPRETER respectively. This approach shows many advantages:

- Types are objects, instances of the type TYPE which is defined at a meta-level.

- Operations for type modifications can be defined at the meta-level (i.e., within TYPE).

- An object behavior may be modified according to the modifications of its type.

- An object behavior can be monitored by its interpreter.

- New communication strategies can be defined by creating subtypes or different versions of

INTERPRETER.

- Communication between the baselevel and the meta-level is possible.

- The definitions of the structure and the behavior of objects are dynamically accessible.

 In the following we introduce the enhancements of the Mondel original language in order

to define the structural reflection (SR), and the behavioral reflection (BR) that are the

fundamental features of reflection in RMondel.

5.2.1. Structural reflection

 In Mondel objects with the same properties are grouped within the same type. In

RMondel, a type and its components such as attributes, operations, and behavior, are

considered as objects which are instances of specific types, called kernel types, as shown in

Fig.5.2. This allows for the access of the different components of a type, and gives more

flexibility in order to dynamically modify types. The structure of RMondel is supported by

 -12-

instantiation and inheritance graphs. The instantiation graph represents the instance-of

relationship, and the inheritance graph represents the conforms-to relationship. The objects

TYPE (called CLASS in other languages) and OBJECT are the respective roots of these two

graphs [Erra 90].

type

an object Ground object level

Type object level

Meta level

oper1

oper2

attr1

attr2

behavior definition

TYPE

...

TypeName

BehaviorDef

SuperTypes

New

LookUp...

behavior definition

Meta...meta-level

AttributeOperation Statement

a machine

InsertCoin

PushButton....

behavior definition

MyType

MyTypeMyType

Machine

Kernel types

instance-of
relationship

Fig.5.2. Structural reflection basis

 The structural reflection is supported in a similar manner as in ObjVlisp [Coin 87]. The

most important aspect of SR in RMondel, is that each object is an instance of a type, and

types are objects. For each object we introduce the attribute MyType that links the object to

its type, as shown in Fig.5.2. Another aspect of SR is that the RMondel statements and

expressions are objects. For instance, one can specify the operation call, and accept

statements as instances of the Opcall and Accept types, respectively, as shown in Fig.5.3.

Each statement object accepts the Eval operation, that implements the semantics rule

 -13-

associated with such a statement. For the sake of simplicity, we do not consider here the

operation parameters and results.

 1 type Statement = OBJECT endtype Statement
 2 type Expression = OBJECT endtype Expression
 {Details on the definitions of the statement and expression objects are given in[Erra 92]}
 3 type Accept = Statement with
 4 OpName : string;
 5 AcceptBody : Statement;
 6 operation
 7 Eval;
 8 behavior
 9 { semantics rule of the accept statement }
10 endtype Accept
11 type OpCall = Statement with
12 Callee : Expression;{restricted to object identifier, for simplicity}.
13 OpName : string;
14 operation
15 Eval;
16 behavior
17 { semantics rule of the operation call statement }
18 endtype OpCall

Fig.5.3. Example of the specification of a subset of RMondel statements.

5.2.1.1 The structure of RMondel objects

 In RMondel, the structure of an object is considered as a finite set of attributes represented
by pairs. Each attribute is represented by a pair (Nameattri , Idattri) which is a substitution

(i.e., binding) assigning an object identifier (Idattri) to an attribute name (Nameattri). In the

following, we will use the term attribute to designate such a pair. We have two types of

attributes: initial attributes and effective attributes.

(1) The initial attributes are: (i) the unique object identifier, named ObjectId, is commonly

known as self. Such identifier is generated automatically. For the sake of readability we will

consider that object identifiers, for types, are constructed by means of the type name prefixed

by "Id" (e.g., the type Machine of Fig.5.1 is identified by IdMachine). (ii) the identifier of

the type of the object, named MyType which is the type of the created object. (iii) the

identifier of the object behavior, named Behavior, which represents the initial behavior of the

created object. The value of the Behavior attribute can change as the execution of the object's

behavior evolves. It is important to mention that an object's behavior is also an object.

(2) The effective attributes are separately created by the NewAttr operation defined in the

OBJECT type which defines the common behavior of each object in the system. These two

 -14-

kinds of attributes, initial and effective attributes, constitute the explicit definition of an

object in the following form:
 O = <(ObjectId,Ido),(MyType,Idtype), (Behavior,Idbeh), {...,(Nameattri,Idattri),..}> where Ido, Idtype, and

Idbeh designate the initial attributes of the object O. The set {...,(Nameattri,Idattri),..} contains the

effective attributes of O.

5.2.1.2. The type TYPE

 The type TYPE initially exists in the system as an instance of itself. It defines the behavior

for types, e.g. the type Machine of Fig.5.1 is created as an instance of TYPE. It holds the

effective attributes TypeName, BehaviorDef, SuperType etc... which refer to the name of a

type, the behavior defined in such a type, its parent, etc.... Fig.5.4 gives a definition of the

type TYPE . The LookUp and New operations are defined within TYPE as shown in Fig.5.4.

The LookUp operation is used to find an operation in the called object’s type or in its

supertypes. The New operation allows for object creation.

 1 type TYPE = OBJECT with
 2 TypeName : string;
 3 BehaviorDef : var[Statement];
 4 SuperType : TYPE; { for simplicity, we consider here single inheritance only}
 5 Attributes : set [AttributeDef];
 6 Operations : set [Operation];
 7 Procedures : set[Procedure];
 . . .
 8 operation
 {the operation New creates an object according to RMondel object structure}
 9 New : OBJECT;
  (t: TYPE) : Boolean; { checks if a type t conforms-to with self }
 {the operation LookUp checks if the operation “OpName” is defined for an object’s type or for
 one of its supertypes; then returns the associated statements}
10 LookUp (OpName : string) : Statement;
11 behavior
12 LookUpProc; . . .
 where
13 Procedure LookUpProc =
14 Accept LookUp do
15 ifexist Op:Operation suchthat
16 Operations. contains(Op) and Op.OpName = OpName
17 then {let AcceptBody be the object of type Statement that is associated with the
 operation defined by Op.}
18 return (AcceptBody);
19 else {recurse on supertypes}
20 return (SuperType ! LookUp(OpName));
21 end;
22 endproc LookUpProc

 endtype TYPE

Fig.5.4. The definition of TYPE

 -15-

5.2.1.3. The type OBJECT

 OBJECT is the most general type. It describes the common characteristics of all objects.

Each object is characterized by its unique identifier, its type, its effective attributes (i.e,

binding) and its behavior. The type OBJECT provides the NewAttr operation for effective

attributes creation. OBJECT is the root of the inheritance graph. It is defined, using Mondel,

as follows:

type OBJECT= with
 ObjectId : integer unique;
 MyType : TYPE;
 Behavior : var[Statement];
 operation
 NewAttr (A:Attribute); {A is the added attribute }
 behavior
 {specification of the semantics rule of NewAttr}
endtype OBJECT

5.2.2. Behavioral reflection

 Beside the structural reflection of our model, the behavioral reflection (BR) must be

represented. Therefore, we have associated an interpreter object (i.e., behavioral meta-object)

to each object as shown in Fig.5.5. An interpreter object deals with the computational aspect

of its associated object called referent. Interpreter objects are defined as instances of the type

INTERPRETER. An interpreter object may have its own interpreter object; thus the number of

interpreter objects is virtually infinite. Specialized interpreters can be defined for monitoring

the behavior of objects.

 A possible specification of the type INTERPRETER, where the incoming calls of its referent

can be recorded, is given in Fig.5.6. Such specification shows how the rendezvous

communication between objects is interpreted. One can define new ways of handling the

object communication by specifying subtypes or different versions of the INTERPRETER type.

We can see from the INTERPRETER definition that the accept statement is an object. To avoid

an infinite loop of operation calls, the basic operation call (“!”) is used to define the

semantics of the accept statement.

 -16-

type

MyType

an object

oper1

oper2

attr1

attr2

behavior definition

TYPE

...

TypeName

BehaviorDef

SuperTypes

New

LookUp...

behavior definition

Interpreter

referent

MyInterpreter

MyType

SR

behavior definition

RendezVousPlus

Referent

INTERPRETER

MyType

BR

NewAttr

...

ObjectId

MyTypeInherit

MyType OBJECT

Fig.5.5. BR and SR in RMondel.

 1 type INTERPRETER = OBJECT with
 2 referent : OBJECT;
 3 NbCall : var[integer];. . .
 4 operation {the operation RendezVousPlus interprets object communication}
 5 RendezVousPlus (OpC: OpCall); . . .
 6 behavior
 7 RendezVousProc; . . .
 8 where
 9 Procedure RendezVousProc =
10 Accept RendezVousPlus do {We can record the number of incoming calls of the referent object}
11 IncrementNbCall;
12 {let AcceptBody be the object of type Statement that corresponds to the called operation; then
 evaluate such a statement.}
13 define AcceptBody = OpC.Callee.MyType ! LookUp(OpC.OpName) in
14 { create a Context object which contains the callee attributes and parameters binding }
15 AcceptBody ! Eval (Context);
16 end;
17 end;
18 RendezVousProc;
19 endproc RendezVousProc
20 Procedure IncrementNbCall =
21 { Increment NbCall }
22 endproc IncrementNbCall
 endtype INTERPRETER

Fig.5.6. The definition of INTERPRETER

 -17-

 To deal with interpreter objects, we add a specific attribute, called MyInterpreter, to each

object. This leads to the modification of the type OBJECT as shown in Fig.5.7. The added

attribute is optional because not all objects need to have a specific interpreter. If the value of

the attribute MyInterpreter is nil then a default interpreter is invoked.

type OBJECT= with
 ObjectId : integer unique;
 MyType : TYPE;
 MyInterpreter : INTERPRETER opt; {opt stands for optional}
 Behavior : var[Statement];
 operation
 NewAttr (A:Attribute); {A is the added attribute }
 behavior
 {specification of the semantics rule of NewAttr}
endtype OBJECT

Fig.5.7. The OBJECT definition with the attribute MyInterpreter

5.2.3. A simple RMondel interpreter

 The definition of reflection in RMondel allows the access to the definition of an object's

structure (i.e., its type) and to the language statements which are objects. To access the

context of the execution of an object's behavior, we use the context objects (instances of the

context type) which contain the binding of attribute names and local variables with values. A

context object is created to bind the actual arguments of the operation call with the operation

parameters. Local variables and attributes are specified in the context object. The current

context is passed as an argument to the Eval operation of a statement object (e.g., see lines 13

to 15 of Fig.5.6). Context objects are managed based on the conventional stack approach

used for the processing environments of procedural programming languages.

 Let us describe a simple RMondel interpreter (RMI) which coordinates the execution of

the objects of a given RMondel specification . The RMI has a global view of the existing

objects, i.e., the kernel objects and the objects of the specification. According to RMondel

semantics, which is based on state/transition systems, objects are executed in parallel.

Therefore, the RMI selects an object and tries to fire a transition within the object's behavior.

The most important transitions are operation calls. If the called object has an associated

interpreter, (i.e., the value of its attribute MyInterpreter is not nil) then the evaluation of the

operation call is delegated to this interpreter (see Fig.5.8). A search for the called operation is

performed, within the type of the called object, by mean of the LookUp operation. The

LookUp operation is defined at the meta-level within the type TYPE .

 -18-

 type RMondel-Interpreter = OBJECT
 with
 ...
 behavior
 ...
 { the RMondel interpreter selects an object O}
 ifexist O: OBJECT suchthat
 { the behavior of O is an operation call }
 O.Behavior.Mytype  OpCall
 then
 if O.Myinterpreter <> nil
 then O.Myinterpreter ! RendezVousPlus (O.Behavior)
 else {the default interpreter is invoked}
 ...

endtype RMondel-Interpreter

Fig.5.8. A simple RMondel interpreter

5.3. Dynamic type modifications and consistency checking

 In the following we show how the RMondel facilities are used for dynamic type

modifications, and dynamic checking of type consistency.

5.3.1. Primitives for dynamic type modifications

 Fig.5.4. shows the type TYPE used to implement two important aspects of reflection,

which are instantiation and operation lookup. To support dynamic type modifications in

RMondel, we modified the type TYPE by adding a set of primitive operations such as

AddAttr, AddOper, etc... The resulting TYPE is given in Fig.5.9. Note that one can define a

subtype, let say Modifiable-Type, of TYPE in order to hold the primitives operations.

 Let us give a simple example to illustrate the notion of dynamic type modifications. Let T

be a type. In RMondel, T is a type as well as an instance of TYPE. Consequently, T accepts

the operations defined in TYPE. For example, it accepts the operations AddAttr to add an

attribute to its own attributes. Existing instances of type T are modified according to the

AddAttr operation semantics as defined in Section 4.

5.3.2. Dynamic checking for type consistency

 In Section 3, we defined a set of invariants which are used to ensure the consistency of the

type structure after modifications. To perform dynamic checking of type consistency, we

 -19-

incorporate these invariants, into RMondel, within the invariant clause of the type TYPE. An

example of such invariant definition is shown in Fig. 5.9.

 Let us consider the type T again. Since T is an instance of TYPE, the invariants defined in

TYPE must always hold for T, especially when T is first created and after any possible

modification. For example, if we attempt to add to T an attribute definition which has the

same attribute name as an inherited one, the invariant Inv1 in Fig.5.9, prevents the

completion of this modification.

 type TYPE = OBJECT with
 TypeName : string;
 BehaviorDef : var[Statement];
 SuperType : TYPE;
 Attributes : set [AttributeDef];
 Operations : set [Operation];
 Procedures : set[Procedure];
 . . .
 operation

 AddAttr (A:AttributeDef);
 AddOper(O:Operation);
 AddProc(P:Procedure);
 AddStat(S:Statement);
 ...
 invariant
 { We define here an example of invariant.}
 "Inv1" { attributes must have distinct names }
 [Forall a1,a2 : AttributeDef suchthat
 Attributes.contains(a1) and SuperType.Attributes.contains(a2)]
 (a1.AttrName <> a2.AttrName)

 ...
 behavior
 { The semantics definitions of the modification operations. }
 ...
endtype TYPE

Fig.5.9. TYPE specification with invariants and modification operations.

5.4. Consistency at the specification level

 We have discussed dynamic type modifications and dynamic checking of type consistency

at the type level only. We now address the issue of dynamic checking of structural and

behavioral consistencies at the specification level as a whole.

 Structural aspect: The main question here is: if we replace a type definition t by t’ in some

specification S, where t’ is structurally consistent with t, does the resulting specification S’

remain consistent w.r.t. S? The specification S’ is consistent with S if the modification does

not introduce compiling errors (type checking). Therefore we assert that the obtained

 -20-

specification S’ remains consistent. This assertion can be proved according to assignment and

parameter passing where type checking is important.

 Behavioral aspect: Similarly, if we replace t by t’ such that t’ extends t, does S’ extends S?

The answer is in general no, as shown by the following counter example: Consider the

behavior of S, which is defined by the parallel composition of two behaviors Bt1 and Bt2,

where Bt1 is defined by a type t1 and Bt2 is defined by a type t2. Suppose we extend Bt2 to

obtain Bt2’, see Fig.5.10. Now if we compose Bt1 with Bt2’, to obtain S’, the resulting

behavior blocks with respect to action a, whereas the original specification S is free of

deadlock.

a

b

c

d

c

d

a

e

Bt1 Bt2 Bt2' extends Bt2

Fig.5.10. labelled transition systems of Bt1, Bt2, and Bt2’.

 We conclude that the extension of a part of a specification does not imply the extension of

the whole specification. Before incorporating the change to the specification, we have to

check dynamically for the specification consistency. Therefore, in the following we use a

transaction mechanism and a locking protocol, which are well known for database systems,

to ensure the whole specification consistency.

6. The transaction mechanism

 In this section, we define a transaction mechanism which is used to realize the dynamic

checking of structural and behavioral consistencies at the specification level.

6.1. Locking protocol

 To make dynamic specification modifications without interrupting the processing of those

parts of the specification which are not directly affected by the change, we define a locking

protocol to isolate the parts of the specification which are affected by the modifications. Such

a protocol is incorporated within the transaction mechanism described in the next subsection.

 -21-

 According to the updates of a type T, its existing instances must be converted

accordingly. When a type has to be updated, its instances must be locked until the type

modifications are accomplished. If the updates do not succeed, e.g., because of invariant

violation, then the type will be rolled back to its state before the updates, and the instances

will be released to pursue their behavior progress. In the case where the type updates

succeed, the instances will be converted accordingly, and released to behave normally. Each

object can be active, passive or locked as shown in Fig.6.1. Initially, an object is in a passive

state if it is not involved in a current transaction (e.g., an object is in a passive state after its

creation). When the object is involved in a transaction, its state becomes active (e.g., the

object is asking, by means of operation calls, for other objects' services). An object in a

passive state, may be locked for the purpose of an update (e.g., object conversion after its

type modification).

passive
active

locked

create

delete

lock unlock

activate

passivate

update

Fig.6.1. Object state/transitions

 The fact that a specification is organized as a type lattice has a major impact on the

locking protocol. The modification operations may involve a type and all its subtypes (e.g., if

we have to add an attribute to a type, then the structure of its instances and of the instances of

its subtypes has to be modified). Thus not only the instances of the modified type must be

locked, but the instances of its subtypes as well. Therefore, we define a type sublattice to be a

type and all its direct and indirect subtypes in the type lattice. To update a type, we adapt the

x lock mechanism [Gray 78] to be applied for a type sublattice. That is when a type has to be

modified, a lock is set not only on the type itself, but also on each of its descendant types on

the type sublattice. The instances of a locked type will be locked until their type becomes

 -22-

unlocked. Fig.6.1 shows the possible states and transitions of an object w.r.t. modifications.

Objects (i.e., either types or their instances) can be modified only when they are locked.

6.2. The transaction steps

 The user formulates his requirements within a transaction which consist of type update

operations. We use the concept of transaction to provide fail-safe implementations of

specifications by using standard fault recovery procedures developed for database systems

[Gray 81]. A transaction consists of several successive modifications of one or more types.

The following steps show how the different actions (i.e., those involved in a type updates)

work and lead to a consistent specification. These steps are represented, through the different

levels, by the heavy dotted lines in Fig.6.2.

Step 1: Transaction construction: through the interface object, the user formulates a

transaction (called an atomic operation in Mondel) as an operation call, specifying his

requirements (i.e., in terms of operations for type modifications). The transaction is

composed of a set of primitive operation calls (i.e., predefined primitives for type

modifications as shown in Fig.5.9) which are defined at the meta level within TYPE .

Step 2: Checkpoint: This step consists of saving the state of the type sublattice and all

objects of those types in the sublattice. Then, apply the locking protocol to prevent

inconsistent use of the type to be modified and of its instances. The locking protocol is

also applied recursively to the subtypes of the modified type, and to their instances.

Step 3: Modifications performed: This step consists of performing the changes as specified

by the transaction. The old definitions of the types involved in the change are saved within

the previous step. The modification are performed on these types without changing their

identities. Therefore, we do not need to recompile the specification.

Step 4: Structural consistency checking and SR: the checking process consists of maintaining

the structural consistency, after the type modifications, according to the invariants defined

within the type TYPE. Such invariants correspond mainly to the static semantic rules of the

language. If the structure of a specification (i.e., modified or newly constructed specification)

does not comply with those invariants, then the SR is used to reflect the anomalies to the

previous level (i.e., meta-level) in order to inform the user of which part about his transaction

does not satisfy the invariants. Then the user has to modify his transaction through the meta-

level (from step 1), in order to make the specification comply with the invariants.

 -23-

Step 5: Behavioral conformance checking: The behavioral conformance deals with the

dynamic behavior of objects as introduced in Definition 3. According to the behavior

modifications, if any, we need to check dynamically that the modification of the behavior

of an object does not introduce new deadlocks in the overall specification. Among the

existing approaches for deadlock detection (e.g., program transformation, simulation,

reachability analysis) we use a dependency graph and the reachability analysis techniques

widely used for the validation (e.g., deadlock detection) of communication protocols

[Zafi 78], [Zhao 86]. A dependency graph is constructed based on the relation of

dependency between types. A type t1 depends on a type t2 if the former uses one or more

operations of the later. If the extension relation is violated, e.g., a deadlock is detected,

then the system reports the inconsistencies and the type must be revised again.

Step 6: Istances conversion: when the type modification transaction succeeds, (i.e. the

structural consistency and the behavioral conformance relations hold) then the instances

(locked previously), at the ground object level, must be converted to remain conform with

their modified type. The conversion of the instances according to the semantics of each type

evolution primitive operation, is described in [Erra 92b].

Step 7: Transaction commit: In this step, the transaction commits and the type sublattice and

the instances are unlocked, after their modifications, and enter their passive state.

6.3. Example

 Let us consider the vending machine example for which a specification was given in

Fig.5.1. Suppose now that we want to modify the initial machine to deliver candies or

chocolates, instead of candies only. This imply that we have to modify the type Machine and

the type User, accordingly. For this purpose, we have to modify both interface and behavior

defined of the initial Machine. In the following we will show how the modifications are

performed upon the type Machine, according to the different steps of the mechanism

described earlier. For the type User the modification can be done in a similar way. To the

Machine’s interface, we add the operation “PushAndGetChocolate”, and for the behavior we

modify the procedure Ready by modifying the procedure body as shown in Fig.6.3.

 -24-

t3

Ground object level

type object level

Meta-level

MyType

t1

t5

OBJECT

t4
t2

TYPE

Interface object

An object

MyType

Interpreterreferent

behavior definition

RendezVousPlus
Referent

INTERPRETER

MyType

MyInterpreter

step1

step2

step3

step3

step4

SR BR

step2

Interpreter
referent

MyInterpreter

step4

Conform

step5

Fig.6.2. Reflection-based mechanism.

procedure DeliverCandy =
 (same as in Fig.5.1.)
 endproc DeliverCandy

 procedure DeliverChocolate =
 accept PushAndGetChocolate do
 return;
 end;
 Ready;
 endproc DeliverChocolate

endtype Machine

type Machine= object with
operation
 (same as in Fig.5.1.)
 PushAndGetChocolate;
behavior
 Ready
where
 procedure Ready =
 accept InsertCoin do return; end;
 choice
 DeliverCandy;
 or DeliverChocolate;
 end;
 endproc Ready

Fig.6.3. Modified vending machine system.

Step 1: The user formulates the atomic operation (i.e., a transaction) using RMondel

statements. In Fig.6.4 we give a possible specification of an atomic operation (see line 2

of Fig.6.4). The user formulates his atomic operation using the predefined kernel types

(e.g., Procedure, Statement, etc..) to create the necessary objects (see lines 4 to 12 of

Fig.6.4). The type Machine which is an instance of TYPE, accepts the modification

primitives defined in the type TYPE . Among the actions of the updateMachine atomic

 -25-

operation, we have the AddOper (i.e., to add an operation) call on the type Machine. The

AddOper call takes the operation to be added as a parameter (see lines 12,13 of Fig.6.4).

 Another change, is to modify the body of the procedure Ready of the initial

specification, accordingly. The procedure defined in the initial specification, is a

sequential composition where the first statement is “accept InsertCoin do return; end;”

and the second statement is the procedure call “DeliverCandy”. Now we change the

second statement by the new added statement of type Choice (i.e., “choice DeliverCandy

or DeliverChocolate” as shown in lines 6 to 10 of Fig.6.4). Then an instance of the

predefined kernel type Procedure, is created to hold the “DeliverChocolate” procedure as

shown in lines 14,15 of Fig.6.4.

Step 2: This step consists of applying the locking protocol to prevent inconsistent access

to the type (and its instances) under modification. Then the states of the type Machine

and its existing instances are saved. This is done implicitly according to the atomic

operation semantics, to allow a roll back in the case where the atomic operation aborts.

Step 3: The changes are performed on the type Machine as specified in lines 6 to 17 of

Fig.6.4.

Step 4 and step 5: Structural consistency and Behavioral conformance checking: At the

end of the transaction, just before the return of the atomic operation (see line 18 of

Fig.6.4), the predefined invariant must hold for the type Machine after its modification.

The invariants are triggered automatically to ensure the consistency of the Machine

structure. In this stage, the SR will have a role because if the user adds certain

information which does not produce the specification's needed structure, then there will

be a reflection from the object type level to the meta-level represented as SR. This type

of reflection informs the user at the meta-level which part of his/her specification should

be re-modified/updated such as to make it in line with the structure needed by the

specification. It is obvious from the resulting Machine’s specification shown in Fig.6.3,

that the structural consistency as defined in Section 2 is preserved. The addition of the

operation “PushAndGetChocolate” in a choice composition as shown in Fig.6.3,

preserves the behavioral conformance requirements according to Definition 3.

Step 6: At the end of the transaction, and after both structure and behavior are checked,

the existing instance of the type Machine has to be converted accordingly. In this

example, the modification (i.e., addition of operation) has no impact on the structure of

 -26-

the existing instances if any. Because the added operation appears only within the type

Machine , the instance behaviors evolve dynamically when they become unlocked.

1 type TransExample = Object
 ...
 operation
2 updateMachine : atomic;
 ...
 behavior
3 accept updateMachine do

4 { let Machine be the object type Machine of Fig.2.1, which is an instance of TYPE }
5 { let ProcReady be the object of type Procedure where the procedure body is a statement object of
 type Sequence. ProCall and Choice are predefined kernel types for procedure call and choice
 statements, respectively. More details on Statement object can be found in [Erra 92] }

6 define DelivCand = new ProCall ("DeliverCandy") ;
7 DelivChoc = new ProCall ("DeliverChocolate") in
8 define CanOrChoc = new Choice (DelivCan, DelivChoc) in
9 ProcReady.ProcBody.Stat2 := CanorChoc;
10 end;
11 end;
12 define op = new Operation ("PushAndGetChocolate") in
13 Machine ! AddOper(op);
14 define ProcChoc = new Procedure (...) in
15 Machine ! AddProc(ProcChoc);
16 end;
17 end;
18 return;
19 end;
20 end;
21 endtype TransExample

Fig.6.4. An example of a transaction for the type Machine updates.

7. Related works

 In the area of object oriented databases, class modifications have been extensively studied

in the recent literature [Bane 87], [Penn 87], [Skar 87], and [Delc 91]. The available methods

determine the consequences of class changes on other classes and on the existing instances,

so that possible violations of the integrity constraints can be avoided. These approaches deal

mainly with sequential systems and have focused on preserving only structural consistency.

In our approach, we address both the structural and behavioral consistencies. For the

behavioral consistency we deal mainly with the behavior of objects and we consider some

properties of distributed systems such as blocking. Moreover, we use reflection which

provides a flexible and uniform environment for dynamic type modifications using specific

meta-operations and meta-objects. Another work on class modification using meta-operation

 -27-

is that of [Tan 89], where a lazy evaluation method of schema evolution which minimize the

amount of object manipulation is proposed. However, [Tan 89] does not address the issues of

behavioral conformance and the transaction mechanism which are central to our work.

 Kramer and Magee have addressed the problem of dynamic change management for

distributed systems [Kram 90, Kram 89]. Their approach focuses mainly on changes

specified in terms of the system structure and provides a separate language for changes

specification. Our approach deals with type modifications and uses one language to specify

types and their changes. Unlike their approach, which concentrate on the logical structure of

a system, we consider the dynamic behavior of a specification and we take into account the

inheritance property which is inherent to the object-oriented aspect of our language. The unit

of change in our model is a type (class), instead of a module.

8. Conclusions

 Dynamic type modifications is an interesting and challenging research problem. Object-

oriented systems in conjunction with reflection, allow us to approach this problem that

conventional systems have not been able to address. We have developed RMondel, a

reflective concurrent object-oriented specification language, based on the Mondel language

designed for distributed systems modeling and specification. The objective of RMondel is to

allow the development of dynamically modifiable specifications. We have shown the

fundamental features of RMondel, mainly the structural reflection and the behavioral

reflection. Then we have explained how the features of the language are useful for the

dynamic modification and construction of valid specifications. We have illustrated through

an example how the language allows dynamic modifications. Therefore the user of this

language can modify his/her specification by adding new objects and types to get a new

adapted specification. A predefined set of constraints allow to maintain the structural

consistency and behavioral conformance of the modified specification. The allowed

modifications lead to new types which conform to the old ones.

 RMondel provides an elegant manner for dynamic type modifications. It also gives an

interesting framework based on formal semantics, to develop adaptable CASE tools for

executable specifications development. RMondel framework may be easily adapted for

other object-oriented languages. Mondel has been implemented on a Sun workstation,

and used for writing and simulating the specifications of the OSI directory system, and

the personal communication services. Currently, RMondel is in the implementation

phase. Our future research focuses on how and under which conditions the modifications

 -28-

to a given specification may be performed upon an implementation within the same

transaction. The modification must be done in a way to preserve the conformance relation

between the implementation and its specification. We are also considering the

development of a version control mechanism in order to keep track of the evolution

history of an evolving specification.

Acknowledgement: The authors are grateful to M. Faci for his useful discussions and his

revisions to the paper. This research was supported by a grant from the Canadian Institute for

Telecommunications Research (CITR) under the NCE program of the Government of

Canada.

References

[Amer 90] P. America, A Behavioral Approach to subtyping in object-oriented
programming languages, Philips Journal of Research, Vol.44, Nos. 2/3, pp. 365-383,1990.

[Bane 87] J. Banerjee, W. Kim, H. J. Kim and H. F. Korth, Semantics and
implementation of schema evolution in object oriented databases, in Proceedings, ACM
SIGMOD Int. Conf. On Management of Data, San Fransisco, CA, May 1987, pp. 311-322.

[Barb 91] M. Barbeau, Vérification de spécifications en langage de haut niveau par une
approche basée sur les réseaux de Pétri, Ph.D. Thesis, Université de Montréal, 1991.

[Blac 87] A. Black, N. Hutchinson, E. Jul, H. Levey and L. Carter, Distribution and
abstract types in Emerald, IEEE Trans. on Soft. Eng., Vol SE-13, no.1,1987, pp.65-76.

[Boch 89] G. v. Bochmann, Inheritance for objects with concurrency, Publication
departementale # 687, Departement IRO, Université de Montréal, Septembre 89.

[Boch 90] G. v. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-Monval
and N. Williams, Mondel: An Object-Oriented Specification Language, Publication
departementale #748, Departement IRO, Université de Montréal, November 90.,

[Boch 91] G. v. Bochmann, L. Lecomte and P. Mondain-Monval, Formal Description of
Network Management Issues, Proc. Int. Symp. on Integrated Network Management (IFIP),
Arlington, US, April 1991, North Holland Publ., pp. 77-94.

[Boch 92] G. v. Bochmann, S. Poirier and P. Mondain-Monval, Object-oriented design
for distributed systems and OSI standards, to be published in Proc. of IFIP Int. Conf. on
Upper Layer Protocols, Architectures and Applications, Vancouver, May 1992.

[Brin 86] E. Brinksma and G. Scollo, Lotos specifications, their implementations and
their tests, Protocol Specification, Testing and Verification VI (IFIP Workshop, Montreal,
1986), North Holland Publ., pp. 349-360.

 -29-

[Coin 87] P. Cointe, Metaclasses are first class: The ObjVLisp Model, OOPSLA'87,
ACM Sigplan Notices 22, 12, pp.156-167.

[Delc 91] C. Delcourt and R. Zicari, The design of an integrity consistency checker
(ICC) for an object oriented database system, ECOOP'91.

[Erra 90] M. Erradi and G. v. Bochmann, RMondel: A Reflective Object-Oriented
Specification Language, The ECOOP/OOPSLA'90 First Workshop on: Reflection and
Metalevel Architectures in Object-Oriented Programming, Ottawa 1990.,

[Erra 92] M. Erradi and G. v. Bochmann, Semantics and definition of RMondel : A
Reflective Object-Oriented Language, Internal report, departement IRO, University of
Montreal, 1992.

[Erra 92b] M. Erradi, G. v. Bochmann and R. Dssouli, Semantics and implementation of
type dynamic modifications, Publication #813, Department IRO, University of Montreal,
March 1992.

[Erra 92c] M. Erradi, G. v. Bochmann and I. Hamid, Dynamic Modifications of Object-
Oriented Specifications, CompEurop'92, IEEE Int. Conf. on Computer Systems and software
Engineering, May 1992.

[Ferb 89] J. Ferber, Computational Reflection in Class based Object Oriented
Languages, Proceedings of OOPSLA'89 , October 1-6, 1989, pp. 317-326.

[Gray 78] J. Gray, Notes on data base operating systems, IBM research report: RJ2188,
IBM Research, San Josee, California, 1978.

[Gray 81] J. Gray, The transaction concept: virtues and limitations, Proc. Conf. on
VLDB, Cannes, Sept. 1981 (IEEE), p. 144-154.

[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in LOTOS,
PSTV'90. pp. 185-200.

[Kram 89] J. Kramer, J. Magee and M. Sloman, Configuration support for system
description, construction and evolution, IEEE Proc. of the Fifth Int. Work. on Soft. Spec. and
Design, May 1989, pp.28-33.

[Kram 90] J. Kramer and J. Magee, The evolving philosophers problem: Dynamic change
management, IEEE, trans. on Soft. Eng. Vol.16, No.11, November 1990.

[Maes 87] P. Maes, Concepts and Experiments in computational reflection, OOPSLA'87,
ACM Sigplan Notices 22, 12, pp.147-155.

[Meye 88] B. Meyer, Object Oriented Software Construction, C.A.R. Hoare Series
Editor, Prentice Hall, 1988.

[Penn 87] D. J. Penney and J. Stein, Class Modification in the GemStone object-oriented
DBMS, OOPSLA'87, pp.111-117.

 -30-

[Plot 81] G. D. Plotkin, A Structural Approach to Operational Semantics, Aarhus
University, Report DAIMI FN-19, 1981.

[Rudk 91] S. Rudkin, Inheritance in LOTOS, 4th. Int. Conf. on Formal Description
Techniques. FORTE'91, pp. 415-430.

[Skar 87] A. H. Skarra and S. B. Zdonik, Type evolution in an Object-Oriented
Databases, Research directions in object-oriented programming, Eds. Peter Wegner and
Bruce Shriver, MIT press, pp.393-415.

[Smit 82] B. C. Smith, Reflection and Semantics in a Procedural Programming
Language, Ph.D. Thesis, MIT, MIT/LCS/TR-272, 1982.

[Tan 89] L. Tan and T. Katayama, Meta operations for type management in object-
oriented databases - A lazy mechanism for schema evolution-, Proceedings of the First Int.
Conf. on Deductive and Object-oriented Dtatbases, Octobre 1989.

[Viss 88] C. Vissers, G. Scollo and M. v. Sinderen, Architecture and Specification Style
in Formal Descriptions of Distributed Systems, Proc. IFIP Symposium on Prot. Spec., Verif.
and Testing, Atlantic City, 1988.

[Wata 88] T. Watanabe A. Yonezawa, Reflection in an Object-Oriented Concurrent
Language, Proceedings of OOPSLA'88, pp. 306-315.

[Will 90] N. Williams, Un simulateur pour un langage de spécification orienté-objet,
MSc thesis, Université de Montréal, 1990.

[Work 91] M. H. Ibrahim, ECOOP/OOPSLA' 90/91 Workshops on Reflection and
Metalevel Architectures in Object-Oriented Programming.

[Zafi 78] P. Zafiropulo, Protocol validation by duologue-matrix analysis, IEEE Trans.
on Comm. Vol. COM-26, No.8,1978, pp. 1187-1194.

[Zhao 86] J. R. Zhao and G. v. Bochmann, Reduced reachability analysis of
communication protocols: a new approach, Proc. IFIP Workshop on Protocl. Spec. Testing
and Verification, North-Holland Publ., 1986, pp. 234-254.

