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Abstract:  Most object-oriented analysis and design methods support some kind of entity-
relationship modelling of the universe of discourse which defines the object types to be 
considered, as well as the relationships that exist among these types of objects. In addition, each 
object type is characterized by an interface which defines a number of actions, methods or 
operations. This paper introduces the concept of "abstract event" which is the joint execution of 
actions by object instances which are related by a relationship. This allows the modelling of 
communication between objects at a high level of abstraction, and the definition of the dynamic 
behavior of the related object types. The paper provides various examples which demonstrate the 
usefulness of this notion for dynamic system modelling. Combined with the notion of 
aggregation, which means that an object may consist of a number of components objects, the 
rendezvous mechanism of abstract events may also be used to define the dynamic behavior of 
composed objects which may be based on the behavior of its components. It is also shown that 
the notion of multiple inheritance can be considered a variation of composition. 

1. Introduction 

The modelling of complex systems is largely an art, although many systematic approaches have 
been defined for this purpose. One of the most important aspects of a modelling methodology is 
the ability to decompose a system into parts. In the context of the popular object-oriented 
approaches, the system parts are called objects, and usually, a system part which is considered at 
an abstract level of description as a single object, may be considered at a more detailed level as 
an aggregation of several component objects.  

While much attention in the past has been put into the description of the structure of the 
described system in terms of objects and their interrelation, less attention has been given to the 
aspect of the dynamic behavior of each object. This aspect has traditionally been handled at the 
implementation level where the behavior may be coded in terms of procedures written in a 
(possibly object-oriented) programming language, in the area of  communication protocols, the 
dynamic behavior has always been of prime attention, and several formal specification languages 
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have been developed for the description of complex systems, including their dynamic behavior 
(for an overview, see [ Bochmann, 90g #275] ).  

Comparing various methods for describing the dynamic behavior of computer systems, there 
appears to be some kind of opposition between two approaches: some methods are mainly based 
on the events that happen (and relate these events to changes of the object states), while other 
methods are more based on the possible states of the objects (and describe what events are 
possible depending on the system state). The usual object-oriented approach to system analysis 
and design seems to be more based on the objects and their states, and much less on the events 
that may occur. We show in this paper how this view can be complemented with a view which is 
much more oriented towards the events that may occur in the system to be described. 

The events that occur in a system are also related to the communication that occurs between the 
different system components, or between the described system and its environment. Three basic 
communication paradigm can be distinguished: (1) asynchronous message passing, (2) (remote) 
procedure calls, and (3) rendezvous communication which only occurs when all participating 
parties (which may be two or more objects) are ready for the interaction. The last paradigm 
seems to be the most abstract one, and is used for the definition of the "abstract event" notion 
defined in Section 3.  

In traditional object-oriented systems, the operations, which can be called or be invoked by 
sending a message, are associated with a single object. They can be invoked by another object if 
the latter knows the identity of the former. This is a rather implementation-oriented mechanism, 
and we think that for abstract system descriptions, it would be better to have some other way of 
indicating which object communicates with which other object. In fact, sometimes so-called use 
relations are explicitely introduced during the system design. We propose a kind of 
generalization of this concept.  

Most object-oriented analysis and design methods support some kind of entity-relationship 
modelling of the universe of discourse which defines the object types to be considered, as well as 
the relations that exist among these types of objects. We use these relations to support the 
communication between objects. The abstract events, as defined in Section 3, are usually 
associated with the instances of relations (sometimes of several relations) and involve certain 
operations that are defined for the objects which are related by the relation in question. An event 
represents therefore the occurrence of a communication between several objects and may imply 
state changes in these objects. 

After reviewing some basic modelling concepts in Section 2, we present the notion of abstract 
event in Section 3 together with a large number of examples which are intended to demonstrate 
the flexibility and usability of this new concept. The following discussion relates this concepts to 
similar approaches described in the literature. 

Section 4 deals with descriptions at several levels of details and aggregation. It also deals with 
multiple inheritance. This concept has been often discussed in the context of object-oriented 
languages, and it is not clear whether its usefulness for the description of complex systems 
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warrents the conceptual complexity which it introduces. We show in this paper that, through the 
use of abstract events, multiple inheritance may be modelled by aggregation.  

2. Some basic modelling approaches 

2.1. Entity-relationship modelling 

Entity-relationship modelling was originally introduced as a method for designing the data 
model of database systems [ Chen, 76 #358] . Similar concepts are included in most recent 
approaches to object-oriented system analysis and design (see for instance [ Rumbaugh, 91 
#1110] ). The purpose of this approach is to identify the type of objects (also called entities) in 
the universe of discourse which is of interest, and also to identify the relations that exists 
between these objects. A simple example is given in Figure 2.1, which shows six types of objects 
and five types of relations between them. The relation between Computer and Person may have 
the meaning "belongs to" while the other relations represent aggregation, that is, the fact that a 
computer consists of several parts, a powersupply, a screen, a keybord and possibly several disk 
drives. The multiplicity annotation (in the form a pair, representing minimum and maximum 
number of occurrences of the relation) provides information about the existential dependencies 
between the different related objects. For instance, the annotation 0,1 and 0,* for the "belongs 
to" relation indicates that a Computer may belong to zero or (at most) one Person, and that there 
may be zero, one or more Computers that belong to a given Person. 

Computer

Power Screen Keys Disk

1,1
1,1 1,1

1,*

0,1 0,1 0,1 0,1

Person
0,*0,1

 

Figure 2.1: Type diagram using entity-relationship modelling 

In addition to the "type diagram" shown in Figure 2.1, it is often interesting to consider a 
particular configuration of object instances, specially if the dynamic interactions between several 
objects within a system is under consideration. In the simplest case, such "instance diagrams" 
can be quite similar to the corresponding type diagram. An example involving the persons Fred 
and Tom, where Fred owns a particular computer with the serial number SN 123 is shown in 
Figure 2.2. 
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Disk
SN 67

Person
Tom

Computer

Power Screen Keys

SN 123

SN 23 SN 423 SN 56

Person
Fred

Disk
SN 66

 

Figure 2.2: An instance diagram corresponding to the type diagram of Figure 2.1 

 

2.2.  Rendezvous communication 

As mentioned in the Introduction, three basic communication paradigm can be distinguished: (1) 
asynchronous message passing, (2) (remote) procedure calls, and (3) rendezvous communication. 
A general form of rendezvous, where more than two objects (usually called processes) may 
participate in a given interaction is defined by the LOTOS language [ Bolognesi, 87 #293] . It is 
characterized by the fact that each interacting object may impose specific conditions for the 
execution of a rendezvous interaction, and the interaction may only occur when all these 
conditions are satisfied. In order to avoid deadlocks due to incompatible conditions within a 
given system design, a given object, for a given state, often foresees several alternative 
rendezvous interactions or various ranges of interaction parameters. If several of these 
alternatives are possible in a given state of the system, the specification does not determine 
which of the possibilities will be realized; the system specification is nondeterministic. 

It is important to note that this notion of rendezvous makes no distinction between caller and 
called entity; the communication is symmetric. This is in contrast to (remote) procedure calls and 
message passing, where the initiating object has to "know" the called object instance. We note 
that a combination of remote procedure call with possibilities for alternatives and conditions 
imposed by the called object has been defined within the Mondel specification language 
[ Bochmann, 92p #287] . In this paper, we consider symmetric communication, based on the 
rendezvous concept described above. 

It has been observed that rendezvous communication is more suitable for abstract description of 
system behavior than communication primitives based on message passing [ Bochmann, 90a 
#270] . The possibility of cross-over of messages between two communicating objects introduce 
additional complications which can be avoided by rendezvous communication and which, if 
resolved, lead to implementation-oriented solutions that are not appropriate for a high level 
description.  



 5

We note that the definition of LOTOS is based on an interleaving semantics where only a single 
interaction may occur at a given time throughout the whole system. This interpretation is clearly 
not realistic, and an interpretation allowing for true parallelism between different rendezvous 
interactions is required, such as described in [ Costa, 92 #1136] . The same issues arise in relation 
with Petri nets [ Peterson, 77 #795]  where transitions (involving several tokens -- objects) may 
occur in parallel if they are not in conflict with one another. 

 

2.3.  Object-based systems 

Object-oriented programming and system design has become fashionable. The main feature of 
this approach is "information hiding" which is obtained considering objects with an interface 
which defines the actions (usually called methods or operations) that can be invoked by other 
objects. The implementation of these actions, in terms of an algorithm and/or internal variables is 
hidden. In the following, we sometimes distinguish between actions which imply state changes, 
and actions without state changes, which we also call attributes. 

An example of the definition of an object type is given in Figure 2.3(a). We note that a complete 
definition of an object type should include, in addition to the interface which describes the 
actions and their parameters, also the object behavior which describes the nature of the state 
changes and the results returned by the invoked actions. 

      

Stack
actions
  push (in x: data), 
  pop
attribute
  top (out x: data)
behavior
   " ... stack properties ... "

Stack-maxl
actions
  push (in x: data), 
  pop
attribute
  top (out x: data),
  maxLength: constant Int
behavior
   " ... stack properties
     with maximum length ... "

Stack-maxl
supertype Stack
attribute 
  maxLength: constant Int
behavior
   " ... stack properties
     with maximum length ... "

 

       (a) unlimited length     (b) with maximum length   (c) same as (b) (defined as subtype) 

Figure 2.3: Several definitions of Stack types 

 

2.4. Property inheritance 

Another feature of object-orientation is the concept of property inheritance, also called 
subtyping. The idea is that a new type of object (called subtype) may be defined as a 
specialization of another type (called the supertype, which is already defined) by describing 
further properties that the new type of objects must satisfy in addition to the properties defined 
for the supertype. One kind of properties are additional actions or attributes that are defined for 
the subtype, as the maxLength attribute of the specialized stack type shown in Figures 2.3(b) and 
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(c). However, there may be other important properties related to the behavior of the objects; for 
example, a stack with maximum length will behave differently than its supertype with unlimited 
length for very long sequences of push actions.  

There are different kinds of properties for which a relation between a subtype and its supertype 
must be defined, including compatibility of interfaces, specialized behavior, and more detailed 
description and implementation details. A discussion of some of these aspects is given in 
[ Bochmann, 92a #1027] . We do not allow for "redefinition" of behavior for more specialized 
objects, that is, all properties specified for a given type of objects remain valid for all specialized 
types that inherit from the former. 

In system analysis and design, property inheritance is often used for defining classification 
hierarchies of object types. It is usually combined with entity-relationship modelling.  

3. Abstract events 

3.1. The concept 

We note that communication between different objects in object-oriented systems is usually done 
in a client / server relationship, where a calling object invokes an operation on the called object. 
The latter  must be "known" by the former, that is, the caller has to know the object identifier of 
the called object. Two modes of communication may be considered: asynchronous and 
synchronous. In the asynchronous mode of communication, the caller sends a "message" to the 
called object and may proceed immediatly afterwards with its own processing. In the 
synchronous mode, the caller waits for the called object to return the result of the operation 
before proceeding with other activities; in this case, an operation has two kinds of parameters, 
inputs and results.  In both cases, it is the calling object that makes the decision to invoke the 
operation.  

In the following, we introduce the notion of abstract event which is more abstract than the 
common synchronous operation call described above. The following are the main differences: 

(a) There is no asymmetric caller / callee relationship: It is not said which object makes the 
decision for the execution of an event.  

(b) There may be more than two objects participating in a given event. These objects are related 
to one another through one or several relations (see below). 

(c) Each participating object may impose certain conditions which must be satisfied when the 
event occurs. Each participating object may also define some local state changes that occur 
during the execution of the event.  

The semantics of an abstract event is defined as explained through the example shown in Figure 
3.1. As usual for object-based systems, each object has a certain number of defined actions 
(including the attributes, i.e. actions without state changes). For example, object O1 in the figure 
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has actions a1, a2, and a3. In addition, we assume that with each type of relation, there may be 
an associated rendezvous interactions between certain actions of the related objects. Such a 
rendezvous interaction is called an abstract event. Each occurrence of an abstract action is 
associated with an instance of the corresponding relation. For example, the relation R1 in the 
figure specifies rendezvous between the a1 action of an instance of an O1 object with the a4 
action of an instance of a related O2 object (we use the symbol # to denote such rendezvous). 
The relation R2 specifies rendezvous between the actions a4 of instances of the object types O2 
and O3. R3 is a ternary relation and defines a three-way rendezvous for the action a3 common to 
three instances of the object types O1, O3, and O4, respectively. The definition of an abstract 
event may introduce additional conditions that must be satisfied when an occurrence of the event 
is executed, as for instance for relation R2. If there are several instances of a given relation for a 
given object instance, such as in the case of relation R1 for an object of type O2, an event 
involving this relation will only rendezvous with one instance of the related object type (in this 
example, one instance of object O1).  

O1

O2

O3
R1

R2

R3

O4
actions 
  a1, a2, a3

actions 
   a3

actions
  a1, a2, a4(x:Int)

attribute  z:Int
actions 
  a2, a3, a4(y:Int)

rendezvous:
 O1.a2 # O2.a2,
 O1.a1 # O2.a4

rendezvous:
 O2.a4(x) # O3.a4(y) where x+y=O3.z

rendezvous:
 O1.a3 # O2.a3 # O3.a3

1,*

1,1

 
 

Figure 3.1: Example of objects, relations and abstract events 
 

The fact that the action a4 of an instance of type O2 is constraint by R1 to a rendezvous with the 
action a1 of the related object instance of type O1, and also constraint by R2 to a rendezvous 
with the action a4 of an instance of type O3 implies that these three actions form a single abstract 
event. This is a case of "multiple rendezvous". The possible events of the system shown in 
Figure 3.1 are therefore the following: O1.a2 with O2.a2, O1.a1 with O2.a4 with O3.a4,  O1.a3 
with O3.a3 with O4.a3, O2.a1 (alone),  and O3.a2 (alone). The relation R2 is an example where 
an additional condition for rendezvous is required; this condition involves in this case the two 
parameters of the two respective actions and a state attribute of one of the object instances 
involved. 
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The multiplicity annotation for relation R1 indicates that a given instance of object O1 may be 
related to several object instances of type O2. Each occurrence of the defined rendezvous 
interactions will be related to a particular instance of the relation. This means that the execution 
of the action a2 of an object O2, for instance, will be synchronized with the execution of the 
action a2 of (exactly) one of the related O2 object instances. 

3.2. Examples 

In the following we describe several more meaningful examples in order to show how the 
concept of abstract events may be used to describe various situations. 

Client-server relationship: The following diagram shows a client object which uses two 
different server objects, a database for searching and updating, and a powerful processor for 
performing certain calculations. Not all the available operations are used by the client, as its list 
of actions indicates. The relations between the client and the two servers define rendezvous for 
all actions that are common to the two respective objects, that is, there are the abstract events 
find and update common to the client and the database, and the event calc common to the client 
and the processor; the action other of the client is not part of a rendezvous. 

        

Client
actions
  find(k, res: string), 
  update(...), 
  calc(...), other

DB
Procattribute

   cost : Int
actions
  find(k, res: string),
 update(...), delete(...)

actions
  calc(...), special

rendezvous
 all common actions

rendezvous
 all common actions

1,*0,*

 
Figure 3.2: Type diagram showing client with database and powerful processor 

 
If we assume that the parameters k and res of the find actions represent the search key and the 
result of a search, respectively, and if we assume that a DB object imposes a condition for the 
execution of the find action, namely that an entry for the search key exist in its database, then the 
specification of Figure 3.2 implies the possibility of a parallel search in all the DB objects to 
which a given Client is related, and the rendezvous find will be executed with one of the DB 
objects which contains an entry for the given search key in its respective database. 

Star network with switch: The system below represents a central switch (we assume, there is 
only a single instance) with a number of connected stations. The stations exchange data with 
other stations via the switch. For this purpose, they send and receive messages that contain three 
fields, the source and destination addresses and the data. The relation specifies rendezvous for 
the send and receive actions of the stations and the switch; since this is a 1:N relation, each 
execution of an action of the switch will perform a rendezvous with the corresponding action of 
exactly one of the related stations. Which of the n stations will participate in the rendezvous is 
(in this case) determined by the conditions of the stations for the execution of their actions. 
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Similarly, the switch associates certain conditions and state changes with the execution of its 
actions. These conditions ensure that the data is transmitted correctly to the intended destination. 
(Notation: If x is the name of an attribute representing a state variable, its value before the 
execution of the action is denoted by x, and its value after the execution by x'). 

Station Switch
attribute
   here: unique constant address
actions
  send(s, d: address, x: data),
  receive (s, d: address, x: data)
behavior
   condition for send: s=here
   condition for receive: d=here

attribute
   buffer: set of (s, d: address, x: data)
actions
  send(s, d: address, x: data),
  receive (s, d: address, x: data)
behavior
   state change for send: buffer' = buffer union {(s,d,x)}
   condition for receive: (s,d,x) in buffer
   state change for receive: buffer' = buffer -  {(s,d,x)}

rendezvous
 all common actions

1,1 1,*

Figure 3.3: Type diagram of a star network 
 

Service access point: The concept of a service access point has been introduced in the OSI 
Reference Model for the design of layered protocol systems [ Knightson, 88 #639] . Often certain 
local rules concerning the order of execution of interactions, called service primitives, are 
specified for a given access point [ Bochmann, 90g #275] , [ Bochmann, 90a #270] . These rules 
should be followed by the service provider and service user components which use the access 
point as their interface. The following diagram shows a system structure where the local rules are 
defined by the behavior of the Access-Point object and the service interactions are abstract 
events that are executed jointly by the Access-Point  and the service Provider and User  objects 
(in the form of a three-way rendezvous). Three different notations for the description of the 
behavior (in this case a simple state transition model) are shown in figures (b), (c) and (d).  
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Access-Point

Provider

User
actions
  Creq, Cind, Cresp, Cconf, 
  Xreq, Xind, Dreq, Dind,
  other

rendezvous
 all common actions

rendezvous
 all common actions

attribute 
  State: (CLOSED, S1, S2, OPEN)
actions
  Creq, Cind, Cresp, Cconf, 
  Xreq, Xind, Dreq, Dind

actions
  Creq, Cind, Cresp, Cconf, 
  Xreq, Xind, Dreq, Dind, etc.

behavior of Access-Point is CLOSED where
CLOSED  = Creq; S1  or  Cind; S2
S1 = Cresp; OPEN  
S2 = Cconf; OPEN
OPEN  = Xreq; OPEN  or  Xind; OPEN
           or  Dreq; CLOSED  or  Dind; CLOSED
(* this notation defines a finite state machine; 
    it is similar to the notation used in LOTOS *)

behavior of Access-Point
   condition for Creq: state = CLOSED
   state change for Creq: state' = S2
   ... etc. for the other actions ...

CLOSED OPEN

S1

S2

Creq Cresp

Cind

Cconf

(a)

(b)

(c)

(d)

 
Figure 3.4: (a) Type diagram of an access point with service provider and user 

(b), (c) and (d): Different (equivalent) behavior descriptions 
 

Physical relationships: Many physical relationships between different objects can be modelled 
by relations defining abstract events concerning changes of certain physical properties, such as 
position, temperature, etc. (see for instance [ Mili, 90 #1107] ). The following example represents 
two objects, which are cylinders filled with water and subjected to varying pressure. They are 
connected through a thin tube which allows the water to flow between them. 
 

x
y rendezvous action

     adjust-pressure
state change for adjust-pressure:
     x' + y' = x + y

   
Figure 3.4: Two interconnected cylinders containing a liquid 

 
Petri nets: Petri-nets (see for instance [ Peterson, 77 #795] ) are often used to model systems 
with concurrent activities. As the following example shows, they can be modelled using our 
formalism. The Petri-net places are represented by objects and each transition of the net is 
represented by a relation and a corresponding abstract event. Note that Figure 3.5(b) does not 
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include the conditions for the transitions concerning the presence of tokens in the places P1 and 
P2, neither the specification of the state change corresponding to the change of token 
configuration in the different places. 
 

P1

P3

P2

P4

T1 T2

 

P1 P2

P3 P4

attribute
  t: set of token
action T1

attribute
  t: set of token
action T1, T2

attribute
  t: set of token
action T1

attribute
  t: set of token
action T2

rendezvous
 T1

rendezvous
 T2

 
    (a)       (b) 

Figure 3.5: Example of a Petri net and its representation as a type diagram 
 

 

Transactions: A transaction in a database system usually involves several objects which are the 
parameters of the transaction (see for instance [ Gray, 81 #492; Bochmann, 90l #280] ). Like the 
abstract events considered here, a transaction is characterized by conditions that must be 
satisfied before the transaction can be executed. Its execution is characterized by state changes in 
the objects to which it is related. Therefore, we may consider a transaction as a dynamic instance 
of a relation (between a certain number of objects, its parameters) which disappears after its 
execution.  

3.3.   Discussion 

It is important to note that the above concept of abstract event does not include the notion of 
caller - callee. This means that it is not specified how an abstract event is "triggered". Only the 
conditions for its occurrence are specified. A related notion is the distinction between input and 
output signals for finite state machines and the distinction between input and result (output) 
parameters of operations. Such distinctions are not explicitly made for the parameters of abstract 
events. These parameters may be considered input or output depending on the conditions that are 
imposed by the participating objects. For instance, if one object imposes a specific value for a 
particular parameter of an event, one may consider this parameter an output provided by the 
object during this event.  

In the case of the examples above concerning the physical relations and Petri nets, there is 
conceptually no object that is the "caller". The same situation often occurs during the modelling 
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of business processes where it is more important to define the possible events that may occur 
(and the order of occurrence) than the actors that are involved in these events [ Stanley, 92 
#1108] . It seems that the concept of abstract events is a good paradigm for describing the 
possible events in the system, usually in the form of a relatively abstract, nondeterministic 
description, leaving such question as triggering of actions, their scheduling and the involved 
actors for a later, more detailed system description. For instance, in the case of the star network 
described above, the scheduling of the transmissions of the datablocks contained in the buffer of 
the switch is completely left open. Various priorities and scheduling disciplines could be defined 
in the form of additional conditions to be satisfied by the send event, or by introduing a 
scheduler object which has access to the buffer and can explicitely "call" the send events for the 
different datablocks. 

The concept of abstract events described above is closely related to two well-known approaches 
to system modelling: (1) rendezvous communication and (2) the specification of operations 
through pre- and postconditions. The rendezvous concept of communication can be used for 
describing the interactions between finite state machines (see for instance [ Merlin, 83 #722] ) 
and is used in Petri nets, CSP [ Hoare, 85 #526]  and LOTOS . The paradigm of defining the 
conditions and state changes of an abstract event (as shown in the example of the star network) 
in terms of enabling predicates and change predicates involving the "before" and "after" values 
of variables is common to many specification languages (e.g. the SPECIAL language developed 
at SRI International around 1980) and also corresponds the specification of functions or 
procedures by assertions in the form of pre- and postconditions (e.g. as in the language Eiffel) .  

The main new idea in this paper seems to be the combination of these known concepts with 
entity-relationship modelling by associating abstract events with relationships. The second new 
point is the idea that relations, in addition, may be used as a vehicle to "inherit" actions from one 
object to another, as discussed in the next section. This also leads to an integrated view of 
aggregation and multiple inheritance.  

4.   Aggregation and multiple inheritance 

Object-oriented design methodologies often consider that certain relations have an additional 
semantic meaning called "aggregation" or "is-part-of". A typical example is shown in Figure 2.1 
which shows that a computer consists of different parts, namely always one power supply, one 
screen, one keyboard, and possibly several disk units. The multiplicity annotation in this 
example indicates that the parts may exist without being part of a computer.  

4.1.  Step-wise refinement 

The notion of aggregation is usually related to the notion of composition / abstraction where the 
same (composed) object may be considered at two different levels of abstraction:  
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   (1) At the abstract level, where the object is considered as a whole, and the components are not 
visible, and  

   (2) at the detailed level, where the components of the object are visible.  
There is some similarity with two other levels of description that are often distinguished:  
   (a) At a more abstract level, only the so-called "interface" of the object is defined in terms of 

the names and parameters of the available operations (see for example the Stack definition 
given in Figure 2.3(a)). It is important to note that the "behavior" of these operations is not 
defined at this level. 

   (b) At the so-called implementation level (e.g. the body of an Ada package), the semantics of 
an operation is defined by a procedure (e.g. algorithm) that may invoke, in turn, certain 
operations performed on "internal" objects or attributes, and sometimes also on "external" 
objects (see for instance the stack implementation shown in Figure 4.2(a)).  

At the levels (2) and (b), the internal objects may be considered to be "part of" the composed 
object being defined. This view is shown in Figure 4.1 for the Stack example.  

content

Stack

length

1,1
0,1

1,1

0,1

 

Figure 4.1: Stack object with two components serving implementation 

In the following we are interested in integrating, into the aggregation relation, the description of 
the behavior of the composed object. This behavior can be understood from the behavior of its 
components and the behavioral inter-relation between the components and the whole. We 
consider two examples.  

The first example defines the Stack behavior in terms of abstract events that involve the stack 
object itself, as well as its components content and length,  which are not visible at the abstract 
level.  Two definitions are shown in Figures 4.2(a) and (b), respectively. The first definition is a 
relatively straightforward design which uses the sequential programming paradigm for the 
definition of the semantics of the Stack operations. This means that an abstract operation, such as 
push, is defined in terms of a sequence of operations on the components; for instance, push is 
realized by two operations on the components: increasing the length variable, and then assigning 
the push parameter to the indexed content variable.  
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Stack
attribute
  length: Int,
  maxLength: constant Int
hidden attribute
   content: array [0..MaxLength]of data
actions
  push (in x: data), pop, top (out x: data),
behavior
procedure push
        (* assume length < maxlength *)
   begin length := length+1;
            content[length] := x  end
procedure pop (* assume length > 0 *)
   begin length := length -1 end
procedure top (* assume length > 0 *)
   begin x := content[length] end

      

content
actions
  assign (in i: Int, in x: data),
  read (in i: Int, out x: data)
behavior
   " ... array  properties ... "

Stack
actions
  push (in x: data),
  pop,
  top (out x: data)

length
actions
  read (out i: Int),
  increment (out i: Int),
  decrement (out i: Int)
behavior
   " ... properties ... "

                    rendezvous
Stack.push (x) #  content.assign (i, x)
                          #  length.increment (i)
Stack.pop  #  length.decrement (i)
Stack.top (x) #  content.read(i, x)
                        #  length.read (i)

 
 (a)       (b) 

Figure 4.2: Complete specifications of Stack object (including behavior) 
 (a) Behavior description in terms of internal variables and procedures 
 (b) Behavior description in terms of component objects and common abstract events  

In the case of the design of Figure 4.2(b), we have defined the abstract operations through 
synchronous rendezvous with certain operations of the components. In order to be able to 
describe the same semantics with a single rendezvous, we have introduced the ternary relation 
between the Stack and its components, as shown in the figure, and the operations increment 
(returning the incremented value) and decrement on the length object. Although there is a single 
rendezvous to realize each operation of the stack, there is some data flow among the operation 
parameters which also implies some sequentiality; for instance during the execution of the push 
operation, the increment operation on the length must be executed before the assign operation on 
the content, since the former provides the output parameter i which is used by the latter. 

These two definitions are examples of sequential and parallel decomposition of abstract 
operations in terms of more detailed operations performed on the components of the abstract 
object. We note that in general, more powerful formalisms will be required for the operations 
declared at a more abstract level, in order to describe their semantics in terms of more detailed 
actions performed on the internal components and other related objects. Traditional approaches 
include execution control in terms of sequential execution (see for instance [ Guttag, 77 #506] ), 
algebraic specifications (see for instance [ Ehrig, 85 #423] ), or the refinement of actions in Petri 
nets.  
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4.2.  Inheritance through relations 

The next example is introduced in order to discuss in detail situations where certain operations of 
components may remain visible at the higher level of abstraction. Since at that level the 
components are not visible, it is necessary to consider that the operation in question is directly 
"offered" by the abstract object. We consider as an example the Computer shown in Figure 2.1, 
and the action of switching on the power supply, which is realized by the Power component. At 
the higher level of abstraction, the power supply is not visible, but the operation remains. More 
details are shown in Figure 4.3. 

    

Computer

Power Screen Keys Disk
actions
    switch-on,
    switch-off
behavior is OFF where
OFF  = switch-on; ON
ON = switch-off; OFF

actions
    get-results
behavior is DO where
DO  = get-results; DO

actions
    request
beh. is DO where
DO  = request; DO

actions
    read, write
beh. is DO where
DO  = read; DO
      or write; DO

rendezvous 
  switch-on,
  switch-off

rendezvous 
   get-results

rendezvous 
    request

R1 R2 R3 R4

actions
    switch-on  (inherited through R1),
    switch-off (inherited through R1),
    get-results (inherited through R2),
    request      (inherited through R3)

 

Figure 4.3: Abstract events associated with the computer of Figure 2.1 

In this example, we say that the actions of the Computer object are inherited through the 
relations R1, R2 and R3, respectively. This means that no behavior for these actions is 
explicitely specified for the Computer object, but that the actions of the related objects are 
directly visible as actions of the former. For instance, the switch-on action of the Power object is 
inherited by the Computer object through the rendezvous over the relation R1. In this manner, 
the Computer object inherits the operations switch-on, switch-off, get-results and request, which 
can be invoked by other objects directly on the Computer object, as well as on the components 
(if they are visible).   

This concept is similar to the approach of Wand [ Wand, 89 #1137]  where certain properties of 
components may be "inherited" by the composite object, and other new properties may "emerge" 
at the composite level. A similar approach is also taken for "aggregation inheritance" as 
introduced by Liu [ Liu, 92 #1109] , where all operations of a component are inherited by the 
composite. In contrast, our approach permits "selective" inheritance. Moreover, we do not limit 
ourselves to aggregation relations; we believe that it is important to be able to associate abstract 
operations, jointly executed by objects instances which are related through arbitrary 
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relationships, in order to describe the communication between arbitrary objects within the 
general context of distributed systems. 

The above example of "inheritance through relations" is an extreame case of abstract events 
where one of the objects involved (here the composite Computer object) leaves the behavior of 
the inherited actions completely undefined. As discussed in [ Bochmann, 92a #1027] , an 
explicitely undefined behavior may be interpreted as "arbitray behavior" or "most general". More 
specific behaviors may be defined by introducing additional constraints and conditions. For 
example, the Computer defined by the specification of Figure 4.3 allows execution of the events 
request and get-results before the power is switched on. To make the specification more realistic, 
one may introduce an additional (global) constraint at the level of the Computer object, for 
instance by imposing that the order of execution of the events should satisfy the rules of the 
finite state machine shown in Figure 4.4 (i.e. the operations request and get-results are only 
possible after the computer is switched on). 

              

OFF

ON

get-results

request

switch-off

switch-on

                      

behavior is OFF where
OFF  = switch-on; ON
ON = switch-off; OFF
      or get-results; ON
      or request; ON  

 (a) State diagram notation (b) Program-like notation 

Figure 4.4: Behavior constraint imposed by the Computer object 

4.3.  Multiple inheritance 

There has been much discussion in the literature about the question whether the concept of 
multiple inheritance should be included in object-oriented specification and/or implementation 
languages (e.g. [ Cardelli, 88a #330] ). The purpose of this section is to point out that most of the 
features of multiple inheritance may be obtained through the use of the concept of aggregation 
plus the notion of inheritance through relations, as explained above. In fact, the Computer object 
has multiple inheritances from its components Power, Screen and Keys.  

In general, instead of saying that an object type A has multiple supertypes B1 and B2, we may 
declare A to be a composite object type with components B1 and B2 where all visible properties 
of B1 and B2 are inherited through the aggregation relation by the object type A (see also Figure 
4.5(a)). The main difference between traditional multiple inheritance and multiple inheritance 
through aggregation relations is the fact that the latter introduces the component objects with 
separate object identifiers, while traditional multiple inheritance leads to "simple" objects (with a 
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single identifier). However, for external objects interacting with objects of type A there seems to 
be no difference, since in both cases they can invoke the same actions and attributes directly on 
the objects of type A. 

Computer

Power Screen

ProviderUser

Access-Point

“is-part-of”  relationship
rendezvous 
   all common actions

actions
   a, b, c, d

actions
   a, b

actions
    c, d

actions
   a, b, c

actions
   b, c, d

actions
   a, b, c, d

  (a)      (b) 

Figure 4.5: Aggregation relationships corresponding to (a) multiple inheritance and (b) a 
communication interface 

We note that for the description of a connection or (communication) interface between two 
physical system components, it is convenient to allow for the connection (or interface) to be 
"part of" both system components which it connects. An example is the service access point 
described in Section 3.2. Figure 4.5(b) shows the corresponding aggregation diagram, which has 
a structure complementary to the one for multiple inheritance shown in Figure 4.5(a). 

5. Conclusions 

We have defined the notion of abstract events which seems to be a good concept for the abstract 
modelling of dynamic interactions in object-oriented systems, and which can be used in relation 
with system analysis and design methodologies for the description of the dynamic behavior of 
complex objects and systems. This concept is based on a combination of well-known 
approaches, including entity-relationship modelling, rendezvous communication and object-
orientation including property inheritance. Combined with the notion inheritance through 
relations, which means that objects may inherit properties from other objects through the 
relationships between them, we can model multiple inheritance by an aggregation relationship 
and inheritance through relations.  

The various examples given in the paper demonstrate the usefulness of these concepts. However, 
further experience with larger examples is required to provide a more detailed evaluation of this 
approach. 

Most object-oriented analysis and design methods (e.g.[ Rumbaugh, 91 #1110] ) proceed in 
several steps where the first step is usually the identification of the object types of interest, and a 
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later step identifies the operations that are supported by the objects. Some high-level modelling 
approaches, however, start with the identification of the major events in the system to be 
modelled (e.g. [ Stanley, 92 #1108] ). We believe that the concept of abstract events described in 
this paper can provide a solid foundation for such kinds of modelling approaches.  
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