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Abstract 
 

 

In a number of test generation methods for conformance testing of communication protocols 

modeled by finite state machines, the reliable reset function has been assumed to be available in 

an implementation to be tested. In practice, however, the reliable reset may sometimes be 

difficult to realize and therefore this kind of test generation methods cannot be employed. In this 

paper, we propose an approach to the generation of test cases from protocol machines which can 

be specified by finite state machines possessing at least one Unique Input/Output sequence for 

each state. Our approach has been developed without the reliable reset assumption and it 

guarantees full fault coverage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
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In the recent years, the research for methods for test generation from finite state machines 

(FSMs) has received much attention in relation with conformance testing of communication 

protocols. This problem can be briefly stated in the following way. 
 

A protocol specification is assumed to be available in the form of a FSM, while an 

implementation of the protocol is supposed to be a black-box (which theoretically can also be 

modeled by a FSM). A black-box implementation has some input and output ports through 

which one can give inputs (stimuli) to and observe corresponding outputs from the 

implementation, respectively. Thus, to decide whether an implementation is working properly 

with respect to the specification, one needs to derive, from the given FSM specification, one or 

more sequences of inputs (called test cases) which, when applied to the implementation under 

test (IUT), will enable us to infer solely from the observed outputs if the IUT is working as 

desired. 
 

Currently, a number of methods have been proposed for the generation of test cases from finite 

state machine specifications. They have been developed in the context of hardware testing, 

software testing and conformance testing of communication protocols. These methods can be 

classified into two classes. One class of methods, including the W-method [Chow78, Vasi73], 

Wp-method [Fuji91], UIO-method [SaDa88], UIOv-method [Vuon89], CSP-method [Vuon90], 

Harmonized State Identification (HSI) method [Petr91] and Fault Function (FF) based method 

[Petr92], assume that the "reset" function is correctly implemented in an implementation under 

test. We call such a method a "multiple testing approach", since by using it, one usually 

generates from a given FSM specification a set of test cases, together forming a so-called a test 

suite. Each test case in the test suite is prefixed by the special "reset" symbol which guarantees 

that the test case is applied to the initial state of the IUT. This reliable reset assumption greatly 

simplifies the test generation problem and relatively efficient test suites can be obtained (in terms 

of the total length of the test cases in a test suite). However, as already pointed out by some 

researchers ([Fuji91], for instance), the reliable reset may in some cases be difficult to realize 

and therefore the multiple testing approaches cannot be applied. 
 

The other class of methods, such as the T-method [Nait81], the DS-method [Gone70] and the so-

called "optimization techniques" based on Unique Input/Output (UIO) sequences [Aho88, 

Shen89, Yang90 and Zhan92 etc.], do not assume the reliable reset function to be available in an 

IUT. We call such a method a "single testing approach", because by using such a method, one 

generates a single test case from a given FSM specification. The attractiveness of the single 

testing approach is that it is more applicable than a multiple testing approach because of the fact 

that the reliable reset is not required, although the length of a single test case generated by a 
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single testing approach could in some cases be much longer than the total length of the 

corresponding multiple test cases generated by a multiple testing approach.  
 

Throughout this paper, our interest lies in the single testing approach to the test case generation 

problem. We will study in particular the case where a protocol specification is given as a FSM 

which has a  UIO sequence for each of its states. In practice, most protocol machines do have 

short UIOs for its states [SaDa88], and therefore the class of FSMs which have UIO sequences 

has received much attention for test case generation. We will develop a new single testing 

approach for this class of FSMs. 
 

The rest of the paper is organized as follows. In Section 2, we introduce some basic definitions 

which are mainly related to automata theory and are useful for the development of our single 

testing approach. A testing framework, within which our test case generation method will be 

presented, is defined in Section 3. Section 4 gives a brief review of the UIO based test case 

generation methods and a fault coverage problem related to the so-called optimization techniques 

is also pointed out there. Our single testing approach is then presented in Section 5. We will also 

briefly address the problem of incremental test case generation in Section 6. Finally in Section 7, 

we conclude the paper by discussing certain related issues. 
 
 

2. Preliminaries 
 

In this paper, the term "finite state machine" is used to specifically denote the model defined 

below. 
 

Definition 2.1 (finite state machine) 

A finite state machine is a 7-tuple <S, Xs, Ys, S1, ss, Ds> 

 S:   a set of n states {S1, S2, ..., Sn} with S1  as the initial state; 

 Xs:  a finite set of input symbols; 

 Ys:  a finite set of output symbols; 

 Ds: a specification domain which is a subset of S x X 

 s:  a transfer function s: Ds --> S; 

 s:  an output function  s: Ds --> Y.             
 

A FSM is called completely specified, iff Ds = S x Xs. Otherwise it is called partially or 

incompletely specified. Since s and s are required to be functions, this FSM model is 

deterministic. That is, for each (Si, x) [ Ds, there should be exactly one state Sj [ S and exactly 

one output symbol y [ Ys such that  s(Si, x) = Sj and s(Si, x) = y. In this case, we say there is a 

transition from state Si to Sj with input x and output y. Such a transition is usually written as Si -

x/y-> Sj. A FSM can be given in a graph form, with the states and transitions of the FSM 
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represented by the vertices and arcs of the graph, respectively. An example of a graph 

representation of a FSM is given in Figure 1. 
 

Let X* denote the set of all words constructed using an alphabet X. We use "" to represent the 

empty word. We also use, throughout this paper, the symbol “” to represent the concatenation 

operation of two words in X*. However, this symbol is often simplified as the dot "." or even 

omitted when no ambiguity arises. 
 

We first introduce the notion of a “defined input sequence” for a state. 
 

Definition 2.2 (defined input sequence) 

Let  p = x1x2...xk [ Xs
*
, p is called a defined input sequence for state Si [ S, if there exist k states 

Si1, Si2, ..., Sik [ S and an output sequence q = y1y2...yk [ Ys
*
, such that there is a sequence of 

transitions 
 Si -x1/y1-> Si1 -x2/y2-> Si2 --> ... --> Sik-1 -xk/yk->Sik                         (2-1) 

in the finite state machine. We use (Si) to denote the set of all the defined input sequences for 

state Si.                     
 

A sequence of transitions such as (2-1) can be abbreviated as 
  Si -p/q-> Sik   

which, when we do not care about the output sequence q, can be further simplified as 

  Si -p-> Sik   

with the meaning that the FSM, when in state Si and given an input sequence p, will enter state 

Sik. The definitions of the transfer function s and output function s can be naturally extended 

to apply not only to single inputs, but also to sequences of inputs.  
 

Definition 2.3 (extensions of transfer and output functions to input sequences) 

Let  p = x1x2...xk [ (Si) and  be the empty word. Then, 

 s(Si, ) = Si s(Si, p) = s(s(Si, p’), xk) 

 s(Si, ) =   s(Si, p) = s(Si, p’).s(s(Si, p’), xk) 

where 
 p’ = x1x2...xk-1.                  
 

Definition 2.4 (compatible states and distinct states) 

We say that Si and Sj are compatible states if for  : p [ Si) ( Sj),  s(Si, p) = s(Sj, p). 

Otherwise, they are called distinct  states.                       
 

We note that, according to the above definition, if  Si) ( Sj) = , then Si is compatible with 

Sj. If the FSM happens to be completely specified, then the definition of compatible states given 
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above reduces to the definition of equivalent states as found in the literature (see for example, 

[Gill62, Koha78]). 
 
 
 

Definition 2.5 (minimality) 

A FSM is minimal if and only if no two states are compatible.             
 
Definition 2.6 (strongly connected FSM) 
A FSM is strongly connected if, for any ordered pair of states <Si, Sj>, there exists an input 

sequence p [ Si) such that  Si -p->Sj.                
 

The concept of Unique Input/Output sequence (UIO), based on which a number of test sequence 

generation methods have been proposed, is formally defined in the following definition. 
 

Definition 2.7 (UIO and UIS) 

Let p be an input sequence defined for all states in the given FSM, that is p [ S1) ( S2) ( ... ( 

Sn). Let q = s(Si, p), the output sequence when p is applied to state Si. Then we say that p/q 

is a Unique Input/Output (UIO) sequence for state Si if  

   s(Si, p) ≠ s(Sj, p),  for all j ≠ i. 

And further we say that p is a Unique Input Sequence (UIS) for state Si.            
 

A set of UIO sequences and the corresponding set of UISs for the three states of the FSM in 

Figure 1 are listed in Table 1. 
 

According to their responses to some chosen input sequences, the states of a FSM can be 

partitioned into several blocks. Two states belong to a common block if and only if their 

responses to each of the chosen input sequences are the same. The following definition formally 

defines this concept. 
 

Definition 2.8 (partitions induced by input sequences) 

Let  W = { p1, p2, ..., pk } 1 S1) ( S2) ( ... ( Sn). The partition on the states induced by 

W, written as Pw, is a set of subsets of states (blocks of states) B1, B2, ...Bm, , such that 

1) B1 " B2 " ... " Bm = { S1, S2, ..., Sn }; 
2) Si, Sj [ B¬   iff    s(Si, p) = s(Sj, p)  for  : p [ W.             
 

It follows from the definition that any two different state blocks in the partition should be 

disjoint.  
 

Let m be a positive integer and p be a word over an alphabet X. Then we use the notation pm to 

represent the concatenation of p with itself for m times. That is 
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  pm = p.p.....p 
   
   m times 
 

With this convention, we define the following family of functions which will be used in the 

presentation of our test case generation method in Section 5. 
 

 F1 (m; p) = pm 
and 

 Fk (m1, m2, ..., mk-2, mk-1, mk; p1, p2, ..., pk-2, pk-1, pk ) 

         =   [ Fk-1 (m1, m2, ..., mk-2, 1; p1, p2, ..., pk-2, pk-1 ) ]mk-1
    

         Fk-1 (m1, m2, ..., mk-2, mk ; p1, p2, ..., pk-2, pk )                 

                 for    k = 2, 3, 4, ... 

where  m, m1, m2, ..., mk are any positive integers and p, p1, p2, ..., pk are any words over an 

alphabet. 
 
 

3. A Testing Framework 
 

The problem of conformance testing with the purpose of detecting faults in a black-box 

implementation is in general unsolvable unless it is dealt within a restricted framework [Moor56 

and Gill62]. We propose here a framework within which our single approach for test case 

generation is presented.  
 

3.1. Testing Assumptions  
 

First of all, what we are considering in this framework is the so-called "testing a FSM 

implementation" [Ural91] problem which is formally defined as follows: given an FSM 
representation (specification) of a system (denoted henceforth as FSMs) and an implementation 

of this FSM (denoted henceforth as FSMI), we are asked to determine whether FSMI conforms 

to FSMs by testing FSMI as a black-box. To solve this problem implies that we should 

(1) formally define the conformance relation between FSMI and FSMs; 

(2) generate from FSMs a sequence TSi of inputs and its expected sequence TSo of outputs; 

(3) apply TSi to the input port of FSMI; 

(4) observe a sequence TSa of actual outputs at the output port of FSMI; 

(5) compare TSa with TSo to determine the conformance of FSMI to FSMs. 
 

(3) to (5) are mainly related to the actual execution of the test sequence and the analysis of test 

result whose discussion is outside the scope of this paper. To solve (1) and (2), we need to make 

certain assumptions. Let 
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  FSMs = < {S1, S2, ..., Sn}, Xs, Ys, S1, ss, Ds > 

and 

    FSMI = < {I1, I2, ..., Iu}, XI, YI, I1, II, DI >. 
 

Then we assume throughout the rest of this paper that 
(1) FSMs is deterministic, strongly-connected and each of its states has a UIS; 

(2) FSMI is deterministic, completely specified and minimal; 

(2) u ≤ n, that is the number of states in FSMI is not greater than that in FSMs; and 

(3) Xs { XI , that is, all the input symbols of FSMs should be included in the input set of 

FSMI. 
 
We note here in particular that we do not assume reliable reset to be available in FSMI and that 

FSMs need not be completely specified. 

 

3.2.  The Conformance Relation 
 
We define the conformance relation, written as CONF, between FSMI and FSMs in the 

following way. 
 

Definition 3.1 (equivalence of states in respect to a set of input sequences) 

Let Ii be a state of the implementation FSMI and Sj a state of the specification FSMs. V { Sj) 

is a set of input sequences. Then 

Ii  –V  Sj if     I (Ii, p) = s( Sj, p), for : p [ V.             
 

Definition 3.2 (conformance) 
FSMI   CONF  FSMs iff   I1  –S1)  S1, where I1 and S1 are the initial states of  

    FSMI  and FSMs, respectively.             
 

We note that the conformance relation "CONF" is in fact the trace extension relation, that is, an 
implementation FSMI conforms to a specification FSMs if and only if FSMI, when starting 

from its initial state I1, can exhibit all the input/output traces specified for the initial state S1 in 

FSMs. This relation is also called "quasi-equivalence" in automata theory [Gill62].  
 

Definition 3.3 (test case) 

A test case is a sequence of inputs which should be of finite length and in S1).              
 

Definition 3.4 (test suite) 

A test suite is a set of test cases.                      
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Definition 3.5 (pass of a test suite) 
Let TS be a test suite. We say that a given implementation FSMI passes the test suite, written 

FSMI  pass  TS, iff    I (I1, p) = s( S1, p)     for  : p [ TS.            
 

We can now define the concept of a "complete test suite". 
 

Definition 3.6 (complete test suite) 
Given a test suite TS and a specification FSMs, we say that TS is a complete test suite for 

FSMs with respect to the CONF relation if for any implementation FSMI the following holds: 

FSMI   CONF  FSMs  iff FSMI  pass  TS            
 

We note that in the case of a single testing approach, a test suite consists of a single test case and 

therefore we do not have to distinguish between a test suite and a single test case if no ambiguity 

arises. 
 
 

4. Review of Test Generation Methods Based on UIO Sequences 
 

A number of methods have been proposed for generating test cases from a finite state machine 

specification which has UIO sequences for its states. The UIO-method [SaDa88] and the UIOv-

method [Vuon89] assume the reliable reset to be available in an IUT and therefore these two 

methods belong to the class of multiple testing approaches. The difference between these two 

methods is that the UIOv-method can guarantee full fault coverage (in the sense of Definition 

3.6), while the UIO-method cannot.  
 

The other methods ([Aho88], [Shen89], [Yang90] and [Zhan92] etc.) which are usually called 

"optimization techniques" are single testing approaches since they do not require the reliable 

reset to be provided by an IUT.  These optimization techniques have been developed to generate 
a single test case from a specification FSMs to check if each specified transition is correctly 

implemented in an implementation FSMI . The general approach underlying these techniques is 

to ([Aho88]) 
(1) construct a test subsequence for each transition specified in FSMs. A test subsequence is           

 formed by the input symbol of the transition under test followed by the UIS for the ending       

 state of that transition; and 

(2) find a single optimal test case which traverses each of the test subsequences at least once, 

and  if possible at most once by using the Rural Chinese Postman (RCP) tour problem.  

This general approach can be enhanced by multiple UIOs and overlapping ([Shen89], [Yang90] 

and [Zhan92]) to obtain an even shorter test case. However, these optimization techniques 

cannot guarantee full fault coverage, that is, a single optimal test case generated in such a way 

can sometimes fail to detect certain faults which should be detected. 
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As a counter-example, let us consider the FSM specification given in Figure 1. We use the set of 
UISs given in Table 1 to form the transition test subsequences nt1, nt2, nt3, nt4, nt5 and nt6  

given in Table 2. By using the above general approach, we generate a single test case which is 

also given in Table 2. It is easy to verify that this test case traverses each of the six transition test 

subsequences once. However, a faulty implementation modeled by the FSM given in Figure 2 

can still pass this test case. (The same problem also exists for the multiple testing approach 

"UIO-method" [SaDa88]. Actually, the specification FSM in Figure 1 and the implementation 

FSM in Figure 2 have been used in [Vuon89] to show that the UIO-method cannot guarantee full 

fault coverage.) 

The reason that this sort of problems may happen is that a unique input sequence derived from a 

given specification may no longer be a unique input sequence in a faulty implementation 
[Vuon89]. As in the above counter-example, the UIS "ba" for state S3 in Figure 1 is no longer a 

UIS for the corresponding state I3 in Figure 2, since states I1 and I3 respond identically to this 

input sequence. 
 
 

5.  UIOG - A Single Testing Approach Based on UIO Sequences 
          with Guaranteed Fault Coverage 
 

Our single testing approach improves the so-called optimization techniques by adding a 

verification part in a single test case. In other words, a test case generated from a given 

specification with our method consists of two functional parts called the "verification" part and 

the "transition checking" part. The transition checking part is formed from a set of transition 

checking subsequences. The verification part is designed to verify if all the UISs derived from 

the specification are still valid in the IUT. This is achieved by using two kinds of subsequences, 

namely state verification subsequences and UIS verification subsequences. The state verification 

subsequences are used to verify if the IUT has the same number of states as the specification and 

if so, the UIS verification subsequences will ensure that each UIS is applied to all the states of 

the IUT and therefore its validity as a UIS in the IUT is verified. These verified UISs are then 

used in the transition checking part to verify if each transition is correctly implemented. In this 

way, our approach guarantees to generate a complete single test case (see Definition 3.6) from 
FSMs for the CONF relation.  
 

5.1. The Basic Form of the UIOG Method 
 

Let  

   1,  2, ..., n  

be the unique input sequences for the n states S1, S2, ..., Sn, respectively, in the specification  
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  FSMs = < {S1, S2, ..., Sn}, Xs, Ys, S1, ss, Ds >.  

Intuitively, by using shorter UISs we will in general generate a shorter test case. Therefore, we 

propose here to use the shortest UISs, although this is not a necessary requirement. In the 

following we will first give the procedures for deriving three types of subsequences, and then 

explain how to generate a test case from these subsequences. It should be noted that each 

subsequence is designed to have a specific starting state, that is, it should be applied to the 
designated state in the specification FSMs. 
 

Design of the State Verification Subsequences 
 

For each state in the specification, a state verification subsequence should be designed which 

uses that state as the starting state.  The n state verification subsequences together will verify if 

the IUT has the same number of distinct states as the specification and if so, a one-to-one 

correspondence can be established between the states of the specification and the states of the 

implementation. We can achieve this by designing these subsequences in the following way.  
 

Since according to our definition of unique input sequences (Definition 2.7),  

   { 1,  2, ..., n } [ S1) V S2) V ...  V Sn) 

and further the specification FSMs is assumed to be strongly connected, the following so-called 

simple looping sequences ij's are guaranteed to exist: 

  ij = j.T(Qij, Si),    for  i = 1, 2, ..., n  and 1 ≤ j ≤ i. 

such that 

(1) Si is the starting state for ij; 

(2) j is a prefix of ij ; and 

(3) T(Qij, Si) is a shortest input sequence such that ij leads FSMs from state Si  back to state       

 Si, that is, 

  Si -j-> Qi -T(Qij, Si)-> Si . 

Let us consider in particular the simple looping sequences 11, 22, ..., nn. Since i is a prefix 

of ii and i is a UIS for state Si,  ii is also a UIS for state Si. We will call 11, 22, ..., nn 

Looping Unique Input Sequences (LUIS). 
 

Further, we define 
 

  Wi   =  { 1,  2, ... , i  }     for  i = 1, 2, ..., n                              (5-1) 
 
These n sets of input sequences induce n partitions, written as P1, P2, ..., Pn-1, Pn, on the state 

set { S1, S2, ..., Sn }. Let  mi be the cardinality of Pi, that is, the number of blocks in Pi. 
 

Then the "state verification subsequence k" for state Sk can be given as follows:  
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k =  Fk (n-m1+2, n-m2+2, ..., n- mk-1+2, 1; k1, k2, ..., k,k-1 , k )    for k = 1, 2, ..., n 
 
which, if written explicitly, will be 

  1 = 1 

  2 = 21
n-m1+22    

  3 = (31
n-m1+232)n-m2+2(31

n-m1+23)                                (5-2) 

  4 = ((41
n-m1+242)n-m2+2(41

n-m1+243))n-m3+2((41
n-m1+242)n-m2+2(41

n-m1+24)) 
: 
: 
 
Theorem 5.1 

Let TSs be an input sequence which begins with 1, that is, the state verification subsequence for 

the initial state S1, and then traverses in any order all the other n - 1 state verification 

subsequences 2, 3, ..., n in (5-2) at least once.  If an implementation  FSMI  passes TSs, then  

(1) for each state Si, we can find in the implementation a state denoted (without loosing                   

 generality) as Ii, such that 1,  2, ... , i  are applied to Ii and its responses to these input    

 sequences are the same as those of Si, that is  

   Si  –Wi   Ii          for  i = 1, 2, ..., n 

 where W1, W2, ..., Wn are given in (5-1) ; 

(2) I1, I2, ..., In are distinct states and therefore the mapping  

   : { S1, S2, ..., Sn } --> { I1, I2, ..., In }  

 defined by 

   (Si) = Ii           for  i = 1, 2, ..., n 

 is one-to-one.                   
 

The proof of this Theorem is given in the Appendix. 
 
 

Design of the UIS Verification Subsequences 
 

To verify that the UISs 1,  2, ... , n-1, n derived for the states in the specification are still 

UISs for the corresponding states in the implementation, it is necessary that all the UISs 1,  2, 
... , n-1, n  are applied to each state in the implementation. However, we have seen in Theorem 

5.1 that the state verification subsequences ensure that 1,  2, ... , i are applied to Ii. Therefore 

what remains to do is to also apply i+1,  i+2, ... , n to Ii, for i = 1, 2, ..., n. We note that k can 

distinguish Sk from all other n-1 states in the specification. However, to distinguish Sk from 

another particular state, say Sj (j ≠ k), it may not be necessary to use the whole sequence k. 
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Instead, a prefix of k will often suffice. This is the reason that we first generate the following 

so-called distinguishing words ij's which should be calculated for i = 1, 2, ..., n  and 1 ≤ j ≤ i: 

(1) ij (i > j) is the shortest prefix of i such that  s(Si, ij ) ≠ s(Sj, ij ); and  

(2) ii = i.  
 

Then we can construct the UIS verification subsequences k¬'s as follows: 
 

 k¬ = kk.¬k ,    for   k = 1, 2, ..., n   and   k ≤ ¬ ≤ n                        (5-3)  
 

where kk's are the simple looping sequences generated before. We note that the starting state of 

k¬ is Sk. 
 

Theorem 5.2 

Let  TSu  be an input sequence which begins with 1, that is, the state verification subsequence 

for the initial state S1, and then traverses in any order all the other n - 1 state verification 

subsequences 2, 3, ..., n in (5-2) and all the UIS verification subsequences k¬'s in (5-3) at 

least once.  If an implementation  FSMI  passes TSu, then  

(1) the LUISs 11, 22, ..., nn are still LUISs in the implementation FSMI; and              (2)

 the UISs 1, 2, ..., n are still UISs in the implementation FSMI.                   

 
The proof follows directly from Theorem 5.1. Details are given in the Appendix. 
 

Design of the Transition Checking Subsequences 
 

Finally, for each transition t of the form 
 
   Si -x/y-> Sj  
 
in FSMs, we generate its transition checking subsequence as follows 
 

  t = ii.x.j                                                                               (5-4) 
 

where ii and j are used to verify the correctness of the starting state and the ending state of the 

transition. The starting state of t is Si. Then we have the following theorem. 
 

Theorem 5.3 

Let TS be an input sequence which begins with 1, that is, the state verification subsequence for 

the initial state S1, and then traverses in any order all the other n - 1 state verification 

subsequences 2, 3, ..., n in (5-2), all the UIS verification subsequences k¬'s in (5-3)  and all 

the transition checking subsequences in (5-4) at least once (note that overlapping is allowed). 
Then TS is a complete single test case for the given specification FSMs with respect to the 
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conformance relation CONF.                 

          
 

The proof of this theorem is given in the Appendix. 
 

The Formation of a Test Case  
 

According to Theorem 5.3, a single test case should begin with 1 and traverse in any order all 

the other subsequences at least once, so it can be generated by directly using the Rural Chinese 

Postman tour based algorithm developed by Aho et al [Aho88]. The only difference is that in 

[Aho88] only one kind of subsequences, namely the transition test subsequences, should be 

traversed, while here three kinds of subsequences need to be traversed with a specific 

requirement that 1 should be a prefix of the generated test case. We note that, by requiring 1 = 

1 to be at the beginning of the single test case, we ensure that the test case checks that the IUT 

is correctly initialized [Yann91]. That is, the generated test case can detect the fault that the IUT 

is in a wrong initial state. 
 

Although the order in which the subsequences (except the state verification subsequence 1) 

appear in a test case is not important, in practice we do hope to find a particular order so that an 

optimal (that is, the shortest) test case can be obtained. We also point out here that further 

reduction on the length of a test case can be achieved if those subsequences are overlapped 

whenever possible. However, we do not elaborate this technique in detail here.  
 

Example 
 

As an example, let us consider the specification FSM given in Figure 1. We use the set of UISs 

listed in Table 1 and follow our approach to generate a single test case. Table 3a lists some 

intermediate calculations. The generated three types of subsequences are given in Table 3b. In 

order to form a test case from these subsequences, we can first construct an augmented graph as 

in Figure 4 from the original specification FSM given in Figure 1. In Figure 4, a bold arc from 
state Si to state Sj is added to represent a subsequence starting from state Si and ending at state 

Sj. Then we find a path in this augmented graph which begins with the bold arc with the label 1 

and covers all the other bold arcs at least (and if possible at most) once. Those transitions 

belonging to the original specification FSM are used only when necessary to serve as "bridges" 

for combining those bold arcs. As already pointed out, we can also use overlapping to obtain a 

shorter test case. Table 3c gives a test case of length 53. In particular, this single test case will 

detect the faulty implementation given in Figure 2. 
 

5.2.  An Improvement on the Basic UIOG Method 
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Our method presented in Section 5.1 is applicable to any specification FSM as long as each of its 

states has a unique input sequence. However, this method can be further improved, under certain 

conditions, for the state verification subsequences and the UIS verification subsequences. In the 

following, we present an improved version of the basic method for the case that the UISs for 

some states are prefixes of the UIS for another given state. 

Let  

   1,  2, ..., n  

be the unique input sequences for the n states S1, S2, ..., Sn, respectively, in the specification  

  FSMs = < {S1, S2, ..., Sn}, Xs, Ys, S1, ss, Ds >.  

Without loosing generality, let h be the maximum integer such that 1,  2, ..., h-1  are prefixes 

of h. We note that if h is applied to a state in the IUT, then 1,  2, ..., h-1  are also applied 

to that state automatically and therefore need not to be applied separately. Based on this 

observation, we are able to simplify the state and UIS verification subsequences. 
 

Let us denote 
 

 n' = n - h + 1 
 S'i = Si + h - 1        for    i = 1, 2, ..., n - h + 1 

 'i = i + h - 1       for    i = 1, 2, ..., n - h + 1 
 

For this set of n - h + 1 states S'1, S'2, ..., S'n - h + 1 and their corresponding UISs '1, '2, ..., 'n - 

h + 1, we can follow the method presented in Section 5.1 to generate n - h + 1 state verification 

subsequences  

  '1,  '2, ...,  'n - h + 1 

and a set of UIS verification subsequences 

  'k¬          for  ¬ ≥ k  and k = 1, 2, ..., n - h  and  ¬ = 1, 2, ..., n - h + 1. 

Then the set of n state verification subsequences for the original n states S1, S2, ..., Sn of FSMs 

can be given as follows: 

  i = i             for     i = 1, 2, ..., h -1   

  i = 'i - h + 1    for     i = h, h + 1, h + 2, ..., n.                     (5-5) 
 
To give all the UIS verification subsequences for the original n states S1, S2, ..., Sn of FSMs, we 

need to generate the following additional simple looping sequences: 

  ii = i.T(Qi, Si),    for  i = 1, 2, ..., h - 1 

and the following additional distinguishing words 

   ij    for   i = h + 1, h + 2, ..., n  and  j = 1, 2, ..., h - 1. 
 
Then the UIS verification subsequences for the original n states S1, S2, ..., Sn of FSMs can be 

given as follows: 
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    kk = kk.k ,   for  k = 1, 2, ..., h - 1 

    k¬ = kk.¬k ,   for  k = 1, 2, ..., h - 1 and ¬ = h + 1, h + 2, ..., n                       (5-6) 

    k¬ = 'k-h+1,¬-h+1     for  ¬ ≥ k , k = h, h + 1, ..., n - 1 and ¬ = h, h + 1, h + 2, ..., n  
 

The transition checking subsequences can be constructed in the same way as given in Section 

5.1.  
 

Then we can follow exactly the same procedure as given in Section 5.1 to form a test case by 

finding an input sequence which traverses each state verification subsequence in (5-5), each UIS 

verification subsequences in (5-6) and each transition checking subsequences (5-4). 
 

Let us again consider the example specification given in Figure 1 and its UIS set given in Table 

1. We see here that  1 = a  is a prefix of  2 = aa and therefore we can use the improved UIOG 

method to generate a test case. Table 4a shows the new state verification subsequences and UIS 

verification subsequences, while Table 4b gives a test case of length 31 (which is more than 40% 

shorter than the one given in Table 3c). 
 

Certainly, further improvements can be made on our UIOG method. For instance, if the UISs 1, 

2, ..., n can be divided into several groups such that all the UISs in a group are prefixes of 

another UIS in the same group, then further simplifications on the state verification and UIS 

verification subsequences can be made. However, due to limited space of this paper, we do not 

discuss these simplifications in detail here. 
 

It is not difficult to see that in the extreme case when all the n UISs 1, 2, ..., n for the n states 

of a specification FSMs are the same, our approach reduces to the DS-method [Gone70], 

although  in a slightly different form. 
 
 

6.  Incremental Test Generation 
 

An existing system may need to be modified or extended due to the new demands and 

requirements from users and/or its environment [Erra92]. For instance, a communication 

protocol may have to be extended to incorporate new operations (behaviors) so that new services 

can be provided to the users. Two approaches are possible to the generation of test suites for the 

extended system. The first one is to take the extended system as a new system and apply a test 

case generation method to this new system. The second approach, which we call incremental test 

generation, takes as a starting point a test suite already generated for the system before behavior 

extensions are made. This test suite is then extended so that the newly added system behaviors 

will also be tested. Apparently, the incremental test generation approach is more effective since 
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it reuses the existing test suite rather than starting the test generation procedure from the 

beginning. 
 

Another foreseeable application of incremental test generation is in the testing of object-oriented 

systems. In an object-oriented system, the components called objects are usually organized into 

object classes. An object class is a set of objects, which are called its instances. An object class 

definition specifies a set of allowable behaviors that each object instance in that class may 

exhibit. Furthermore, the inheritance mechanism allows one to define a new class (called 

subclass) from existing classes (called superclasses). The subclass can inherit the behaviors 

defined for its superclasses. Therefore, if the tests exist for testing the objects of the superclasses, 

then these existing tests can be reused [YaBo93] in the generation of the tests for testing the 

objects of the subclass. 
 

In the following, we will use our UIOG method presented in Section 5 to show how to 

incrementally generate a test case for a finite state machine.  
 

Let  

  M1 = < {S1, S2, ..., Sn}, Xs, Ys, S1, ss, Ds > 

be a specification FSM which satisfies the assumptions given in Section 3, and 

  1,  2, ..., n  

be the unique input sequences for the n states S1, S2, ..., Sn, respectively. Then we can use the 

UIOG method to generate from M1 a single test case denoted as TS1. Further, let 11, 22, ..., nn 

be the looping unique input sequences derived during the generation of TS1 (see Section 5.1).  
 
Suppose M2 is a FSM obtained by adding only additional transitions to M1. That is, no additional 

states are added and therefore, M2 has exactly the same set of states as M1 and 1,  2, ..., n are 

still the unique input sequences for the n states S1, S2, ..., Sn of M2. Then we can incrementally 

generate for M2 a test case (denoted as TS2) from TS1 as follows. 
 

For each newly added transition t, say  
  Si -x/y-> Sj,  

an additional transition checking subsequence is designed  

  t = ii.x.j. 

Then TS2 can be constructed as a sequence of inputs which begins with TS1 and then traverses in 

any order all the additional transition checking subsequences for the newly added transitions.  
  

For example, let us consider the FSM given in Figure 3 which has been obtained from the FSM 

in Figure 1 by adding two new transitions t7 and t8 under an additional input "c". The additional 

transition checking subsequences t7 and t8 are given in Table 5. A test case for the FSM in 
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Figure 3 is also given in Table 5 which starts with the test case in Table 4b and traverses t7 and 

t8 exactly once. 
 

For the case that additional states are added (and therefore additional transitions are added in 
order to keep M2 strongly connected), the problem of incrementally generating TS2 becomes 

much more complicated, since  

(1)  the newly added states may prevent 1,  2, ..., n from being UISs for S1, S2, ..., Sn in        

 M2;  

(2)  the newly added states, say Sn+1, Sn+2, ..., may have no UISs.  

Therefore, the problem of incrementally generating test cases remains open when additional 

states are added. 
 
 

7.  Discussions and Conclusions 
 

The single testing approach UIOG that we have presented in this paper is an improvement on the 

so-called optimization techniques. In order to guarantee full fault coverage, our UIOG method 

imposes more constraints (three types of subsequences) on a test case. Therefore, the length of a 

test case generated by the UIOG method is in general longer than a test case generated by an 

optimization technique ([Aho88], for instance). For example, the test case given in Table 4b is 

about 40% longer than the test case given in Table 2. Also, we have seen that, without the 

reliable reset assumption, certain portions of a test case have to be repeated several times in 

order to make sure that the same state in the implementation is reached at different points of a 

test case. Therefore, the length of a single test case generated by our UIOG method is in general 

longer than the total length of the test cases in a test suite generated by a multiple testing 

approach, say the UIOv method [Vuon89]. For instance, a test suite is given in Table 6 which is 

generated by the UIOv method for the FSM in Figure 1. The total length of the test cases in this 

test suite is 22 (including the reset symbols "r"). This means the single test case in Table 4b is 

about 30% longer than the test suite in Table 6. However, as we have already pointed out, our 

UIOG method is more applicable than the UIOv method, since the reliable reset assumption is 

not required by the UIOG method. 

 

Hennie [Henn64] proposed a single testing approach for the generation of test cases for a class of 

finite state machines which have characterization sets (often called W-sets). Therefore, his 

method can be applied whenever our UIOG is applicable, since if 1,  2, ..., n are UISs for the 

n states S1, S2, ..., Sn of a given FSM, then { 1,  2, ..., n } is a W-set for that FSM. However, 

by using Hennie's method, one often obtains a test case which is prohibitively long. On the other 

hand, the UIOG method normally gives a much shorter test case.  
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Hsieh [Hsie71] proposed a single testing approach for a class of finite state machines which are 

called n/2 resolvable machines. His approach is both efficient (in terms of the length of a test 

case) and effective (in terms of its guarantee for fault coverage). However, the class of n/2 

resolvable FSMs is not the same as the class of FSMs which have UIOs for all the states. That is, 

a FSM which has UIOs for all its states may not be necessarily n/2 resolvable. Therefore, Hsieh's 

approach cannot be applied to such a FSM, while the UIOG method can be applied. 
 

 In Section 5, the UIOG method has been presented for the case that only one UIO (or UIS) is 

used for each state. Actually it can easily be generalized to the case where multiple UIOs are 

used for each state. Multiple UIOs have been proposed to increase the chances of overlapping 

and therefore to reduce the length of a test case [Shen89, Yang90 and Zhan92]. With our 

approach, in order to guarantee full fault coverage, we need to construct n additional UIS 

verification subsequences for each additional UIS of a state. A test case should also traverse 

these additional UIS verification subsequences at least once and therefore the length of the 

verification part of the test case is in general increased. Therefore it is not clear how much one 

can benefit with the UIOG method from the use of multiple UISs. 
 

It has been suggested for the so-called optimization techniques, that a signature [SaDa88] be 

used for a state which has no UIO, or in the case that the length of the UIO is longer than the 

signature. In the UIOG method, it is required that each state of the given FSM has a UIO 

sequence. It remains to be seen whether the UIOG method can be generalized to allow for 

signatures. 
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S1 S2 S3

t1: a/1

t3: a/0

t4: b/1

t5: a/0
t2: b/1

t6: b/1

                

I1 I2 I3

t1: a/1

t3: a/0

t4: b/1

t5: a/0

t2: b/1

t6: b/1

 
          Figure 1: An example FSM                                Figure 2:  A faulty implementation 
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S1 S2 S3

t1: a/1

t3: a/0

t4: b/1

t5: a/0

t2: b/1

t6: b/1

t7: c/0

t8: c/1

        

States     UIO's       UIS's     
 
  S1:        a/1           a 
  S2:        a/0.a/1     aa 
  S3:        b/1.a/1     ba

               
  Figure 3: An extension of the FSM in Figure 1                      Table 1: UIOs and UISs                       

 

 

 

 

             

n t1:  [1] a [2] a [1] a [2]      n t2:   [1] b [3] b [1] a [2]      n t3:   [2] a [1] a [2]              
n t4:  [2] b [3] b [1] a [2]       n t5:   [3] a [2] a [1] a [2]         n t6:    [3] b [1] a [2] 

 

TS =  [1] a [2] a [1] a [2] a [1] a [2] b [3] b [1] a [2] a [1] b [3] b [1] a  
          [2] b [3]  a [2] a [1] a [2] b [3]  b [1] a [2]

 
                   Table 2:  A test case generated by an optimization technique [Aho88]+  

 

 

 

                                                 
+ The integer in a pair of square brackets in an input sequence indicates a state number. For instance, [1] a [2] a [1]         

 means the input sequence "aa" starts from state S1, passes state S2 and ends at state S1. 
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Sets of input sequence              Partitions                      Sizes of the partitions 
 W1 = {a}                                 P 1  = {S1,  S2S3}                         m1 = 2  
 W2 = {a, aa}                         P 2  = {S1,  S2,  S3}                     m2 = 3     
 W3 = {a, aa, ba}                P 3  = {S1,  S2,  S3}                     m3 = 3   

 
                   

Simple looping sequences  
11  = [1] aa [1]                                                    
21  = [2] aa [2] 

    
22  = [2] aa [2]                                 

31  = [3] aa [3] 
    

32  = [3] aab [3] 
    

33  = [3] bab [3] 
        

            
       

    Distinguishing words 

11  = [1] a [2]    

21  = [1] a [2]  
    
22  = [2] aa [2] 

31  = [1] ba [2] 
   

32  = [2] ba [2]    33 = [3] ba [2] 

     Table 3a 

 

 

 

                                        UIS verification subsequences 

11  = [1] a [2] a [1] a [2]    12  = [1] a [2] a [1] a [2]             13  = [1] a [2] a [1] b [3] a [2] 

                                     22  = [2] a [1] a [2] a [1] a [2]     23  = [2] a [1] a [2] b [3] a [2]  

                                                                                 33  = [3] b [1] a [2] b [3] b [1] a [2] 

                                       State verification subsequences  

1 = [1] a [2]               

2 = [2] a [1] a [2] a [1] a [2] a [1] a [2] a [1] a [2]                                   

3 =  [3] a [2] b [3] a [2] b [3] a [2] b [3] a [2] a [1] b [3] a [2] b [3] a [2] b [3] a [2] b [3] a [2] 

                [2] a [1] b [3] a [2] b [3] a [2] b [3] a [2] b [3] b [1] a [2]

                                    Transition checking subsequences 

t1  =  [1] a [2] a [1] a [2] a [1] a [2]               t4 =  [2] a [1] a [2] b [3] b [1] a [2] 

t2 =  [1] a [2] a [1] b [3] b [1] a [2]                    t5 =  [3] b [1] a [2] b [3] a [2] a [1] a [2] 

t3 =  [2] a [1] a [2] a [1] a [2]                      t6 =  [3] b [1] a [2] b [3] b [1] a [2]

 
  Table 3b:  State verification, UIS verification and Transition Checking subsequences 
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t1: a/1 t4: b/1

t5: a/0t3: a/0

t6: b/1

t2: b/1

S1 S2 S3

1 3

2 t3

t4
22

23

12

11

13

33

t6

t5

t2

t1

 
   Figure 4:  The augmented graph for test sequence generation 

 

 TS = [1] a [2] a [1] b [3] a [2] b [3] a [2] b [3] a [2] b [3] a [2] a [1] b [3] a [2] b [3] a [2] b [3] a [2] b  
          [3] a [2] a [1] b [3] a [2] b [3] a [2] b [3] a [2] b [3] b [1] a [2] b [3] b [1] a [2] b [3] a [2] a [1] a  

                [2] a [1] a [2] a [1] a [2] a [1] a [2] b [3] b [1] a [2] a [1] b [3] b [1] a [2] a [1] a [2] b [3] a [2] 

          Table 3c:  A test sequence of length 53 (by our basic UIOG Approach) 

 

           State verification subsequences 

1 = [1] a [2]               

2 = [2] a [1] a [2]                          

3 = [3] a [2] a [1] b [3] a [2] a [1] b [3] b [1] a [2]  

                                           UIS verification subsequences 

11  = [1] a [2] a [1] a [2]                                                   13  = [1] a [2] a [1] b [3] a [2] 

                                      22  = [2] a [1] a [2] a [1] a [2]      23  = [2] a [1] a [2] b [3] a [2]  

                                                                                  33  = [3] b [1] a [2] b [3] b [1] a [2]

 
 Table 4a:  The new state verification and UIS verification subsequences (by our improved approach) 
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 TS = [1] a [2] a [1] a [2] a [1] a [2] b [3] b [1] a [2] b [3] a [2] a [1] a [2] b [3] a [2] a [1] b [3] a  
         [2] a [1] b [3] b [1] a [2] b [3] b [1] a [2] a [1] b [3] b [1] a [2] a [1] b [3] a [2]  

 
      Table 4b:  A test sequence of length 31 (by our improved UIOG approach) 

 

        t7 = [1] a [2] a [1] c [2] a [1] a [2]                     t8 = [3] b [1] a [2] b [3] c [3] b [1] a [2]  
 
TS = [1] a [2] a [1] a [2] a [1] a [2] b [3] b [1] a [2] b [3] a [2] a [1] a [2] b [3] a [2] a [1] b [3] a  
        [2] a [1] b [3] b [1] a [2] b [3] b [1] a [2] a [1] b [3] b [1] a [2] a [1] b [3] a [2] a [1] a [2] a  
        [1] c [2] a [1] a [2] b [3] b [1] a [2] b [3] c [3] b [1] a [2]  

                          Table 5: An example for the incremental test generation 

 

r. a.a.a              r.a.b.a             r.a.b.b.a            r.b.a.a.a            r.b.b.a     
 where r  represents "reset"

  

          Table 6:  A test suite generated by UIOv method [Vuon89] for the FSM in Figure 1    
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Appendix: Proofs of the theorems 
 
This appendix gives the proofs for the theorems in this paper. It is important to keep in mind that these theorem are 
proved within the testing framework presented in section 3, that is the assumptions on the specification machine 
FSMs and implementation machine FSMI are supposed to hold throughout the proofs. 

 

Lemma A.1 
FSMI   CONF  FSMs iff there exists a mapping f: 

     {S1, S2, ..., Sn} ---> {I1, I2, ..., IU} , such that   
   (1)   f is one-to-one (which implies u = n); and 
     (2)   If Si - x/y -> Sj is in FSMs, then  Ik -x/y ->I¬ is in FSMI,  

           where Ik =f(Si), I¬ =f(Sj). 
 
[Proof]:  
 
[<= part]:   If there exists such a mapping f , then FSMI  CONF  FSMs. 
The proof for this part is omitted, since it is obvious. 
 
[=> part]:   If FSMI  CONF  FSMs , then there exists such a mapping f. 
According to the definition of “CONF”,   FSMI  CONF  FSMs  implies I1 –S1) S1. So we can construct 

a mapping f from the states of FSMs to the states of FSMI in the following way: 
 
  fSi) = Ij 

iff there exists an input sequence p [ S1), such that 

  S1 -p-> Si and  I1 -p->Ij. 
Since FSMs is assumed to be strongly connected and I1 –S1) S1, we can conclude that each state Si in FSMs 
should be mapped to at least one state Ij in FSMI by the above defined mapping f. 
 
Now we prove that the mapping f satisfies the two required conditions. 
 
(1)  f is a one-to-one mapping: This can be proved by contradiction. 

If not, then there should be a state Ik = fSi) = fSj), for some states Si, Sj,  i ≠ j. Since FSMs is deterministic, 

there should be two different input sequences p1 and p2 in S1), such that: 

  S1 -p1->Si  and I1 -p1->Ik 

  S1 -p2->Sj  and  I1 -p2->Ik. 

As FSMs is also minimal, there should be an input sequence r [ Si) ( Sj), such that  

  s(Si, r) ≠ s(Sj, r). 
Because FSMI is also deterministic, we can conclude that at least one of the following two inequalities should 
hold: 

  I(Ik, r) ≠ s(Si, r) 

  I(Ik, r) ≠ s(Sj, r). 
If the first one holds, then the input sequence p1.r (which is in S1)) will produces different output sequences 

when it is applied to S1 and I1, respectively, that is 

  s(S1, p1.r) ≠ I(I1, p1.r) 
which contradicts to I1 –S1) S1, that is FSMI  CONF  FSMs . 
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Similar arguments apply if the second inequality holds. So we can conclude that f should be a one-to-one mapping. 
 

(2)  If   Si - x/y -> Sj   is  in  FSMs,  then  for  every  Ik = f(Si),  there exists some  I¬ = f(Sj),  such that  Ik -

x/y -> I¬ is in FSMI.  The reason follows. 

Since Ik = f(Si) and  I1 –S1) S1, there should be two input sequences p and p.x in S1) with two 

corresponding output sequences q and q.y , such that: 

  S1-p/q->Si -x/y->Sj  and  I1-p/q->Ik-x/y->I¬. 

According to the construction of f, we know that I¬ = f(Sj).              
 

Theorem 5.1 

Let TSs be an input sequence which begins with 1, that is, the state verification subsequence for the initial state 

S1, and then traverses in any order all the other n - 1 state verification subsequences in (5-2) at least once.  If an 

implementation  FSMI  passes TSs, then  
(1) for each state Si, we can find in the implementation a state denoted (without loosing generality) as Ii, such that 

 1,  2, ... , i  are applied to Ii and its responses to these input sequences are the same as those of Si, that 
 is  
   Si  –Wi   Ii          for  i = 1, 2, ..., n 

 where Wi  = { 1,  2, ... , i  } as given in (5-1); 
(2) I1, I2, ..., In are distinct (that is pair wisely non-compatible) and therefore the mapping  

   : { S1, S2, ..., Sn } --> { I1, I2, ..., In }  
 defined by 

   (Si) = Ii          for   i = 1, 2, ..., n 
 is one-to-one.           
 
[Proof]: 
 
The proof for the first conclusion is based on the following reasonings. Each reasoning step consists of a claim 

which is followed by the reasons in square brackets to show why that claim is true. We use 11, 21, 22, ... to 
indicate certain places of points in the state verification subsequences: 
 

   
1 =  11

1 

   
2 = 21

 21 22
 21 23

... 2r
212, r+1

2
 

   : 
   : 
 
(R1) FSMI  passes TSs which traverses each state verification subsequences at least once.         [given condition] 

(R2) Consider the state at the place 11: 

 (R2a) In FSMs, the state at 11 is S1.                  [ property of 1 ] 

 (R2b) Denote the state in FSMI  at 11 as I1. Then  S1  –W1   I1.                      [ by  (R1) ] 

(R3) Let  r = n - m1 + 2. Consider the states at the places 21, 22, ..., 2r, 2,r+1. 

 (R3a) In FSMs, the state at these r + 1 places are the same, that is S2.       [property of 21 , 2] 

 (R3b) Denote the states in FSMI  at these r + 1 places as J1, J2, ..., Jr, Jr+1, respectively 

 (R3c) S2  –{21}  Ji   for  i = 1, 2, ..., r.                                           [ by  (R1) ] 

 (R3d) S2  –{2}  Jr+1.                                                      [ by  (R1) ] 
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 (R3e) S2  –{1}  Ji    for  i = 1, 2, ..., r.                   [ (R3c) and 1 is a prefix of 21 ] 

 (R3f) 1 is a prefix of i1 ,   for  i = 1, 2, ..., n                     [ property of i1's] 

  and therefore 1 is a prefix of i,  for  i = 1, 2, ..., n               [ property of i's] 

 (R3g) In FSMs,  i is applied to Si by TSs,  for  i = 1, 2, ..., n      [design of i's ] 

 (R3h) In FSMs,  1 is applied to Si by TSs,  for  i = 1, 2, ..., n                    [ by (R3f) and (R3g) ] 

 (R3i) The n states S1, S2, ..., Sn respond to 1 in m1 different ways.               [ |P1| = m1 ] 

 (R3j) In FSMI, there exist m1 states which respond to 1 in m1 different ways.          [ By (R1) ] 

 (R3k) The number of distinct states in FSMI is no more than n.   [ Assumption on FSMI ] 

 (R3l) In FSMI, there exist at most  r - 1 = n - m1 + 1 states which can  

  respond to 1 identically as S2.           [ by (R3j) and (R3k) ] 

 (R3m) There exist k, ¬, such that  1 ≤ k < ¬ ≤ r  and Jk and J¬ are the same, 

  that is Jk = J¬            [ by (R3e), (R3l) and pigeonhole principle ]  

 (R3n) Jr+1 and Jk+r+1-¬ are the same, that is 

  Jr+1 = Jk+r+1-¬ , where  k+r+1-¬  ≤ r        [ by (R3m) and deterministic property of FSMI ]  

 (R3p) S2  –{1, 2}  Jr+1.              [ by (R3d), (R3e) and (R3n) ] 

 (R3q) By rewriting Jr+1 as I2,  we have   S2  –W2   I2. 

Following similar reasoning, we can prove that, by using each i, there exist a state in FSMI  denoted as Ii, such 
that  
   Si  –Wi   Ii          for  i = 1, 2, ..., n. 

Since 1 = 1 is required to be a prefix of TSs, we know I1 should be the initial state of the IUT. This completes 
the proof for our first conclusion. 
 
For the second conclusion, we can prove it by contradiction. Suppose there exist i and j, such that  1 ≤ i < j ≤ n 
and   Ii = Ij.  Then  Si  –Wi  Sj , which implies that Si  and Sj  will respond identically to each sequence in Wi, 

and in particular to i which is in Wi. However, this contradicts to the fact that i is a UIS for state Si. So the 

mapping  should be one-to-one.                  
 

Theorem 5.2 

Let  TSu  be an input sequence which begins with 1, that is, the state verification subsequence for the initial state 

S1, and then traverses in any order all the other n - 1 state verification subsequences 2, 3, ..., n in (5-2) and 

all the UIS verification subsequences k¬'s in (5-3) at least once.  If an implementation  FSMI  passes TSu, then  

(1) the LUISs 11, 22, ..., nn are still LUISs in the implementation FSMI; and 

(2) the UISs 1, 2, ..., n are still UISs in the implementation FSMI. and 

        
[Proof]: 
 
As TSu traverses each state verification subsequence in (5-2) at least once, we know from the proof of Theorem 

5.1 that, if an implementation FSMI  passes TSu, then FSMI  has exactly n distinct states I1, I2, ..., In which can 

be mapped to  S1, S2, ..., Sn by a one-to-one mapping  such that (without loosing generality) 

  (Si) = Ii    iff  Si  –Wi   Ii    ,   for  i = 1, 2, ..., n. 
 
Let us consider I1 in particular. We have 



 

Page 29 

(1) As 1 is a UIS for S1, we can conclude that only I1 in the implementation can respond to 1 as S1 does, 

 that is 1 is a UIS for I1; 

(2) TSu traverses the particular UIS verification subsequence 11 = 11.11 which, when written explicitly, is   

  S1 - 1 -> Q1 - T( Q1, S1)->S1 -1 -> Q1. 
 If FSMI  passes TSu, FSMI  also passes this particular UIS verification subsequence.  With the conclusion in 

 (1), we can conclude that if a state in the implementation responds to 11= 1.T( Q1, S1) identically as         

 S1, then that state should be I1 and the ending state should also be I1; and 

(3) TSu traverses the particular UIS verification subsequence 12 = 11.21 which, when written explicitly, is   

  S1 - 1 -> Q1 - T( Q1, S1)->S1 -21 -> Q1. 
 If FSMI  passes TSu, FSMI  also passes this particular UIS verification subsequence. With conclusion in (2), 

 we can conclude that 21 is also applied to I1 which gives the expected output sequence s(S1, 21).   
 

 Similarly, we can conclude that 31, ..., n1 are also applied to I1 which gives the expected outputs. 
 
By similar reasonings to (1) to (3), we can have the following results:  

First, for each ii, if a state in FSMI responds to ii in the same way as Si does, then both that state and the 

ending state after ii should be Ii. That is, the LUISs 11, 22, ..., nn are still LUISs in the implementation 
FSMI.  
Second, 

  32, ..., n2 are applied to I2; 

   43, ..., n3 are applied to I3;  
  ... 

  n-1,n-1 are applied to In-1 
and in all these cases, the expected outputs are observed. Combining the conclusion in Theorem 5.1, we can 

conclude that 1, 2, ..., n are UISs for  I1, I2, ..., In, respectively.             
 

Theorem 5.3 

Let TS be an input sequence which begins with 1, that is, the state verification subsequence for the initial state S1, 

and then traverses in any order all the other n - 1 state verification subsequences 2, 3, ..., n in (5-2), all the 

UIS verification subsequences k¬'s in (5-3) and all the transition checking subsequences in (5-4) at least once 

(note that overlapping is allowed). Then TS is a complete test sequence for the given specification FSMs with 

respect to the conformance relation CONF. 
 
[Proof]: 
 
According to Definition 3.6, to prove that TS is a complete test case, we need to show that, for any implementation 
FSMI , FSMI  CONF FSMs if and only if  FSMI  passes TS. 
[=> part]:  If  FSMI  CONF FSMs  then  I1 –S1) S1  and therefore FSMI  passes TS. 
[<= part]:  As TS traverses each of the state verification subsequences and each of the UIS verification 
subsequences, according to Theorem 5.1 and Theorem 5.2, if  FSMI  passes TS, then  

(1) FSMI  has exactly distinct states I1, I2, ..., In which can be mapped to S1, S2, ..., Sn by a one-to-one           

 mapping  such that (without loosing generality) 
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  (Si) = Ii    iff   Si  –Wi   Ii  ,   for i = 1, 2, ..., n; 

(2) for each i, i is not only a UIS for state Si in FSMs, but also a UIS for the corresponding state Ii in         

 FSMI; and 

(3) For each ii, if a state in FSMI responds to ii in the same way as Si does, then both that state and the         

 ending state after ii should be Ii. 

Now let us consider a transition t:  Si -x/y-> Sj in FSMs. Its transition checking subsequence is 

  t = ii.x.j          
which, if written explicitly, will be 

  Si -ii-> Si -x-> Sj-j->. 
Since TS traverses this transition checking subsequence and FSMI  passes TS, we know that FSMI  also passes 

this transition checking subsequence. Therefore there is the following sequence of transitions in FSMI : 

  Ih -ii-> Ik -x-> I¬-j-> 

such that Si and Ih respond identically to ii, Si and Ik respond identically to x and, Sj and I¬ respond identically 

to j. Then according to (2) and (3), we have 

  Ih = Ik = (Si) = Ii     and   I¬ = (Sj) = Ij  
which implies that for transition t in FSMs, there is a corresponding transition 

  Ii -x/y-> Ij 

in FSMI.  So by Lemma A.1, we can conclude  FSMI  CONF FSMs.             


