Incremental Construction Approach
for Distributed System Specifications:

Ferhat Khendek and Gregor v. Bochmann
Département d'informatique et de recherche opérationnelle
Université de Montréal
C. P. 6128, Succ. A, Montréal, Que H3C 3J7, Canada

E-mail: {khendek, bochmann}@iro.umontreal.ca

Abstract

In this paper, we propose an incremental construction approach for distributed system specifications.
These specifications are structured as a parallel composition of subsystem specifications. The approach
consists of merging two specifications Sgjg and Saqded into a new specification Spew, such that Spew
extends Sgig and Spew extends Sygded- Moreover, in the case of cyclic behaviors, Spew offers a choice
between behaviors of Sy1q and behaviors of Sygded, in a recursive manner. The derived specification
Snew has the same internal structure as Sq)g. Our approach is described in terms of Labelled Transition

Systems, and it is applicable for many specification languages.
1 Introduction

The design of a distributed system goes through many phases. The initial phase allows the capturing
of functional requirements in a specification with a high level of abstraction. This specification
describes the functionalities of the system, but not how to realize them. In the next phases, it is refined
into specifications with a lower level of abstraction where some design decisions are taken and a
structure is chosen. The specification obtained after each step should remain correct with respect to the
initial specification. The service specification and protocol specification for a given OSI layer are

typical examples of two different levels of abstraction [Viss 85].

The step-wise refinement approach allows the methodical production of a specification with a low
level of abstraction from a specification with a high level of abstraction. The distributed system
specification task, however, still remain very complex, particularly when many functions have to be
handled simultaneously. A complementary approach to deal with this complexity is the divide-and-
conquer methodology. It consists of building specifications for the different features of the required

system independently and of combining them to obtain the desired specification. From another point

* This research was supported by a grant from the Canadian Institute for Telecommunications Research under the NCE
program of the Government of Canada and by an IBM research fellowship.

of view, this approach allows the enrichment of a system specification by adding new behaviors

required by the user, such as adding a new functionality to a given telecommunication system.

The combination should preserve the semantics properties of each single specification. For instance,
the addition of a new function to a telephone system specification should not disturb the semantics
properties of the telephone system specification and the semantics properties of the new function. In
the context of distributed systems, preserving semantic properties may, for instance, mean that the
combined specification exhibits at least the behaviors of the original ones without introducing
additional failures for these behaviors. This is captured by the formal relation between specifications,
called extension, introduced in [Brin 86]. Informally, a specification S2 extends a specification S1, if
and only if, S2 allows any sequence of actions that S1 allows, and S2 can only refuse what S1 can

refuse, after a given sequence of actions allowed by S1.

Two specifications Syid and Sagded may be combined in different ways depending on the user
requirements. In this paper, we assume that Sg1g and Sagded have to be combined as alternative
behaviors. We propose an incremental specification approach, which consists of merging two
specifications Sg1q and Sadded 1nto a specification Spew, such that Spew extends Sgig and Speyw extends
Sadded- Moreover, in the case of cyclic traces, Spew offers a choice between behaviors of Sg1g and
Sadded, 1n a recursive manner. We consider distributed system specifications, which may consist of a
parallel combination of subsystem specifications. The incremental specification approach preserves
such structure. Therefore, the designer does not have to redesign it. The approach for merging
structured specifications described in this paper, is based on the approach for merging monolithic
specifications described in [Khen 92].

The remainder of the paper is structured as follows. Section 2 introduces the labelled transition
systems model [Kell 76] and some definitions used in this paper. In Section 3, we summarize the
principle and properties of the approach for merging monolithic specifications. In Section 4, our
approach for merging structured specifications is described. In Section 5, it is compared to related

ones. In Section 6, we conclude.

2 Labelled Transition Systems

We view the specification of a distributed system and its subsystems as processes, which are
expressed by labelled transition systems (LTS for short). In this section, we introduce the LTS model
[Kell 76] and some definitions, such as the definition of a cyclic trace, a minimal cyclic trace, and the

definition of the extension relation [Brin 86].

2.1 Definitions

An LTS is a graph in which nodes represent states, and edges, also called transitions, represent state
changes, labelled by actions occurring during the change of state. These actions may be observable or

not.

-T:SxL {1t} i L9 where a transition from a state Sj to state
S;by an action p (MO L {1} oted by S;i—l - S;.
T represents the internal, nonobservable action.

- S, is the initial state of TS.

A finite LTS (FLTS for short) is an LTS in which S and L are finite. In the remainder of this paper, we
may refer to an LTS by its initial state and vice versa. We may also write act(TS), instead of L, to

denote the set of observable actions of TS. Some notations for LTSs are summarized in Table 1.

P-pi...pp - Q OP; (0 <1i<n)such that P = Po—l; - P1..Ph.1—Hh > Pn=Q
P-Ui... Up— UQ such that P—py...pp - Q

P=e1Q P=Qorn=1P-t1 5 Q

P=allQ [P, P, such that P=¢[] Py—a - P,=€¢0 Q

P=a;... 3,1 Q P; (0 <1< n)such that P=Pg=a;] Py=a;l ..a,[1 Phb =Q
P=cl] [1Q such that P=cl1 Q

Pzol

Tr(P) .

out(P, 0) r(P)}

initials(P)

P after 0

Acc(P, 0) after 0), such that initials(Q) XNGGGNGG_

where M, HiOL {1} L; P, Q, Pj, Qj represent states; € represents the empty trace;
O =aj.a)... ap, where "." denotes the concatenation of actions or sequence of actions (traces).

Table 1. LTS notations

A trace, of a given state Sjin the LTS TS, is a sequence of actions that TS can perform starting from
state S;. A cyclic trace in TS is a trace of the initial state Sy, that reaches only the initial state S, and the
states that can be reached by the empty trace from S,. In other words, a cyclic trace always brings back
TS to its initial state. TS may then move to an other state by the nonobservable action T. A minimal

cyclic trace is a cyclic trace that is not prefixed by a nonempty cyclic trace.

Definitio

trace O is cyclic, iff
S'is such that [1 S; O S', So=¢ S;.

inimal Cyclic Trace)
Given an <S,L, T, Sg>, 0isaminimal cyclic trace, iff
oisacyc

€) such that 0 = 0'.0" and 0" is cyclic trace in TS.
2.2 Operations on Labelled Transition Systems

The specification of a distributed system may be considered as a composition of its subsystem
specifications. Among the possible compositions, the parallel composition operator and the action
hiding operator are of special interest in this paper. The parallel composition operator (B1 Ifaz, ..., an}
B2) allows one to express the parallel execution of the behaviors Bl and B2. B1 and B2 synchronize
on actions in {al, ..., an} and interleave with respect to other actions. The hiding operator allows the

hiding of actions, which then Jjiill be considered internal actions. We write B\A to denote the hiding

of the actions in A in thed
from [ISO 8807]).

The inference rules for these operators are as follows (adapted

Parallel composition: B
If Bl—-a-Bl'and a
If B2-a—»B2'and a .. then B1 lra1, .. any B2=a—> Bl lfa1, . any B2,

If B2-a—-B2'and Blga= T dd] {al, ..., an}, then Bl Iga1, .. any B2=a—-B1'la1, .. any B2

Hiding operator: B\{a
IfB-a-B'anda {al, ...
If B-a-B'and a [{al, ..., am}, then B\{al, ..., am}—T - B"\{al, ..., am}.

2.3 The extension relation

Intuitively, different LTSs may describe the same observable behavior. Therefore different
equivalence relations have been defined based on the notion of observable behavior. They range from
the relatively coarse trace equivalence to the much finer strong bisimulation equivalence [DeNi 87].
However, for our considerations, one does not need equivalence relations, but rather ordering
relationships. Among them, we note the reduction and extension relation as defined in [Brin 86].
These relations may serve different purposes during the specification life cycle. The extension relation

is most appropriate for our purpose of compatible enrichment of specifications. Informally, S2

4

extends S1, if and op
what S1 cgn re

allows any sequence of actions that S1 allows, and S2 can only refuse

e of actions allowed by S1.

Definition
S2 extends

(a) Tr(S1)

(b) o OTr(S1),0A
if [1S2'and S2'#all , allA,
then ol S1'and S1'zall , Oa O A.

3 Merging monolithic specifications

In this section, we consider monolithic specifications [Viss 88]. A monolithic specification has no
internal structure and is defined directly in terms of some allowed ordering of actions. A monolithic

specification is represented by a single LTS.

Given two LTSs, S1 and S2, we want to construct systematically an LTS S3, such that S3 extends
S1, and S3 extends S2. Moreover, in the case of cyclic traces, S3 should offer a choice between
behaviors of S1 and behaviors of S2, in a recursive manner. Note that the usual choice operators
defined for LOTOS [ISO 8807] and CCS [Miln 89] for instance, do not allow such combination of

specifications as shown in Figure 1.

S1 S2 Choice(S1, S2)

\t a T
SER
T
N
Figure 1. LOTOS, CCS choice operator

We assume that the LTSs are finite. Our FLTSs merging algorithm, called Merge, uses an intermediate
representation, the Acceptance Graphs (AGs for short).

Definition 3.1
An AG G is 5-tuple <Sg, L, Ac, Tg, Sgo>, where
- Sg is a (countable) nonempty set of states.

- L is a (countable) nonempty set of events.

- Ac: Sg - P(P(L)) is a mapping from Sg to sets of subsets of L.
Ac(Sg;j) is called the acceptance set of Sg;.

- Tg: Sg x L - Sg is a transition function, where a transition from
state Sg; to state Sg; by an action a (a [J L) is denoted by Sg;—a - Sg;.

- Sg, is the initial state of G.

The mappings Ac and Tg should satisfy the consistency constraints defined for Acceptance Trees in
[Henn 85]. A finite AG (FAG for short) is an AG in which Sg and L are finite. The LTS notations in
Table 1 remain valid for the AGs. A cyclic trace for an AG G = <Sg, L, Ac, Tg, Sgo>, is a trace of the
initial state Sg, that reaches the initial state Sg,. As for an LTS, a minimal cyclic trace for an AG is a
cyclic trace that is not prefixed by a nonempty cyclic trace. In the following, we define a relation AGR
between AGs and LTSs.

Definition 3.2

Given an AG G =<Sg, L, Ac, Tg, Sgo>and an LTS S =<St, L, T, So>, we note G = AGR(S), iff
- Tr(G) = Tr(S),
-0 o O Tx(S), if Sgo=00 Sgj, then Ac(Sgj) = Acc(Sy, 0),

- Any minimal cyclic trace in S is a minimal cyclic trace in G, an.

- Any minimal cyclic trace in G is a minimal cyclic trace in S.

Given tw <St1, L1, T1, S1,> and S2 = <St2 , the algorithm Merge
consists, fi ming the FLTSs S1 and S2 into FAQR G1 1, Act, Tgl, Sg1,> and
1= AGR(S1) and G2 =

G2=<Sg2, g2,>, respectively, such that Sgi1

AGR(S2). and G2 are then merged by an FAG merging algorithm into the FAG G3 =
<Sg3, L1 L2, g3, <Sgly, Sg2,>>, which is transformed back to an FLTS S3 such that G3 =
AGR(S3).

The algorithm for the transformation of an FLTS to an FAG is similar to the "subset construction"
algorithm defined in [Aho 79]. The transformation of an FAG to an FLTS, in the last step, is the
converse transformation. This transformation eliminates the information redundancy concerning the
failure possibilities. The FLTS generated by this transformation is the canonical representative of a
class of testing equivalent LTSs with the same set of minimal cyclic traces. In the following, we
describe, informally, the FAG merging algorithm. A more formal treatment of these issues can be
found in [Khen 92].

A state Sgj in Sg3 may be either a tuple <Sglj, Sg2;> consisting of state Sgi; from Sgi and Sg2; from
Sg2 (as for the initial state <Sglo, Sg20>), or a simple state Sg1; from Sgl, or a simple state Sg2; from

6

Sg2. These states and the transitions which reach them are added by the FAG merging algorithm step by
step into Sg3 and Tg3, respectively, except for the two initial states Sgi, and Sg2,, each of these is
replaced by the initial state <Sg1,, Sg2,> of G3.

Initially, Sg3 contains only the initial state <Sgl,, Sg2o>. The definition of the transitions from state
<Sglj, Sg2j> in Sg3 depends on the transitions from Sgl; in Sgi and from Sg2; in Sg2. For instance, for
a given state <Sglj, Sg2;>, if there is a transition Sgij—a - Sglk in Tgl and a transition Sg2j—a — Sg2, in
Tg2, then the state <Sgly, Sg2y,> is added into Sg3 and the two transitions are combined into one
transition <Sglj, Sg2j>—a - <Sglk, Sg2m> in Tg3. This is the situation when G1 and G2 have a common

trace from their initial state to Sgliy and Sg2y,, respectively.

Another case of this construction, if for a given state <Sglj, Sg2;>, there exists a transition Sgl;—
a— Sglkin Tgl, with Sgig# Sgi,, but there is no transition labelled by a from Sg2; in Tg2, then the state
Sglk is added into Sg3 and the transition Sglj—a— Sglk in Tgl yields the transition <Sgij, Sg2j>—
a— Sgikin Tg3. Reciprocally, if there exists a transition Sg2j—a - Sg2y, in Tg2, with Sg2,# Sg2,, but
there is no transition labelled by a from Sgi; in Tgl, then the state Sg2,, is added into Sg3 and the
transition Sg2j—a - Sg2y, in Tg2 yields the transition <Sglj, Sg2j>—a - Sg2p, in Tg3. In the case where
Sgikx = Sgl, (respectively Sg2m = Sg2), instead of the transition <Sgl;j, Sg2j>—a - Sgi, (respectively
<Sglj, Sg2j>—a - Sg2py), the transition <Sgl;, Sg2j>—a - <Sglo, Sg2o> is added into Tg3.

The transitions from a simple state in Sg3, like state Sgiy or S above, for instance, remain the same

as defined in G1 and G2, respectively. The states r transitions are added into Sg3, except

for the two initial states Sg1, and Sg2,, each of the y the initial state <Sg1,, Sg2,> of G3.
The mapping Ac3 is defined as follows: For every , we have:

-if Sgj = <Sglj, Sg2;>, then Ac3(Sgj) = {X1 X21 Ac1(Sglj) and X2 [1 Ac2(Sg2))},

-if Sgj=Sgl;, with Sgi1; U Sg1, then Ac3(Sgj) = Ac1(Sglj),

-if Sgj = Sg2;, with Sg2; [1 Sg2, then Ac3(Sgj) = Ac2(Sg2;).

Given the FLTSs S1, S2, the following propositions have been proved in [Khen 92] concerning the
FLTS S3 constructed by the algorithm Merge:

Proposition 1
S3 extends S1 and S3 extends S2.

Merge satisfies our first requirement as stated above in Proposition 1. However, the second
requirement about the recursive choice between behaviors of S1 and behaviors of S2, in the case of

cyclic behaviors in S1 and S2, is not always satisfied. This requirement may be satisfied, if all the

7

cyclic traces in S1 and all the cyclic traces in S2 remain cyclic traces in S3. For that, all the minimal
cyclic traces in S1 and all the minimal cyclic traces in S2 should remain minimal cyclic traces in S3.
Unfortunately, there are some situations where a minimal cyclic trace in S1 (respectively S2) does not
remain a minimal cyclic trace in S3. This is the case, when a given trace 0 is a minimal cyclic trace in
S1 (respectively S2), but 0 is a noncyclic trace in S2 (respectively S1). After executing such a minimal
cyclic trace, S3 reaches a state, which is different from its initial state. Therefore, it does not offer
again a choice between the behaviors of S1 and the behaviors of S2. Figure 2 illustrates such kind of
situations. After performing a, which is a minimal cyclic trace in S1, S3 does not offer a choice
between behaviors in S1 and behaviors in S2, because the trace a belongs to S2 and it is not a cyclic
trace in S2. However, the minimal cyclic trace a.b in S2 remains minimal cyclic trace in S3. In
Proposition 2, we determined a sufficient condition, for which a minimal cyclic trace in Sl

(respectively S2) remains a minimal cyclic trace in S3.

S1 S2 S3 = FLTS_merge (S1, S2)

5 e 70

Proposition 2

- For any minimal cyclic trace 0 in S1,if 0 Tr(S2) is a cyclic trace in S2,
then O is a minimal cyclic trace in S3.

- Reciprocally, for any minimal cyclic trace 0 in S2.

osition shows how a trace 0.a of S3 may be decomposed into its subtraces

race of S1 (respectively S2).

Propositio
OaOL1 L2, Tr(S1) and a.a U Tr(S3),
then o0.a [0 Tr(S1), or o.a [Tr(S2), or

(001, o2 such that 0 = 01.02, S1=010 S1, S1=0200 S1'#all , S2=0200 S2'=all).
Reciprocally, for 0 U Tr(S2) and 0.a U Tr(S3).

4 Merging Structured Specifications

In this section, we consider distributed system specifications, which consist of a parallel composition
of subsystem specifications as shown in Figure 3. Such specifications have the following form: S =
(S11452) \ B, where A and B represent sets of actions. The subsystem specifications S1 and S2 may
also have the same form as S and so on, until a level where the specifications have no structure and
are defined directly in terms of some allowed ordering of actions as monolithic specifications. These
specifications are called basic components, they may be nondeterministic, but are assumed to be finite.

For instance, these specifications are represented by the streaked boxes in Figure 3.

S1 S2

Figure 3. Structure of a Distributed System Specification

Given a distributed system specification Sgjg, which consists of a parallel composition of subsystem
specifications and so on until the basic components, and a specification Sygded, We want to construct a
specification Spew, such that Spew extends Sgiq, and Spew extends Sadded- Snew should have the same
structure as Sgig. As for the merging of monolithic specifications, in the case of cyclic traces, Spew

should offer a choice between behaviors of Sy1q and behaviors of Sygded, in a recursive manner.

4.1 Identical Structure for Sqiq and Sadded

We assume that the specifications Sgjg and Sagded are both structured according to the form (S114S2)\B
described above, and S1 and S2 are either basic components or again structured by parallel
composition. Moreover, we assume that Sgjg and Saqdeq have an identical structure. In other words,
the form of the expression Sgjq is identical to the form of the expression Syqged. To every subsystem
specification in Sy)q corresponds a subsystem specification in Syqdeq and vice versa. To every basic

component Ciglq in Sg]g, corresponds a basic component Ciggded in Sadded and vice versa.
The following algorithm for merging structured specifications, called Structured_Merge, is recursive
over the structure of Sgig and Sygded. It is based on the algorithm Merge, for merging monolithic

specifications, described in Section 3.

Merging Algorithm for Structured Specifications

Structured_Merge(S1, S2) =

if S1=(S111a S12)\B, S2 = (S21 Ic S22)\D,
then (Structured_Merge(S11, S21) la ©) red_Merge(S12, S22))\ (B D)
else Merge(S1, S2) (* Si1 and S2 are basic components *)

Snew, obtained by Structured_Merge(So1d, Sadded), has a structure identical to the structure of Sg1q and
Sadded- As basic component, instead of Cig)g or Cigdded, it has Cipew Which results from the merging of

Ciglg and Ciggdeqd by the algorithm Merge.

Unfortunately, Spew does not always extend Sqiq and Sagded. The extension of the basic components
of Soid and Sygded 1s not sufficient to insure the extension of Sgjq and Sygded, respectively. Consider the
counterexample in Figure 4, where Soid = (Cloid I{g1} C201d)\{gl}, Sadded = (Cladded l{g2}
C2added)M g2} The structure of the specification Spey is identical to the structure of Sgjq and Sygded, but
Spew does neither extend Sq)g nor Sygded. Indeed, Sgjg never refuses the action b after trace a, whereas
Snew may refuse action b after trace a. The same observation holds for action c after trace a. The trace
a is common for Clg)q and Clygdeq and it is followed by a hidden action g1 in Cly)g and g2 in Clagded-
The merging of Clg)g and Clagded leads to a choice between the two hidden actions g1 and g2 after the
trace a, in Clpeyw. The components Clyew and C2pew may, internally, choose to synchronize on action

g1 or g2, after a trace a, and offer only action b or only action c, respectively.

gl
o0 —e b
ae— Clgg "g_f C2od—2 b ae— Cladded > Czadded_" c 26—~ Clpeyw E’Cznew | & ¢
Sold Sadded S new

\ \

\
gl a g2 \ /.C:zi)\ gll g2
C*,D g2 CfD Ct) 22 gl 2 2

U\ VEVANSY,

Cl C2 Cladded Czadded Clnew C2new

c':O¢m “

Figure 4. Counterexample

In Theorem 1, we have stated sufficient conditions for Sy1q and Saqded such that Speyw extends Sy1q and
Snew extends Saqded- We denote by HGgq the set of hidden action names in Sq)g, and by HGygded the

set of hidden action names in Syqded. The proof of Theorem 1 is given in the Appendix.

Theorem 1
Given Sgq in the form of a hierarchical structure with the basic components Clj4, C2014, ---, Cnold,

10

Sadded With an identical structu

Sphew = Structured_Merge(!
we have that Spew ext Sglg

(a) Ui, i=1,..., n, act(Ciglq
(b) Ui, j,1 # j, (act(Ciplq) . ‘ D) =0,

(c) For x =old, added, , . ¢ [Tr(Cix) and g U Tr(Cjx),
(d Oi,i=1, .,n
1- O oUTr(Ciga)-{ }, . i [HElqded, and reciprocally,

2 - UaUact(Selq), if a U Tr(Ciglq),

reciprocally.

unless 0 is cyclic in Cigdded, and

eivaiviwivoar)

Condition (a) says that the names of hidden actions in Syqdeq should not conflict with the names of
observable or hidden actions in Sq)q. Reciprocally, the names of hidden actions in Sg1q should not
conflict with the names of observable or hidden actions in Syqdeq. Note that the names of the hidden
actions in both specifications are not important. These actions may be renamed without any observable

effect, in order to satisfy this condition.

Condition (b) says that there is no observable action of Sg1q and Saqded shared by two (or more) basic
components of Syiq (respectively Sigded). A basic component Ciglq in Sgjg may have common
observable actions only with the corresponding basic component Cigdded In Sadded, and reciprocally.
Consider the example in Figure 5, where Cl,)1g and C2,44ed have the action a in common, but they are
not merged together. Clpew = Merge(Clold, Cladded), C2new = Merge(C2o1d, C2added)s Clnew €xtends
Clold and Clggded > and C2pew extends C2q1q and C2,34ded- The constructed specification Spew may
refuse action b or action c, after trace a, whereas Sy1q and Syqded never refuses b or c after a,
respectively. Spew does neither extend Sq1g nor Syagded. In order to prevent such situations, for each
observable action, we may assign a "place" and the components with common observable actions

have to be merged together, as stated by Condition (b).

11

gl
ae—] [= J —e b
1 Clgg o C2oid—2 b C e Cladde(;‘gg Czaddec_" a pd Clyew .g_z" Cznew—" a
Sold Sadded S new

a gl 2 \

\
TN
(e S Sped A5 Lids
g b g2 b
Clyq C2o14 Cl1dded C2 dded Cl pew C2hew

Figure 5. An illustration for Condition (b)

Condition (c) states that Sy1q and Sygded should not be able to perform an action from HGgjq or from

HGggqded, respectively, before interacting with the environment. Consider the example in Figure 6,
Clpew = Merge(Clold, Cladded)> C2new = Merge(C2o1d, C2added); Clnew extends Clglq and Cladded, and
C2pew extends C24)1q and C2,4ded- However Spew does not extend Sygded. After an internal move by

executing the hidden action g1, it refuses the action a, whereas Syqged never refuses action a after an

empty trace.

Condition (d-1) prevents from any new nondeterminism which
actions in HGyqgeq With respect to behavior in Sq)q and reciprocally,

pair of basic components Ciylg and Cizgded, @ common trace 0 (#) sh

gl
d o Py —® b
1 Clod al C2o14—% b a e— Claddeé‘gs Czaddec_" ¢ 2 & Clyew -g—zﬂ Cznew—a c
Sold Sadded S new
\ \ \

Clold C201d Cladded C2p4ded Cl pew C2pew

Figure 6. An illustration for Conditio

introduced by the hidden
shown in Figure 4. For a given
be followed by hidden

actions from HGg1q or HG,4ded.

12

Condition (d-2) is introduced in order to prevent situations similar to the one shown in Figure 7.
Assume that Sp1qg = (Clold I{g1, g2} C201d)\{ g1, g2} and Sadded = (Cladded lg stop)\@. The merging
algorithm for structured specifications leads to Spew = (Clpew l{g1, g2} C2new) \{gl, g2}, where
Clpew 1s shown in Figure 7 and C2pew = C201d- We have Clpew ext Clglg and Clpew ext Cladded as
well as C2pew ext C241q and C2pew ext C23dded- However, Spew does not extend Sgjg. For instance,
after the trace f.a.b.c, Spew may refuse to perform action d, whereas Syjq never refuses to perform
action d after trace f.a.b.c. This is due to the fact that we have two traces 01 = a.gl.b and 02 = a.g2.b
in Clgg, such that 01 # 02, 01\HGg)q = 02\HGg, O1 is cyclic, 02 is not cyclic, 02.c is a trace in
Clold, and c is a trace in Clygdeq. It is possible to prevent such situations with a weaker condition than
Condition (d-2) as explained in this example. However the verification of such conditions may be

complex, whereas Condition (d-2) can be checked very easily.

<a.Clold wS2old w1 added w C! new

(? C
% /e

i
J
O\m
0;b<
O/
0«€°® -0do 0
™
i
(0, [N C_ Y -O4C,-J

Figure 7. Illustration for Condition (d-2).

Theorem 2 states that under certain conditions on the basic components of Sgiq and Saqded, @ minimal
cyclic trace 0 in Sgq (respectively Saqded) remains cyclic in Speyw. Therefore, after performing O, Spew
reaches its initial state, and offers again a choice between behaviors in Sy1q and behaviors in Sagded.

The proof of Theorem 2 is given in the Appendix.

ications Sold, Sadded, and Spew as in Theorem 1, and

bnditions of Theorem 1 are satisfied, we have

cyclic trace 0 in Sgg, if fori=1,..., n, Gi is a minimal cyclic trace in Ciglq and (Oi
d) or gi is a cyclic trace in Cizgded)), Where Oi represents the sequence of actions
performed Dy Cigld, Wwhen Sgjq performs the trace 0, then O is a cyclic trace in Spew.

- Reciprocally, for any minimal cyclic trace O in Sygded-

13

Example

In the following, we will illustrate our approach by an example. We use variations of the Daemon
game [ISO 8807]. We assume a simple game description, noted "Simple Daemon Game" (SDG for
short). The player may insert a coin, start the game, probe the system, then he randomly loses or
wins. The inserted coin may be refused, the user has to recollect his coin and insert it again until
accepted by the system before he can start the game. We have, arbitrarily, structured this system as
follows: SDG = (P1 l¢g13 P2)\{g1}. The processes P1 and P2 synchronize through action gi. The

structure of SDG and the processes P1 and P2 are drawn in Figure 8.

N P N P

Coin Coin gl
Recollect /z) ol
Probe Probe
SWrt.G ¢ bl 4019 p2 ¢ Win T 7 Start_G gl gl
Recollect Lose CY,D
gl 1 \'[
SDG o &)
Lose Win

Figure 8. Simple Daemon Game Description

Assume that we want to enrich the specification above, in order to describe a new system (
"Combined Game", or CG for short), where the player can play, alternatively, the simple game and a
sophisticated game, called "Jackpot Daemon Game". As for the "Simple Daemon Game", the player
has to insert a coin before starting the game. This coins may be refused. Once the coin has been
accepted, the player can start the game, probe, then he randomly loses or wins. If he wins, the game
continues. He can probe again, then he randomly loses or get the "Jackpot". The specification of this
sophisticated game is given as follows: JDG = (P3 I7g2y P4)\{g2}. The structure of this specification
is identical to the structure of SDG. The structure of JDG and the processes P3 and P4 are drawn in

Figure 9.

These specifications (games) have many interactions in common. SDG and JDG satisfy the sufficient
conditions of Theorem 1. Applying the algorithm Structured_Merge leads to: CG = (P13 lgg,
o2yP24)\{g1, g2}, where P13 and P24 are described in Figure 10. P13 results from the merging of P1
and P3 by the algorithm Merge. P24 results from the merging of P2 and P4 by the algorithm Merge.
The processes P1, P2, P3, and P4 are assumed to be basic components. By construction, we have
P13 ext P1, P13 ext P3, P24 ext P2, P24 ext P4, CG ext DG and CG ext JDG. In this example, it is

easy to verify that each minimal cyclic trace in SDG (respectively JDG) remains cyclic in CG

14

(Theorem 2). Therefore, CG describes a new system where the user may always alternate between the

"Simple Daemon Game" and the "Jackpot Daemon Game".

\ P3 \ P4
/' Coin g
s

Recollect

g2
Coin
Probe
Start_J P3 ¢-22— P4 & Win
Recollect Lose
Jackpot
IDG

Recollect /é

Start J Start_G

2 gl ProbZ:S’rObe 5
Ty (LY

Probe Probe

Lose

W
" Probe Probe

Coin C{
Jackpot

Start_J Probe
Start_G t jf Win J)
Recollect Lose

CG Jackpot

Figure 10. Combined Game Description

15

4.2 Nonidentical Structure for S,1q and Sadded

We assume now that the specifications Sqy1g and Sagded are constructed through the combination of the
parallel and hiding operators as previously, but their structures are not identical. For instance, the
structures of Sojg = (Clold |A C201d) \B and Sadded = (Sladded Ic C3added) \D where Sladded = (Cladded IE
C2added)\F, are not identical. There is no one to one correspondence between the subexpressions of
Sold and the subexpressions of Saqded. Before applying the merging algorithm Structured_Merge, So1q
and Syggdeq are transformed into strongly bisimilar specifications Sgq' and Sagded', respectively, such
that the structures of Sg1q' and Sygdeq’ are identical. This transformation may be done by the procedure
Transform described below. This procedure is given in a style similar to a Prolog program. In order to
determine Syiq' and Saqded', it may be called by Transform(Se1d, Sadded> Sold's Sadded')- Procedure

Transform consists of 4 rules applicable to the different forms of the expressions to be transformed.

Transform((S11 1o S12)\ B, (S21 Ic S22) \D, (S11'la S12"\ B, (S21'Ic S22")\D) =

Transform (S11, S21, S11', S21") , Transform (S12, S22, S12', S22').
Transform(S1, (S21 Ic S22)\D, (S11'lg S12'), (S21'lc S22')\D) =

Transform (St1, S21, S11', S21') , Transform (stop, S22, S12', S22').
Transform((S11 Ip S12)\ B, S2, (S11'la S12'\ B, (S21'lg S22) =

Transform (St11, S2, S11', S21') , Transform (S12, stop, S12', S22').
Transform(S1, S2, S1, S2).

Note that we have introduced a dummy process stop, which is a process that does nothing [ISO
8807]. So1d' (respectively Sagded') 1s strongly bisimilar to Sejq (respectively Sadded)- It is deduced from
the fact that S ~ (S lg stop), and (S1 1o S2)\B ~ (S1'lo S2)\B if S1 ~ S1' [Miln 89]. Sp14' and Sadded'
are merged into Spew, using the algorithm Structured_Merge introduced in the previous subsection. If
the sufficient conditions of Theorem 1 are satisfied by Sgid' and Sadded’, then Spew ext Sgig' and
Sadded'- Since Sqid' (respectively Saqded’) 1S strongly bisimilar to Sgjq (respectively Sadded), it follows
that Spew €xt Spid and Sadded- Same observation for Theorem 2.

4.3 Discussion

(a) Avoiding the conditions of Theorem 1: Note that, whenever the sufficient conditions of
Theorem 1 are not satisfied by the basic components of Sg1q and Saqded, We may consider the
processes at the next higher level as monolithic and apply algorithm Merge to them. The internal

structure of such processes will be lost and we will have to redesign it after the merging.

(b) Extra behavior: In the merging of structured specifications, Spew may contain certain extra

behaviors allowed neither by Sgjg nor by Sygqded- This kind of side effect happens when alternative
16

behaviors from Sg1q and Sygdeq involve different components. In this case, these alternative behaviors

may be interleaved as shown by the example in Figure 11, in which Sq1q = (Clolg I{g1} C2010)\{el},

Sadded = (Cladded 1{g2} C2added)\M 2}, Clnew = Merge(Clold, Cladded)> C2new = Merge(C2o1d, C2added)s

Snew allows more than what is allowed by Sq1q and Sagded, such as the sequences of actions a.c or c.a.

\

Clow C2a Cladded C2 ydded Clpew

Figure 11. Extra behaviors

(c) Improved procedure Transform: An improved procedure Transform may be used, in order

to produce, Sgid' and Saqded', Which satisfy, systematically, Condition (b) of Theorem 1. Using this

improved procedure, if, for instance, S11 and S22 have some observable actions from (act(Se1q)

act(Sadded)) in common, and S11 and S21 do not have observable actions in common, then S11 is
associated with S22, instead of S21, for further transformations, and the expression (S21' Ic S22'\D
is changed to (S22'lc S21')\D. Note that it may happen that S11 has common observable actions with
S21 and with S22. In this case, the specifications Sg1q' and Saqded' produced by the procedure
Transform described in the previous subsection do not satisfy Condition (b) of Theorem 1. The
improved procedure Transform will not be able to transform Sg1q and Sagded, because of this
"incompatible distribution" of observable actions. The specification Sygded should be redesigned using,
for instance, the functionality decomposition algorithm described in [Lang 90]. Using this algorithm,
the distribution of the common observable actions over the subexpressions of Sygqded should be guided
by the distribution of these actions in Sq)g. The observable actions of Sygded, Which do not belong to
Sold, can be distributed randomly. Such an algorithm can also be used, if Sgq is given according to
the form (S1 1oS2)\B, but Syqded is given in a high level form, as a monolithic specification, for

instance.

(d) Substitution of a system component: The sufficient conditions in Theorem 1 may be
adapted as sufficient conditions for the substitution of a component X in a system SYS by a component
Y, with the confidence that the new system SYS' obtained by this substitution satisfies SYS' ext SYS, if
Y ext X. For this purpose, we assume that SYS consists of a parallel composition of subsystem
specifications and so on until the basic components, X is a basic component in SYS, and Y may be
written as Y = Merge(X, X') with a certain X'. SYS represents Sy1d. X' represents Sadded, Which is

transformed by the procedure Transform described in the previous subsection into Saqded’- Sadded' 1S

17

strongly bisimilar to Saqded and for each basic component Z # X in Sgjq corresponds a basic component
Z' = stop in Sygded- To the basic component X in Syjq corresponds the basic component X' in Sydded'-
Snew obtained by merging Sy1q and Sadded' using the algorithm Structured_Merge represents SYS'.

Therefore, SYS' extends SYS if the conditions in Theorem 1 are satisfied.

5. Related Work

In [Ichi 90], the problem of)
following way: Given the & &
ext Bold, Bnew ex L- ‘1 F
A new LQTOS IFCTat0 ; i
| . ,ﬂ |
ol -

ecification in the LOTOS language is approached in the
[B1] and B;ggded, deduce Byew = C[B2], such that Byew

epresents a process expression context.

B1 B2 B1 B2
“ E A

(a aa
! ! F
¢ ¢ A
c d d 2\
¢ . é d »

Figure 12. Counterexample for Ichikawa et al. approach

There is no systematic approach to deduce Byey from Bglg and Bygdeq with
structure of these specifications. They considered the basic LOTOS operato
properties w. r. t. the extension relation. The combination of the hiding operat
parallel operator (B1 [[G]l B2) was not considered formally. We note that Pr
which states that (B3 [[G]l B2) ext (B1 I[G]l B2), if B3 ext B1 and out(B3)
hold. We may consider the following counterexample:

Bi=a;b;stop

B2=a;c;b;stop

B3=a;(b;stop[]c;stop)

G={a,b}

18

does exten

ance is defined for LOTOS. It is see Mmodification

It is clear that ut(B3) t(B2)) B1l[a, b]IB2.

ol e

thatifs=t m, ends t and any recursive call in t or m is redirected to s. However strong

In [Rudk 91]
technique. A

"

ator is introduced and denoted by " r is defined such
restrictions are imposed on t and m, such that m should be stable (no internal transition as first event),
the initial events of m should be unique and distinct from initial events of t, and so on. There is no
requirement such that s should also extend m, and no considerations to the structure of t or how this

modification m is propagated to the processes in t.

6. Conclusion

In this paper, we have proposed an incremental construction approach for distributed system
specifications. Given two specifications Sgjq and Saqded, We construct a specification Speyw, Which
extends Sg1g and Szgded, if some sufficient conditions stated in Theorem 1 are satisfied. Spew has the
same structure as Sgjq. Therefore the designer will not have to redesign this structure. In the case of
cyclic behaviors of Sgiq and Sagded, provided that certain sufficient conditions stated in Theorem 2 are
satisfied, Sypew offers a choice between behaviors in Sg1g and Sadded, in a recursive manner. Note that

in the case of merging monolithic specifications, the more simple propositions 1 and 2 of section 3

apply.

The labelled transition systems model is the underlying semantical model for many specification
languages, such as, LOTOS [ISO 8807], CCS [Miln 89]. Therefore, the approach described in this

paper is applicable for specifications written in these languages.

The proposed incremental specification approach is useful for dealing with multiple-function
specifications. Instead of handling all the functions simultaneously, it allows one to focus on one
function at a time for the design and verification. The merging approach will derive, whenever
possible, the required combined specification. From another point of view, it allows one to extend

existing specifications with new behaviors required by the user.
The approach proposed in this paper may promote the reusability of specifications. Once a function

specification has been constructed and verified, for example, it may be used in many system

specifications where it is required.

19

In this paper, we determined sufficient conditions, for which the combined specification Spew extends

the specifications Sgjg and Sadded- As future work, it will be interesting to study the necessity of each

condition. More complex applications of our approach are also expected.

References

[Aho 79] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1979.

[Brin 86] E. Brinksma, G. Scollo and S. Steenbergen, LOTOS specifications, their
implementations and their tests, Protocol Specification, testing and verification, VI,
Montréal, Canada, 1986, Sarikaya and Bochmann (eds.).

[DeNi 87] R. De Nicola, Extensional Equivalences for Transition Systems, Acta Informatica, 24
1987, pp. 211 - 237.

[Henn 85] M. Hennessy, Acceptances Trees, J. of ACM, Vol.32, No. 4, Oct. 1985, pp. 896 - 928.

[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in LOTOS, Protocol

Specification, Testing and Verification X (1990), Ottawa, Canada, Logrippo, Probert and
Ural (eds.), pp. 185 - 200

[ISO 8807] ISO - Information Processing Systems - Open Systems Interconnection, LOTOS - A

[Kell 76]

[Khen 92]

[Lang 90]

[Miln 89]

Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour, Feb. 1989.

R. Keller, Formal verification of parallel programs, Communication of the ACM 19 July
1976, pp. 371-384.

F. Khendek and G. v. Bochmann, Merging specification behaviors, submitted for
publication.

R. Langerak, Decomposition of functionality : a correctness-preserving LOTOS
transformation, Protocol Specification, Testing and Verification X, 1990, Ottawa,

Canada, Logrippo, Probert and Ural (eds.), pp. 203 - 218.

R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.

20

[Rudk 91] S. Rudkin, Inheritance in Lotos, Formal description technique (FORTE), Sydney,
Australia, 1991, pp. 415 - 430.

[Viss 85] C. A. Vissers and L. Logrippo, The importance of the service concept in the design of
data communications protocols, Protocol Specification, Testing, and Verification, V,
Toulouse-Moissac, France, June 10 - 13, 1985, M. Diaz (ed.).

[Viss 88] C. A. Vissers, G. Scollo and M. v. Sinderen, Architecture ans Specification Style in
Formal Descriptions of Distributed Systems, Protocol Specification, Testing, and
Verification, VIII, North-Holland, 1988, pp. 189 - 204.

Appendix

For the needs of the proofs in this appendix, we use the following notations:

act(0) : the set of action names in trace O,

0\X: the projection of 0 to act(0) - X,

Comp(old, o1, 02, ..., On) : represents the set of possible traces obtained by composition of 01, 02,
..., Onin Sgq structure with the hidden gates of Syq.

Comp(new, 01, 02, ..., On) : represents the set of possible traces obtained by composition of 01,

02, ..., On in Spew structure (which is the same than Sjq structure) with the hidden gates of Spevw.

Proof of Theorem 1

We will prove that Speyw €xt Sejd. The proof for Sy @lxt Sadded 1S very similar.

Iso a trace of Spew:

a - First, we have to prove that any trace 0 of Sgq

let 0 U Tr(Se1q), it implies that
02g, ..., Ong). From Proposition 1, we have Cipeyw ext Ciglg. It follows that, fori=1, .., n, Oig U

fori=1, ..., n, such that ¢ L Comp(old, Olg,

ition (a), we deduce that o [lg, 02g, ..., Ong). Therefore, o [J

ave to prove that Spew not block where S1q does not block:

0 O Tr(Seiq) and A o
w =00 Spew' Zall, Oa A,

then ld =00 Spid' #all, Oa A,

21

Letc OTr(Spiq), A a

it implies , Olg,
02g,...,0ng) and Cipew=0igl Cipew'zal , Da O A, since A ol N GGG_G_GNS) Gold
HGadded) = 9.

First, we have

at Oig U Tr(Ciglq), fori=1, ..., n.

We distinguish

b-1: 0=
From Propo
a [Tr(Cigg
perform an
act(Ciola)

Cinew, With %]
that Spew 1S n

environment.

b-2:0%
From (b-1) above, we know that Sj,e
interacting with the envj

that Olg = a.ol'.

Now, assume that ,but okg Tr(Ck,

in the form of ok'.p.ok", with ak' U Tr(Ckg1q), but Ok'.

lly, Okg can be written
. L may be an action from
HGgq, or from HGgyq servable action from act(Sq)q).

We distinguish two sub-

b-2-1: ok'=

b-2-1-1: pUOHGgq
U Tr(Ckelg) or U
rging of Ckglq and (§ il corithm Merge. By
follows that B Tr(Ckad ave U U Tr(Ckolq),
which contradicts our hypothesis above. Consequently, i), such that Okg

Tr(Ckold)-

Tr(Ckadded), since Ckpew resu

Condition (a), act(Ckadded)

22

b-2-1-2:pu 0 act(Seid) (U is an observable action)
By Proposition 3, we deduce again that B U Tr(Ckglq) or U U Tr(Ckagded). Assu
Tr(Ckolq), and U U Tr(Ckagded)- We have g1 Tr(So1q), it follows that

Okolq = S.M.t, because of the distributigp of able actions over the basic components of Sgjg and

that M
, such that

Sadded expressed by Condition (b ‘ 1T 11(Ckadded) and s.p U Tr(Ckglq), by Condition (d-2),

it follows that Ckqy1g=sJ Ckold and follquas that 1 [Tr(Ckglq), which contradicts our

assumption. Consequently, 1 [J T i onId

our original hypothesis. Therefore,

U HGadded

), such that Om Om'. h (b-1) above, we know

able to perform an action from (H(nteracting with the

other words, we know that
g U Tr(Cipew) and g U Tr(Cjpew). It

ch for some g 00 (HGo1q

- |
Jdl
H
d o mg

c Om o

We distinguish two cases, Om'L] Tr(Cmg)q)

- 0om'lJ Tr(Cmglq): we have O Tr(,- Tr(Cm i, since U LplGadded- By
Condition (d-1), we also h "u Tr(Cyg . By Proposition 3, it
Om1'.0m2' with Cmgjg=0Om Cmold, Cmold ol mold, Cmadded=/{

om2'#%E , w m2'(Z) U

ondition (d-1). If om2'= , w

Cmadded'=H0 .
contradiction

Depending on S and M', we proceed

bubcases. In the casé

immediately, a contradiction as shown in the othg !
bid), but a.u* B Since 0 U Tr(Se14q),

recursively, until Olg = a.p*.01" W
Condition (c) states that Sgjq 1) i 4 betore interacting with the
environment and ConditiQQ e SaH 3 s over the basic components of
| If pu* 0 HGgg, or p* [
e reach in both cases a
contradiction. If p* [H(J iti). We have a.)* U Tr(Clpew),

Soid and Sadded, it follg

act(So1d), it is solveq

a [Tr(Clglq), a.p* 1), by Proposition 3, it follows Ciglg=all Cigig
and ¥ [Tr(Clagged)- This is in Contradiction with Condition (c), because we have U* [Tr(Ckadded)

23

and u* U Tr(Clagded
Consequently, we ca

ecursively, each assumption is contradicted until the first one:

b-2-2:0k'#%

b-2-2-2:p 0 act(Se1d):

ok'.M U Tr(Ckpew o8k' 1 Tr(Ckd U Tr(Ckerq), or ok'.\ U

!

Tr(Ckadded), Or old> Ckolg=0k2'

Ckaddeq=0k2'L]

- ok'.u O Tr(CJ : = @, because ok' [1 Tr(
act(Ckadded) Al act(Ckolq)
with ai [J act(Sqlq), fori=1, ..., n. Because of Condition (b), for the distribution of actions over the

Condition (a)). We write Ok' = al.a2...an,

basic components of Syig and Sagded, and the fact that 0 U Tr(So1d)
Tr(Ckg1q) such that Okglq = Okglq'.Oklglq", Where Okq1g"\ HGolq = OK'. al.a2...a
al. Okgq" with Okglq"\HGglq = a2...an.J, t
we can not have hidden actions (from HGg)q) . ows that p O Tr(Ckg. If Ok q'=
Oklgig'.al. Ok2414" With 0k241g"\ HGglg = a2... i

not cyclic in Ckqlq, We are in contradiction w iti -2). If Okglg'= Oklgg'.al. Ok2qq" With
0k201d"\HGo1d =j...an.H, Okloq"\ HGglq = "is cyclic in Ckgqg, it follows
that a1. ok2). Because of Condition (d-1), we can not have hidden actions (from

- ok'.\4 Tr(Ck,jq): it follows that Ok'= Ok1'.0k2' jh Cko1g=0k1'l Ckeld, Ckolg=0k2'lJ Ckeld',
dition (b) for the distributj
t that 0 U Tr(So1q), it follows

Tr(Ckelg) such that Okglg = s.U.Oklgq ". if Ok2'= , 0 . By Condition (d-2), lic in
Ckolg and Ckglg=p0 . It follows that Ckylg=0k'Ll Ckglq and Ckojg=HL . We have jilduced that

ok'.l\ U Tr(Ckelq), which is in contradiction with our hypothesis. If ok2'# , t "=

Ckadded=0k2'[] Ckadded' and Ckagded'=HL] . As above
over the basic components of Sg1q and Sygded, and the

24

al.a2...an, with ai [J act(Sq)q), fori=1, ..., n, since Ok2' is a common trace for Ckglg and Ckgagded. It
follows that s = s1.a1.s2.1.0klq1q , such that s1\HGgjg = 0k1I'\HGg)q and s2\HGgjq = a2...an. We
have Ckaggeq=alll, and sl.al U Tr(Ckglq), by Condition (d-2), it follows that sl is cyclic in Ckglgq
and al U Tr(Ckeiq). We have a1.s2\HGg)q.H.= al.a2...an.)d. By Condition (d-1), we can not have
hidden action (from HGgjq) in s2. It follows that s2 = a2...an. We have Ckqy1q=0k1'L]
ok2'.u U Tr(Ckglq), it follows that gk'U k_14). which is 1
-

b-2-2-3:u0UHGadded -

1d, and

ontradiction with o

We have ok'l] Tr(Ckgplqd) and O
have ok' U Tr(Ckolq), Ok'.H
Proposition 3, it follq ith C 2' Ckeld's
Ckadded=0k2'l] Ckogi.1Md Ck. '=pd . If ok2'Z
Tr(Ckadded), We have 1q W
Tr(Ckadded) and

situation g J

can not fave LU H{ ” .

Conseq hat Okg Tr(Ck0
iold) and A

By the alg ﬂ'rnﬁ
E Fall, alA,

It follows that, TOr 1
[Cioiglal]l , Ua A,
nd for 1, ..., n, Oig U Tr(Ciglq), we deduce that ¢ Ll Comp(old,

if
then

Olg . Ciplg =0igl Cigiq' #2all, Oa A, fori=1, ..., n, it
follows tha Bq =00 Sgid' #all, OalA.

, W 1) and Ok2'.A
adiction with Condig

w), such that ogmg |.om'". Now, we are in the same

is solved recursj adiction in all cases. We

ol Comp(new, Olg, ..., Ong

ONila e

Proo -t 2

Consider o [1 Tr(§4), such that g is trace in Sy)g. It follows that, fori=1, ..., n,

uch that 0 [J Comp ., On). Assume that fori=1, ..., n, giis a
minimal cyclic trace in Ciglg, and (0i Tr(Cigq @) or Gi is a cyclic trace in Ciggded). From Proposition
2, it follows that, for i =1, ..., n, 0i is a minimal cyclic trace in Cipew. By Condition (a) of Theorem
1, we know that o O Comp(new, O1, 02, ..., On). Since the initial state of the structured
specification Syew 1S composed by the initial states of all its components, we deduce that O is a cyclic

trace in Spew.

25

The proof for the second part of the theorem is similar.

26

