
 September 22, 2012 5:46 PM 1

Object-Oriented Testing: Aspects to Test

El Houssain Htite, Rachida Dssouli, Gregor v. Bochmann and A. Ghedamsi

Université de Montréal
Département d'informatique et de recherche opérationnelle

Faculté des arts et des sciences, C.P. 6128, Succ "A"
Montréal, (Québec) Canada H3C 3J7

Email: {htite, dssouli, bochmann, ghedamsi} @iro.umontreal.ca
fax: (514) 343-5834

Abstract

Test sequence selection for conformance testing of communication

protocol implementations has been an active research area during

the last decade. Many testing methods were developed to produce

test sequences for testing software and hardware systems. They test

systems represented by single Finite State Machines (FSMs). In the

object-oriented approach, a specification of system is seen as a

dynamic set of Finite State Machines. In order to test this type of

systems, other methods need to be applied. Very little work has

been done in such a direction. In this paper, we first define a fault

model for object-oriented specifications, then we study different

aspects, which influence object-oriented testing such as: inheritance,

attributes, relationships and dynamic configuration. We also

propose a test selection methodology that can help to test object-

oriented implementations.

Keywords: Object-oriented testing, fault model, test selection

methodology.

 September 22, 2012 5:46 PM 2

1. Introduction

The conformance testing of implementations is important during the development of

communication protocols. It consists of selecting some test sequences from the

specification and execute them on the implementation in order to check any abnormal

behavior. The use of Formal Description Techniques (FDTs) to specify protocols has a

benefit impact to develop many test selection methods [Chow 78, Gone 70, Nait 81, Sabn

88]. A lot of FDTs are based on the finite state machine formalism [Koh 78]. In this

formalism, the specification of a system is characterized by a set of states, a set of inputs, a

set of outputs, an initial state and a set of transitions which connect states.

The object-oriented approach based on the Entity-Relationship formalism [Chen 76, Mond

90, Boch 90, Boch 92] came with new concepts such as: the inheritance, the relationships

and the dynamic configuration. It possesses the advantage of being natural. Each physical

component of a real system can be represented in the specification by an entity. A lot of

research work has been done on the development of object-oriented programming

languages and object-oriented design techniques [Boch 91]. We believe that the new

concepts of object-oriented approach will change the test selection process.

In this paper, we are interested in testing object-oriented implementations and the aspects

influencing such a process. We use the "black-box" testing and examine the limitation of

the application of existing test selection methods. The remaining of the paper is organized

as follows. In Section 2, we introduce the object-oriented approach. In Section 3, we

define a fault model for object-oriented specifications. Section 4 describes the new aspects

to consider in the testing process. Section 5 introduces our test selection methodology. In

Section 6, we discuss the different results, the limitations of the approach and we give

some conclusions and suggest directions for future work.

2. Overview of the object oriented approach

In structured programming, a system is seen as a set of procedures and a set of data. Little

change in the data structure risks to introduce deep changes in the organization of one or

several procedures [Mas 89]. The object-oriented programming, which is based on new

concepts came to avoid such a drawback by regrouping data and procedures in the same

entity called object.

 September 22, 2012 5:46 PM 3

An object-oriented specification is described by objects. Each object is an instance of a

class or an object type. A class is a conceptual model describing objects. The object

creation must be done by respecting the conceptual class model. The specification of a

class contains three parts: a static part, a dynamic part and an interface part (Figure 1). The

static part defines data, also called attributes, which are local to each instance of a class

(object). The dynamic part contains procedures which manipulate data. These procedures

are used to describe the object behavior. The interface part allows a list of operations

through which the object can be invoked by other objects. The interface is a unique way to

insure communication between objects. For example, an item in a store can be modeled by

a class having the attributes: name, quantity and price. This class can offer the following

operations: add, remove, price-up-date and store-item-value.

Interface

Behavior

Data

Figure 1 : the object concept

The computation between objects is performed by rendezvous mechanism. The caller

invokes the called object for a specific operation, sometimes with parameters. The invoked

object executes the behavior related to the selected operation depending on the parameters

and the state of an object. When the called object completes the execution, it returns the

control and the result (if any) to the caller object.

A class can also model relationships. A relationship is an association relation between

objects. It can be represented in the object by using attributes for referring associated

objects or by a separate object. When the relationship is an object, it offers implicit

operations, which return the information about the objects under the corresponding

relationship.

The inheritance aspect is one of the fundamental characteristics in the object-oriented

approach. It helps in developing new classes from old ones. A new class, called sub-class,

inherits all attributes, operations and behavior of the old class (super-class). The sub-class

also can be extended by adding other attributes, operations and behavior. In the case in

 September 22, 2012 5:46 PM 4

which the inherited operations and behavior are not appropriate for the sub-class, the

inheritance mechanism allows the possibility to redefine them. In some object-oriented

languages, the inheritance can be single or multiple. It's single when the sub-class can have

only one super-class and it's multiple when it can have many super-classes.

3. Fault model

During the testing process, it is important to take into consideration different possible faults

in the purpose of detecting them when they manifest in an implementation. The set of

faults, which could occur into an implementation with respect to its specification, is very

big. Sometimes the description of these faults is very complex. In addition, several faults

could provoke the same observable error. To classify faults, we use a fault model

describing their effects [Boch 91a]. This description is a high level of abstraction,

containing several classes, where each one of them includes several types of faults. It has

for consequence to reducing the number of possibilities to take into consideration.

3.1. Fault model for Finite State Machine

The type of faults considered in this model are the following [Boch 91a]:

a)-Output fault: it occurs when the output of a transition in the implementation differ from

the one in the corresponding transition of the specification.

b)-Transfer fault: it occurs when the terminal state of a transition in the implementation is

different from the one in the corresponding transition of the specification.

c)-Transfer fault with additional states: same types of faults can only be modeled by

additional states with transfer faults which lead to those additional states.

d)-Additional or missing transitions.

3.2. Fault model for Software

The types of software faults can be classified into two classes [Boch 91a]: the process

faults and data faults [Sari 87, Ural 91]. Some of those faults are:

a)-Sequencing faults, such as: wrong logic expression to control loops.

b)-Arithmetic manipulation faults.

c)-Calling wrong function.

 September 22, 2012 5:46 PM 5

d)-Wrong specification of data type.

e)-Wrong initial value.

f)-Wrong referencing variable.

g)-Defining a variable without subsequent usage.

3.3. Fault model for Object-Oriented specifications

In the Entity-Relationship model, a specification is described as a set of classes. Each class

could represent an object or a relationship. One fault model for object-oriented

specifications must be able to take into consideration the different characteristics of the

object-oriented approach. We will define in the following, one fault model for the object-

oriented specifications. This model is described by two classes, where each class defines a

type of fault. These classes are: the class of configuration faults and the class of behavior

faults.

a)-The class of configuration faults

This class concerns all faults caused by the absence or existence in plus of objects and/or

relationships. All objects and relationships described by the specification have to exist in

any of its implementations. The absence of an object or a relationship could imply the non-

conformance of the implementation. Two sub-classes are considered (Figure 2):

1)-Object existence fault: one case is when a specified object doesn't exist in the

implementation. The other case is when there is an object in plus in the implementation.

 September 22, 2012 5:46 PM 6

Object existence fault (object 5)

Relationship existence fault (relationship 2) Relationship existence fault (relationship 2)

Object1
Object2

Object3
Object4Objet6

Object5

relationship 1

specification

relationship 2 Objet6

Objet6 Objet6

Object1

Object1Object1
Object2

Object2

Object2

Object3

Object3

Object3

Object4

Object4Object4

Object5Object5

relationship 1relationship 1

relationship 1

relationship 2

relationship 2

Figure 2: class of configuration faults

2)-Relationship existence fault: one case is when a specified relationship doesn't exist in the

implementation. The other case is when there is a relationship in plus in the

implementation. The case when the relationship doesn't attach the right objects can be seen

as a combinations of faults where the first fault is the absence of a relationship and the

second fault is the existence in plus of another relationship.

This class of faults can be manifested during the initialization of the implementation. It

represents a type of static configuration faults, but it can also take place during the

execution of some object behaviors (dynamic configuration faults). Indeed, some object

behaviors could introduce some changes in the configuration of the implementation by

creating or by destroying other objects and/or relationships. It concerns the situation where

these creations or destructions didn't happen correctly.

b)-Class of behavior faults

This class of faults includes faults related to the behavior of objects. We propose the

following classification:

1)-Wrong operation or object call: the interface of an object is formed by a set of

operations. The invocation of an object must be done by specifying one operation among

this set. The faults of this sub-class concerns the invocations (point c in software fault

model). For example, the object A is invoked by object B for operation X but it must be

 September 22, 2012 5:46 PM 7

invoked for operation Y (the object A offer operation X and Y). An other possible case is

when the object A invokes object B for operation Z but it must invoke object C (the two

objects B and C offer the operation Z).

2)-Incorrect operation parameters: this fault occurs when the right object is invoked with

the right operation but one or more parameters of the operation are erroneous (points d and

e in the software fault model).

3)-Illegal operation sequence: to execute a behavior, an object could invoke one or several

objects by a sequence of operations. Sometimes the order of the wanted sequence is very

important, and any permutation of operations could generate undesirable behaviors (point a

in the software fault model).

4)-Output fault: point a in FSM fault model.

5)-Transfer fault: point b in FSM fault model.

6)-Transfer fault with additional states: point c in FSM fault model.

7)-Additional or missing transitions: point d in FSM fault model.

4. Test selection from object-oriented specifications

In this section, we present different aspects to consider during the test selection phase. For

each aspect, examined separately, we study the means and the restrictions in order to insure

an adequate test generation.

4.1. Test selection for the behavior of object types

The specification of each object type defines the operations and the behavior of any

instance of this type. We consider only the objects where their behaviors could be modeled

by FSMs. We will process the case of entities that modelise relationships in the following

sub-sections. Two kinds of objects are considered: the objects directly accessible by the test

system (i.e., objects A and B in Figure 3) and the objects which are not (i.e., objects C, D

and E).

Object A

Object D

Object B

PCO PCO

Object C

Object E

relationship1

relationship2

Figure 3: implementation under test

 September 22, 2012 5:46 PM 8

Consider the FSM of Figure 4, where the behavior of object type A is modeled. The object

type offers the operations A1 and B1. At the invocation of the object for the operation B1,

the object returns the output O2 and transfers to state e2. One sequence of invocations,

formed by (A1, B1), brings back the object to its initial state e1. The transition C1 joining

the states e5 and e4 represents an invocation for object C. This transition may not be

observable depending on the type of the adopted test. For example, in the black-box testing

context (see Figure 3), the transition C1 is not observable.

The test selection could be realized under one test select method, such as: TT [Nait 81], DS

[Gone 70], UIO [Sabn 88] and W [Chow 78], depending on the nature of the FSM (strongly

connected, completely specified) and the fault detection level that we want to achieve. For

example, the TT method insures only the detection of output faults. We see in the following

sub-sections that other factors can influence this choice depending on the accessibility to

the object under test.

e4

e3 e2

e1

+B1/-o2

+A1/-o1

+A1/-o1

+B1/-o3

+A1/-o2

+A1/-o3

+B1/-o1

+B1/-o2

-C1/+c1

e5

Figure 4: behavior of an object type

4.2. Test selection for parameters

Other tests have to be selected to cover the variation of operation parameters. Face to the

impossibility to make an exhaustive test, it is preferable to operate with representative

values for each parameter. In order to help in the determination of these representative

values, two classes of values are to be considered: the class of valid values and the class of

invalid values [Gama 91, Vauc 91]. The first class represents the case where the operation

must be executed correctly, while the second class corresponds to the opposite case. The

determination of each class of values could be done by different manners. The partition

class method [Myer 79] consists in dividing the domain of possible values of parameter

into a finite number of equivalence classes. This method makes the hypothesis that the use

 September 22, 2012 5:46 PM 9

of one value or another in the same equivalence class would generate the same behavior.

Another method called, limit value [Gama 91, Vauc 91], consists in selecting limit values

of each parameter as representative values. For example, if the parameter is specified into

the interval [1..100], then one could consider the representative values: 1 and 100 for the

valid values and 1- and 100+ for the invalid values, where  represents the smallest

positive value not equal to zero.

Now that it is possible to determine representative values for each parameter, the selection

of test cases to cover the variation of parameters in an operation have to contain the

maximum number of representative valid values in order to minimize the number of test

cases. Other test cases will be generated to cover the representative invalid values. Take the

example of the operation A1 of object type A which contains two parameters r and s.
Suppose that the representative valid values for r and s are respectively r1, r2 and s1, s2.

The representative invalid values are ri and si. The test cases to cover the parameters of the

operation A1 are:

1)-The test cases for valid values:
 A1(r1,s1)

 A1(r2,s2)

2)-The test cases for invalid values:
 A1 (ri, s1 or S2)

 A1 (r1 or r2, si)

It is important to note that the selection of test cases for the invalid values covers one single

invalid value at once. This choice is explained by the goal of tests that consists in detecting

the maximum number of faults and consequently, a test case which includes several invalid

values risk to mask some faults.

Another factor to take into consideration is the dependence between parameters in the

operation. The selection of tests to cover the variation of parameters cannot be done by the

same manner. Indeed, despite that the test cases are selected for representative valid values,

they could test only the invalid behaviors and hence, a wrong coverage of normal behavior.

To resolve this problem, we introduce the following method [htite 93]:

Given the operation B1 of object type A which contains three parameters r, s and t. We
suppose that only the parameters r and s are dependent. We also suppose that Rv, Ri and

 September 22, 2012 5:46 PM 10

Tv, Ti are the sets of representative valid and invalid values of parameters r and t. For each

element Rvj of the set Rv, we associate two subsets Svj and Sij, where Svj contains the

representative valid values of parameter s, which respects the dependence relation with the
value Rvj of parameter r. Similarly, Sij contains representative valid values of parameter s,

which doesn't respects the dependence relation. We also consider the set Si which is

constituted by representative invalid values. The selection of test cases could be done by

the following way:

1)-The valid test cases: for each value Rvj, we select the test cases until the coverage of all

values in subset Svj. Valid values of the parameter t are also assigned in those test cases, to

profit to drive the most possible representative valid values (Tv).

2)-The invalid test cases: for each value Rvj, we select test cases to cover all the values of

subset Sij. The values of parameter t will be chosen from the set Tv. In addition, we select

separately other cases to cover the sets of invalid values Ri, Si and Ti.

4.3. Test conformance for object type instances

In an implementation, several instances of an object type can take place. These instances

have to offer the same operations and the same behaviors as their type. The test

conformance of instances consists to insure that the implementation of instances are done

correctly. Theoretically, this verification is simple; it is sufficient to select tests from an

object type (section 4.1.) by adding the test cases to cover the variation of parameters

(section 4.2.). Then, we apply this test suite to any instance of this object type. All

instances should react in the same manner by respecting the specification of their object

type. The test conformance can be lengthy and expensive especially, if the number of

instances is large. to recover from this inconvenience, one could adopt a test by range. The

range could have two shapes:

1)-Random range: a certain number of instances will be chosen by a random manner to do

the test conformance.

2)-Range by class: an equivalence relation will be defined on the set of object type

instances. This relation can be defined on several criterias such as the value of an attribute.

From each equivalence class one candidate will be chosen to do the test conformance. This

 September 22, 2012 5:46 PM 11

election can be random or fixed (for example, the smallest value of an attribute in the

class).

4.4. The inheritance test

The inheritance is a fundamental characteristic of the object-oriented approach. One object

type can inherit from one or several other types. This mechanism of inheritance permits the

recuperation of attributes, interfaces and behaviors from the inherited object types. The

inheriting object type can also offers, in addition, other operations and behavior

(extension). The inheritance test consists in insuring that the relation of inheritance is

rightly implemented. Suppose that the object type B (Figure 3) inherits from object type A.

To verify if this inheritance is rightly implemented, it is sufficient to execute the selected
test suite Sa, for the type A (section 4.1. and 4.2.), on the object B. The object B must have

to react on the same manner as the object A, given this test suite. It is clear to see the

benefit of using the inheritance mechanism in the protocol specifications. A specification

using this mechanism allows to recuperate behaviors already defined without being obliged

to redefine them a second time. The utilization of the inheritance has an other benefit, but

this time during the test selection. This advantage consists in the reusability of tests.
Indeed, the test suite Sb to test the implementation of object type B will be included in the

suite Sa which also might contain other test cases for the proper behavior of object type B

(extension).

4.5. Other aspects to test

The attributes and the relationships between objects are other aspects to examine. We will

present them in this section in order to identify the difficulties in their tests. An attribute of

an object can have several significances. It would represent a condition or a state, it could

be the means to distinguish objects of the same type or it would be the modelisation of a

relationship between objects. Since the access to attributes is indirect, one will examines

the effect of these attributes in order to verify their implementations. In order to do this test,

we suppose that the behavior of the object, which we want to test its attributes, is correctly

implemented. Several scripts are to consider following what the attribute could represent:

a)-Attribute condition or attribute state

 September 22, 2012 5:46 PM 12

The test of this type of attribute could be insured by the behavior of the object. The

execution of the part of behavior (which is assumed correctly implemented) that use the

attribute and generate an output, allows to test the implementation of this attribute. This

verification will be repeated several times to cover all representative values of the attribute.

For example, if the attribute represents the two states no-active and active, one will execute

the behavior of the object to verify that it is in no-active state, then one will invoke the

object to take it to the active state and finally one will execute again the behavior for

insuring that the object is this time in the active state.

b)-Test of relationships

The test of relationships presents the same difficulties as the test of attributes. However the

test of some relationships which only represent the modelisation of operation parameter

dependencies (section 4.2.) could be relatively easy. So verify with some test cases that the

dependence of parameters are rightly respected returns to insure the existence of these

relationships (Figure 5). The other test cases with valid values of parameters which doesn't

respect the dependence will attempt to verify the nonexistence of unspecified relationships.

object B

operation (A1,B1)

object A
Interface

attribute

behavior
B1

relationship

parameters dependency

Interface
attribute

A1

object B
Interface
attribute

B2

object A
Interface
attribute

A2

object C
Interface
attributes

behavior

behavior

behaviorbehavior

relationship

 figure 5: test of relationships.

In the conclusion, and under the hypothesis that the behavior of involved objects are

correctly implemented, the test of parameters as well as the one of dependencies between

parameters are the instruments that could help to test some type of attributes and

relationships.

 September 22, 2012 5:46 PM 13

5. Test selection Methodology

We will present in the following, a test selection methodology for object oriented

specifications. This selection supposes that the execution of tests and the observation of the

implementation outputs will be through service access points; this constitutes a "black-box"

test.

Our object oriented model to test is formed by several objects and relationships (Figure 3).

The behavior of each object is modeled by one FSM. The execution of tests, to be selected,

are taking place on the points of control and observation (PCOs). Outside those points, no

observation is possible. In this model, a PCO is a special object of the specification, it

plays the role of interfacing between the outside of specification and the other internal

objects. The methodology of selection that we suggest consists of the following test

selections:

-Test cases to verify the behavior of objects, conformance tests, attribute tests, relationship

tests and the inheritance tests.

-Test cases to verify the configuration.

5.1. Test selection for objects behavior

The selection of tests for the object behaviors has as a goal the verification of the

conformity of object behaviors to their specifications. Following the test selection method

adopted, it requires to cover all transitions of objects FSM. The coverage of object

behaviors are not without problem, indeed only the behavior of PCO objects (directly

accessible) could be covered efficiently.

Figure 3 gives an example of an implementation. It composes of five objects A, B, C, D

and E which only objects A and B are directly accessible. The behavior coverage of objects

A or B can be done easily, since any input to the implementation will be immediately

consummated by the object in question and any output of the object destined to the outside

will be directly observable. However, the transitions of objects A and B (PCO objects)

which represents the invocations of internal objects couldn't be directly observable. The

 September 22, 2012 5:46 PM 14

access to internal objects is not direct, their behaviors couldn't be directly observable

either.

a)-Test selection for objects directly accessible

The FSM of the Figure 6a models the behavior of the object A. The transition C1

represents one operation offered by the internal object C. The object A invokes the object C

for this operation when it is in the state e5. This internal transition of the object A is

invisible from the outside. The FSM of the figure 6b represents the observable behavior of

the object A, it's on this FSM that the test selection could be done.

For objects directly accessible the classical test selection methods (TT, UIO, DS, W) can be

applied depending on the nature of FSM of the observable behavior (completely specified,

strongly connected). At a time that the choice is done on the test selection method, we

select the suite of tests to which we add other test cases to cover the parameters (valid

values, invalid values) with keeping into account the dependencies between them. In the

case of inheritance between PCO objects we would reuse tests selected for the ancestor

objects.

e4

e3 e2

e1

+B1/-o2

+A1/-o1

+A1/-o1

+B1/-o3

+A1/-o2

+A1/-o3

+B1/-o1

+B1/-o2

-C1/+c1

e5

a: complete behavior of the object A b: observable behavior of the object A

e4/e5

e3 e2

e1

+B1/-o2

+A1/-o1

+A1/-o1

+B1/-o3

+A1/-o2

+A1/-o3

+B1/-o1

+B1/-o2

Figure 6: complete and observable behavior of the object A

b)-Test selection for non accessible objects and relationships

consider the object C in Figures 3. This object is led to communicate with others objects

(the objects A, B, D and E). The coverage of accessible object behaviors will imply

automatically the coverage of a part of object C behavior. In their executions, the objects A

 September 22, 2012 5:46 PM 15

and B could invoke the object C to execute some behavior. Figure 7 shows the different

parts of object C behavior.
Part covers by the behavior of object A

4

2 1

3

Part covers by the behavior of object B
Figure 7: coverage of behavior of non accessible object C

The coverage of parts 1 and 2 is insured respectively by the behavior of objects A and B

took separately. As for the coverage of part 3, which represents the intersection of parts 1

and 2, it will be insured at the same time by the object A and B. The coverage of the part 4

could be insured by other non accessible objects (for example, the objects D and E) or by

combining the behaviors of accessible objects. Two cases however are to consider for the

non accessible object under test (Figures 8):

 1- the object under test could be invoked directly by the accessible object (the object C,

Figure 8-a)

2-the object is invoked by the accessible object via one or several non accessible objects

(the object E, Figure 8-b)

Object A

Object D

Object B

PCO PCO

Object C

PCO PCO

Object E

a b

Object B Object A

Object D Object C

Object E

Figure 8: coverage of non-accessible objects

In order to insure the coverage of non accessible object behavior, one is forced, in both

cases to assume the hypothesis that the behaviors of accessible objects and intermediate

non accessible objects are correctly implemented. The idea consists in seeing every non

 September 22, 2012 5:46 PM 16

accessible object, the consequence of execution of tests selected for the objects PCO and

complete these tests in order to cover the totality of behavior of non accessible object.

Like it was mentioned in the section 4.2., some relationships which model the dependence

of parameters could be implicitly tested in keeping into account the parameters. For the

others relationships which doesn't concern the dependence of parameters, the idea is to

activate the behavior of PCO objects which will use these relationships and which would

generate an observable output.

5.2. Test selection for the configuration

The implementation under test in its processing run incurs some changes in its

configuration. Indeed, some objects behavior can create objects or relationships, while

others will be destroyed. The test of configuration has for task to insure that the creations

and the destructions of objects or relationships take place correctly. The same hypothesis,

which considers the behaviors of implied objects are implemented property, stays valid.

The idea to insure this test is to activate the behavior of PCO objects which invokes the

objects or relationships which are destroyed (to verify that they are correctly destroyed),

the same for the objects or relationships created (in order to insure that they are correctly

created).

6. Concluding discussion.

We suggested in this paper a methodology of selection test from oriented object

specifications. We apply this methodology on the example of PCS "Personal

Communication Service" specification [Bala 90, Regn 90, Desb 92]. This example allowed

to place into evidence the problem of test selection for non accessible objects, the

relationships and the attributes. We assume the hypothesis that the behavior of intermediate

objects are correctly implemented. This explains by the partial observation that we have in

our model of test and which doesn't allows to make the internal transitions observable.

However if we had other points of observation on the internal objects we would reduce the

impact of this hypothesis.

In order to raise this restriction, we suggest in this conclusion some ideas which constitutes

a logical sequence to our work. Face the complexity of examined aspects and which

summarizes to a partial observation of internal objects, the introduction of some

 September 22, 2012 5:46 PM 17

instrumentations in the object which can help to test other objects would increase the

observability of systems under test. In this optic, one would imagine that each type object

would be formed by two facets. The first facet used to describe the normal behavior of the

object; while the second facet would give the means to test other object types. The objects

like this constructs can be tested mutually to establish a final verdict. The advantage of a

such system is to allow at the same time to make the tests with more observation and to

insure the diagnosis for the location of faults.

An other possible difficulty is the case non deterministic FSM (NFSM). The selection of

test from NFSM is a classic problem. G. Luo in [Luo 92] suggests a method to permit the

selection of tests. The idea of this method, is to make some transformations in the NFSM,

under certain hypotheses, in the goal to make this NFSM deterministic in the input /output

sense. So the selection can be done on this resultant machine.

An other point that was not treated is the architecture of test system. Indeed the

coordination of tests and their synchronizations require to put in place a superior level of

testers. In [Meer 91] we find a presentation of this problem.

Acknowledgments

The authors would like to thank CITR for its financial support.

References

[Bala 90]: K. Balasubramanya and G. Rochlin, Universal Personal Telecommunications: Concepts and
Requirements, IEEE, ICC’90, pp 0228-0232, 1990.

[Boch 90]: G. V. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-Monval and N. Williams:
MONDEL, Object-Oriented databases Specification language, Technical Report from CRIM, Departemental
Publication #748, Department IRO, University of Montreal, 1990.

[Boch 91]: G. v. Bochmann, S. Poirier and P. Mondain-Monval: Object-oriented design for distributed
systems and OSI standards, Departmental Publication #768, Department IRO, Université of Montreal, April
1991.

[Boch 91a]:G.v. Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi and G. Luo, "Fault models in
testing (invited paper)", IFIP Transactions, Protocol Testing Systems IV (the Proceedings of IFIP TC6 Fourth
International Workshop on Protocol Test Systems), Ed. by Jan Kroon, Rudolf J. Heijink and Ed Brinksma,
1992, North-Holland, pp.17--30.

[Boch 92]: G. V. Bochmann, S. Poirier and P. Mondain-Monval: Object-oriented design for distributed
systems and OSI standards, Proc. of IFIP Int. Conf. on Upper Layer Protocols, Architectures and

 September 22, 2012 5:46 PM 18
Applications, Vancouver, May 1992. A shorter version is also included in the proceedings of the Int.
Workshop on ODP, Berlin, Oct. 1991.

[Chen 76]: P. P. Chen, The Entity-Relationship Model: Toward a Unified View of Data, ACM Trans. on
Database Systems, Vol. 1, N 1, pp. 9-36, March 1976.

[Chow 78]: T. Chow: Testing Software Design Modeled by Finite-State Machines, IEEE Trans. Software
Engineering, Vol.SE-4, pp.178-187, March 1978.

[Desb 92]: D. Desbiens: Modelization and Specification of the Personal Telecommunication Services, Master
thesis, Department IRO, University of Montreal, 1992.

[Gama 91]: P. Gamache: Inteligent tests generation adapted to communication protocols, Master thesis,
Department IRO, University de Montreal, March 1991.

[Gone 70]: G.Gonenc: A Method for the Design of fault Detection Experiments, IEEE Transactions on
Computer, Vol 19, N 6, pp. 551-558, 1970.

[Htite 93]: E. Houssain Htite: Test generation for personal communication service, Master thesis, Department
IRO, University of Montreal, 1993.

[Koh 78]: Z.Kohavi: A switching and Finite Automata Theory, Mc Graw Hill, 1978.

[Luo 92]: G. Luo, G. V. Bochmann and A. Das: Test Generation for Concurrent Programs Modeled by
Communicating Non-deterministic Finite State Machines, Departmental Publication #823, department IRO,
University of Montreal, May 1992.

[Mas 89]: G. Masini, A. Napoli, D. Colnet, D. Léonard et K. Tombre: The Object Languages, interEditions,
iia, Paris 1989.

[Meer 91]: J. de Meer, V. Heymer, J. Burmeister, R. Hirr and A. Rennoch: Distributed Testing, 4th
International Workshop on Protocol Test Systems, Part IV, Oct 1991.

[Mond 90]: P. Mondain-Monval, G. V. Bochmann: An object-Oriented Software Design Methodology,
Progress Report Document N 7 for CRIM/BNR Project, June 1990.

[Myer 79]: G. J. Meyers: The Art of Software Testing, Wiley-interscience publication, John Wiley and Sons,
pp. 177, 1979.

[Nait 81]: S. Naito and M.Tsunoyama: Fault Detection for Sequential Machines by Transition Tours,
Proceeding of the 11th IEEE fault Tolerant Computing Symposium, IEEE Computer Society Press, pp. 238-
243, 1981.

[Regn 90]: J. Régnier and W. H. Cameron, Bell-Northern Research, Personal Communication Services: The
New Pots, Globecom 90, San Diego, December 1990.

[Sabn 88]: K. K. Sabnani and A. T. Dahbura: A protocol Test Generation Procedure, Computer Networks
and ISDN Systems, Vol 17 (4), pp. 285-297. 1988.

[Sari 87]:B. Sarikaya, G.v. Bochmann and E. Cerny, "A Test Design Methodology for Protocol Testing",
IEEE Trans. on SE, April 1987, pp.518-531.

[Ural 91]: H. Ural and Bo Yang, " A Test sequence selection method for protocol testing", IEEE Transaction
on Communications, April 1991.

 September 22, 2012 5:46 PM 19
[Vauc 91]: J. Vaucher, G. v. Bochmann, B. Lefebvre, S. Desmarais and P. Gamache: MMS project
"L'informatique intelligente appliquée à l'implantation et au test de logiciels industriels", Intelligence
Artificielle et Sciences Cognitives au Québec, Vol.3, N 3, pp.45-58, 1991.

