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Abstract  

This paper studies the so-called reduction relation between systems represented as 

nondeterministic finite state machines. This relation requires that a machine produces a 

(sub)set of output sequences that can be produced by another machine in response to every 

input sequence. An approach to test generation for nondeterministic FSMs with respect to the 

reduction relation between implementations and their specification is elaborated. Results 

presented in this paper can also be used for analyzing relations between nondeterministic 

specifications. 

 

 

 

1.  INTRODUCTION 

 

 Nondeterministic behavior exhibited by complex concurrent systems is a challenging issue 

for validation and testing methods based on formal description techniques (FDT). In contrast 

to deterministic cases, various relations between investigated systems can be defined and used 

for different purposes and applications. For a labeled transition system (LTS) model, which is 

the semantic model used by the LOTOS language, there is an ever increasing spectrum of a 

large number of relations [Glab93]. In the realm of input/output finite state machines (FSM), 

the semantic model used in SDL and ESTELLE, there is not yet a big variety of relations used 

for verification and testing purposes [Petr93a]. An attractive feature of this model is that the 

theory of checking experiments on FSMs provides a solid basis for conformance test 

derivation with guaranteed fault coverage. Most FSM-based methods assume, however, that 

the behavior is specified by a deterministic machine, and rely on the equivalence relation, see 

for example, [Vasi73], [Chow78], [Sidh89], [Ural91], [Fuji91], [Petr92]. Very few results for 
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nondeterministic machines have been so far reported [Yevt91], [Kloo92], [Trip92], [Petr93b], 

[Luo94a], [Luo94b].  

 The current paper focuses on a rather general "reduction" relation between 

nondeterministic machines, recently defined in [Petr93a]. For machine B to be a reduction of 

machine A, it is required to produce a (sub)set of output sequences that can be produced by A 

in response to every input sequence. In the deterministic case, this relation and the traditional 

equivalence relation coincide. The reduction relation between FSMs is needed for comparing 

specifications and testing conformance of a (deterministic or nondeterministic) 

implementation under test to a given nondeterminisitic specification. As demonstrated in 

[Petr93a], the results on checking experiments for FSMs can be imported to the LTS model as 

well. If a given LTS is transformed in one way or another into a nondeterministic FSM, then, 

for example, methods for test generation from FSMs w.r.t. the reduction relation could be 

adapted for deriving tests from LTSs w.r.t. various preorder relations. As recently shown in 

[Petr94a] and [Petr94b], testing of a component embedded in a compound system can also be 

reduced to the problem of test derivation from nondeterministic FSMs with respect to the 

reduction relation. In [Petr93b], a method for test derivation from a limited subclass of 

nondeterministic FSMs which have only deterministically reachable states was proposed.  

The purpose of this paper is to undertake a further study of this relation and to provide for a 

more comprehensive solution for test derivation from nondeterministic FSMs which may not 

possess this property. 

 The rest of this paper is organized as follows. Section 2 sets the theoretical basis for 

checking the reduction relation between states of the same machine as well as between 

different machines. In particular, we show how the reduction relation defined for infinite 

sequences can be verified with finite sequences only. In Section 3, checking experiments on 

nondeterministic FSMs w.r.t. the reduction relation are defined, and the major difficulties 

arising from their construction are discussed. In Section 4, we develop a general approach to 

checking experiment construction for various subclasses of nondeterministic FSMs w.r.t. the 

reduction relation. We also discuss similarities and differences between checking experiments 

on deterministic and nondeterministic machines. 

 

 

2.  NONDETERMINISTIC MACHINES AND THE REDUCTION RELATION 

 

2.1. Definitions 

 We start with the definition of a completely specified nondeterministic finite state machine 

as given in [Star72]. A nondeterministic finite state machine  (NFSM) A is a 5-tuple (S, X, Y, 
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h, s0), where S is a set of n states with s0 as the initial state; X - a finite set of input symbols; 

Y - a finite set of output symbols ; h - a behavior function h: S x X --> P(S x Y), and P(S x Y) 

is the powerset of S x Y. Note that we only consider the initialized NFSMs with a given 

initial state and often call them simply machines. The machine A becomes deterministic  

FSM when |h(s,x)|=1 for all (s,x) �S x X. 

 We extend the behavior function to the set X* of all input words (sequences) containing 

the empty word e, i.e., h: S X* P(S Y*).  Assume h(s,e) = (s,e) for all s �S, and 

suppose that h(s,) is already specified. Then  

h(s,x) = { (s',y) |  s''�S [(s'',�h(s,) & (s',y) �h(s'',x)] }. 

 Let h be the first and h - the second projections of the function h, i.e., 

h(s,) = { s' |  �Y* [(s',) � h(s,)] }, h(s,)={  |  s'�S [(s',) � h(s,)] }. 

 The function h is actually the next state function, and h - the output function of NFSM 

A. The set h(s,) contains all the states from S that can be reached by the NFSM A starting 

from the state s after the input sequence has been applied to this machine.  The set h(s,) 

contains all output sequences that can be produced in this case. 
 We say that state sj is reachable from si in A if there exists an input sequence  such that 

h(si,) contains sj. If there exists an input sequence  such that h(si,) = {sj} then sj is said 

to be deterministically reachable, written D-reachable , from si in A. 

 Given a NFSM A=(S,X,Y,h,s0), A is said to be initially connected  if any state is reachable 

from the initial state. A is said to be D-connected  if any state is D-reachable from the initial 

state.  

 Let h
1
(s,) ={s'|(s',) � h(s,)}, in other words, h

1
(s,) consists of all states that can be 

reached from the state s with the I/O (input/output) sequence .  Similarly, hs
2(s',) = 

{|(s,) � h(s',)} [Star72]. Naturally, the sets h
1
(s,) and hs

2(s',) might be empty for some 

, , s, s'.  

 A NFSM A is said to be observable  (ONFSM) if 

(s,x) �SX  y �Y  ( |hy
1
(s,x)| ≤ 1 ),  

in other words, in observable machines a state and an I/O pair can uniquely determine at most 

one next state [Star72]. For the ONFSM A, we have the same property for any I/O sequence, 

i.e.,  

(s,) �SX*   �Y*   ( |h
1
(s,)| ≤ 1 ). 

We note that all deterministic FSMs are observable. 

 The equivalence relation between two states s of the NFSM A and t of the NFSM B = 

(T,X,Y,H,t0) holds if  �X*  ( h(s,) = H2(t,) ), otherwise, the states are nonequivalent.  
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The NFSMs A and B are said to be equivalent if their initial states are equivalent, otherwise, 

they are nonequivalent.   

 Each NFSM can be transformed into an equivalent ONFSM [Star72], even though this 

transformation has a tight upper bound on the number of states in the corresponding ONFSM, 

namely 2n, where n is the number of states in the NFSM. Furthermore, this ONFSM can 

always be constructed to be initially connected. Due to this, we assume in the rest of this 

paper that specifications are represented by initially connected observable machines unless 

stated otherwise.  

 

 

2.2. Checking the reduction relation between states and machines 

 In this paper, we study the conformance relation which allows the implementations to be 

equally or less nondeterministic than their corresponding specification NFSM. Formally, we 

define the reduction relation between NFSMs as follows [Petr93a]. 
 A state t of the NFSM B = (T, X, Y, H, t0)  is said to be a reduction of a state s of the 

NFSM A = (S, X, Y, h, s0), written t≤ s, if  �X*  ( H2(t,) ⁄ h(s,) ), otherwise, t is not a 

reduction of s, written t Š
 s. 

 Given the NFSM A = (S, X, Y, h, s0) and NFSM B = (T, X, Y, H, t0), B is said to be a 

reduction of A, written B ≤ A, if t0≤ s0, otherwise, B is not a reduction of A, written B Š
 A. 

If B ≤ A and B is a deterministic machine then we refer to B as a D-reduction of A. 

 The equivalence relation between NFSMs is stronger than the reduction relation, in the 

sense that it requires that B be equally nondeterministic as A.  The NFSMs A and B are 

equivalent if and only if A is a reduction of B and B is a reduction of A. If these machines are 

deterministic then both relations reduce to the classical notion of the equivalence relation 

between these machines. 

 In order to establish rules for determining whether state t of B is a reduction of the state s, 

we first redefine the reduction relation to a finite set E of finite sequences.  Given state s of 
the NFSM A = (S, X, Y, h, s0), state t of the NFSM B = (T, X, Y, H, t0), and a set of input 

sequences E ⁄ X*, state t of the machine B is said to be an E-reduction of state s of A , written 
t E≤ s, if 

  �E  ( H2(t,) ⁄ h(s,) ). 

If state t is an E-reduction of state s for all E in X*, then it is a reduction of s. 
 The machine B is an E-reduction of A, written B E≤ A,  if the initial state of B is an E-

reduction of the initial state of A. If B is an E-reduction of A for all possible E, then it is a 

reduction of A. 
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 In certain cases, it is possible to conclude whether a state is a reduction of another state 

based on information about the relations between other states.   
 A state t' of the NFSM B = (T, X, Y, H, t0) is said to be a successor of state t w.r.t. an 

input/output sequence / if H
1
(s,) ] t'. If B is observable then H

1
(s,) = {t'}. 

 
Proposition 2.1. Given state t of the NFSM B = (T, X, Y, H, t0), and state s of the ONFSM A 

= (S, X, Y, h, s0), if t is an -reduction of s and �H2(t,) then any successor t' of state t 

w.r.t. the input/output sequence is a -reduction of the successor s' of state s w.r.t. . 
 

Proof. According to the definition of the behavior function, we have 

h(s,) = { (s', |  s''�S [(s'',) � h(s,) & (s',) � h(s'',)] } 

Since A is observable h1(s,) = {s'}, and a set of the output reactions of A to the input 

sequence which start with is equal to h(s,). 

Similarly, a set of the output reactions of the NFSM B to the sequence which start with 

is equal to 

( H2(t', )
t'H

1(t,)

)
. State t is an -reduction of s then h(s,) � 

( H2(t', )
t'H

1(t,)

)
, and therefore, h(s',) � H2(t',) for any t' � H

1
(t,), i.e. t' ≤ s'.  

           

Corollary 2.2. Let s' and t' be the successors of s and t of A and B w.r.t. an input/output 

sequence /�H2(t,)(h(s,), respectively. Then 

t ≤ s �t' ≤ s'.  t' Š
 s' �t Š

 s. 

 
In fact, if t ≤ s then t ≤ s for any sequence . From the proposition 2.1, it follows that t' ≤ s' 

for any , i.e. t' ≤ s'. If t' is not a reduction of s' for some sequence then by virtue of the 

same proposition, t cannot be an reduction of s, i.e. t Š
 s. 

       

 Let P be a set of the successor pairs of s and t for all input/output sequences / such that  
1) t ≤ s, and 2) �H2(t,). 

In other words,  

P = { s't' |  � X* �H2(t,) ({s'} = h
1
(s,), t' � H

1
(t,), t ≤ s ) }. 

 

Proposition 2.3. State t is a reduction of s iff for any pair s't' �P, state t' is an x-reduction of 

state s' for all x � X. 
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Proof. First part follows from the proposition 2.1 with = x, x � X. 

Suppose t Š
 s then there exist  � X*, x � X, �H2(t,), and y � Y such that t ≤ s, 

y�H2(t,x), but y�h(s,x). Thus, for some pair (s't') of successors of state s and t, we 

have y�H2(t',x), but y�h(s',x), i.e. t is not a reduction of s.  

       
 The next proposition gives certain conditions for finding a finite set EAB of input 

sequences such that if state t of an NFSM B is an EAB-reduction of state s of the ONFSM A 

then t ≤ s.  
 Consider a set EAB of finite input sequences which has the following properties: 

1) all proper prefixes of any sequence in EAB are included in this set, i.e. if  �EAB then 

�EAB and the empty sequence e �EAB; 

2) if  �X* is a proper prefix of some sequence of EAB then x�EAB for all x � X; 

3) if  �X* is not a proper prefix of any sequence of EAB, and t ≤ s, then for any sequence 

�H2(t,) and any t' � H
1
(t,), there is a sequence in the set EAB such that  

 a is a proper prefix of some sequence of EAB; 

 (b) t ≤ s; 

 (c) there exists �H2(t,) such that 
H

1

(t,) ] t' and 
h

1

(s,) = h
1
(s,). 

 In other words, if t is an -reduction of s and  is not a proper prefix of any sequence in 
EAB, then the pair of successors (s't') of states s and t w.r.t. any input/output sequence /, 

�H2(t,) coincides with the pair of successors w.r.t. the input/output sequence /, where  
is a proper prefix of some sequence in EAB and t is a -reduction of s. 

 
Proposition 2.4. If state t of B is an EAB-reduction of state s of A then t is a reduction of s. 

 

Proof. To prove this statement it suffices to show, by virtue of proposition 2.3, that for any 

sequence  such that t ≤ s, any sequence �H2(t,) and any state t' � H
1
(t,), there exists 

an input/output sequence / with the following properties: 
(P1)  �EAB, and  is proper prefix of some sequence of EAB, 

(P2) �H2(t,), and t' � 
H

1

(t,), h
1
(s,) = 

h
1

(s,). 

 To prove the latter, we use the induction on length of a sequence  such that t is an -

reduction of s.  

Induction base. The proposition is valid for  = e, as it is possible to choose e/e as such an 

input/output sequence. 
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Induction hypothesis. Let x be an input sequence, t is an x-reduction of s, y�H2(t,x), 

and t'�Hy
1

(t,x). By the induction assumption, for any t'' � H
1
(t,), there exist a sequence 

�EAB with the property (P1), and a sequence �H2(t,) such that  

(P3) t'' � 
H

1

(t,) and h
1
(s,) = 

h
1

(s,). 
The sequence  is a proper prefix of some sequence in EAB, then x �EAB by construction of 

the set EAB. Consider a sequence y. By the definition of the behavior function, and because 

of (P3), y�H2(t,x) and y �h2(t,x); moreover, t'�Hy
1

(t,x) and 
hy

1

(s,x) = hy
1

(s,x). 
Then the induction step is proven if x is a proper prefix of some sequence in EAB. 

Otherwise, by construction of EAB, this set has a sequence  which is a proper prefix of some 

sequence in EAB and there is an output sequence  �H2(t,) such that t'�H
1
(t,) and h

1
(s,) 

= 
hy

1

(s,x) = hy
1

(s,x). 

       
 One way to derive such a set EAB is described below. We construct a truncated successors 

tree of these machines in the following way. The vertices represent pairs of states of both 

machines, the root of the tree is the pair of the given states (t,s) of B and A. The edges of the 

tree represent the matching transitions of both machines in respect to the reduction relation, 

and are labeled by input/output symbols. In particular, an edge with the label x/y connects a 
vertex (tj,sj) with the vertex (tk,sk) if (sk,y) �h(sj,x) and (tk,y) �H(tj,x). A vertex (tj,sj) is a 

leaf in two cases: 

(1) its state pair has already been encountered in the tree as an intermediate vertex (the first 

type of leaf); 
(2) for some x � X there are no matching transitions in the two machines from states tj and sj, 

i.e.,  y �H2(tj,x)   ( y { h(sj,x) ) (the second type of leaf). 

 For any vertex of this tree, we include in the set E an input part  of a sequence which 

labels a path from the root to this vertex. If this vertex is a leaf of the second type, we include 

in E every sequence x, for all x � X. 

 

Corollary 2.5. Let E be a set of sequences obtained from the successors tree. If t is an E-

reduction of s then t is a reduction of s. 
 It is sufficient to prove that E has properties of EAB in the proposition 2.4. If state t is an 

E-reduction of s, then t is an -reduction of s for any sequence � E. Then the tree should 

not contain any leaf of the second type. In fact, let the pair / label a path from the root to 

such a leaf (t's'). In this case, there are x � X and y � Y such that y �H2(t',x) and y { h(s',x). 

y�H2(t,x) since y �H2(t',x). The latter is impossible because x � E for all x � X. 

Therefore, t is a reduction of s. 
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If the pair / label a path from the root to an intermediate vertex, then x � E for all x � X. 

Thus, if  is not a proper prefix of any sequence in E, then for any sequence �H2(t,) the 

pair / labels a path to a leaf of the first type. By this condition, there exists a / that labels 

a path to an intermediate vertex. This sequence possesses the properties (a, b, c) given in the 
definition of EAB.   

                       

We have, in fact, proven the following corollary as well. 

 

Corollary 2.6. State t is a reduction of s iff the tree does not contain any leaf of the second 

type.  

    

 Consider an example to illustrate the construction of a truncated successors tree. Assume 

that the NFSMs A and B (Figures 1 and 2) have the initial states numbered 1. We wish to 

verify if B ≤ A. The pairs a/x and b/x take both machines into the same states numbered 2, so 

one vertex is declared to be a leaf of the first type. The edge labeled b/x from the vertex (2,2) 

leads again to (2,2) and the other two edges, labeled a/x and a/y, lead to the leaf (3,1) of the 

second type since state 1 of B has a transition labeled a/y and state 3 does not. The pair a/y 

creates the edge from the root (1,1) to the leaf (3,1) of the second type. The truncated 

successors tree is given in Figure 3. Since there are leaves of the second type, we conclude 

that B Š
 A.  

  
1

a/xa/y

2

b/x b/x

  
1

b/y

a/x

a/y

b/x a/x

b/x
2

3

a/x
a/y

a/xa/y

22

11

3122
a/y

a/x b/x

a/y b/xa/x

31 31 22

 
         Figure 1: The NFSM A     Figure 2: The NFSM B         Figure 3: The tree 

       

 When checking the reduction relation for the given two states there exist some pairs of 

states of these machines for which this relation has been already verified, then we have 

additional termination rules. A vertex (t',s') is a leaf in two cases: 

(3) if t'≤ s' (the first type of leaf);  

(4) if t' Š
 s' (the second type of leaf). 

In a similar way, the set E can be derived by use of the rules (3) and (4). 

 In certain cases, it is possible to conclude whether a state t can be a reduction of state s 

based on information about the relations for other states.  
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 The states s and s' of the NFSM A are called separable [Star72], written s ò s', if there is a 

sequence �X* such thath(s,) ( h(s',) = �. 

 

Proposition 2.7. s ≤ s' & s' ò s'' �s Š
 s''.  

    

 Separable states for the reduction relation play the role of distinct (distinguishable) states 

for the equivalence relation in test derivation, i.e. checking experiment construction from 

deterministic machines. If an NFSM A has separable successors of its initial state w.r.t. the 

two input/output sequences, then any reduction of A also has separable, i.e. different 

successors of its initial state w.r.t. these sequences. 

 

 

3.  CHECKING EXPERIMENTS ON NFSMS 

 

 An experiment performed on a finite state machine consists of applying one or more input 

sequences (tests), observing the produced output sequences, and drawing a conclusion based 

on these observations [Henn64], [Moor56]. In this paper, we consider preset multiple 

experiments which are based on a set of predefined input sequences (using the "reliable" reset 

assumption [Petr93a]). 

 In the context of fault detection, so-called checking experiments have been defined 

[Henn64] for deterministic machines. In fact, these experiments are based on the following 

fault model. A machine under test is declared to be faulty  if it is not equivalent to the given 

reference machine (a non-conforming implementation). The reason is that the equivalence 

relation is taken as a conformance relation for the deterministic machines. A test suite is a set 

of input sequences since the corresponding set of output sequences is uniquely determined by 

this test suite. In case of nondeterministic machines, there are, in fact, several relations as 

possible candidates for a conformance relation (see, for example, [Star72], [Petr93a]). In this 

paper, we restrict ourselves to the reduction relation. 

 We consider the problem of deciding whether or not a machine under test is operating 

correctly w.r.t. the reduction relation, or in other words, the machine is operating as a certain 

reduction of the given reference machine. As in the deterministic case, this problem is in 

general not solvable, unless the machine at hand is known to belong to a finite class of 

machines. An experiment that enables us to do this is called a checking experiment w.r.t. the 

reduction relation. 

 To perform such an experiment the machine under test is required to produce all output 

sequences defined by its behavior function, i.e., the complete-testing assumption is satisfied: 
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it is possible, by applying a given input sequence to a given implementation a finite number 

of times, to exercise all of its possible execution paths which are traversed by this sequence 

[Petr93a], [Luo94a]. In particular, implementations might be deterministic for which the 

complete testing assumption is always satisfied. Without this assumption, it is impossible to 

have any guarantee for error detection, as pointed out, for example, in [Fuji91].  

 Let (A, ≤) be a set of all possible reductions of the given NFSM A and no two machines in 

this set are equivalent to each other; a be a finite set of machines with the input alphabet X. 

The set a\(A, ≤) represents all machines of a that are not reductions of A and is called a fault 

model.  

 A finite set E of finite input sequences of A is said to be a complete test suite for the 

NFSM A in the class a w.r.t. the reduction relation if for any machines B �a\(A, ≤) there is a 

sequence  in E such that H2(t0,) ”h(s0,). 

 In words, for every possible machine from a that is not a reduction of the NFSM A, the test 

suite E should have at least one sequence which detects this machine.* This property of a test 

suite guarantees complete coverage of all faults from the predefined fault model. 

 In contrast to the classical checking experiments for a single machine (see, e.g., [Moor56], 

[Koha78]), we are facing the problem of constructing checking experiments for a family of 

reference machines, since the given NFSM represents a set of its reductions and it might be 

interpreted as a compressed notation of this set. 

 The well known identification experiments defined in [Gill62] for deterministic machines 

also deal with a set of FSMs. In fact, a complete test suite w.r.t. the reduction relation can be 

obtained in a similar fashion if the class a contains only deterministic machines. Even though 

we are eventually interested in a general case of nondeterministic machines, let us for a 

moment confine ourselves to deterministic implementations and try to see the possible 

difficulties facing this approach. 
 Let a be a set of all possible D-reductions of the NFSM A and no two FSMs in this 

set are equivalent to each other. Each machine of is deterministic, and the reduction 

relation reduces to the equivalence relation. We thus could construct a complete test suite in 
the class a for each machine from the set separately. Now we should apply all the input 

sequences from the obtained suite for every D-reduction to the given machine under test. If 

we find that each input sequence produces the same output sequence in this machine as it 
does in a proper machine from , then we may conclude  that the machine under test is 

equivalent to this D-reduction; otherwise the machine under test is not equivalent to any D-
                                                 
* In the case of deterministic FSMs, the set a necessarily includes the reference machine itself. In our case, this 
set might not include it. It is not nessarily true that every output sequence of the reference machine is produced 
by a conforming machine in response to an input sequence. A more appropriate definition of a complete test 
suite could choose an appropriate subset of output sequences. It is, however, outside the scope of this paper. 
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reduction of A, that is, it is not a D-reduction of the given NFSM A. To follow this approach, 

it is necessary to associate every output sequence with the name of a D-reduction which 

produces this output sequence and to save them during testing. According to this presented 
method we must first explicitly enumerate all possible machines from the set i.e.the D-

reductions of the given NFSM A. This set may be exponentially large. Moreover, as will be 

shown later in this section, in general, the list of D-reductions cannot be obtained in a 

straightforward way. At the same time, this constructed test suite is capable not only of 

checking the equivalence of the machine under test to any D-reduction of A, but also of 

identifying that D-reduction which is equivalent to the given machine under test. Since in the 

context of fault detection, we need not to make such an identification, we might wish not to 

save the name of the D-reduction along with an output sequence; that is, we may save only 
the set of all output sequences of all the machines from . Unfortunately, in general, this 

does not work as the following example [Petr93b] shows.  

 

1 2

a/x,y
b/y

a/x,y

b/x,y
1 2

a/x
b/y

a/yb/y
1 2

a/x
b/y

a/xb/y
 

 

     Figure 4: The NFSM A        Figure 5: The FSM B      Figure 6: The FSM C 

 

 The problem is that the set of input sequences obtained by merging complete test suites 
derived for each reduction from the set separately, is not a complete test suite for A in the 

same class. In fact, the set X3 is a complete test suite for every (deterministic) FSM that is a 

reduction of A (Figure 4) in the class of all deterministic machines with at most two states 

[Moor56]. However, X3 is not complete for A in this class as can be seen from the FSM B in 

Figure 5. Its responses to any input sequence from X3 are contained in the set of responses of 

A to this input sequence, but the response of B to the sequence babb is not. The reason for 

this is that while merging suites we allow the machine under test to respond to different input 
sequences with output sequences belonging to different machines from . 

 We finally demonstrate that a set of possible reductions of the given NFSM cannot be 

determined in a straightforward way. To illustrate the problem we first introduce the notion of 
a submachine for the given NFSM A. An NFSM A' = (S', X', Y', h', s0) is said to be a 

submachine of the NFSM A = (S, X, Y, h, s0)  if S' ⁄ S, X' ⁄ X, Y' ⁄ Y and h'(s,x) ⁄ h(s,x) holds 

for all (s,x) �S'xX'.   

 It is obvious that all submachines of A are its reductions.  However, the set of all the 

submachines does not coincide with the set of reductions, as the following example shows 

(Figure 4 and Figure 6).  Assume all machines start from the states numbered 1. It is easy to 



 

 12  

 

check that the FSM C is a reduction of the NFSM A, but it is not equivalent to any 

submachine of A, because under the input a it enters the state 1 from both states and A does 

not change its state under this input. Thus, it is impossible to replace the set of all the 

reductions of A with the set of all its submachines. 

 In the next section, we develop an approach for deriving a complete test suite directly from 

the given machine w.r.t. the reduction relation. 

 

 

4.  TEST DERIVATION 

 

 In this section, we develop an approach to solve the problem of deriving a complete test 
suite for the ONFSM A w.r.t. the reduction relation in the class m of NFSMs which is a 

universal set of all (deterministic and nondeterministic) machines with the same input 

alphabet and with at most m states.  

 The proposition 2.4 and its corollaries establish the termination rules for obtaining a finite 

test suite E from infinite sequences in the special case when the machine under test is known.  

In particular, we should expand the successors tree until a pair of states is repeated or we find 

that B is not a reduction of A.  
 If the machine under test is an arbitrary NFSM from the universal set m then actual states 

of this machine are unknown and we can only try to estimate the number of their appearances 

along a particular path in the successors tree.  The upper bounds for the number and the 
length of input sequences in a complete test suite for the n-state ONFSM A in the class m 

can be established. By Xr we denote the set of all sequences in the alphabet X of length up to 

r, including the empty sequence e. 

 

Proposition 4.1. Let X be the input alphabet and n be the number of states in an ONFSM A.  
The set Xmn is a complete test suite for A in the class m. 

 
Proof. Assume B = (T, X, Y, H, t0) and B�m. Since B has no more than m states, and A has 

exactly n states there are no more than mn different pairs of states A and B. If the machine B 
is an Xmn-reduction of A then for any sequence �Xmn and any  in H2(t0,) there exist a 

proper prefix  of  and a proper prefix  of  such that t'� 
H

1

(t,) and h
1
(s,) = 

h
1

(s,) for 

any t' � H
1
(t,). 

     
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 The set Xmn is in a sense a universal complete test suite. It can be used for any reference 

machine with the same alphabet X and the number of states up to n. However, it can be 

reduced if additional properties of the ONFSM A are taken into account. If the reference 

machine A is deterministic and reduced then the structure of a complete test suite might be 

defined as the concatenation of three sets: VEW. The set V is a set of input sequences called a 

state cover of the reference machine. E = Xm-n+1 is the set of all input sequences of length up 

to m-n+1. W is a characterization set of the reference machine [Vasi73], [Chow78], [Petr91], 

[Fuji91]. The set VE ensures that all the transitions in the machine under test are traversed. 

The set W is used to identify initial and final states of any transition. As shown in [Luo94a], 

[Luo94b] a complete test suite for an ONFSM w.r.t. the equivalence relation can be 

constructed following this structure. In our case, the relation between an IUT and the 

specification is the reduction relation, thus the structure VEW does not fit to this more 

general framework and needs certain adjustments. At the time, it is interesting to identify 

such a subclass of ONFSMs for which this structure can still be preserved. 

 We define a D-reachable state cover set V for the given ONFSM A in the following way. 
For each D-reachable state si of A we choose an input sequence i which uniquely brings A 

from the initial state into si. The union of all these sequences gives us the set V. This set is not 

empty since the initial state is a D-reachable from itself. We consider first the class of 

reference ONFSMs that are D-connected. 

 

Proposition 4.2. The set VX(m-1)n+1 is a complete test suite for the D-connected ONFSM A 
in the class m. 

 
Proof. It is again straightforward to show that E = X(m-1)n+1  can be selected as a set EAB for 

any B from m. In fact, there are n different pairs (si,ti) as successors of the states s0 and t0 

w.r.t. the input/output sequences i/i, i � V, i � H2(ti,). Any i is a proper prefix of some 

sequence of VX(m-1)n+1  and x � VX(m-1)n+1  for all x�X. Therefore, among the (m-1)n+1 

pairs of successors of any states (si,ti), si �S and ti �Hi
2

(t0,i) which are traversed by A and 

B under any input/output sequence / of length (m-1)n+1, either there exist the same pairs of 
states or the pair (si,ti), si �S.  

    

 Thus, based on the state cover of the specification ONFSM, it is possible to reduce a 

complete test suite. Next we consider how a characterization set can be used for the same 

purpose, but first we make a necessary adjustment to the definition of a characterization set 

for ONFSMs and the reduction relation.  
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 A sequence ij separates states  si and sj in the ONFSM A, if the output reactions of A to 

ij in these states do not intersect, i.e., h(si,ij)  h(sj,ij) = �Such a sequence exists only 

for separable states.  

 Assume that such a single input sequence is found and fixed for each pair of separable 

states.  The set W of these words is said to be a characterization set for the ONFSM A; it can 

have up to n(n-1)/2 words.  If the given machine A happens to be deterministic and reduced 

(minimal) then our definition reduces to the classical definition of a characterization set (see, 
e.g. [Koha78], [Fuji91]). The set  Wi = { ij | ij�Wsj�S & sj ò si } is said to be a state  

si identifier in the set S  of states of A.   

 

Proposition 4.3. Let the given ONFSM A be D-connected and have all states pairwise 

separable. The set VXm-n+1W is a complete test suite for A w.r.t. the reduction relation in the 
class m. 

 
Proof. Let B = (T,X,Y,H,t0) be an NFSM with at most m states which is an VXm-n+1W-

reduction of A. We demonstrate that the set VXm-n+1 has all the properties of a set EAB.  

 According to construction of the set VXm-n+1 if is a proper prefix of another sequence 
then x � VXm-n+1 for all x � X. We shall show that for any sequence i, i � V, (has 

length m-n+1), for any reaction  of B to , and any t' � H
2
(t0,i) there exist a sequence � 

VXm-n and a reaction of B to  such that t'� 
H

1

(t0,) and h
1
(s,i) = 

h
1

(s,). 

 For si�S, let T(si) be a subset of states of B, where each element in T(si) is a W-reduction 

of si. Since any two distinct states si and sj of A are separable T(si) T(sj) = �holds. 

 Let V = { i | h1(s0,i)= {si}, si � S }. Fix for any i � V an output sequence of B to i, 

i.e. i � H2(t0,i). Since B is a V-reduction of A i � h2(s0,i). A pair of successors of initial 

states of A and B w.r.t. the input/output sequence i/i, i�V, is denoted by (si,ti), ti � 
Hi

2
(t0,i).  

 The NFSM B is iW-reduction of A. By virtue of proposition 2.1, every state ti is a W-

reduction of si, i.e. ti � T(si). Since T(si)  T(sj) = � for si ≠ sj there are n different 

successors in B of its initial state w.r.t. the input/output sequence i/i, i� V. Because of 

this, and the fact that B has at most m states, any state t of B is a successor of some state ti 

w.r.t. a proper sequence / of a length at most (m-n).  Since B is an i-reduction of A there 

exists sj �S such that {sj} = h
1
(si,). Moreover, since B is an iW-reduction of A, state t is 

a W-reduction of sj, i.e. t �T(sj). Thus the following is true for any t �T.  There exists a 

single state s �S such that t � T(s); moreover, the pair (s,t) is a pair of successors of s0 and t0 

w.r.t. some sequence /, where �VXm-n. 
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 Consider a sequence �VXm-n and �H2(t0,). B is a  VXm-n-reduction of A, then  � 

h2(s0,). Let t� 
H

1

(t0,), {s} = 
h

1

(s0,), x�X and y �H2(t,x). Since B is a VXm-n+1-reduction 

of A, B is a x-reduction of A as well and y �h2(s,x). B is also a xW-reduction of A, so by 

virtue of the proposition 2.1 every state t'�Hy
1
(t,x) is a W-reduction of s', {s'} = hy

1
(s,x), i.e. 

t'�T(s').  

Thus the pair (s',t') has already been encountered as a pair of successors of the initial states of 
A and B w.r.t. some sequence /, where �VXm-n and �H2(t0,). The input sequence  is 

a proper prefix of a sequence from VXm-n+1 . 

   

An example. We consider an NFSM in Figure 7. 

 

  
1

b/x

a/x

a/z

a/y

2

b/yb/y,z

 
Figure 7: The NFSM 

 

The states 1 and 2 are D-reachable from the initial state 1, the state cover set V = {e, b}. 

These states are separable and W = {a}. We derive test suite E according to proposition 4.3 in 
the class 2, the result is E = {aa, baa, bba}. 

    

 The above proposition characterizes a subclass of ONFSMs for which a complete test suite 

w.r.t. the reduction relation can be derived in a way similar to the subclass of deterministic 

FSMs. 

 Note that the test suite VXm-n+1W can be actually reduced in size without loss of its 

completeness using a method similar to the Wp-method [Fuji91]. To identify the state in a 

leaf of the VXm-n+1-tree there is no need to use all the sequences of the set W; it is sufficient 

to apply the sequences forming an identifier of the state of A in that leaf. If the reference 

machine is D-connected machine with pairwise separable states, then we can guarantee that 

under the input sequences from the set VXm-n, a machine under test reaches all of its 

reachable states, or we can conclude that it is not a reduction of the reference machine w.r.t. 

the input sequences from the set VXm-nW.  

 As shown above, the structures of a complete test suite w.r.t. the reduction relation and 

w.r.t. the equivalence relation are alike if all the states of the reference ONFSM are separable. 

The cardinal difference lies in characterization sets W and state identifiers. Separable states 

are not equivalent, however, nonequivalent states are not necessarily separable. If not all the 
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states are pairwise separable then for some state t of B, there might be two states s and s' of A 

such that t is a W-reduction of s and t is a W-reduction of s'. However, the first part VXm-nW 

of the experiment cannot identify of which state s or s' this state t is a reduction. This is one of 

the reasons why the traditional state identification approach developed for deterministic 

machines w.r.t. the equivalence relation cannot be applied to derive a complete test suite for 

nondeterministic machines w.r.t. the reduction relation. 

 In our next step, we consider a general class of arbitrary ONFSMs which might not be D-

connected and might contain states which are not pairwise separable. These machine may 

have several different (possibly overlapping) sets of pairwise separable states. We shall use 

this information in order to reduce the total length of a test suite.  
 Let P1,...,Pk be all maximal sets of pairwise separable states from S in the given ONFSM 

A. Consider a set Pi. Let RiPi be a subset of states which are D-reachable from the initial 

state. Ri can be empty for certain Pi. Let V be a D-reachable state cover set (note that at least 

one state is always D-reachable from s0, namely s0 itself) and W be a characterization set of 

A.  
 For each D-reachable state sj we define a set Ij of input sequences by induction: 

 (1) An empty word e is in Ij. 

 (2) Let  [ Ij. If there exists a sequence  [ h2(sj,) such that a sequence of states that the 

NFSM A traverses from the state sj when executing the input/output sequence / includes 

states of any Pq less than (m-|Rq|+1) times then x [ Ij for all x [ X. 

 (3) There are no other sequences in Ij. 

 We denote by Ij@W a set of sequences obtained by concatenating all the prefixes 

(including the empty sequence e) of sequences of Ij by all the sequences of W. We claim the 

following. 

 

Proposition 4.4. The set E' =

jIj@W U
jV  is a complete test suite for the ONFSM A w.r.t. 

the reduction relation in the class m. 

 
Proof. Let B = (T,X,Y,H,t0), |T| = m, and BE'≤A. Similarly to the proofs of the above 

statements, it suffices to show that the set E = 

jIj U
jV  has all the properties of the set EAB 

as well. 
 For every sequence j�V which takes the machine A to a D-reachable state sj we consider 

a sequence j�H2(t0,j). B is a V-reduction of A, therefore, j�h2(s0,j). For every state sj, 
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we assign state tj such that tj �
Hj

1
(t0,j). States sj, tj are the successors of the initial states s0, 

t0 w.r.t. the input/output sequence j/j 
 In order to demonstrate that the set E has the properties of EAB it suffices to show that for 

any sequence j, j [ V,  is not a proper prefix of any sequence in E, for any  [ H2(tj,), 

and for any t' [ H
1
(tj,) there exists in E a sequence r, r [ V, in EAB such that: 

 (S1) length of the sequence  is less than that of . 

 (S2) there exists  [ H2(tr,) such that t' [ 
H

1

(tr,) and 
h

1

(sr,) = h
1
(sj,). 

 If such a sequence rexists then there are two possible cases: 1) ris a proper prefix of 

an appropriate sequence in E, 2) ris not a proper prefix of any sequence in E. 

In the first case, has all the necessary properties of j [ E. In the second case, we can 

consider as another  and for it, there exists a shorter sequence with the properties (S1) 

and (S2). Since  has a finite length one can find a sequence  (possibly the empty sequence) 
such that ris a proper prefix of an appropriate sequence in E. 

 We denote by W(Pq) a characterization set of the set of states Pq. W(Pq) is a set of input 

sequences that separate states in Pq. By Wi,q we denote an identifier of state si [ Pq in the set 

Pq. By definition  

W �W(Pq) �Wi,q.                                                        (1) 

 As previously, let T(si) be a subset of states of T that are W-reductions of state s. Then, for 

any Pq and si [ Pq, let a set Tq(si) contain all the states of T that are Wi,q-reductions of state si. 

Because of (1), T(si) Tq(si) holds for any q and i. Since any two states in Pq are separable, 

we have  
Tq(si)  Tq(sj) = �  si, sj [ Pq, si ≠ sj .                                     (2) 

moreover, 
T(si)  T(sj) = �si ò sj.                                                   (3) 

 The NFSM B is a VW-reduction of the ONFSM A. Consider a state tr that is assigned to sr 

reachable under the input sequence r [ V. Since B is an rW-reduction of A, state tr is a W- 

reduction of sr by virtue of proposition 2.1, and therefore tr [ T(sr), i.e. tr [ Tq(sr) for all Pq  
sr.  

 Let = x1...xk [ Ij,  be not a proper prefix of any other sequence of Ij, and = y1...yk [ 

H2(tj, x1...xk), therefore, y1...yk [ h2(sj,x1...xk). Let also ]a= x1...xa be a prefix of of length 

a. We denote by  

s0  s1  ...  sk  

t0  t1  ...  tk  
the sequences of successors of states sj=s0 and tj=t0 of A and B w.r.t. the input/output 

sequences ]a/]a, a = 1,...,k. In other words, {sa} = h ]a
1

(sj, ]a) and ta [ H ]a
1

(tj, ]a). 
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 Since B is an j]aW-reduction of A for any ]a, every state ta is a W-reduction of state sa, 

therefore  
ta [ T(sa) and ta [ Tq(sa), Pq  sa.                                           (4) 

 Let states si1,...,sie belong to some set Pq of pairwise separable states. Assume that these 

states occur in the sequence  s1 ... sk not less than (m-|Rq|+1) times. Since  is not a proper 

prefix of any another sequence in Ij, such a Pq exists.  Due to (4), 

tia [ T(sia) and tia [ Tq(sia), a = 1,...,e.  

 There are two possible cases: 
1) among states tia, a = 1,...,e, there exists state tr that is assigned to some state sr [ Rq;  

2) there is no such state among states tia, a=1,...,e. 
 In the first case, since all the states in Pq are pairwise separable, i.e. Tq(sia)  Tq(sib) = 

�if sia ≠ sib, state sia can only be state sr [ Rq. Therefore, we can use the sequence xa+1...xk as 

a sequence  with the properties (S1) and (S2) and  = ya+1...yk. 

 In the second case, |Rq| different states are absent among states tia that are assigned to 
states sr [ Rq. Then a number of different states in the sequence ti1...tie does not exceed (m-

|Rq|). Since e≥(m-|Rq|+1) then at least two states tia and tib, a<b, coincide. Because of tia [ 
T(sia) and tib [ T(sib) and Tq(sia)  Tq(sib) = � for sia ≠ sib, the states sia and sib coincide as 

well. Thus, we can use a sequence x1...xaxb+1...xk as a sequence  with the properties (S1) 

and (S2) and  = y1...yayb+1...yk.  

 

Remark 1. As it follows from the above proof, to check the state reached after any sequence 
j [ V, it is sufficient to use only a subset of W that is an identifier of sj in the set S of all 

states of A. 

 
Remark 2. Let  [ Ij,  be a non-proper prefix of another sequence in Ij and P be a union of 

all Pq, q=1,…,k, such that for any  [ h2(sj,) the NFSM A passes not less than (m-|Rq|+1) 

states of a some Pq executing an input/output sequence /. According to the proof, for any 

output response  to the input , it is sufficient to separate not all the states but only those 
which are in this particular Pq. To do this, we can use a subset W(P) rather then the whole set 

W. Moreover, if for some sequence j]a, we have 
h

1

(sj,]a) � P for any  [ h2(sj,]a) then 

there is no need to use any subset of W after ]a. 

 

An example. For the ONFSM A (Figure 8) with the initial state 1 we wish to derive a 
complete test suite in the class 3, in other words, assuming that any conforming 

implementation should have at most three states.  
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Figure 8: The ONFSM A 

 

In the given machine, there are three D-reachable states 1, 2, and 4, so the D-reachable state 

cover set is V = {e, a, ab}, where e is the empty sequence. All the states are pairwise 
separable except for the pair 1 and 4, there are thus two maximal sets of separable states: P1 = 

{1,2,3} and P2 = {2,3,4}. Since state 3 is not D-reachable the corresponding subsets are R1 = 

{1,2} and R2 = {2,4}. The characterization set is W = {aa, bb}.  

Our next step is to construct the sets I1, I2, and I4 of input sequences following the above 

given rules. I1 = { aa, ab, baa, bab, bb }. I2 = { aa, baa, bab, aba, abb, bb }, I4 = { aa, aba, abb, 

ba, bb }. The test suite is E' = eI1@W "  aI2@W " abI4@W = { baaaa, baabb, babaa, babbb, 

bbaa, bbbb, aaaaa, aaabb, aabaaa, aababb, aabbaa, aabbbb, abaaaa, abaabb, ababaaa, abababb, 

ababbaa, ababbbb, abbaaa, abbabb, abbbbaa, abbbbb }. 

 Next, we demonstrate how the result can simplified following optimization suggested by 

Remarks 1 and 2. First, the set VW is constructed: VW = {e, a, ab}{aa, bb} = {aaa, abaa, bb, 
abb, abbb}. Then, we choose a proper set P for every sequence in the sets I1, I2, and I4. Take 

the set I1 as an example. {1,2,3} is the only set for the sequence aa, and {2,3,4} is the only set 

for ab. For the remaining sequences in I1, we choose the set {1,2,3}. We need the following 

state identifiers: W1(1,2,3) = W2(1,2,3) = W3(1,2,3) = aa and W2(2,3,4) = W3(2,3,4) = 

W4(2,3,4) = bb. The resulting complete test suite is {aaaaa, abbbbb, abaaaa, baaaa, bbaa, 

babaa, aabbaa, ababbb, abaabb, ababaaa, ababbaa, abbaaa}. Total length of this test suite is 

twice less than that of E'. 

    

 The approach, developed in this section for test derivation from nondeterministic FSMs 

w.r.t. the reduction relation, can be viewed as a generalization of the existing methods for 

deterministic FSMs, namely, the W-, Wp-, UIOv-, DS-methods, as well as the methods based 

on harmonized state identifiers [Yevt90], [Petr91], [Luo94b]. Note all these methods 
guarantee complete fault coverage within the predefined fault domain m. In particular, if the 

specification machine happens to be deterministic and reduced then: 
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1) all states are deterministically reachable from the initial state, and the set V becomes a 

traditional state cover set; 

2) the reduction relation reduces to the equivalence relation, separable states become 

nonequivalent (distinguishable) states, and the set W becomes a traditional characterization 

set; 

3) all the states are deterministically reachable and separable, all sets of pairwise separable 
states P1, …,Pk as well their subsets Rq of D-reachable states coincide with the set S of all 

states of the given FSM; 
4) the sets of input sequences Ij applied to every D-reachable state sj become equal to Xm-n+1 

as |Rq| = |S| = n for all q and m-|Rq|+1 = m-n+1; 

5) if every state of the given machine possesses a Unique Input/Output (UIO) sequence then 

the characterization set W can be chosen as a union of these UIO-sequences (m has to be 

assumed equal to n); this also implies that our approach never yields a longer complete test 

suite than the UIOv-method for deterministic machines; 

6) if the given machine possesses a distinguishing (diagnostic - DS) sequence (which is a 

common UIO-sequence for all the states) then this sequence could serve as a characterization 

set W, this also implies that our approach never yields a longer complete test suite than the 

DS-method for deterministic machines. 

We also note that the Wp-method originally proposed for deterministic FSMs was later 

generalized in [Luo94a] for the equivalence relation to cover nondeterministic machines. This 

method cannot be applied to generate tests in the context of the reduction relation. The reason 

is that states distinguishable w.r.t. the equivalence relation may be non-separable states. 

However, separable states are not equivalent. Thus, the method presented in this paper can be 

easily adapted to generate tests in the context of the equivalence relation. 

 It is interesting to note that all the currently existing test derivation methods which are 

based on the FSM model and guarantee complete fault coverage, assume that faults either do 

not increase the number of states (m=n) or increase it up to a certain limit m, m≥n. The reason 

is that an implementation conforming to the specification w.r.t. the equivalence relation 

cannot have less states than the specification. It is not the case, however, when we deal with 

nondeterministic FSMs and the reduction relation. A conforming implementation is, in fact, a 

reduction of the given specification and it may have less states. The intuition is that to 

implement a part of specified behavior a subset of states in the specification may suffice. On 

the other hand, it becomes more difficult to fix an upper bound on the number of states in 

implementations, i.e. to limit a fault domain, as the domain of the state number is not directly 

related to the number of states in the given specification machine. Further study is needed in 
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this direction, the results could possibly provide a further optimization of the presented 

approach to deriving tests for the reduction relation. 

 

 

5.  CONCLUSION 

 

 In this paper, we have considered nondeterministic FSMs  and a rather general relation 

defined for these machine, namely, the reduction relation. It differs from the equivalence 

relation by allowing a reduction of the given FSM to be less nondeterministic or even 

deterministic. We have shown that similar to the equivalence relation, the reduction relation 

defined over infinite sequences can be checked using finite number of finite sequences. We 

have introduced the notion a checking experiment for a nondeterministic FSMs with respect 

to the reduction relation and demonstrated that the problem of its construction cannot be 

reduced to the known problem of checking and identification experiments for deterministic 

model w.r.t. the equivalence relation. Based on these results, an approach for test derivation 

from nondeterministic FSMs with respect to the reduction relation has been elaborated. This 

approach can be applied to both deterministic and nondeterministic specifications and 

implementations. It guarantees full fault coverage within the predefined bound on the number 

of states in implementations. We have also demonstrated that our approach is a nontrivial 

generalization of currently existing methods for deterministic machines. The method for test 

derivation developed in this paper includes these methods as its special cases. In other words, 

we have generalized the existing results on checking experiments for deterministic FSMs to 

cover nondeterministic behavior and the reduction relation. It is believed that these results 

provide for a basis for conformance test derivation from nondeterministic specifications in 

cases where a conformance relation can be a preorder. The current work is to further relax the 

constraints on the class of machines considered and to investigate how our method could be 

additionally optimized. 
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