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Abstract 

It is shown in this paper that the problem of deciding if 
a test suite generatedjfom a finite state machine provides 
complete fault coverage can be converted into the 
problem of minimizing the test tree representing the test 
suite. A fault coverage analysis procedure, capable of 
deciding if a given test suite provides complete fault 
coverage in respect to a given FSM spec$cation, is then 
developed. The core of this procedure is a state 
minimization procedure developed specifically for the 
class of FSMs whose graphic representations are trees. 
The fault coverage analysis procedure can cope with 
partially specified FSM speciflcations which need not be 
reduced and faults that increase the number of states up 
to a chosen upper bound. Two necessary and one 
suficient conditions, which in some cases may simplify 
the fault coverage analysis, are also presented 

1 Introduction 

Apart from its traditional applications in the 
development of sequential digital circuits, the finite state 
machine (FSM) model has been extensively used in recent 
years in the conformance testing of communication 
protocols. Quite a number of methods have been proposed 
in the literature for generating test suites from finite state 
machines [Uralgl, SiLe89J. It is well known that., 
however, not all of these methods can generate from a 
given FSM a test suite which is powerful enough to detect 
all possible faults in an implementation under test (IUT). 
Therefore, an important issue related to the test suite 
generation is to evaluate the quality, often called the fault 
coverage, of a test suite generated somehow f” a given 
FSM. Most of the existing work that has been done on this 
issue are based on Monte-Carlo simulation DaSa88, 
SiLe89, DDB91, MCS931 to estimate the fault coverage 
ofatestsuite. Our primary purpose in thispaper is to 

develop a systematic approach which can decide if a test 
suite provides complete fault coverage and therefore is 
capable of detecting all possible faults in an IUT. 

To minimize a state machine is to find another machine 
which has the least numbex of states but can fulfill all the 
functions of the original machine. The problem of state 
minimization was a very active research area in the study 
of automata theory from the 50’s through to the ~O’S, 
mostly in relation with the synthesis of sequential circuits. 
The bask motivation is that an FSM used to model a 
sequential circuit under development often contains 
redundant states, i.e., states whose functions can be 
accomplished by other states. As the number of memory 
elements required for a physical realization of the FSM, 
i.e., the sequential circuit, is directly related to the number 
of states, the minimization of the number of states can in 
many cases reduce the complexity and cost of the 
realization. Although it is quite simple to minimize a 
completely specified machine, it can become in general 
very complex to minimize a partially specified machine. 
Therefore most work on state machine minimization has 
been done for partially specified machines [Gins59, 
GrLu65, Ke1170, Ke1171, PaUn59, Unge651. 

It will be shown in this paper that the problem of 
deciding if a test suite provides complete fault coverage 
can be converted into the equivalent problem of 
minimizing the state machine which represents the test 
suite in the form of a tree. Therefore, we will frst develop 
a state minimization procedure for the class of FSMs 
whose graphic representations are trees. This 
minimization procedure will combine the advantages of 
Kella’s two state minimization approaches [Ke1170, 
Ke11711 and provide some features required for its 
application to the fault coverage analysis. We will then 
propose a fault coverage analysis procedure which starts 
with the conversion of a given test suite into a tree FSM 
and then calls the state minimization procedure to 
minimize this tree FSM. If, as a result of the minimization 
of this tree FSM. an FSM is found which cannot . -  - 

accomplish all the’ input/output traces specified in the 
given FSM specification, the test suite is considered to be This research was supported by a grant from the Canadian 
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need not be reduced. It can also cope with faults that 
in- the number of states up to a chosen upper bound. 

The rest of the paper is organized as follows. The FSM 
model is first presented in Section 2. The concept of 
complete fault coverage of a test suite is defined in 
Section 3. A state minimization procedure for tree 
machines is then developed in Section 4. It is then shown 
in Section 5 that the minimization procedure for tree 
machines can be used to decide if a test suite provides 
complete fault coverage. Two necessary and one 
sufficient conditions are also given there which may in 
some cases simplify the fault coverage analysis. Finally in 
Section 6, our approach is compared with related work. 

2 TheFSMmodel 

A finite state machine, often simply called a machine 
throughout this paper, is essentially an initialized Mealy 
machine defined below. 

Definition 2.1: A finite state machine is a 7-tuple <S. 
X, Y, S1, 6, h. D>, where 
S is a state set {Sl, S2, ..., S,) with SI as the initial state; 
X is a finite set of input symbols; 
Y is a finite set of output symbols; 
D is a specification domain which is a subset of S x X; 
6 is a transfer function 6: D --> S; 
h is an output function h: D --> Y. 

An FSM is said to be completely specified, iff D = S x 
X. Otherwise it is said to be partially or incompletely 
spec$ed. Since S and h are required to be functions, this 
FSM model is deterministic. That is, for each (Si, x) Q D, 
there should be exactly one state Sj Q S and exactly one 

y. In this case, we say there is a transition f'rom state si to 
Sj with input x and output y. Such a transition is usually 
written as Si -x/y-> Sj. An FSM can be given in a graph 
form, with the states and transitions of the FSM 
represented by the vertices and arcs of the graph, 
respectively. An example of a graphic representation of an 
FSM is given in Figure 1. 

Output symbol y c Y Such that &Si, X) = S.  and X(Si, X) = 

I I 

Figure 1: An FSM 

For an alphabet Z, Z* represents the set of words 
constructed on Z and "E" represents the empty word, i.e., 
the word consisting of no symbol. The dot " e "  is used to 
represent the concatenation operation of two words. 
However, this dot symbol is often omitted when no 
ambiguity arises. 

Definition 23: Let p = xlX2"'xk E x*. p is said to be a 
defined input sequence for state Si e S, if there exist k 
states Sil, Sil, ..., si, c S and an output sequence q = 
yIyz...yk c Y such that there is a sequence of transitions 

in the finite state machine. 
We use v(Si) to denote the set of all the defined input 

sequences for state Si. A sequence of transitions, such as 
the One in (2-1). can be abbreviated aS Si -p/q-> si, if We 
are not interested in the intermediate states. When we do 
not care about the output sequence, it can be further 
simplified as Si -p-> Sik, with the meaning that the FSM, 
when in state Si and given an input sequence p, will enter 
state Sik. Therefore, the definitions of the transfer function 
6 and output function X can be naturally extended to apply 
not only to single inputs, but also to sequences of inputs. 

s i-xl/y 1 ->si 1 -x2/y2->s i2-> ... -> Sik-1 -xk/yk->sik (2-1) 

Definition 23: Let p = x1x2"'xk e v(Si). Then, 
&si, E) = si, 
%si, E) = E. h(si, p) = p').h(G(Si, p'), xk) 

&si, p) = &&si, p.1, xk) 

where p* = XlX2"'Xk.l. 

Definition 2.4: Two states Si and Sj of a machine M 
are Said to be compatible states, written as Si = Sj, if for 
V P Q v(Si) n w<Sj), A(&, P) = h(Sj, P). Otherwise, they 
are Said to be distinct states and written as Si ?; Sj. 

We note that, according to the above definition, if 
W(Si) f l  W<Sj) = 0, then Si is compatible with Sj. If the 
FSM happens to be completely specified, then the 
definition of compatible states given above reduces to the 
definition of equivalent states [Gi1162, Koha781. 

Defmition 2.5: A machine is said to be reduced if, for 

Defmition 2.6: Let C & a subset of states. C is said to 
be a compatible class if, for any pair of states Si, Sj Q C. 

Obviously, any subset of a compatible class is also a 
compatible class. 

Definition 2.7: A compatible class C is said to be 
" a 1  if, for any state Si 4 C, there exists Sj tz C such 

It is easy to see that once we have found all the 
maximal compatible classes, we have essentially also 
found all the compatible classes as any compatible class 
should be a subset of some maximal compatible class. For 
a subset B of states and an input symbol x, we use 
NEXT(x; B) to denote all the states which can be reached 
under input x from states in B, i.e., 

any pair of states Si and S. Si t Sj. 

Si s Sj. 

that Si + Sj. 

NEXT(x; B) = { &Si, X) I Si e B and &Si, X) defiined }. 
Definition 2.8: For a compatible class C and any input 

x, NEXT(x; C) is also a compatible class and is said to be 

Defmition 2.9: Let CS = { C1, C2, ..., c k  } be a set of 
an implied compatible class of C under input x. 

compatible classes. 
(1) CS is called a compatible covering if 

c1 U c, U ... U Cr= { s,, s*, ..., Sn};  
(2) CS is said to be closed if for any C, E CS and any 

input x, there exists Cj CS such that NEXT(x; Ci, 
C_ Cj; 
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(3) CS is said to be a closed compatible covering if it is 
a compatible covering and closed; 

(4) CS is said to be a minimal closed compatible 
covering if it is a closed covering containing the 

Definitlon 2.10: Let M and M be two FSMs with the 
same input symbol set and h-1 and & be their output 
functions respectively. State Si of M is said to cover (or 
contain) state Sj’ of M if and only if v(Sj’ E w(Si) and 

Deflnition 2.11: Let SI and S1’ be the respective initial 
states of the machines M and M’ with the same input 
symbol set. Then M is said to cover M‘ if and only if S1 

Apparently, if machine M covers machine M, then M 
can be replaced by M, since all the functions of M (in 
terms of its specified input/output traces) can be 
accomplished by M. The machine cover relation given in 
Definition 2.11 is essentially the same as the quasi- 
equivalence relation in [Gill621 and the CONF relation in 
[YPB93]. When both M and M are completely specified, 
the machine cover relation becomes the well-known 
equivalence relation for initialized machines [Koha78, 
Gill62, Chow78, etc.]. 

Definition 2.12: A reduced FSM which covers a non- 
reduced FSM is said to be a reduced form of the non- 
reduced FSM. A reduced form which has the least number 

We note that, for a completely specified FSM, its 
reduced form and minimal form are the same and unique. 
For a partially specified FSM, however, both its reduced 
and minimal fcnms can be non unique Koha781. 

3 Complete fault coverage of a test suite 

Testing based on the FSM model that has been 
extensively used in the conformance testing of protocols 
as well as traditional hardware testing is basically black- 
box testing. The FSM based black-box testing is 
essentially “the testing of an FSM implementation” 
Wral91, Yann911: given an FSM specification (denoted 
as Ms) and an implementation of this FSM (denoted as 
MI), one is asked to decide, through the testing of MI as a 
black-box, whether MI is a valid implementation of Ms 
according to certain predefined criterion often called an 
implementation relation or a conformance relation 
[YPB93]. For deterministic FSMs, as discussed 
throughout this paper, the machine cover relation given in 
Definition 2.11 is the strongest relation that can be tested 
and is essentially the same as the CONF relation defined 
in [YPB93]. For further discussion, we need to introduce 
the following concepts. 

Definition 3.1: Let SI be the initial state of a 
specification machine Ms. A test case (or test sequence) is 
an input sequence of finite length and defined for S1. i.e., 

Each test case starts from the initial state S1 of the 
specification machine and will be applied to the initial 

least number of compatible classes. 

h-l(Si, P) = &(Sj’, PI, fa VP 6 v(Sj’ ). 

covers S1’. 

of states is said to be a minimal form. 

in y(Sl). A test suite is a finite set of test cases. 

state of an implementation machine under test. Therefore, 
a special input symbol “r” called reset is used at the 
beginning of each test case. When the rest symbol “r” is 
applied, an implementation machine will transfer to its 
initial state no matter which state it is currently in. 

Definition 3.2: Let MI and Ms be an implementation 
machine and a specification machine, respectively. Let AI 
and & be their respective output functions, and I1 and SI 
be their respective initial states. For a test suite TS, MI is 
said to pass TS, written MI pass TS, if&(Il, t) = &(SI, t) 
for V t c  TS. 

It is well known in the literature Wral91, Yann911 that 
testing if a black-box FSM implementation covers (i.e. 
conforms to) a given specification machine can only be 
done under certain assumptions. One most notable 
assumption is that the number of states of an 
implementation machine should be limited by an upper 
bound m (which can be larger than n, the number of states 
of the specification machine). Therefore, we need to 
introduce the following definition. 

Definition 3.3: Let X be the input set of the given 
specification machine Ms, the set of implementation 
machines with number of states limited by an upper 
bound m is denoted by I(m, X) which consists of all the 
minimal completely specified machines with no more 
than m states. 

As we have seen in the above definition, an FSM 
representing an implementation (i.e., a machine in I(m, 
X)) is required to be completely specified. This is because 
it is treated as a black-box during testing and therefore 
should give an observable response to any input in the 
input set X [PBD93]. As any non-minimal completely 
specified machine is equivalent to its minimal form, we 
have to include only the minimal machines in I(m, X). 

Definition 3.4 Let TS be a test suite. TS is said to be 
an m-complete test suite in respect to the given 
specification machine Ms if, for any machine MI 6i H(m, 

The notion of an “m-complete” test suite given above 
is a more general version of the notion of a “unique” test 
suite introduced in [VuKo90]. For the specification 
machine Ms which is completely specified and therefore 
is in I(m, X) (when m 2 n), a test suite is said to be its 
unique test suite in respect to the upper bound m if Ms is 
the only machine in I(m, X) which can pass the test suite. 
In the case that the specification machine Ms is partially 
specified, the notion of an “m-complete” test suite given 
in Definition 3.4 should be used. An obvious way to 
verify if a test suite is m-complete is to use the “trial-and- 
error” method: take a machine from I(m, X) and check if 
it can pass the test suite and if so, further check if it covers 
the given specification machine. Repeat this operation 
until either a machine is encountered which passes the test 
suite but does not cover the specification machine or all 
the machines in I(m, X) are examined. In the former case 
we can conclude that the test suite is not m-complete 
while in the latter case we can say it is m-complete. 
Apparently, the practical application of this approach is 

X), MI passes TS if and only if MI covers &. 
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rather limited due to its high cost. This is the main reawn 
that some researchers [Dasa88, SiLe89, DDB91, MCS931 
have used simulation approaches to approximately 
estimate the fault coverage of a test suite. 

4 The minimization of finite state machines 

To minimize a non-reduced machine is to find a 
minimal form of the original machine. The minimization 
of a completely specified machine is quite easy and can be 
done in two steps: (1) to find the minimal equivalence 
partition on the set of states of the given machine such 
that two states are in the same block ifand only ifthey are 
equivalent; and (2) to merge all the states in a block into 
one state. The machine obtained after these two steps is 
the reduced and minimal form of the original machine and 
is equivalent to the original one. However, it becomes 
much more difficult to minimize a partially specified 
machine. As previous work has shown [Gins59, GrLu65, 
PaUn59. Unge65, Koha78, Gill62 etc.], to find a minimal 
form for a partially specified machine requires to find a 
minimal closed compatible covering. Unfortunately, there 
is no simple and precise procedure leading to the selection 
of a minimal closed compatible covering from all the 
compatible coverings. Therefore, all the Froposed 
approaches [Gins59, GrLu65, PaUn59, Unge65, Koha78. 
Gill62 etc.] are inherently based on trialand-error. 

Our primary purpose in this section is to develop a 
state minimization procedure for a special class of 
machines which we call tree machines. Basically, a tree 
machine is a finite state machine whose graphic 
representation is a tree with the initial state of the machine 
as the root of the tree. It follows from the property of a 
tree that all the states of a tree machine can be reached 
from its initial state and for each state Si (except the initial 
state) of a tree machine, there is one and only one other 
state Sj (i # i) such that there is a transition leading from 
Sj to Si. This allows US to simplify the minimization 
procedure for the tree machines in a way similar to one of 
Kella's work [Ke117 11. 

Definition 4.1: A compatible panition is a compatible 
covering which consists of pair wisely disjoint compatible 
classes. A closed compatible partition is a compatible 
partition which is closed. A minimal closed compatible 
partition is a closed compatible partition which consists of 

The simplification on the minimization procedure in 
the case of a tree machine is stated in the next lemma. 

Lemma 4.2: A reduced form of a given tree machine 
corresponds to a closed compatible partition of the tree 
machine. When a closed compatible partition is minimal, 

Kella proved in [Ken711 a special case of this lemma 
where the tree machine has only one branch. The proof 
given there is actually also valid in the general case where 
the tree machine has several branches. This lemma 
implies that only minimal closed compatible partitions, 
rather than minimal closed compatible coverings, need to 

a minimum number of compatible classes. 

its corresponding reduced form is also minimal. H 

be found for the construction of the minimal forms of a 
given tree machine. As is clear from the definitions, a 
compatible parrition is also a compatible covering, but not 
vice versa. Therefore the set of all compatible partitions is 
a subset of all compatible coverings and actually in most 
cases, the former is much smaller than the latter. This 
implies that the amount of search for a minimal closed 
compatible partition from the set of all compatible 
partitions can in most cases be much smaller than the 
amount of search for a minimal closed compatible 
covering from the set of all compatible coverings. 

Let X1, Y1, Z1, zlr 61, hl, D1 be the input symbol set, 
the output symbol set, the state set, the initial state, the 
transfer function, the output function and the specification 
domain of machine M1; and similarly Xz, Yz, &, zz, &, 
&, D2 for machine Mz . 

Definition 43: M1 is said to be a submachine of Mz if 
Xi E Xz, Y1 E Yz, 21 C 22, D1 C Dz, ~1 = zz and 61, hl 
are the reswtive restrictions of &, & to D1. 

We use M to denote a reduced form of M and { ] 
for the set all the reduced forms of M. 

Definition 4.4: For Gachine M1 and a submachine Mz 
of M1, a reduced form M Lof M1 is said to be b@ on a 
reduced form M z  of Mz if Mz is a submachine of MI. 

Let {Vl, Vz, ..., V,} be the state set of a given tree 
machine M. We use M(1), M(2), ..., M(w) to denote its w 
submachines, where M(i) is obtained from M by deleting 
the last (w-i) states Vi+lt Vi+2, ..., Vw and all the 
transitions leading from/to these states. Then the 
minimization of M is based on the idea that { M(i) } can 
be_generated by adding state Vi to all the reduced forms in 
( M (i-1) 1. This is justified by the following lemma. 

Lemma 4.5: h-h reduced form M(i) of M(i) is based 
on a reduced form M(i-1) of M(i-1). 

This lemma is a special case of a relevant theorem 
proved in [Ke1170]. It has been proved there that this 
conclusion holds for a more general class of machines 
which includes the tree machines. 

Definition 4.6: A compatible class C of the tree 
machine M is said to be compatible with a state Vi, 
written Vi = C, if Vi 5 Vj, for V Vj E C. Otherwise C is 
said to be incompatible with state Vi, written Vi + C. 

Definition 4.7: Let E = { C1, Cz, ..., CQ } be a set of 
pair wisely disjoint compatible classes, i.e., Ci n Cj = 0, 
for i # j. Then E is said to be incompatible with a state Vi, 

We present in the followmg a procedure which, when 
given a reduced form M(i-1) of M(i-1), will incorporate 
the next state Vi to generate all the reautxd forms of M(i) 
which are based on this particular M(i-1) and have no 
more than m states, where m is a given integer 
representing the upper bound on the number of states of 
any reduced form. Therefore this procedure has three 
input parametgs: the upper bound m, state Vi and the 
~educed form M(i-1). As Lemma 4.2 indicates, the given 
M(i-1) corresponds to a closed compatible partition which, 
without loosing generality, is denoted as E = {Cl, Cz, ..., 
c k }  on the state set {Vl, V2, ..., Vi-l). 

written as Vi + E, if Vi i% C,., for j = 1,2, ..., R. H 
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Rocedure 4.8 
Stepl: 

Step2 

step3: 

Step4: 

Steps: 
a) 

b) 

Step5 
a) 

b) 

step7: 
a) 

b) 

If Vi $; E, i.e., Vi $; CO for V Cj ci E, go to Sw3; 
otherwise go to step 21 
Let Cj  = {Vi } U Cj, i.e., add Vi to C* for all Vi 

Cj. Replace, one at a time, Cj in E by Cj to 
form a compatible covering (actually a 
compatible partition on the set of states { V 1, V2, 
..., Vi}. Push all such generated compatible 
coverings to the stack COVSTACK and then go 

If k < m, generate all maximal compatible classes 
of M(i) which include Vi. Add each of these, one 
at a time, to E to form a compatible covering on 
{VI, Vz, ..., Vi). Push all such generated 
compatible coverings to the stack COVSTACK 
and go to Step4. Otherwise, i.e., if k = m, discard 
the compatible partition E and terminate. 
Pop a compatible covering B from the stack 
COVSTACK. If COVSTACK is empty, 
terminate; otherwise go to the next step. 
Check if the compatible covering B is closed. 
If B is closed, delete in all possible combinations 
the multiple appearances of states in B to form 
compatible partitions. Discard all those 
compatible partitions which are not closed. 
Record each of the remaining closed compatible 
partitions as a reduced form M(i). Go to Step4. 
If B is not closed, i.e., there exists a compatible 
class B. ci B and an input symbol x such that 
NEXTtx; Bj) is not included in any compatible 
classes in B, then go to Step6. 

If Bj only includes states which are not included 
in any other compatible class in B, go to Step7. 
If Bj includes some states which are also 
included in some other compatible classes in B, 
delete these states from Bj one at a time to form 
as many new compatible coverings as there are 
such states. Push all these new compatible 
coverings to the COVSTACK and go to Step4. 

If the number of compatible classes in B is equal 
tom, discard B and go to Step4. 
If the number of compatible classes in B is less 
than m, form all the maximal compatible classes 
of M(i) which include NEXT(x; Bj) and missing 
in the original covering B (after adding back ail 
states deleted in previous steps). Add each of 
these maximal compatible classes, one at a time, 
to B to form a number of new compatible 
coverings. Push these new compatible coverings 

to step4. 

to COVSTACK and go back to Step4. 

The explanation of how this procedure works can be 
found in [yPB94a]. The algorithm of Procedure 4.8 is 
developed based on Algorithm 2 in [Ke1170]. Although 
these algorithms look quite similar, some improvements 
of the former on the latter can still be observed. Firstly, as 

proved in Lemma 4.2, only closed compatible par-tions 
need to be considered in the construction of M(i)’s. 
Therefore, in Step 5 of Procedure 4.8, only the closed 
compatible partitions implied by a closed compatible 
covering are kept while others are discarded. This will 
reduce the amount of work required for the construction 
of { M(i+l) ) when the next state Vi+l should be added. 
Secondly, since an upper bound on the numbex of states of 
a reduced f m  is imposed in Rocedure 4.8, a compatible 
covering can be dropped out from further consideration 
whenever its number of compatible classes exceeds that 
upper bound. This feature, not found in Kella’s algorithm, 
is specifically added in procedure 4.8 for its application in 
checking the m-completeness of a test suite. 

The next procedure, Procedure 4.9, is developed for 
state minimization of tree machines. Apart from the tree 
machine M with w states ( V1, VZ, ..., Vw) which needs to 
be minimized, this procedure takes two additional input 
parameters: an upper bound m and a reference machine 
Mr which covers the tree machine M. It then calls 
Procedure 4.8 to incorporate, one at a tims, the states V 1, 
V,, ..., V, in search for a reduced form M (of M) which 
has the least number of states and does not cover the 
reference machine Mr. It stops when either such a reduced 
form M is found or no such reduced form can be found 
(due to the upper bound m imposed on the number of 
states of the reduced form). 

Procedure 4.9 
Stepl: 

step2: 

step3: 

Step4: 

steps: 

Use some procedure (can be found in many 
references) to find all pairs of compatible states 
fur @e given ~ e e  machine M. 
Let M(1) = {Vl) .  Add it to the reduced form list 
RLIST (which is initially empty). 
If the list RLIST is empty, it can be concluded 
that no reduced form (of the tree machine), 
which does not cover the reference machine Mr, 
can be found within the upper bound m on the 
number of states and therefore te-pinate. 
Otherwise, take a reduced form M (i) from RLIST 
which has the least number of states (if more 
than one is available, take one with the largest i) 
and then go to the next step. 
If i = w, go to Steps. 
Otherwise (i.e. i < w), call Procedure 4.8, with 
- the upper bound m, state Vi+l and the chosen 
M(i) as input parameters, to gengate all the 
reduced formcM(i+l) based on this M(i). Add ail 
the genera-ed M (i+l)’s to RLISTand go to Step3. 
Check if NB) covers the referencemachine Mr. 
If not, this M(i) is a reduced form M that is being 
searched for and therefore terminate the 
procedure. Otherwise, go back to Step3. 

As priority for further consideration in Step3 is always 
given to a reduced form which has the least number of 
states (i.e. its corresponding closed compatible partition 
has the least number of compatible classes), this 
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procedure guarantees that the reduced form M, if can be 
found, has the least number of states and does not cover 
the given reference machine Mr. Algorithms can be found 
in the literature (see, for instance, [Gill62]) to check 
whether one machine covers the other (Step 5). 

5 Checking the completeness of a test suite 

We can now use Procedure 4.9 to check if a given test 
suite is, for an integer m, m-complete in respect to a 
specification machine Ms. The idea is to first represent the 
test suite as a tree machine, and then use Procedure 4.9 to 
minimize this tree machine with m as the upper bound and 
Ms as the reference machine Mr. The test suite is m- 
complete if and only if no reduced form can be found 
which does not cover the specification machine M, 

The conversion of a test suite into a tree machine can 
be done in a quite straightforward way. A branch (starting 
from the root of the tree) is created for each test case in 
the test suite. The number of edges in a branch is equal to 
the length of the corresponding test case (without 
counting the reset symbol “r”). An edge is labeled by a 
pair of input and output symbols. The concatenation of the 
labels on the edges of a branch forms an inpudoutput 
sequence which should be the same as the one obtained 
when the corresponding test case is applied to the 
specification machine. Whenever two test cases have a 
common prefix, their corresponding branches should be 
merged for that common part so that the tree machine will 
be deterministic. The procedure for checking the 
completeness of a test suite in respect to an FSM 
specification can now be formulated as follows. 

L 

Incompatible 
state states 
VI vs V6 
v2 

v3 

VI 
v5 VI 
V6 VI 

Procedure 5.1: 
Stepl: Convert the given test suite TS into a tree 

machine M. 
Step2: Call Procedure 4.9 to minimize this tree 

machine M with m as the upper bound and Ms as 
the reference machine. 

Step3: If no reduced machine is found in Step2 which 
does not cover Ms, the test suite is m-complete; 

H Otherwise, it is not m-complete. 

The validity of this procedure is justified by the 
following theorem. 

Theorem 5.2: Let TS be a test suite and M be the tree 
machine representing TS. Then TS is m-complete in 
respect to the FSM specification Ms if and only if all the 
reduced forms of M which have not more than m states 

The proof for this theorem is omitted due to limited 
space. We give an example here to show how this 
procedure works. 

Example 5.3: TS = {r.a.b.b, r.b.a.a} is a test suite 
derived from the specification machine shown in Figure 1. 
We are required to check if this test suite is 3-complete. 
Therefore, we follow Procedure 5.1 to check. The first 
step of Procedure 5.1 is to convert this test suite into a 

cover the specification machine Ms. H 

Figure 2: The tree machine 

Table 1: The list of 
incompatible pairs by Procedure 4.9 

Figure 3: The FSM found 

Iterations 

1 

2 

3 

4 

5 

6 

7 

RLIST 

{ VIV2) 

{ VIV2V3 ) 

{ VIV2V3V4 } 

{ VI, v2V3v4VS ) { VIVl, v3v4v5 ) 
{ VIV3, v2v4vs ) { VIV2V4, vsvs ) 

{ VI, v2v3v4VSv6 ) { vlv2, vSV4v5 ) 
{ VIV3, v2v4vs ) { VIV2V4. v3v5 ) 

Table 2: Contents of the reduced form list RLIST 

tree which is now shown in>Figure 2. This tree machine 
has 7 states VI, Vz, ..., VI. The second step of Procedure 
5.1 is to call Procedure 4.9 whose first step is to find the 
compatibility for each pair of states of this tree machine. 
We have listed in Table 1 the incompatible states for each 
state of the tree machine. A state not listed as 
incompatible with another state is therefore compatible 
with the latter. Table 2 lists the changes of the reduced 
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fonn list RLIST when the remaining steps of Procedure 
4.9 are executed. At the last iteration, the closed 
compatible partition ( V1, V2V3V4V5V6V7} is found 
which actually represents the FSM shown in Figure 3. 
Since this FSM has two states and does not cover the 
specification machine shown in Figure 1, we can conclude 

Although the procedure presented above can always be 
used to check if a given test suite is m-complete, the two 
necessary conditions and one sufficient condition given 
below can in some cases be used to give a quicker answer. 

Let TS be a test suite for an FSM specification Ms with 
6, h and ISl, S2, ..., S,,}  as its transfer function, output 
function and state set, respectively. Further, let S1 be its 
initial state. To formulate these conditions, we need the 
following three definitions. 

Definition 5.4: A set of input sequences SC is said to 
be a state cover set of the specification machine MS if, for 
each state Si of Ms, there exists exactly one input 

Deflnitbn 5.5: A set of input sequences TC is said to 
be a transition cover set of the specification machine Ms 
if for each rransition Si-x->Sj in the specification machine 
Ms, there exist two input sequences a, a.xc TC such that 

Definition 5.6 & SC be a state cover set for Ms and 
TC = {a.x I for acSC, Si=&Sl, U) and Si-X->Sj in Ms). 
Then TC is a transition cover set of Ms and is said to be 
based on the state cover set SC. w 

A P ( T S )  = { a I if a is a prefix of some test case in TS}, 
i.e., AP(TS)  consists of all the prefixes of the test cases in 
TS. Then we can have our first necessaxy condition. 

Necessary Condition 5.7: If, for some m 2 n, TS is m- 
complete in respect to Ms. then AP(TS) should contain a 
state cover set. w 

This necessary condition essentially says that an m- 
complete (m 2 n) test suite should traverse all the states of 
the specification machine. Actually, we can have a 
stronger necessary condition stated below which requires 
that all the transitions of the specification machine be 
traversed by a complete test suite. 

Necessary Condition 5.8: If, for some m 2 n, TS is m- 
complete in respect to Ms, then AP(TS) should contain a 
transition cover set. w 

The validity of these two necessary conditions are 
obvious. Actually we require that Procedure 5.1 be used 
only after the test suite TS has been checked to satisfy 
these two necessary conditions. The following condition 
is a sufficient condition which can be used when the 
specification machine Ms is reduced. TS will be definitely 
ncomplete, where n is the number of states of the reduced 
machine Ms, if it satisfies this sufficient condition. 

Sufffcient Condition 5.9: TS is an n-complete test 
suite in respect to rhe reduced specification machine Ms if 
(1) AP(TS) contains a state cover set SC and a transition 

that the test suite TS is not 3-complete. 

sequence a SC such that Si = &SI, a). w 

Si = &SI, U) and S &SI, a). w 

Let 

cover set TC based on SC; and 

(2) For each pair of sequences a, p c SC such that 6(S1, 
a) f &S1, b), there should be two sequences ay, fly c 
W"9 such that V&Sl , a), Y) # M W 1  , p), Y); and 

(3) For a Q (TC - SC) and c SC such that &S1, a) # 
&SI, fl 1, there should be two sequences ay, By c 
AP(TS) sua that V&S1, a), Y) # VW1, 81, Y). 

Tbe proof for this sufficient condition is omitted here 
due to limited space. It is interesting to note that any test 
suite generated by the DS method [Gone70], the UIOv 
method [Vuon891, the W method [Chow78], the Wp 
method Fuji911 or the HSI method [petr91] satisfies this 
sufficient condition and therefore is n-complete. 

6 Compivison with related work 

In this paper, we have introduced the concept of m- 
completeness of a test suite in respect to an FSM 
specification. This concept is more general than the 
concept of uniqueness of a test suite introduced by Vuong 
and KO [VUKO~O]. The notion of uniqueness of a test 
suite is applicable only to completely specified machines. 
The notion of m-completeness of a test suite, however, 
can be applied to partially specified as well as completely 
specified machines. It even does not require the 
specification machines to be reduced. We have also 
developed a procedure (procedure 5.1) which is capable 
of deciding if a given test suite is m-complete in respect to 
a given FSM specification, where m is an integer which 
can be larger than the number of states of the specification 
machine. A tool which implements this procedure is now 
available. ?be complexity upper bound of the procedure 
is O(mW), where w is the number of states of tree machine 
representing the test suite. However, experiments that 
have been conducted with the tool has demonstrated that 
the real complexity in practice is far less. 

Procedure 5.1 is based on the state minimization 
procedure (Procedure 4.9) designed for the so-called tree 
machines. Procedure 4.9 and the procedure that i t  calls 
(Procedure 4.8) combine the advantages of Kella's two 
approaches [Ke1170, Kell711. As already mentioned in 
Section 4, they also provide two important features which 
are not found in previous state minimization procedures 
[Gins59, GrLu65, Ke1170, Ke1171, PaUn59, Unge651. 

Procedure 5.1 provides a systematic approach for 
checking the completeness of a test suite and therefore is 
different from those simulation based approaches 
lDaSa88, SiLe89, DDB91, MCS931. It also differs from 
our recent work [YPB94b] where we proposed a metric 
approach to estimating the fault coverage of a test suite. 
Another related work is the CSP method for test suite 
generation [VUKO~O] which could be adjusted to check 
the m-completeness of a test suite. However, its 
complexity in practice would be much higher than our 
method as it would generate all machines, both reduced 
and non-reduced (within the upper bound on the number 
of states), which can pass the given test suite. On the other 
hand, our Procedure 5.1 examines, in the worst case when 
the given test suite is m-complete, all the reduced 
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machines within the upper bound on the number of states. 
Other related work can be found in LoSh92, MiPa921. 
However, their primary purpose is to generate test suites 
that provide complete fault coverage (or maximal fault 
coverage as they called) rather than to evaluate the fault 
coverage of a given test suite. 

Apart from its application in checking the 
completeness of a test suite, Procedure 5.1 can also be 
used for incremental test suite development. Actually, this 
function is now available in our tool. If a given test suite 
(which can be empty) is not m-complete, a machine will 
be found which does not cover the specification machine. 
Therefore, an additional test case can be derived which 
distinguishes this machine from the specification 
machine. The test suite, which includes the newly 
generated additional test case, is then checked again for 
m-completeness. This process is repeated until the test 
suite has achieved m-complete fault coverage. 

Another possible application of the state minimization 
procedure (Procedure 4.9) is the diagnostics for FSM 
implementations [GhBo92]. If an FSM implementation 
for an FSM specification fails to pass a given test suite, a 
tree machine is constructed with the input sequences (test 
cases) in the test suite and the corresponding output 
sequences observed during the testing. This tree machine 
is then minimized. However, no reference machine is 
required during the application of Procedure 4.9 in this 
case and therefore a reduced machine can be definitely 
found. This reduced machine is actually a minimal form 
of the tree machine. By comparing this minimal machine 
with the specification machine, we are able to tell what 
faults are in the implementation machine. 
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