
12 IEEE TRANSACTIONS ON SOflWARE ENGINEERING, VOL. 20. NO. I, JANUARY 1994

Software Testing Based on SDL
Specifications with Save

Gang Luo, Member, IEEE, Anindya Das, and Gregor v. Bochmann, Senior Member, IEEE

Abstract-The signal save construct is one of the features
distinguishing SDL from traditional high-level specification and
programming languages. However, this feature increases the
difficulties of testing SDL-specified software. We present a testing
approach consisting of the following three phases: SDL specifi-
cations are first abstracted into finite state machines with save
constructs, called SDL-machines; the resulting SDL-machines are
then transformed into equivalent finite state machines without
save constructs if this is possible; and, finally, test cases are
selected from the resulting finite state machines. Since there are
many existing methods for the first and third phases, we mainly
concentrate in this paper upon the second phase and come up
with a method of transforming SDL-machines into equivalent
finite state machines, which preserve the same input/output re-
lationship as in the original SDL-machines. The transformation
method is useful not only for testing but also for verifying SDL-
specified software.

Index Terms-CCITT SDL, communication software, finite
state machines, protocol conformance testing, protocol verifica-
tion, software testing, and SDL-machines.

1. INTRODUCTION
T PRESENT, the three formal specification languages A that have been accepted by international standards orga-

nizations for specifying communication software are SDL [11,
[6], LOTOS [13], and ESTELLE [14]. Among them, SDL is
the one that is most widely used in industrial applications [15],
[l], [20]. Therefore, it is important to study the problem of
testing SDL-specified software. It is noted that test selection
methods developed for ESTELLE specifications (see for in-
stance [161) can also be adopted for SDL specifications, since
both languages are based on an extended finite state machine
(EFSM) model. However, SDL contains a distinctive feature,
the save constructs, which increases its descriptive power
considerably by providing a concise formalism for expressing
the indeterminate order of arrivals of input signals. On the
other hand, as pointed out in [l], the save construct was the
first of several divergences between SDL and CHILL-a high-
level programming language recommended by CCITT-that
complicates the transformation from one language into the
other, and its presence raises an added challenge to testing

Manuscript received April 1992; revised October 1993. This work was
supported by the IDACOM-NSERC-CWARC Industrial Research Chair on
Communication Protocols at the Universitt de Montreal, Montreal, P.Q.,
Canada. Recommended by S. H. Zweben.

G. Luo was with the Departement d’IRO, UniversitC de Montreal, MontrCal,
P.Q., Canada. He is now with the Department of Computer Science, University
of Ottawa, Ottawa, Ont. KIN 6N5, Canada.

A. Das and G . v. Bochmann are with the Departement d’IRO, UniversitC
de Montreal, Montreal, P.Q. H3C 3J7, Canada.

IEEE Log Number 9214488.

and verifying SDL-specified software. For this reason, several
SDL-based test generation methods either prohibit the use of
save constructs [18], [2] or do not address them at all [17].

In the area of testing EFSM-based software, it is a common
practice to first transform EFSM’s into finite state machines
(FSM’s) by neglecting or unfolding parameters 1191, 131;
testing is then conducted based on the resulting FSM’s, since
many effective test generation methods are available for FSM’s
[9]-[1 I]. However, since SDL specifications are based on
an EFSM model but extended with save constructs, they are
usually transformed into FSM’s with additional save constructs
[3], [4], called SDL-machines [5], instead of pure FSM’s.
The test generation methods for FSM’s are not applicable
to SDL-machines. Therefore methods are needed for testing
SDL-machines.

Some initial efforts have been made on generating tests
for SDL-machines [3]-[5]. They all use a common key idea
of transforming SDL-machines into equivalent FSM’s, which
preserve the same input/output relationship as in the original
SDL-machines. Then test cases can be generated from the
resulting FSM’s using existing methods. A formal method for
such an equivalent transformation was presented in [4] and a
similar framework was introduced informally through exam-
ples in [3]; but they cannot provide equivalent transformation
for the case where a save construct has several inputs, a case
which is quite common. The equivalent transformation method
presented in [5] allows the existence of several inputs in a
save construct. However, it is only applicable to a still-limited
subset of those SDL-machines for which the equivalent FSM’s
exist.

In this paper we generalize the approach introduced in [5]
to obtain an equivalent transformation method that works for
a larger subset of SDL-machines than the one given in [5].
We first prove that not all SDL-machines can be modeled by
equivalent FSM’s, though we find that in our experience most
SDL-machines obtained from practical SDL specifications can
be modeled by equivalent FSM’s. We then come out with
an equivalent transformation method that works for a larger
subset of SDL-machines than the one in [5]. We finally show
that, for SDL-machines where every explicit transition has at
least one output, our method works precisely when there is an
equivalent FSM.

We generate test cases for SDL specifications in the fol-
lowing three phases. First, use the approaches as given in
[3] and [191 to obtain SDL-machines from SDL specifications
by neglecting or unfolding parameters. Second, transform the
SDL-machines into equivalent FSM’s using our algorithm.

0098-5589/94$04.00 0 1994 IEEE

LUO et al.: SOITWARE TESTING BASED ON SDL SPECIFICATIONS 73

0
I

D

n

Slate

input

output

save

Fig. 1. SDL graphic symbols that are used in SDL-machines.

Finally, generate the test cases for the resulting FSM’s by
applying existing test generation methods for FSM’s.

Our equivalent transformation method is also important for
verifying SDL specifications. For example, SDL specifica-
tions usually need to be abstracted into FSM’s for verifying
a so-called deadlock-free property. This can be done by
first abstracting SDL specifications into SDL-machines and
then applying this transformation method to obtain equivalent
FSM’s.

The rest of the paper is organized as follows. Section I1
is devoted to an introduction of SDL-machines and related
notations. Section 111 studies the equivalent transformation
from SDL-machines into FSM’s. Section IV handles test case
selection for SDL-machines using the results of Section 111
and analyzes the test coverage thus obtained.

11. PRELIMINARIES

A . Informal Description of SDL-Machines

We give in this section an informal introduction to a class
of simplified SDL processes [6] , [7], [11, which we call SDL-
machines [5]. An SDL-machine is a simplified SDL process
that has only the following constructs: a) states, b) inputs, c)
outputs, d) saves, e) transitions, and f) an input queue. It is
actually a finite state machine with the extension of an input
queue and save constructs. Fig. 1 lists a subset of SDL graphic
symbols that are used to present SDL-machines.

We now describe SDL-machines informally. The formal
definition is presented in Section 1I.B.

We first describe the syntax of SDL-machines, which is
given in a graphical form. An SDL-machine consists of 1)
a finite number of states, each of which may have a save
construct, 2) a finite number of (explicit) transitions, each of
which has one input and zero or more outputs, and 3) an input
queue. A save construct may have one or more inputs. For an
SDL-machine, the input of every transition of a given state is
different from the inputs of any other transitions of the same
state, and it is not any input specified in the save construct
of the same state. Thus SDL-machines are deterministic state
machines. This means that, given an SDL-machine, for any
state S , and for any input sequence 2, the machine always
produces exactly the same output sequence each time z is
applied to S. Fig. 2(a) shows an example of an SDL-machine.

We now describe the behavior of SDL-machines. Given an
SDL-machine, every arriving input is first placed into the rear
of the input queue. Assume that the queue is not empty and
the machine is in a state S ; then the following cases may arise:

GD arrival of signals contents of
the queue

1. a arrives, is put
into the queue and is

/ 2. b arrives and is put
into rhe rear of tbe queue.

3. Then b is consumed
by tbc wnsiticm tt. The

s2.
4. a is consumed

, machine reaches the sBe I a I
[by IhewnsitiontZ. I I

(b)

note: tl and !2 are transitions.

(a)

Fig. 2. Illustration of an SDL-machine. (a) An SDL-machine. (b) Illustration
of behavior of the SDL-machine.

Case 1: All inputs in the queue are inputs specified in the
save construct of the state S . In this case, the inputs are saved
in the queue for future use; the SDL-machine waits for another
input, and it will not do anything further before another input
is received.

Case 2: Among all inputs in the queue that are not specified
in the save construct of the state S , there is an input b that is the
nearest to the front of the queue. In this case, the following two
situations arise: a) If b is attached to one of outgoing (explicit)
transitions from S , it will be removed from the queue; the
corresponding transition will be performed (b is said to be
consumed by the transition), and the SDL-machine will move
to a next state. b) If b is not attached to any outgoing (explicit)
transition from S , it will be removed from the queue, but no
(explicit) transition will be performed. In this situation, the
input b is said to be consumed by an implied transition that
starts from and goes back to the same state S without any
output being sent.

If a given SDL-machine does not have any save construct,
the input queue becomes an first-in-first-out (FIFO) queue. The
save constructs make the queue non-FIFO.

We illustrate the functioning of SDL-machines with the
example shown in Fig. 2. Assume that the machine is initially
in the state S1 with the queue empty. An input a arrives; it is
kept in the queue because a appears in the save construct of
S1. Then an input b arrives; it is consumed by the transition
t l , leading the machine from the state S1 to the state S2 with
the output f sent. Finally, the a in the queue is consumed by
the transition t2, leading the machine to the state S3 with the
output g sent.

B . Formal Definitions of SDL-Machines and Related Concepts

We formally define in this section the syntax and behavior
of SDL-machines, as well as concepts and notations related to
SDL-machines. The syntax of SDL-machines is presented in
a symbolic form, as follows.

Definition: SDL-Machines.
An SDL-machine is a 6-tuple (K , I , 0, saveset, T , SO) with

1) K is a finite set of symbols, called states.
2) I is a finite set of symbols, called inputs.

an input queue where we have the following.

74 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I , JANUARY 1994

3) 0 is a finite set of symbols, called outputs.
4) saveset is a function, saveset: K - Dowerset(I).

TABLE I
NOTATIONS FOR SDL-MACHINES

\ ,

Notations Meaning 5) T is a function, called transition function.
T : D - K x O* where D = {< S , a > E K x I lu
saveset(S)} and 0* denotes the set of sequences over
0.
We say that the SDL-machine has a transition from
S1 to SZ with input a and the output sequence w,
if T (S 1 , a) = < S2, w >. This is also denoted by
S1 - a/w + Sp. If w = X (A stands for the empty
sequence) and S1 = SZ (same state), we call the transi-
tion an implicit transition (Note: In SDL specifications,
such transitions are not explicitly defined); the other
transitions are called explicit transitions.

c l . b . c . d . r

1 , . 1 1 , . .r. y. z

O ' . '"

s. (2. P

l I1(s)

inputs or outputs
input or output sequences

i is a natural number, (I' denotes a sequence of ri of
length i , ~ ' denotes a sequence of 1% of length i. That
is, (io = A,iso = A; and a' = r i ' - ' . f i , I , ' = t , ' - ' . t ,

fori 2 1 .
states

i n (S) = { r r l 3 S - r i / u ? + S ~ (S - r i / w + S l i s a n
explicit transition). That is, i71(S) is the set of all
inputs each of which is attached to an explicit
transition from the state S .

6) SO E K is the initial state of the SDL-machine.
From this definition, a transition has only a single input

0 r,rrf(w) pref IS a function, called p r e h funcrron, prrf:
powerset(I*) -+ powerset(1'). Given
11' 6 vower set(I'). -. \ , I

but may have an output sequence, as assumed in SDL.
States, inputs, outputs, transitions, and savesets in the symbolic
notations correspond to states, inputs, outputs, transitions, and
saves in the graphical notations of SDL-machines. As an
example, for the SDL-machine of Fig. 2 we have

p r e f (l r) = {.r113.r E 1&'3y E (. r = . r l . y) } .
pro j is a function, called projecrion function,
proj :I* --t powerset([*). Given
.I' E I * , p r o j (. r) = { y E I*ly is a sub-sequence of
.r, obtained by deleting zero or more inputs in . r } .

pro j (, r)

K = { S l , S 2 , S 3 } , I = { u , b } , O { f , g } , s a w e s e t (S l) =
{ a } , saweset(S2) = saweset(S3) = 0 (0 stands for an empty
set), the initial state S1 , explicit transitions: S 1 - b / f -+ S2
and S2 - a / g -+ S3, and implied transitions:S2 - b/X 4

S2. S3 - a/X 4 53 and S3 - b/X -+ S3.
To make definitions less cumbersome, we assume that

all SDL-machines being discussed are denoted as (K , I , 0,
saveset, T , SO) unless specified explicitly. We use the notation
"." to represent the concatenation of two input sequences or
two output sequences.

Given a pair [S,x] E K x I*, we call [S , x] a global state,
which represents the fact that the SDL-machine is in the state
S with the input sequence x in the input queue. K x I* is
the set of all possible global states. Furthermore, we say that a
global state [S, x] is stable if z E saweset(S)*; and Q; denotes
the set of all stable global states for an SDL-machine (note:
G C K x I*). A global state that is not stable is said to be
unstable . If an SDL-machine is in a stable global state, then
it is waiting in this global state and cannot consume any input
in its queue before an additional input is received.

We now define the behavior of SDL-machines using three
functions: @, queue and out, called transfer function, queue
function , and output function, respectively. S1@z = SZ and
queue (SI, z) = z mean that, assuming an SDL-machine to
be in the state S1 with X in the input queue initially, after the
input sequence z is applied, the machine will eventually arrive
in the state SZ with z in the input queue such that no inputs
of z can be consumed if no further inputs are received, i.e.,
[SZ. z] is a stable global state. Furthermore, out(S1, x) stands
for the output sequence eventually produced after applying the
input sequence z to S1 when the machine is initially in the
state SI with X in the input queue. The formal definitions are
given below.

Definition: Transfer function "@ ," queue function "queue,"
and output function "out."

Given an SDL-machine, assume that S I , S2 E K . I' =
(~ l ' . ~ a , - l . a , . u , + l . . . a n E I*(u, E I , for 7 = 1,2 ;.., 71)

and w E 0". @: K x I* -- K,que'ue : K x I* --+ I* and
out : K x I* -+ 0* are defined as follows:

i) if z # saveset(Sl)*, then
a) S1@al . az...a;...a, = SP@al . . .ai-l .

b) qsueue(S1, a1 . a2 . . . ai . . . a,) = queue(&, a1 .
UZ+l . . ' a,

a;-1 . a;+1 . . ' a,)
c) out(s'l,al-a2. . . a2 ' . . U ,) = w.out(Sz,al..~ ai-1.

a;+] . . . a,) where a1 . a2 . . . a;-1 E savese l (S~)* ,
and S I - ui/w + S2.

ii) if x E saweset(SI)*, then
a) SI& = S1

b) queue(S1,z) = x
c) OUt(S1,Z) = A. U

S1@x = SZ and queue(SI, x) = z imply that if an SDL-
machine is initially in the global state [SI, 21, then the machine
will eventually arrive in the stable global state [Sa, 21, without
receiving more inputs. Given a global state [S,z] and an
input sequence y, we say that y leads the machine from
[S , x] to a stable global state [SI, z] if S@z.y = SI and
queue(S,z.y) = z .

As an example, for the SDL-machine shown in Fig. 2, we
have
S1Qa.a = S1, queue(S1,u.u) = u.u, Slt2a.a.b = S3,
queue(S1,a.a.b) = A, Sl@b = S2, and queue(S1,b) = A;
out(S1,a.a) = A, out(S1,a.n.b) = f . 9 , and out(S1,b) = f .

For the sake of convenience, we introduce several other
notations for SDL-machines in Table I.

We note that pref (W) is the set of all possible prefixes
of sequences in the set W ; for W = {a.b,a.c,b}, we
have pre f (W) = {a.b,a,a.c, b , X } . proj (x) is the set of all
possible sub-sequences of the sequence z which is obtained by
deleting zero or more inputs in z. For example, pr.oj(u.b.c) =
{A, a, b.c , a.b,a.c, b.c, u.b.c}.

LUO et al.: SOFTWARE TESTING BASED ON SDL SPECIFICATIONS 7s

Definition: Initially connected SDL-machines.
A given SDL-machine is said to be initially connected if all

states are reachable from the initial state SO through a sequence
* of transitions. 0

Without loss of generality, we assume that all SDL-
machines considered in the rest of the paper are initially
connected. If a given machine F is not initially connected, we
may consider a submachine which is a portion of F consisting
of all states with their save constructs, and transitions that are
reachable from the initial state of F. The unreachable portion
of the machine does not affect the input/output behavior of
the machine.

We note that in the case that the SDL-machine has no
saveset, i.e. VS E K (s a v e s e t (S) = 0), the machine is
equivalent to a traditional FSM. In fact, in this case, the explicit
and implicit transitions define a transition for each (state, input)
pair. Even if the speed of the arrival of inputs is fast compared
with the processing speed of the machine, and the inputs may
“queue up” in the input queue, the input/output behavior,
in terms of the output sequence produced for a given input
sequence, is the same independently of the proceeding speed
of the machine. Therefore we simply call in the following
an SDL-machine without savesets an FSM. In the following
we show how a general SDL-machine (with save) can be
transformed into an equivalent FSM and how the testing
methods developed for FSM’s can be applied to general SDL-
machines.

Consider an SDL-machine where the input queue contains
as input sequence a1 . a2 . . . a; . . . a,, and the machine is in
state S. As mentioned in the informal description of SDL-
machines given earlier, an input a; in the queue may eventually
be removed and trigger a (explicit or implicit) transition, say
S1 -a ; /w + SZ. In this case, we say that a; will be consumed
by the transition SI - a; /w + S2 when a1 . a2 ’ . . a; ’ . - a, is
applied to the state S. We give a formal definition as follows:

Definition: An input consumed by an implied or explicit
transition.

Given a global state [S, x] with x = ~ 1 . ~ 2 + . . a; . . . a,, let
queue(S, x) = a k l .ak2 . . . U k m . If i {kl, k2,. . . , km}, we
say that the a; of x will be consumed by a transition when x
is applied to the state S. In this case, for the a;, there must
exist SI - a;/w + SZ, x1 E saweset(Sl)*, and 2 2 E I* such
that S@al a a2. . . a; . . . a, = Sl@zl . a; e x2 = S2@x1 . x2
(note: i)SI@xl e a; . x2 is an intermediate step for deriving
SQal .a~...a;..~a,, ii). S1,S2,x1, and x2 are unique). If
the S1 -a;/w + Sp is an explicit transition (i.e., a; E in (&)) ,
then we say that the input ai of x will be consumed by
an explicit transition when z is applied to a state S ; and if
S1-a;/w + S:! is an implied transition (i.e., a; $! in(Sl)), we
say that the input a; will be consumed by an implied transition.

For the example of the SDL-machine shown in Fig. 2, let
~ 1 . a 2 . a ~ = u a b ; a2 will be consumed by an implied transition
(i.e., by S3 - a / A + 53) when nl.ap.a~ is applied to
Sl.al, and a3 will be consumed by explicit transitions (i.e.,
by S2 - a / g -+ S3 and S1 - b / f 4 S2, respectively) when
a1 .a2.a3 is applied to S1. For a l .a2 = a.a, none of the inputs
of al.ap will be consumed by any transition when al.uZ is
applied to S1.

C. The Equivalence Relation for SDL-Machines

We present in this section a conformance relation for SDL-
machines. Before generating test cases, one should answer
the following question: What is the conformance relation to
be checked between a specification and its corresponding
implementation? Under a black-box-testing strategy where
only the inputs and outputs of implementations are accessible,
we answer this question by defining a so-called equivalence
relation, which requires that two SDL-machines (a specification
and its implementation) produce the same output sequence for
every input sequence. This relation is the same equivalence
relation for finite state machines [9], [lo] and is formally
presented as follows:

Definition: Equivalence between global states of SDL-
machines.

Given two SDL-machines F1 and F2 that have the same
input set I and the same output set 0, let out1 and out2 be
the output functions of F1 and F2; for two global states [S,. z]
and IS,, y] in F1 and F2, respectively,

[S,.x] and [S,, y] are said to be equivalent if Vz E
0

In this definition, F1 and F2 can be the same machine.
Therefore, for two global states [S, ,x] and [S,, y] in F1,
[S,.x] and [S,,y] are equivalent if z E I*(out1(S2,x.z) =

I* (out1 (S,, 5.2) = O U t 2 (S J , y..)).

O U t l (S , , Y..) >.
Definition: Equivalence between SDL-machines.
Given two SDL-machines F1 and F2 that have the same

inplit set I and output set 0, assuming that Sol and So2 are
the initial states in F1 and F2, respectively,

F1 and F2 are said to be equivalent if their initial global
states [Sol, A] and [Soz, A] are equivalent.

According to this definition, two SDL-machines F1 and
F2 are equivalent if and only if ‘dx E I*(out l (Sol ,z) =
out2(S02,x)), where out1 and out2 denote the output func-
tions of F1 and F2. The definition of equivalence relation
serves as a guide to the development of test case generation
methods.

111. TRANSFORMING SDL-MACHINES
INTO EQUIVALENT FSM’s

On the basis of the equivalence definition given before,
we study in this section a method of transforming a given
SDL-machine into an equivalent FSM. The equivalent FSM
is obtained by deleting all save constructs, by introducing
additional states that do not have any save construct, and by
incorporating additional transitions.

A. An Example of an SDL-Machine Without an Equivalent FSM
We show in the following that not all SDL-machines can

be modeled by equivalent FSM’s, though equivalent FSM’s
can be found for SDL-machines resulting from most practical
applications. An example of an SDL-machine for which there
does not exist any equivalent FSM is given in Fig. 3. The
following arguments show that this SDL-machine does not
have any equivalent FSM.

Consider the SDL-machine shown in Fig. 3. We have
out(Sl ,ai .b) = x.yi, for i = 1 , 2 :..; i.e., one of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I , JANUARY 1994

(s1 1
I

(52)

I Y)

I

Fig. 3. An example of an SDL-machine without any equivalent FSM.

the different output sequences x.y, x.y2, . . . , x.y2,. . . is
produced after input b is applied to the stable global states
[SI. U] . [SI. a 2] , . . . , [SI. a'] , . . ., Therefore,
from the definition of the equivalence of global states, none
of the stable global states [SI, a] , [Sl, a 2] , . . . , [Sl, a'], . . . are
equivalent. The input sequences a, u.a, . . . , a', . . ., lead this
machine from the initial global state [Sl, A] to [Sl, a], [Sl, a2],
. . . . [SI. a'], . . ., respectively. Thus, for any SDL-machine
equivalent to the one shown in Fig. 3, a , a . a , ~ ~ . , u z , ~ . ~
must lead the machine from its initial global state to a set
of stable global states TI, T2, . . . , T,, . . . that are equivalent
to [SI, a] , [SI, a 2] , . . . , [Sl, a'], . . . , respectively. None of
T I . T2, . . . , T, , . . . are equivalent. Such an equivalent machine
must have an infinite number of stable global states, because i
can take any positive integer value. An FSM has only a finite
number of stable global states, however, because it does not
have any save construct. (See the definition of FSM's given in
Section 11-B.) Therefore, the machine shown in Fig. 3 cannot
be modeled by any FSM, and we obtain the following result.

Theorem 1 : There exist SDL-machines that cannot be mod-
eled by equivalent FSM's.

Therefore, we need to identify the classes of SDL-machines
that can be modeled by equivalent FSM's and develop the
equivalent transformation algorithm accordingly.

respectively.

B . An Equivalent Transformation Method

We first give an intuitive description of our method and then
formally present it in the following three subsections. We need
the following concepts for describing our method.

Definition: Neutral-inputs (n-inputs).
For a given state S E K and an input sequence x =

a1 . a2"'ai E saveset(S)*, we say that the input ai
of z is an n-input of x at S if Vz E I* (the input a, will not
be consumed by any explicit transition when 2.2 is applied to
SI. 0

This concept is based on the following intuitive idea: Given
a state S E K and an input sequence z E saveset(S)*, for

every y E I* , consider the application of z.y to S. Since any
n-input of x at S when consumed is consumed only by an
implied transition, it does not stimulate any output and can
only invoke a self-loop at a state. For the example shown in
Fig. 2, let al.ap.a3 = a.a.a, then a2 and a3 are n-inputs of
al.a2.ag at the state S1. In the machine shown in Fig. 3, no
inputs of the input sequences a' are n-inputs of a2 at the state
S1, for i = 1 , 2 ,

Definition: Useful-subsequence (u-sequence).
For a given state S E K and an input sequence x E

al.a2...ai . . . a k E saweset(S)*, an input sequence z is
said to be a u-sequence of x at S if z is obtained from
x by eliminating zero or more n-inputs of x at S. (Note:

The definition of this concept is motivated by the following
intuition: Given a state S E K and an input sequence
x E saveset(S)*, let z be a u-sequence of x at S. The
same sequence of explicit transitions will be executed when
x.y and z.y are applied to S , respectively. Therefore, y E
I*(out(S, z.y) = out(S, z.y)&S@x.y = S@z.y). According
to the definition of u-sequences, a u-sequence of x at S is
not necessarily unique. For the example shown in Fig. 2, let
al.a2.ag = a.a.a; then al, ~ 1 . ~ 2 , ~ 1 . ~ 3 and al.ap.aj are four
different u-sequences of al.a2.a3 at the state S1.

The concepts of n-inputs and u-sequence are not used
explicitly in presenting our algorithms, but they intuitively
play a key role in developing the algorithms and are used
in proving the validity of the algorithms.

sequence).
Given a state S E K and x E saveset(S)*, an input

sequence y is called an e-sequence o f x at S if there exists
z E I* such that

1) all inputs in z.z will be consumed when 5 . 2 is applied
to S; and

2) y is derived from x by eliminating all inputs in x that
will be consumed by implied transitions when x.z is
applied to S.

Furthermore, x is said to be an e-sequence at S if x is itself
an e-sequence of x at S. The set of all e-sequences at S is
denoted as E s ; that is, Es = {XI. is an e-sequence at S} . 0

Intuitively, an e-sequence at S is a sequence of inputs in
saveset(S) that can be consumed only by explicit transitions,
and it contains no n-inputs at S . From this definition, it follows
that any prefix of an e-sequence at a state S is also an e-
sequence at S; that is, p re f (Es) & Es. Therefore, by the
definition of pref ,pref (Es) = Es. For the example shown
in Fig. 5, for the states A and B, EA = {A, a, b, a b } and
EB = {A} . We note that Es is finite if and only if all e-
sequences at S are of finite length. The construction of Es is
not trivial and is presented later.

We now present an intuitive description of our method.
Given an SDL-machine F, if F is not an FSM, then the set
of all possible stable global states 6 is infinite, representing
an infinite memory. On the other hand, an FSM has only a
finite number of stable global states, a finite memory. For a
given stable global state [S. x] in F, the n-inputs of the input

z E p r o j (z) .) 0

Definition: Explicitly-consumed-save-sequence (e-

c

LUO et al.: SOFTWARE TESTING BASED ON SDL SPECIFICATIONS 71

(a) (b)

Fig. 4. An example of illustrating equivalent transformations.

sequence x at the state S when consumed do not stimulate
any output and only cause self-loops, since, when consumed,
they are consumed only by implied transitions. Therefore, an
equivalent machine does not need to remember the n-inputs of
z; receiving z, it needs only remember one of the u-sequences
of 5 at the state S. This guides us to construct an equivalent
FSM for a given SDL-machine in the following manner.

For an SDL-machine F with K = {SI, 5'2, . . . , S,}, let
G1; = { [S i ,x] I z E saweset(Si)*} be the set of all stable
global states related to the state Si, and a = 1 ,2 , . . . , n (note:
G = G l l UG12U.. .UGln) . To construct an equivalent FSM,
we have the following two major phases:

Phase 1: We partition every G l i into a set of classes
Ci l . Ci2: . . . , C ; j} such that all global states in the
same class Cij are equivalent. Such a Cij is called an
equivalence class. (Note: The partitioning is not necessar-
ily unique.)
Phase 2: If every 61i is partitioned into a finite
number of equivalence classes (Ci1, Ci2, . . . , Cij, . . .},
then we construct an equivalent FSM containing states
&I, Q 2 , Qm such that, for each Cij, there exists a
state Q k such that [Qk,A] is equivalent to the global
states in Cij. However, if G l i cannot be partitioned into a
finite number of such equivalence classes, then the SDL-
machine F cannot be modeled by an equivalent FSM,
according to arguments similar to those for Theorem 1.

For the example shown in Fig. 4(a), the set of all stable
global states related to the state A , G ~ A , can be partitioned
into two equivalence classes: {[A, A]} and {[A, ai]ai&i 2 l};
each of 6 1 ~ and 6 1 ~ is partitioned into one single class of
{ [B . A]} and {[C, A]}, respectively. G is partitioned into four
equivalence classes: {[A, A]}, {[A, ai]lui & i 2 l}, {[B, A]}
and {[C,A]}, which are a finite number of classes. We
construct the equivalent FSM shown in Fig. 4(b), which
contains the four states A,A&a, B, and C, such that
[A, A], [A & a, A], [B, A] and [C, A] in the FSM are equivalent
to {[A.A]},{[A,ai]lai & i 2 l},{[B,A]} and {[C,A]} in the
original machine, respectively.

We note that, given a state Si, in order to partition each
6 1 i , we need to first find Esi, the set of all e-sequences at
Si, then partition every 61; with the help of Esi. In summary,
our method consists of three major stages:

Stage 1: Find Est for every state Si.
Stage 2: Construct a so-called s-tree (save-corresponding-

tree) for every state S, with the help of Es,. Each tree
serves as a relation for partitioning the G1i into a finite
set of equivalence classes.
Stage 3: Construct an equivalent FSM with the help of
the set of equivalence classes.

The phase 1 described before is divided into the stages 1
and 2, and the phase 2 is the stage 3. The three stages are
presented in detail in the next three subsections, respectively.

Finding e-Sequences:
We present in this section a method of finding Es, the set of

all e-sequences at a given state S in an SDL-machine. For the
convenience of presentation, we first define several concepts.
In order to use the terminology of graph theory, we define a
graph form of SDL-machines, called SDL-graphs.

Definition: SDL-graph.
An SDL-graph G is a labeled directed graph such that there

(1) There is a one-one correspondence between the nodes
in G and the states in F. The node corresponding to a
state S in F is labeled a pair S/saweset(S) that repre-
sents the state S and the corresponding saweset(S); and
for the sake of simplicity, S/0 may be denoted as S.

(2) There is a one-one correspondence between the edges
in G and the explicit transitions in F. The directed edge
from a node S/saweset(S) to a node &/saveset(&)
corresponds to an explicit transition S - a / z --f Q, and

.is labeled the pair a / x , which represents the input a
and output sequence x of the transition; a / A may be
denoted as a. 0

Given an SDL-machine, we can obtain a unique SDL-graph,
and vice versa. States and explicit transitions in SDL-machines
correspond to nodes and directed edges in their SDL-graphs.
This enables us to use the terminology of graph theory for
SDL-machines. Therefore, in the following, if we say edges
and nodes or subgraphs of SDL-machines, we means the edges
and nodes or subgraphs of corresponding SDL-graphs of the
SDL-machines; similarly, the transitions and states of SDL-
graphs refer to the transitions and states of the corresponding
SDL-machines of the SDL-graphs.

Given a state S in an SDL-machine F, in order to find
Es , the set of all the e-sequences at S , we construct a so-
called save-affected-graph of S, which is a subgraph of the
machine F. The save-affected-graph of S intuitively captures
the following notion: Let z be an e-sequence at 5' and any
z E I"; if x.z is applied to S, then each input of 5, if
consumed, can be consumed only by the explicit transitions in
the save-affected-graph of S . Therefore, checking the whole
machine F for the construction of Es can be reduced to
checking the save-affected-graph of S, a portion of F.

exists an SDL-machine F satisfying the following:

Definition: The save-affected-graph of a given state.
Given an SDL-machine F, for a state S, an SDL-graph G

is said to be the save-affected-graph of S if G is the smallest
subgraph of F satisfying the following:

If 1) z is an e-sequence at S and 2) z E I* is a shortest
sequence such that all inputs in x.z are consumed by explicit
transitions when z.z is applied to S, then all these explicit
transitions are contained in G. 0

78 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I . JANUARY 1994

Fig. 5

E
. An example of SDL-machine.

The root of the save-affected-graph of S is the state S . In
the following, we always present the save-affected-graphs in
the form of SDL-graphs with all outputs and save constructs
omitted.

Constructing the save-affected-graphs involves constructing
what we call save-graphs. Given an SDL-machine F, for a
state Q and a set of inputs Z C saveset(&), the save-graph of
Q with respect to Z is a subgraph of F that intuitively captures
the following notion: For every input sequence x E Z* and
an input U E in(&), the inputs in x.u, when consumed, can
be consumed only by the transitions in the save-graph of Q
with respect to Z, except that the save-graph does not contain
any edge from Q that has no successive edge with an input
in Z. The complete definition of save-graphs is presented
constructively by an algorithm given in Appendix 11.

For simplicity, we always present the save-graphs in the
form of SDL-graphs with all outputs and save constructs
omitted. For the example shown in Fig. 5 , the save-graphs
of state A with respect to { a , b} and { b } are shown in Figs.
6(a) and 7(b), respectively, in the form of SDL-graphs. The
save-graph of state D with respect to { b } and { b , e} is shown
in Figs. 6(b) and 7(a), respectively.

We give here an intuitive description of the construction of
the save-affected-graphs. Consider an SDL-machine F and a
state S . Let all transitions in the SDL-machine F be initially
unmarked. First, mark all transitions and their adjacent states
in F that belong to the save-graph of S with respect to
saweset(S). Let G always represent the marked portion of
F. Then, for every node Q of G except S , if saweset(S) n
saveset(&) # 0, then construct the save-graph of Q with
respect to saweset(S) n saveset(&), say G1, and modify G
by marking all transitions and their adjacent states of G1. A
similar procedure is repeated until no more transitions and
states can be added to G. The resulting G is the save-affected-
graph of S. The algorithm for constructing the save-affected-
graphs is given in Appendix 11.

For the example shown in Fig. 5 , the save-affected-graphs of
states A and D are shown in Figs. 6(c) and 7(c), respectively.

(b)

Fig. 6. (a) The save-graph of A with respect to [a. b]. (b) The save-graph of
D with respect to { b }. (c) The save-affected-graph of A. (d) 2.4 set.

Zp(e.b. b)

(b) (C) (d)

A with respect to { 6). (c) The save-affected-graph of D. (d) ZD set.
Fig. 7. (a) The save-graph of D with respect to {b, e } . (b) The save-graph of

Fig. 6(c) results from Fig. 6(a) and 6(b), and Fig. 7(c) results
from Fig. 7(a) and 7(b).

Simple save-affected-graph assumption: Given an SDL-
machine and a state S, we say that S satisfies the simple
save-affected-graph assumption if
1) In the save-affected-graph of S, say G, for every state

Q, if Q has an outgoing transition in G with an input in
saweset(S), then a) saweset(S)n,saweset(Q) = 0, and b)
Q does not have more than one incoming transition in G.

2) The save-affected-graph of S does not have any directed

If a given state in an SDL-machine satisfies the simple save-
affected-graph assumption, we use the following approach for
finding Es, the set of all e-sequences at S.

cycle. 0

Finding all e-sequences at a given state:
Given an SDL-machine, for a state S that satisfies the simple

save-affected-graph assumption, we construct Es as follows:
1) Construct 2 s = {x E I*)y is an input sequence

along a maximal directed path in the save-affected-graph
such that the path starts from S, and x is derived by
eliminating all inputs of y that are not in saweset(S)}.

0
We intuitively explain the above procedure. For a state S

that satisfies the simple save-affected-graph assumption, the

2) Construct Es = pref(2s).

LUO et ol.: SOFTWARE TESTING BASED ON SDL SPECIFICATIONS 79

EA=prefl(a.b, b))

=(La, b, a.b)

8 A&a.b 8rb'a

(a) (b)

Fig. 8. (a) E.4 set; (b) the .+tree of the state A.

inputs in any e-sequence at S are consumed in the order of
the inputs in the e-sequence. Therefore, an e-sequence at S
must be a subsequence of an input sequence along a direct
path starting from S in the save-affected-graph. Consequently,
2s contains all maximal e-sequences at S; and thus Es is

For the example shown in Figure 5, both the states A and D
satisfy the simple save-affected-graph assumption. Then we
derive ZA = {a.b,b} and ZD = {e.b,b} from the save-
affected-graphs shown in Figures 6(c) and 7(c), respectively.
Therefore, EA = pref({a.b,b}) = {A,a ,b ,a .b} and ED =
pref({e.b,b}) = {A, b, e,e.b}.

For the case that the simple save-affected-graph assumption
is not satisfied, we present in Appendix I11 an algorithm
for finding Es provided the set Es is finite; however, that
algorithm is less efficient than the one presented above.

pref (ZS).

Constructing .+Trees:
We present in this section an algorithm for constructing

an SDL-graph, called s-tree, for a state Si. The s-tree of Si
intuitively serves as a relation for partitioning the 61;-the set
of all stable global states related to the state S, as mentioned
before-into a finite set of equivalence classes.

Algorithm 1: Construction of the s-tree (save-
corresponding-tree) of a given state S .

Input: An SDL-machine F, and a given state S.
Output: The s-tree of the state S.
Condition of applicability: Es is finite.
Step 1: Construct Es, the set of all e-sequences at S .
Step 2: Build a tree initially containing only one unmarked
node labeled S & A.
Step 3: If all leaves of the resulting tree have been marked,
then stop with the resulting tree being the s-tree of the
state S. Otherwise.

1)

2)

Find in the resulting tree a unmarked leaf node
labeled S & z, and mark the node.
For every b in saveset(S), if Es n p r o j (z) #
Es n proj(z .b) , then create an unmarked child
node of S & z with label S & x.b in the tree. Go
to Step 3. 0

For the example shown in Fig. 5, using the EA and EB
derived in Section 111-B.1 (shown in Figs. 8(a) and 9(a)), the
algorithm constructs the s-trees of the states A and D, shown
in Figs. 8(b) and 9(b), respectively.

23 D&b.e.b

(a) (b)

Fig. 9. (a) ED set; (b) the 5-tree of the state D.

The s-tree of S intuitively captures the following notion:
Consider an SDL-machine F and a state S E K where Es
is finite. For z E saveset(S)*, in the s-tree of the state S ,
let the node S & z be the end state of the execution path
obtained by applying z to the root state S & A (note: an s-
tree is an SDL-graph, representing an SDL-machine); then,
the input sequence z is a u-sequence of z at S. Consequently,
for s,y E saveset(S)*, [S,z] is equivalent to [S,y] if the
two execution paths obtained by applying z and y to the
state S & A, respectively, have the same end state. Therefore,
with the help of the s-tree of S , the set of all stable global
states related to the state S is partitioned into a finite set of
equivalence classes, each of which corresponds to a node in
the s-tree of S.

In Algorithm 1, Step 3(2) is intuitively based on the
following idea: Given a state S E K , let an input
sequence a1.a2 .. . a,-l.a, E saveset(S)*, n 2 1, and
z = ~ 1 . ~ 2 . . . a,-l (note: if n = 1, let z = A). If
ES n p r o j (z) = Es n proj(z.a,), then the a, of z. a,
is a n-input of z . a, at the state S. Therefore, there is no
need to remember the a,. In this case, z is a u-sequence of
z.a, at S.

We note that the condition of applicability of Algorithm 1
is decidable and can be determined using Algorithm 5 given
in Appendix 111.

We show that Algorithm 1 will terminate after a finite
number of steps. Let an integer M be IEsl(lEsl is the number
of elements of Es). We first argue that the s-tree of S does not
have any path from the root that is longer than M - 1. Assume
to the contrary that there exists a path p of length M , and that
z.b is an input sequence along p with x E saveset(S)* and
b E saveset(S). Then, according to Step 3(2),

Es n p r o j (z) = Es since 1x1 + 1 = lEsl = M(I.1 is the
length of J) . Therefore,

Es n p r o j (z) = Es n proj(z.b) = Es since Es n
p r ~ j (z) C Es n proj(x.b)

This implies that the s-tree cannot have the path p of length
M . This contradiction concludes that all paths in the s-tree are
not longer than M - 1, thus the s-tree is finite. Consequently,
according to Step 3(1), all leaves of the tree will eventually
be marked, and therefore the algorithm will terminate since
the tree is finite.

Es.

Equivalent Transformation:
We present in this section an algorithm of transforming

SDL-machines into equivalent FSM's with the help of s-trees.

80 IEEE TRANSACTlONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I , JANUARY 1994

We note that an s-tree is an SDL-graph, thus represents an
SDL-machine. The nodes and edges in an s-tree are viewed as
states and explicit transitions in the SDL-machine represented
by the tree.

Given an SDL-machine F where Es is finite for every state
S E K , using s-trees, this algorithm derives an equivalent
FSM F’ from the machine F intuitively in the following
manner: 1) Initially let F’ be the portion of the SDL-machine
that is obtained from F by deleting all save constructs. 2)
Construct the s-trees of all states that have save constructs,
and add all s-trees to F’ by merging every pair of the root
state S & A of an s-tree and the state S of F’ to form a
state S. Therefore, in this F’, a state S & z introduced from
an s-tree is equivalent to every stable global state [S,z] in F
where S & z is the end state of the execution path obtained by
applying x to S in F’. 3) For every state S & z in F’, for every
input a E in(S) , add a transition labeled a/out(S,z.a) to a
state Q in F’ such that [Q, A] is equivalent to the stable global
state [S@z.a, queue(S, ..a)] in F. Therefore the resulting F’
is equivalent to the original machine F.

Algorithm 2: Equivalent transformation of SDL-machines
to avoid save constructs.

Input : An SDL-machine F.
Output: An equivalent FSM F’.
Condition of applicability: For every state S in K , Es
is finite.
Step 1: Draw the portion of the SDL-machine that is
obtained from F by deleting all save constructs.
Step 2: Assume that E represents { S (S E
K & saveset(S) # 0). Let E = {S1,S2,...,Sm} .
For every state S E E, draw the s-tree of S using
Algorithm 1. Rewrite all s-trees in SDL-graphical
symbols. Let i := 1.
Step 3: If z > m, then go to Step 4. Otherwise, for every
node S, & .c in the s-tree of the state S, except for the
root S, & A, and for every a E in(&), do the following:

Let S, = S,@z.a. Find the node Q in the resulting
graph such that:

1)

a) if S, E E,Q is the end state S, & z of
the execution path in the s-tree of the state
S, obtained by applying the input sequence
queue(S‘,,z.a) to the state S, & A.

E), Q is the state S, in
the portion of graph created in Step 1.

2) Create a transition from the node S, & z to
the node Q with the label a/out(S,,.c.a). Let
z := i + 1. Go to Step 3.

Step 4: Rename every node S & A by S in the resulting
graph. The resulting graph is the equivalent FSM F’. 0

For the example shown in Fig. 5, from the s-trees of states
A and D, we construct an equivalent FSM as shown in Fig.
10. In Fig. 10, Step 1 draws the portion that is not contained
in the dashed block. For the state A & a in the s-tree of A
and the input c, Step 3(1) finds that the Q is the state D,
and Step 3(2) creates the transition from A & a to D with
the label c/out(A, n.c) where out(A, a.c) = S . Z . For the state

b) otherwise (i.e., S,

A & a b in the s-tree of A and the input c, Step 3(1) finds that
the Q is the state D & b, and Step 3(2) creates the transition
from A & a.b to D & b with the label c /ou t (A , u.b.c) where
out(A,a.b.c) = Z.Z.

In Algorithm 2 only Step 3 may be repeated. It is performed
for adding (a finite number of) outgoing transitions to the
nodes of the s-trees. Since the number of nodes of the s-
trees is finite, this algorithm terminates after a finite number
of steps. The validity of the algorithm is given as follows.

Theorem 2: Algorithm 2 transforms SDL-machines into
equivalent FSM’s under the condition of applicability. Proof
See Appendix I.

Theorem 3: For a given SDL-machine where every ex-
plicit transition has at least one nonempty output, there exists
an equivalent FSM if and only if the condition of applicability
of Algorithm 2 is satisfied. Proof See Appendix I.

This theorem shows that the applicability condition of Algo-
rithm 2 is a necessary and sufficient condition for the existence
of an equivalent FSM for a given SDL-machine where every
explicit transition has at least one nonempty output.

IV. TEST DESIGN

We give in this section a method for test selection from
SDL-machines that is based on our equivalent transformation
algorithm. We present a fault model that includes output faults
and transfer faults that are usual for FSM’s (i.e., the output
corresponding to a transition is erroneous or there is a fault in
the next state reached by a transition [S]-[lO]) and the save
faults that are specific to SDL-machines. We also discuss the
fault coverage of the test cases derived by our method under
the given fault model.

Let SP be a specification and IUT its implementation.
Assume that they have the same I and 0. The fault types
are defined as follows:

1) Output fault: We say that IUT has output faults if 1) IUT
is not equivalent to SP and 2) SP can be obtained from
IUT by modifying the outputs of one or more transitions
in IUT.

2) Transfer fault: We say that IUT has transfer faults if 1)
IUT is not equivalent to SP and 2) SP can be obtained
from IUT by modifying the end states of one or more
transitions in IUT.

3) Save fault: We say that IUT has save faults if 1) IUT
is not equivalent to SP and 2) SP can be obtained from
IUT by modifying the labels (i.e., inputs) in one or more
save constructs in IUT.

4) Hybrid fault: We say that IUT has hybrid faults if 1) IUT
is not equivalent to SP and 2) SP can be obtained from
IUT by changing the outputs and/or the end states of
one or more transitions, and/or by modifying the labels
in one or more save constructs, in IUT.

For SDL-machines that satisfy the condition of applicability
of Algorithm 2, we use the following procedure to generate
test suites.
Test generation procedure for a given SDL-machine:

Step 1: Transform the given SDL-machine into an equiv-
alent FSM using Algorithm 2.

LUO et al.: SOFTWARE TESTING BASED ON SDL SPECIFICATIONS

8

81

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I _ _ _ - _ _ - _ _ - - - - - - - - - - - - -

Fig. IO. An equivalent FSM of the SDL-machine of Fig. 5.

Step 2: Ignore the existence of the input queue of the
resulting FSM, and generate test cases from the machine
using one of the test suite development methods for finite
state machines, such as the W-method [9], Wp-method

0
Under the fault model given before, which implies that we
assume that no faults other than those in the fault model can
occur, the fault coverage is given as follows.

The fault coverage of the test suite: If the methods used
in Step 2 of the test generation procedure outlined earlier
can ensure the complete fault coverage for FSM’s under
the fault model which only assumes the mixed output and
transfer faults, the test suite can detect any fault specified
in the fault model (i.e., all the four types of faults). This

[IO], UIO-method [111 or transition tour [121.

is because save faults can be modeled as output faults and
transfer faults in the transformed equivalent FSM’s. This
implies complete fault coverage.

For SDL-machines that do not satisfy the condition of
applicability of Algorithm 2 , we use the heuristic approach
given in [5] to transform a given SDL-machine to an FSM
that is an approximation of the original SDL-machine. Test
case selection is based on the resulting FSM. Therefore, the
equivalence relation between specifications and implementa-
tions cannot be fully guaranteed, and complete fault coverage
cannot be guaranteed either.

We note that in our experience most SDL-machines derived
from practical SDL specifications have equivalent FSM’s.
Therefore, our approach results in good fault coverage for
most practical applications.

~~

82 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL 20, NO I , JANUARY 1994

V. CONCLUSION

The signal save construct is one of the features distin-
guishing SDL from traditional high-level specification and
programming languages. However, this feature increases the
difficulties of testing SDL-specified software. We present a
testing approach consisting of the following three phases: SDL
specifications are first abstracted into finite state machines
with save constructs, called SDL-machines; the resulting SDL-
machines are then transformed to equivalent FSM's if this is
possible; and, finally, test cases are selected from the resulting
FSM's. We concentrate on the second phase and come up with
an equivalent transformation algorithm for this phase, since
there are existing methods for the first and third phases. The
applicability condition of this algorithm is a necessary and
sufficient condition for the existence of an equivalent FSM,
for a given SDL-machine where every explicit transition has
at least one nonempty output.

In the area of verification for SDL-specified software, the
specifications usually need to be abstracted into FSM's for
verifying a so-called deadlock-free property. This can be done
by first abstracting SDL specifications into SDL-machines and
then applying this transformation method to obtain equivalent
FSM's. Therefore, the equivalent transformation method could
be useful in that area as well.

APPENDIX I
PROOFS OF VALIDATION OF THE METHOD

In order to prove Theorems 2 and 3, we need several
lemmas. For the sake of convenience, we assume in the
following that all SDL-machines being discussed are denoted
by (K , I , 0, saveset, T , SO) unless we specify them explicitly.

Lemma 1: Given a state S E K and an input sequence
z E snveset(S)*, let z be a u-sequence of z at S. Then,

Proofi From the definition of u-sequences, z is obtained
from x only by eliminating zero or more n-inputs of z at
the state S . For every y E I* , apply -c.y to S; then any of
such n-inputs when consumed does not stimulate any output
and only causes a self-loop at a state, since n-inputs when
consumed are consumed by implied transitions. Therefore, the
same sequence of explicit transitions will be consumed when
s.y and z.y are applied to S, respectively. Thus the lemma
holds. 0

To prove the next lemma, we need the following concept.
Dejnuion: Comparison of two strings of integers.

Given two strings of integers ICl .k2 . . . k,, and 1, .12 . . . I , , of the
same length where kl < IC2 < . . . < k,, and 1, < lL < . . . < l,,,
we say that ICl . IC2 . . . IC,, is smaller than 1, .12 . . ' l,, if

vy E I* (out(S, z.y) = out(S, z.y) & S@z.y = S@z.y).

3Z(kl.k2...kt-1 = 11.12...1,-1 & k, < l l) .

0
Lemma 2: Given a state S E K , let an input sequence

a l . a 2 ~ ~ ~ a n - 1 . a n E saueset(S)*,n 2 1, and x =
~ 1 . ~ 2 ... a,-l (note: if n = 1, let .E = A). If Es nproJ(z) =
Es nproj(z .a ,) , then the a, of 2.0, is a n-input of z.a, at
the state S (note: in this case, .E is a u-sequence of z.u,, at S.).

Proofi
Part I: We note the following fact: Given a state S E K ,
consider an input sequence . . . a, E saveset(S)* and
an input sequence w E I* . Assume that U k l . U k 2 . . . a k i

is obtained from al .a2 . . . a, by eliminating all inputs that
are consumed by implied transitions when a 1 . a 2 . . . a, .w is
applied to S. Then there does not exist any all . a 1 2 . . . ali such
that 11.12 . . . l ; is smaller than k l . k 2 . . . ki and a l l . a 1 2 . . . ali =
akl . a k 2 . ' 'ski.

Part 11: We now prove the lemma.
(1) Es n proj (z) = Es n proj(z.a,)

assumption
(2) 3m E I* (the U , in z.u,.w will be consumed

by an explicit transition when z.a,.w is
applied to the state S)

assuming the contrary
of the lemma

considering such a w in the following

z.a, by deleting all inputs in x.a, that
will be consumed by implied transitions when
z.a,.w is applied to the state S

(3) derive the sequence U k l . a k 2 . . . U k i .a, from

(4) a k l . a k 2 . ' . a k i . a , E Es n prOj(z .U,)
(3)

(1) (4)
(6) there must be a u l l . a 1 2 . . ' alia, such that

(5) a k 1 . 0 , k 2 . . . aki.f& E Es n prOj(X)

i) 11.12 . . . 1i.m is smaller than k 1 . k ~ . . . k;.n, and

iii) m < n

(7) (6) is not true

(8) The lemma holds

ii) U 1 1 . U 1 2 . . . U l i . U m = U k l . U k 2 " ' a k i . a n , and

(5)

Part I

(2) causes the
contradiction between
(6) and (7).

0
Lemma 3: Given a state S E K , an input sequence x.a E

saveset(S)* and a E saveset(S), if an input sequence z is a
u-sequence of x at S, then z.a is a u-sequence of x.a at S.

1) z is a u-sequence of z at the state S

2) all n-inputs of 2 at S are n-inputs of x.a at

3) z.a is obtained from x.a by eliminating zero

4) z.a is a u-sequence of 5.a at S

Pro&

assumption

S definition of n-inputs

or more n-inputs of x.a at S 1) 2)
3) & definition of

u-sequences .
0

We use in the following the terminology of SDL-machines
for s-trees, since an s-tree is an SDL-graph representing an
SDL-machine. The nodes and edges in an s-tree are viewed
as states and transitions in the SDL-machine represented by
the tree.

Lemma 4: For a state S E K where all e-sequences at S
are of finite length, for z E saveset(S)*, in the s-tree of the

LUO et al.: SOFTWARE TESTING BASED ON SDL SPECIFICATIONS 83

state S, let the node S & z be the end state of the execution
path obtained by applying x to the state S & X (the root of the
tree). Then, the input sequence z is a u-sequence of x at S.

Proof: We prove the lemma by induction on the length
of 5 .

Induction Hypothesis: for x E saweset(S)*, we assume that
S & z is the end state of the execution path obtained by
applying x to the state S & A. Then the input sequence z is
a u-sequence of x at S.

Induction Base: x = A. S & X is the end state of the
execution path obtained by applying x to the state S & A.
In this case, since X is a u-sequence of x at the state S, the
lemma holds.

Induction Step: for x.a E saweset(S)*, we assume that
S & y is the end state of the execution path obtained by
applying x.a to the state S & A. We argue that the input
sequence y is a u-sequence of x.a at the state S as follows:
1) The Induction Hypothesis given before

2) the y is either the z or the z.a

3) z.a is a u-sequence of x.a at the state S

4) the y is the z

5) Es n p r o j (z) = Es nproj(z.a)

6) z is a u-sequence of z.a at the state S

7) z is a u-sequence of x.a at the state S

assumption

1)

1) & Lemma 3

assumption

4) & Algorithm 1

5) & Lemma 2

6) & definition of
u-sequence

8) the y is a u-sequence of z .a at the states
2) & 3) &

“4) * 7)”
0

For the sake of convenience, we assume the following:
1) F(K, I , 0, saveset, T , SO) is an SDL-machine such that,

for every state S E K, Es is finite.
2) F’(K’, I , 0, saveset’, T’, SO) is the resulting machine

obtained from F using Algorithm 2.
3) In contrast to the @ and out functions for F, Q’ and out’

refer to the corresponding functions for F‘, respectively.
4) E = {SlS E K & saweset(S) # 0).
It is easy to see: 1) for every state Q E K’, saveset’(&) =

0. 2) K G K’ 3) all explicit transitions of F are explicit
transitions of F’.

Lemma.5: Let S E K and a E I . Let S & z be a state
in the s-tree of the state S for the machine F. The following
statements hold:

(a) out(S, z .u) = out’(S, z.a);
(b) S(c?‘z.u = (S@z.a)Q’queue(S, 2.a).

Proof:
Case I: a i74S).
1) a g‘ in(S)

2) o,ut(S, z .a) = X and out’(S, 2.u) = X
assumption

1) & z E saweset(S)

2)
1) & z E saweset(S)

4)

I) & z E saweset(S)

3) Statement a) holds (i .e . , out(S. z .u) = out’(S. ..a))

4) SK3z.a = s
5) (S@z.a)@’yueue(S, z .u) = S@’yueue(S, 2.u)

= S@’z.a

& the s-tree of S
6) Statement h) holds

Case 11: a E zn(S).
5)

1) a E i7L(S)
assumption

2) In F’, when z is applied to the state S, the machine
will reach the state S & z without any output produced

only a path in s-tree
is executed

will produce the output sequence out(S. z.u)
3) In F’, when a is applied to the state S & z , the machine

1) & Step 3
of Algorithm 2

4) The statement a) holds (i .e . , out(S. 2.u) = out’(S, z .a))

5) Let P = S@z.a
2) 3)

In F’, when a is applied to the state S&z, the machine
will reach the state Q where Q is decided as follows:
i) If PE E, then Q is the end state P & y of the
execution path obtained by applying the input sequence
queue(S, z .a) to the state P (i.e., the node P&X in the
s-tree). Therefore, Q = (S@z.a)@’queue(S, z.a).

1) & Step 3 of
Algorithm 2

ii) if P E E, then Q is P. In this case,
P = S@z.a. queue(S. 2.u) = A.
Therefore, still, Q = (S@z.a)@’queue(S, z .u) .

1) & Step 3 of
Algorithm 2

6) The statement h) holds
(i.e.,S@’z.u = (SQz.a)Q’queue(S. z . u))

Lemma 6 : Consider a state S E K and an input a E I . Let
S & z be a state in the s-tree of S for the machine F. Then, for
any w E I* , out’(S@z.a, queue(S, z .a).w) = out’((S@z.u)@’
queue(S, z . a) ,w) .

1) queue(S. 2.u) E snweset(S(c?z.u)*

2) VP E KV’z E suweset(P)*(out’(P,,) = A)

2) & 3.0

Proof:

definitions of queue and ((2

in F’, when .E is applied to the
P, only a path within the
s-tree of P will be executed
without producing any output.

1) 2)

VQ E K’(saveset’(Q) = 0)

3) out’(S@z.a, queue(S. 2.u)) = X

4) v y, w E I*(out’(S,y.w) = out’(S, y).out’(S(Q’y. w))

5) for w E I * , out’(S@z.a.queue(S. z.a).w)

84 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I , JANUARY 1994

TABLE I1
ADDITIONAL NOTATIONS FOR SDL-MACHINES

= out’(SK3z.u. queue(S, ..a)).

4)

3) .
0

Theorem 2: Algorithm 2 transforms SDL-machines into
equivalent FSM’s under the conditions of applicability. (That
is. VS E KVx E I*(out (S ,x) = out’(S,z)).)

Proofi The proof is straightforward for the situation that
none of the inputs of T is in zn(S). We now prove the lemma
for the case that there exists at least one input in 5 belonging
to rn(S) , by induction on the length of x.

Induction Hypothesis: for a positive integer 2, VS E KVx E
I*(l.rl < L ==+ out(S,z) = out’(S,z)).

Induction Base: 1x1 = 1. In this case, 5 E in(S) . Therefore,
the lemma holds because the machine F’ contains all explicit
transitions of F.

Induction Step: Assume x E I* and 1x1 = i > 1. Let
s = x1.a.w where a E zn(S),zl E suveset(S)*, and E I* .
In the s-tree of the state S, let the node S & z be the end
state of the execution path obtained by applying the 2 1 to the
state S & A. We have

out’((SOz.a)@/queue(S, z .a) , w)

= oUf’((S(cllz.u)~’yueue(S, z .a) , w)

Ouf(S. X) = Out(S, 21.11.71)

2 = 51.u.w

Lemmas 4 and 1

definition of out

Lemma 5(a)

Hypothesis of induction

Lemma 6

Lemma 5(b)

definition of out’&
VQ E K’(suweset’(Q) = 0)

the node S&z is the end

= out(S. z.cL.v)

= out(S. z .a).out(S@z.a, queue(S, z.u).v)

= out’(S. z.w).out(S(Qz.a, queue(S, z.u).w)

= out’(S. z.a).out’(S@z.u, queue(S, z.u).w)

= out’(S. z.u).out’((S@z.a)@’queue(S, z.u), w)

= out’(S, z.a).out’(S@’z.a, w)

= out’(S. z.u.v)

= out’(S, z1.a.v)

We require the following concept for proving Theorem 3.
Definition: Save-affected-path.
Given a state SI E K , a path in an SDL-graph is called a

1) the path starts from the state SI, and
2) if the path is represented in the following form, called a

save-affected-path from S1 if

normal form (note: this is a unique form):

2 3 SI - b1 + Q1 = X I + S 2 - b2 -+ Q2 = x
S, . . .S , - b, + Qm = X, * Sm+l

where m 2 1, bi $! saveset(&), and xi E
saveset(Sl)* for i = 1 , 2 , . . . , m,
then zi E (nf=l(saweset(Sk))* for i = 1 ,2 , . . . ,m ,
and x, # A. 0

Lemma 7: Given a state S, all e-sequences of the state S
are of finite length if and only if none of the save-affected-
paths of S contain any directed cycle that has at least one
transition with an input in saveset(S).

Proof: This theorem is evident from the definitions of

According to Lemma 7, checking the conditions of applica-
bility of Algorithms 1 and 2 is reduced to checking whether,
for every state S , all save-affected-paths of S do not contain
any directed cycle that has at least one transition with an input
in suweset(S).

Theorem 3: For a given SDL-machine where every explicit
transitim has at least one nonempty output, there exists an
equivalent FSM if and only if the condition of applicability of
Algorithm 2 is satisfied.

Proof: (I . Suficiency): Theorem 2 proves that if the
condition of applicability of Algorithm 2 is satisfied, then there
exists an equivalent FSM.

(I I . Necessity): We prove in the following that the condition
is also necessary. Assume the contrary that given an SDL-
machine F, there exists S in K such that not all e-sequences
of the state S are of finite length. According to Lemma 7,
there must exist a state S in K and a save-affected-path from
S such that the path contains a directed cycle which has at
least one transition with an input in saveset(S). In this save-
affected-path, we find the shortest path p from S to the cycle,
and we assume that
i) 21 is the input sequence along the path p ,

ii) Q is the end state of the path p ,
iii) 5 2 is the input sequence along the cycle from Q to itself,
iv) y1 is obtained by eliminating all the inputs of x1 that do

v) z1 is obtained by eliminating all the inputs of x1 that

vi) y2 is obtained by eliminating all the inputs of 5 2 that do

e-sequences and save-affected-paths. 0

not belong to saveset(S),

belong to saweset(S),

not belong to saweset(S),
state of the execution path
in the tree when the 2 1 is
applied to the state S&A

vii) z2 is obtained by eliminating all the inputs of x2 that
belong to saveset(S),

viii) since F is initially connected, there must exist a path in
F from the initial state SO to the S; let 5 0 be the input
sequence along such a path.

Part A: We first argue that none of the stable global states

= out’(S,n) = z1.a.v.
0

For the sake of convenience, we introduce in the following
additional notations for SDL-machines. [S , YI . Y ~ I , [S, YI .$I1 . . . , [S, ~1 .Y;], . . . are equivalent.

LUO e! al.: SOFTWARE TESTING BASED ON SDL SPECIFICATIONS

Consider two stable global states [S, y1.y;] and [S , y1 .yi+k],
for i = 1 . 2 , 3 , . . . and k = 1 , 2 , 3 , . . .
1) given P E K , and z,y E I * , if out(P,x .z) # out(P,y .z)

for some z E I * , then the two global states [P; x] and
[P. y] are not equivalent

definition of equivalence
2) let xp = v.a.711 where a E saveset(S) and no input of 11 is

in su,ueset(S)
definition

3) if v = A, then for 21.z; E I*,

(note: out(S, yl.yi+k.zl.z;)

if v # A, then for z1.zi.a E I * ,

(note:out(S, y1.y;+‘.zl .z;,.w)

out(s. y1 .y;fk .z1.z;, # ovt(s, y1 .y;.z1 2;).

= ou t (S ,y l .y i . z l . z ;) . o~ t (Q ,g~))

out (S . y* .&+” z1 ..;.?I) # out (S , yI .g; .z1.z; .v)

= out(S, y1 .y;.zl .z;.v).out(Q@v, $))
definition of out & 2) &
“every explicit transition of F

has at least one nonempty
output” &

“the cycle has at least
one transition with an input
in saveset(S)”

4) [S, y1 .&I and [S; y1 . ~ i + ~] are not equivalent

5) none of the stable global states [S, y1 .y2], [S, yl.yi],
1) 3)

. . . ~ [S , y1 .y;], . . . are equivalent
4)

Part B: We argue that there does not exist any
equivalent FSM for the given SDL-machine F.
According to Part A, none of the stable global states

Consequently, for any SDL-machine equivalent to F, the
input sequences zo.yl.yz,xo.yl.y22,... ,zo.y1.y;, . . . must
lead the machine from its initial global state to a set of
stable global states TI , T2, . . . , Ti, . . . that are equivalent to
[S, y1.y2], [S, ~1.~221, . . . , [S, y1. yi], . . ., respectively. None of
Tl , T2. . . . , Ti , . . . are equivalent. Thus, such an equivalent
machine must have an infinite number of stable global states
since i can take any positive integer value. An FSM only
has a finite number of stable global states since it does not
have any save construct. Therefore, there does not exist any
equivalent FSM for the given SDL-machine F.

Part C: From Part B, if the give SDL-machine F does not
satisfy the condition of applicability of Algorithm 2, then there
does not exist any equivalent FSM for F. Therefore, if there
exists an equivalent FSM for the give SDL-machine F, then F
must satisfy the condition of applicability of Algorithm 2. 0

[S ,Yl .Y2] , [S,Yl.Yi],. . . , [s , Y l . Y ; I , . ’ . , are equivalent.

APPENDIX I1
ALGORITHMS FOR CONSTRUCTING SAVE-
GRAPHS AND SAVE-AFFECTED-GRAPHS

Given a state S in an SDL-machine and a set of inputs
Z C saveset(S) , we define a so-called save-graph of S with
respect to Z that intuitively captures the following notion:
For every input sequence z E Z* and an input a E in(S),

85

the inputs of L.U can only be consumed by the transitions
in the save-graph of S with respect to Z. We formally give
a constructive definition of save-graphs by the following
algorithm. Note that we always present save-graphs in the form
of SDL-graphs with all outputs and save constructs omitted.

Algorithm 3: Construction of the save-graph of a given
state.

Input: An SDL-machine F, a given state S , and a set of
inputs Z C saursrt(S) .
Output: The save-graph of S with respect to Z.
Step 1: Let all transitions in the SDL-machine F be ini-
tially unmarked. Mark the state S . Let G always represent
the marked portion of F (thus G initially contains only the
state S) .
Step 2: Find in F all transitions starting from S such that
the end state of such a transition has an outgoing transition
with an input in Z. Modify G by marking these transitions
and their end states.
Let V be the set of all the end states of the marked
transitions resulting from this step.
Step 3: Find in F all transitions starting from S such that,
for the end state Q of such a transition, Z n S(I u e w t (Q) #
0. Modify G by marking these transitions and their end
states.
Step 4: Find all transitions with the inputs in Z, each of
which can be reached from a state in V, along a directed
path p in F with the inputs of all transitions in the path
p belonging to Z. Modify G by marking these transitions
and their end states.
Step 5: Stop. The resulting G is the save-graph of S with
respect to Z. The root of the save-graph is the state S. [7

Figs. 6 and 7 show the examples of the save-graphs.
In the following, an elementary path refers to a path where

Algorithm 4 : Construction of the save-affected-graph of a
all edges are distinct.

given state.
Input: An SDL-machine F, and a given state S.
Output: The save-affected-graph of S.
Step 1: Let all transitions in the SDL-machine F be
initially unmarked. Then mark all transitions and their
adjacent states in F that belong to the save-graph of S
with respect to saveset(S). Let G always represent the
marked portion of F.
Step 2: Find a state Q in G such that

i) there exists an elementary path from S to Q; and
if the path is presented in the following normal
form:

then x, E (nk=l(saveset(Sk))* for i =
1.2, ’ . . . m.
(Note: by the definition of normal form, vi 2

86 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I , JANUARY 1994

1. b, saveset(S1), and x, E saveset(SI)* for

ii) let Z = n?=f,lsaveset(Sk), then Z # 0 and
the save-graph of Q with respect to Z is not a
subgraph of G (i.e., there is at least a unmarked
transition in the save-graph.).

Step 3: If a state Q has been found in Step 2, then 1)
modify G by marking all transitions and their adjacent
states in F that are contained in the save-graph of Q with
respect to P, and 2) go to Step 2. Otherwise, go to next
step.
Step 4: Find a transition t in G such that 1) the end state
of the transition t does not have any outgoing transition
in G, and 2) the input o f t 6 saweset(S).
Step 5: If a transition t has been found in Step 4, then
modify G by unmarking the t in F and go to Step 4.
Otherwise, stop; and the resulting G is the save-affected-
graph of S with its root being S .

U
In this algorithm, each application of Steps 2 and 3 marks

at least one transition. According to Step 2(ii), if there is no
unmarked transition in F, then no Q can be found in Step 2;
thus Step 3 cannot be applied. Therefore, Steps 2 and 3 can
be applied only a finite number of times, since F is a finite
graph. Steps 4 and 5 are for making the save-affected-graph
minimal. It is straightforward to prove that Steps 4 and 5 can
be applied only a finite number of times also. Consequently
this algorithm terminates after a finite number of steps.

i = 1 , 2 :... m)

APPENDIX I11
A GENERAL ALGORITHM FOR FINDING ALL ,!?-SEQUENCES

We present in this section an algorithm that, for a given
SDL-machine and a state S, finds Es when Es is finite, or
reports “Es is infinite” when Es is not finite. For ease of
understanding, the given algorithm has not been optimized.

Definition: Corresponding-e-sequence.
Given a state S , for a save-affected-path p from S , an

input sequence :E is called a corresponding-e-sequence of p
if 3 y E I”. (All inputs in x . ~ will be consumed by explicit
transitions in the path p when x.y is applied to the state S.),
For a save-affected-path p from S, the set of all corresponding-
e-sequences of the path p is written ce(p). (Note: X E ce(p).)

0
This concept is based on the following intuition: Given a

state S , if Es is finite, then for every e-sequence x at S , there
must be an elementary save-affected-path p from S such that
:I: is a corresponding-e-sequence of p.

In the following algorithm, we say that a save-affected-path
p from a state S is maximal if there is no other save-affected-
path p 1 from the state S such that p is a prefix (subpath) of

Step 1: Find the set P that contains all maximal elementary
save-affected-paths from the state S as follows: Assume
that A4 is the number of all explicit transitions in F, and
that $1 is the set of all elementary directed paths from S
in F (note: P is a finite set.).
1) Check the paths in $1 one by one, and find in $1
all save-affected-paths from the state S that are either
maximal or of the length M . Let $2 be the set of these
save-affected-paths.
2) If none of the paths in $2 contains any directed cycle
that has at least one transition with an input in saveset(S),
then let P = $2 and go to Step 2. Otherwise, stop and
report “Es is infinite.”
Step 2: For every p E P, construct ce(p) as follows: For
the path p in P, assume

i) the path is represented in the following normal
form (note: this is a unique form):

S = Si - bl -+ Q1 = 5 1

+ 5’2 - b2 + Q 2 = ~2

S3.”Sm - bm -+ Qm = x m

+ Sm+1

where m 2 1, b, 6 saveset(S1) and xi E
saveset(S1)’ for i = 1 , 2 , . . . , m.

ii) N p is the number of all transitions with inputs in
saweset(S) in the path p (i.e., N p = CEl Ix,l).

iii) saveset(S)NP is the set of all input sequences of
length N p over saveset(S).
Then, do the following:

Construct a set 8, in the following way:
Initially, let B, = 0. Check every input
sequence x in saveset(S)NP. If all inputs of
x will be consumed by explicit transitions in
the path p when x.bl . . b , is applied to S,
then put z into 8,. (Note: the set 8, contains
all e-sequences at the state S of length N p
that can be consumed along the path p.)
Construct ce(p) = pref($).

Step 3: Construct Es = U P E P ce(p). 0
We now explain the algorithm. I) We first argue that Step 1

finds all maximal elementary save-affected-paths from the state
S when Es is finite. If none of the save-affected-paths from
S contain any directed cycle that has at least one transition
with an input in saveset(S) (i.e., Es is finite from Lemma
7), then none of the maximal elementary save-affected-paths
from S are longer than M ; therefore, we can find all maximal
elementary save-affected-paths from S by checking the set of
all elementary directed paths from S in F, as described in
Step l(1).

P1.

state.

If there exists a save-affected-path from S containing a
directed cycle that has at least one transition with an input
in saveset (S) (i.e., Es is infinite from Lemma 7), then there
must exist an elementary save-affected-path of the state S
containing a directed cycle that has at least one transition with
an input in saveset (5’); this is checked up in Step l(2) with

AlRorithm5: Construction of all e-sequences of a given

Input: An SDL-machine F, and a given state S.
Output: 1. Es, the set of all e-sequences at S if Es is
finite. 2. reporting “Es is infinite” if Es is infinite.

LUO et al.: SOITWARE TESTING BASED ON SDL SPECIFICATIONS 87

‘‘E5 is infinite” reported. If the algorithm does not stop in Step
1(2), then Es is finite according to Lemma 7.

constructs ce(p) for a save-
affected-path p from the state S by checking exhaustively.
Therefore, Step 3 constructs Es.

Using the concept of the save-affected-graph, Algorithm 5

[IS] 0. Faergemand and R. Reed, Eds., SDL’YI Evolving Methods, Pror. 5th
SDL Forum.

(161 B. Sarikaya, G. von Bochmann, and E. Cemy, “A test design method-
ology for protocol testing,” IEEE Trans. Software Eng., vol. SE-13, no.
9, pp. 989-999, Sept. 1987.

(171 F. Kristoffersen, L. Verhaard, and M. Zeeberg, “Test derivation for
SDL based on ACTS,” in Proc. IFIP 5th Int. Conv. Formal Description
Technioues. M. Diaz and R. Groz. Eds.. 1992.

New York: North-Holland, 1991.

’’) It ‘s easy to see that Step

can be optimized by changing the statement “$1 is the set of
all elementary directed paths from S in F” in Step 1, into “$1
is the set of all elementary directed paths from S in the save-
affected-graph of s.” Algorithm 5 could be further optimized;
however, these opitimizations are not discussed in this paper.

ACKNOWLEDGMENT

The authors would like to thank Xiaoyu Song and Huis-
han Zhou for reading our paper and giving us their useful
comments.

[61

171

(81

191

1101

1141

REFERENCES

Roberto Saracco, J. R. W. Smith, and Rick Reed, Telecommunications
Systems Engineering Using SDL.
Dieter Hogrefe, “Automatic generation of test cases from SDL specifi-
cations,” SDL Newsletter, no. 12, June 1988.
Anne Bourguet-Rouger and Pierre Combes, “Exhaustive validation and
test generation in elivis,” in SDL Forum’89; The Language a f Work,
Ove Faergemand and Maria Manuela Marques, Eds. New York: North-
Holland, 1989, pp. 231-245.
Gang Luo and Junliang Chen, “Investigation 5: testing for SDL SAVE
function,” J . Beijing Univ. of Posts and Telecommun., vol. 12, no. 4, pp.
34-40, Dec., 1989.
Gang Luo, Anindya Das, and Gregor v. Bochmann, “Test selection
based on SDL specification with save,” in SDL’91 Evolving Methods,
Proc. 5th SDL Forum, 0. Faergemand and R. Reed, Eds. New York:
North-Holland, 199 I , pp. 3 13-324.
F. Belina and D. Hogrefe, “The CCITT-specification and description
language SDL,”Comput. NetworksandlSDN Syst., vol. 16, pp. 31 1-341,
1989.
R. Saracco and P. A. J. Tilanus, “CCITT SDL: Overview of language
and its application,” Comput. Networks and ISDN Sysr., vol. 13, no. 2,

G. v. Bochmann etal. , “Fault models in testing,” in IFIP Trans., Protocol
Testing Systems IV (Proc. lFlP TC6 4th In?. Workshop on Protocol Test
Systems), Jan Kroon, Rudolf J. Heijink, and Ed Brinksma, Eds. New
York: North-Holland, 1992, pp. 17-30.
T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Software Eng., vol. 4, no. 3, pp. 178-187, 1978.
S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A.
Ghedamsi, “Test selection based on finite state models,” IEEE Trans.
Software Eng., vol. 17, no. 6, pp. 591-603, June 1991.
K. Sabnani and A. T. Dahbura, “A new technique for generating protocol
tests”, ACM Compur. Commun. Rev., vol. 15, no. 4, pp. 36-43, 1985.
S. Naito and M. Tsunoyama, “Fault detection for sequential machines
by transition tours.” in Proc. FTCS, 1981, pp. 238-243.
T. Bolognesi and Ed Brinksma, “Introduction to the IS0 specification
language LOTOS,” Comput. Network and ISDN Syst., vol. 14, no. I , pp.

S. Budkowski and P. Dembinski, “An introduction to Estelle: A speci-
fication language for distributed systems,” Comput. Network and ISDN
Syst., vol. 14, no. I , pp. 3-23, 1987.

New York: North-Holland, 1989.

pp. 65-74, 1987.

25-59, 1987.

[18] A. Kalhins, “Global state based automahc test generation for SDL,” in
SDL’91 Evolving Methods, Proc. 5th SDL Forum, 0. Faergemand and
R. Reed, Eds.

[I91 D. Y. Lee and J. Y. Lee, “A well-defined Estelle specification for the
automatic test generation,” IEEE Trans. Comput., vol. 40, no. 4, pp.
526-542, Apr. 1991.

[20] F. Belina, D. Hogrefe, and A. Sarma, SDL with Applicarions from
Protocol Specification.

New York: North-Holland, 1991, pp. 303-312.

Englewood Cliffs, NJ: Prentice-Hall, 1991.

Gang Luo (M’90) received the B.E. degree in com-
puter and electrical engineering from Chongqing
University, Chongqing, China, in 1982, and the
M.E. degree in computer science and the Ph.D.
degree in computer science and telecommunication
from Beijing University of Posts and Telecom-
munications, Beijing, China, in 1987 and 1989,
respectively.

He was an Assistant Engineer at No. 6 Research
Institute of the China Ministry of Electronics In-
dustry from 1982 to 1984. he served as a Lecturer

and a leader of the Telecommunication Software research Group at Beijing
University of Posts and Telecommunications from 1989 to 1990. He has
been a Postdoctoral Fellow with the IDACOM-NSERC-CWARC Industrial
Research Chair on Communication Protocols at the Universitk de Montreal,
Montrkal, P.Q., Canada, since 1990. His current research interests include
telecommunication software engineering, software and protocol testing, formal
specification techniques, software testability, software verification, telecom-
munication network protocols, and multimedia application.

Anindya Das received the M.Sc. degree in math-
ematics from the Indian Institute of Technology,
Kanpur, India, in 1982, and the M.S. degree in
computer science and engineering from the Indian
Institute of Technology, Madras, India, in 1985,
and the Ph.D. degree in electncal and computer
engineenng from Concordia University, Montrkal,
P.Q., Canada, in 1989.

He is currently an Assistant Professor in the
Department of Computer Science and Operations
Research, Universite de Montrkal, Montreal, P.Q.,

Canada, where his research includes communication protocol engineering,
distributed systems management, distributed algonthms, and fault-tolerant
computing.

Gregor v. Bochmann, for a photo and biography, please see page 42 of this
issue of this TRANSACTIONS.

