
Page 1 of 24

An Efficient Method for  Synthesizing Optimized Protocol Converters*  

 Z.P.Tao, G.v. Bochmann and R. Dssouli

Université de Montréal, Département d'Informatique et de

Recherche Operationnelle, C.P. 6128, Succ. ¨A¨

Montréal, P.Q., Canada H3C-3J7

Email: {tao, bochmann, dssouli}@iro.umontreal.ca

Abstract: We propose an efficient algorithm for constructing optimized protocol converters to

achieve interoperability between heterogeneous computer networks. This algorithm first derives

constraints from the two protocols to be converted, and imposes the constraints to channel specifications,

thus removing message sequences of the channel specifications that do not contribute to system progress.

Then, an optimized converter is generated from a given  service specification, the two protocol

specifications and the modified channel specifications. The reduction relation [3] [9] is used to compare

the service specification and the constructed internetworking system. Compared with related works, our

method has three advantages: 1) it generates an optimized converter; 2) the service specification may be

nondeterministic; 3) it  may need less computation.

1. Introduction

 One of the difficulties that arise in interconnecting heterogeneous data networks is the problem of

protocol mismatches [5] - incompatible protocols are used in heterogeneous networks. A typical example

is the interconnection of wireless data networks with WAN or MAN. Communication gateways are

widely used for solving this problem; they contain an important component - a protocol converter. The

problem of protocol conversion can be explained informally as follows.  Consider two different protocols

A = (A1, A2) and B = (B1, B2) (Fig. 1). Suppose the two protocols provide similar services, but differ in
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certain details, and we want A1 to communicate with B2 through a protocol converter C. The converter C

receives messages from one protocol, interprets them, and delivers appropriate messages to the other

protocol in a well-defined order such that A1 communicates with C as if A1 communicated with A2, and

B2 communicates with C as if B2 communicated with B1. The protocols and the converter together form

an internetworking system and provide the required services specified by Sc as shown in Fig.2(a). An

interconnection between A2 and B1 could be defined similarly.

A1 A2 B1 B2

Cha Chb

service specification Sa service specification Sb

Fig.1 two protocols A and B

M0 C

      

A1 B2C

Service specification Sc

Cha Chb

(a) (b)

Service specification Sc

Fig.2

Protocol conversion is a complex problem since multiple protocols are considered. It is difficult to

design a correct protocol converter by informal, heuristic methods. A formal approach is a reasonable

choice in this area, which may minimize design errors and simplify design procedures. Several formal

methods have been proposed for protocol conversion in the last several years. These methods can roughly

be classified into the following two classes: the bottom-up methods and the top-down methods.

A bottom-up method begins with analyzing heuristically the low level functions of the protocols to be

converted in order to find out PDU level constraints (for example message mapping relations between

protocols), and these constraints are used to construct a converter from the Cartesian cross product of A2

and B1 [14] [17] [19] [20] [21]. The common limitations  of the bottom-up methods are:

1) A message mapping set is required which can only be obtained heuristically.
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2)  It is difficult to validate the correctness of a given message set.

3) No service requirement of the interworking system is explicitly used, therefore the generated

converter needs to be verified against a given service specification.

A top-down method explicitly uses a service specification of the interworking system as the semantic

constraint. The main methods are outlined below. In [2], the concept of a service adapter is proposed for

the concatenation of different communication services to be interconnected. A service adapter receives a

service primitive,  from one protocol, interprets it and sends it to the other protocol. The automatic

construction of a PDU-level protocol converter from the given protocol specifications and a service

adapter is described in [1].  In [15], a two-stage approach is developed to derive protocol converter. In

the first stage, a service adapter from the service specifications of the two protocols is constructed by

using the method proposed in [11]. In the second phase, a PDU level protocol converter is constructed by

directly composing the service adapter and the underlying protocol specifications. Okumura discussed

under what conditions the constructed internetworking system will inherit the properties from the original

protocols. It is possible that the converter constructed in this way may contain some states and transitions

that are never executed. An efficient algorithm was presented in [6] to remove the superfluous states and

transitions. The basic idea is to remove from the underlying protocol entities composed with the service

adapter those service primitives (and related states) that are unmatched with the service adapter,  and

those that can be reached only from the unmatched service primitives; then the algorithm computes and

retains the strongly connected components starting with the initial state, and discards the rest of the

machine. The disadvantage of the methods discussed above is that there may not exists a service adapter

for two given protocols even if a PDU level converter does exist. Therefore, the application of the

methods is limited.

Calvert and Lam proposed a top-down method [4] [7], which uses a safety property and a progress

property to guarantee the correctness of the converter. The algorithm is divided into two phases. In the

first phase, a set of states and transitions is constructed inductively by searching the giving protocol

entities and the service specification under the safety constraint. The result is a specification with the

maximum trace set satisfying the safety property. In the second phase, the states and transitions in the

specification that violate the progress property are iteratively removed. If the final specification is not

empty after the algorithm terminates, then the converter is obtained. The advantage of this method is that

it does not have the limitation of the methods proposed in [6] and [15], i.e., the algorithm will generate a

protocol converter if it exists. However, there are also some limitations:

1) The converter may contain superfluous states and transitions that do not contribute to the system

progress, and may be harmful for system performance. An example given in [4] and [7] is shown in
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Fig.3, where the states in the dotted box are superfluous. The converter can send back an

unnecessary acknowledgment to a protocol even after receiving a data message correctly. If these

states and transitions are not removed, the system performance will certainly be worse than optimal.

Calvert suggested that these states and transitions should be better removed by hand (rather than by

algorithm). However, it is not clear how to do so in general.

2) The service specification Sc must be deterministic.

3) The computation of the algorithm is complex.
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Fig.3   An unoptimized converter

 In summary, the protocol conversion methods reported in literature are far from satisfactory due to

the limitations discussed above. Nevertheless, we favor top-down methods because of the following

reasons:

1) The service specification is used explicitly; it is not necessary to validate the internetworking system

against its service specification after the converter is generated.

2) It does not require the establishment of a message mapping relation between protocols in advance,

the most difficult part of the bottom-up methods.

 In this paper, we propose an approach  trying to overcome some of the limitations of top-down

methods. We observed that the channel specifications may contain message sequences not contributing to

system progress.  The top-down methods proposed in [4] and [7] do not remove these unnecessary

behaviours when a converter is derived from the channel specifications and protocol specifications. We

can get design constraints from the protocol entities, and impose them to the channel specifications; then

the obtained converter will have no unnecessary behaviour. Therefore, our approach first derives
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constraints from the original protocols and imposes them on the channel specifications, thus removing the

message sequences of the channel specifications that do not contribute to system progress. Then an

optimized converter is generated from a given service specification, the two protocol specifications and

the modified channel specifications. Since the unecessary states and transitions are removed from the first

step, this approach may reduce computation. We use the reduction relation [3] [9] to compare the

resulting interworking system and the service specification. This allows the treatment of nondeterministic

service specifications. A "reduced" system must foresee the same interaction sequences, but may present

less non-deterministic choice. Compared with related works, our method has three advantages:

1) It generates an optimized converter.

2) The service specification may be nondeterministic.

3) It may need less computation.

The paper is organized as follows. Section 2 will introduce preliminary definitions and formalize the

protocol conversion problem. In Section 3, some theoretical aspects of our approach will be presented. In

section 4, an algorithm for protocol conversion will be developed, and its correctness will be proved in

Appendix. An  example is given to show the application of the algorithm.

2. Definition of the Problem

2.1. General Definitions

We will use the model of Finite Labelled Transition Systems (FLTS) [13]. An FLTS is defined as

follows.

Definition  1 (FLTS) [13]: A  non deterministic FLTS M is a four-tuple M = (Q, Σ, δ, q0), where
Q is a finite set of states.
Σ is a set of observable events.

δ is a transition function, δ: (Σ≈{τ})∞Q∅2Q with τ denoting an internal event, which defines a set

S  ∏ 2Q of next  states when an event e   Σ≈ {τ} occurs in the current state q  Q.  When the FLTS is
at state q, we say that the transition to q’ with event e, written q− e∅ q’, is enabled if q’ δ(q, e),
where q, q’  Q, and eΣ≈{τ}. The transition q−e∅q’ is said an incoming transition of q’ and an
outgoing transition of q.
q0Q is the initial state.

When the transition function is defined by δ: Σ∞Q∅Q, then the FLTS  is said to be deterministic.

The behaviour of an FLTS is characterized by the set Σ of its events and the order in which they can

be executed. The set Σ contains all externally observable events. Each event is considered atomic, i.e., no
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other event can overlap with an atomic event during the time interval from its initiation to its termination.

A system often contains two or more subsystems modelled by FLTSs. When two  or more FLTSs are

executed in parallel, they interact by requiring that an event in one FLTS be executed at the same time

with another event in at least one other FLTS. If two or more FLTSs interact in this way, we say that the

events required to be executed jointly are directly coupled,  and together form an atomic event (also

called rendezvous or interaction). To avoid confusion, we assume that all uncoupled events in the

interacting FLTSs have a unique name. The interactions between the FLTSs can be specified by

assigning the same name to events that are directly coupled. It is reasonable to make this assumption

since we can rename uncoupled events to make them unique among the set of events executed by each

FLTSs.

Table 1: Notations

Notation Meaning

q−e∅ ∃q’, such that q − e ∅q’.

q − e → (q − e ∅), i.e., there is no state q’ such that q  − e ∅ q’ .

q−τk∅ q’ An FLTS may engage in a sequence of k internal events, and after doing so,

enters q’.

q− σ∅qn For a sequence of events  σ=e1e2...en (eiΣ≈{τ}),  there exist states q0, q1, ..., qn
such that q0− e1∅q1,  q1− e2∅q2,  ...,  qn-1− en∅qn. σ is called an execution

sequence.

q −σ∅ There exist a state qn such that q  − σ ∅ qn

E(M) The set of all execution sequences of M, e.g.,  E(M) = {σ|q0−σ∅}

q =  >Σo q’ There is an execution sequence σ(Σ-Σo≈{τ})* such that q−σ∅ q’, where Σo∏Σ.

q = e >Σo q’ There are two execution sequences σ1, σ2(Σ-Σo≈{τ})* and two states q1 and q2

such that q−σ1∅q1, q1−e∅q2 and q2−σ2∅q’, in short q1−σ1eσ2∅q’.

q = t >Σo q’ For a sequence of events t = e1 ...en, where eiΣo, ∃σ0, ..., σn  (Σ-Σo≈{τ})* such
that q  − σ0 e1 σ1 e2 ... en σn ∅ q’.  t is called a trace.
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q = t > Σo ™q’, such that q = t >Σo q’.

q = t >Σo ∃q’, such that q = t >Σo q’.

TrΣo(M) Is the set of traces of an FLTS M, i.e., TrΣo(M) = {t|q0 = t >Σo}  for Σo∏Σ.

p(S) For a given set S, p(S) denotes a power set of S, i.e., set of subsets of S.

q after Σo t A state q in an FLTS M satisfying q0 = t >Σo q for a trace t and initial state q0.

RefΣo(M,  q) Is the refusal set of an FLTS M at state q  for Σo, i.e., RefΣo(M,  q) = {e|  q =

e > Σo and eΣo}.

Note that in Table 1, given an FLTS M, Σo∏Σ is the set of "observable events", which are those

events that interact with the environment, possibly another FLTS. If Σo = Σ,  then the trace definition is

the same as the one defined in [13].

For system analysis, we need to compose two FLTSs. Since directly coupled events may be invisible

by the environment, we may model them by internal events for convenience.  In this way we define a

coupled product of two FLTSs as follows.

Definition  2 (Coupled product ): A coupled product M1 || M2 of two FLTSs M1 = (Q1, Σ1, δ1, p0) and

M2 = (Q2, Σ2, δ2, q0)  is an FLTS M = (Q,  Σ, δp, (p0, q0)) such that:
Q is a subset of Q1∞ Q2; each element is of the form (p, q), where  p  Q1, q  Q2;
Σ = (Σ1 ≈ Σ2)− (Σ1↔Σ2);
(p0, q0)  Q is the initial state;
δp is the transition function defined on Q such that for p, p’  Q1, q, q’  Q2:
1) (p, q)−e1∅ (p’, q) if p−e1∅ p’ and e1(Σ1−Σ2)≈ {τ};

2) (p, q)− e1∅ (p,  q’) if q−e2∅ q’ and e2(Σ2−Σ1)≈ {τ};

3) (p, q)− τ∅ (p’,  q’) if p−µ∅ p’, q− µ∅q’ and  µΣ1↔Σ2
4) for other cases, no transition is defined.

In some cases, we need to compose two FLTSs that do not directly interact with each other. This can

be done by computing the so-called Cartesian cross product , written M1∞M2,  which  is identical to the

coupled product M1 || M2 in the case that Σ1↔Σ2 = φ.

Definition 3 (# product ): A # product  M1 # M2 of two FLTSs M1 = (Q1, Σ1, δ1, p0) and M2 = (Q2,

Σ2, δ2, q0)  is an FLTS M = (Q,  Σ, δp, (p0, q0)) where:
Q is a subset of Q1∞ Q2;
Σ = Σ1 ≈ Σ2 is the set of events;
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(p0, q0) is the initial state;
δp is the transition relation defined on Q  such that for p, p’  Q1 and  q, q’  Q2:
1) (p, q)− e1∅ (p’, q) if p− e1∅ p’  and e1  (Σ1−Σ2)≈ {τ};

2) (p, q)−e2∅ (p,  q’) if q− e2∅ q’  and e2  (Σ2−Σ1)≈ {τ};

3) (p, q)− µ∅ (p’,  q’) if p− µ∅ p’  and q− µ∅ q’ with µ  Σ1↔Σ2.
4) for other cases, no transition is defined.

Compared with the coupled product, the only difference is that each directly coupled event µ  Σ1↔Σ2
in # product is still observable, rather than represented as an internal  event.

Definition 4 (strong bisimulation relation)[12]: A binary relation ξ on states is a strong bisimulation if

for each <p, q>  ξ and each event e Σ ≈ {τ}, the following two conditions hold:
1) Whenever p− e ∅ p’  then for some q’, q− e ∅ q’  and (p’, q’)  ξ;
2) Whenever q− e ∅ q’  then for some p’, p− e ∅ p’  and (p’, q’)  ξ;

We write p≅q if (p, q)  ξ. 

Intuitively, a bisimulation may be thought of as a matching between states that has the property that if

two states are matched  then each α-derivative (the execution sequence starting from the state) of each

state must be matched by some α-derivative of the other.

Definition 5 (strong bisimulation equivalence of two FLTS)[12]: Given two FLTSs M1 = (Q1,

Σ1, δ1, p0) and M2 = (Q2, Σ2, δ2, q0), M1 and M2 are strong bisimulation equivalent if there is a strong

bisimulation relation ξ which contains <p0, q0>, written M1 ≅ M2.

Definition 6(Reduction relation) :  Given two FLTSs M1 = (Q1, Σ1, δ1, p0) and M2 = (Q2, Σ2, δ2, q0),

M1 and M2 satisfy reduction relation for Σο ∏ Σ1, written M1 Σο M2, if the following conditions are

satisfied:
1) TrΣο(M1) ∏ TrΣο(M2).

2) For any t ∏ TrΣο(M1) ↔ TrΣο(M2) and any q after t in M1, there is a state p after t in M2 such that

RefΣο(M1, q) ∏ RefΣο(M2, p).

This definition is similar to the reduction relation defined in [3] and [9]. The difference is that we

define the traces and rejected events by Σο, instead of Σ1 and Σ2. This definition can be explained by two

concepts: the first is the safety property - the set of all traces of M1 is limited to the set of traces of M2;

the second is the progress property: placed in any environment whose interface with M1 or M2 is defined

by Σο, an event is rejected by M1 may also be rejected by M2. The progress property implies that M1 can

not deadlock when M2 can not deadlock, i.e.,  M1 deadlocks less often than M2. M1 Σο M2 iff M1 and

M2 satisfy the safety property and the progress property.
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Definition 7 (Submachine): An FLTS M’ = (Q’, Σ’, δ’,  q0’) is a submachine of another FLTS M = (Q,

Σ, δ,  q0)  if (a) q0’ = q0; (b) Q’ ∏ Q; (c) Σ’ ∏ Σ;  and (d) δ’ ∏ δ.

2.2. Formal Definition of Protocol Conversion

The protocol conversion problem informally explained in the Introduction can be formally defined as

follows:  to find a definition of the behaviour of a converter C such that the following expression is

satisfied:

A1||Cha||C || Chb||B2 Σs Sc

 where Cha and Chb denote the channels between the protocol entities as shown in Fig.1, and Σs is the

set of observable events of Sc. Since A1, Cha, Chb, and B2 are given, this expression can be represented
by M0||C Σs Sc, where M0 = (A1||Cha)6(Chb||B2) as shown in Fig.2(b).

In addition, the converter should satisfy the following requirements:

1) The constructed converter C should have no superfluous transitions and states.

2) The converter C should work in such a way that A1  communicates with C as if A1 communicated

with A2, and B2 communicates with C as if B2 communicated with B1. Therefore, the following

condition should be satisfied at the service interface:

ScΣa1 A1||Cha||A2 and ScΣb2 B1||Chb||B2

Definition 8  (maximum solution): Given M0 = (Q, Σ0, δ, p0) and Sc = (Qs, Σs, δs, q0), a converter C is

a maximum solution if for any other converter C’ satisfying M0||C’ Σs Sc,  we have TrΣc(C’ ) »�TrΣc(C),

where Σc= Σ0 - Σs is the set of events of C and C’.

A maximum solution is not necessarily exactly what we want, since it may contain superfluous states

and transitions. Protocol conversion often deals with well designed protocols which have already been

used in practical networks. It is reasonable to assume that these protocols have no superfluous states and

transitions, when considered alone.

To construct an optimized protocol converter, our basic argument is that if the converter C does not
do more than A2 and B1 can do, i.e.,  Tr•a2(C) »�TrΣc(A2) and Tr•b1(C) »�TrΣc(B1), where •a2  is the set

of events of A2 and •b1 is  the set of events of B1, then C will have no transitions that do not contribute

to the progress of the system.  According to the discussion above, we formalize the concept of optimized

converters as follows.
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Definition 9 (optimized converter):  a converter C is optimized if C has maximum sequences (in the
sense of a maximum solution defined above) under the following condition:  Tr•a2(C)»TrΣc(A2) and

Tr•b1(C)»�TrΣc(B1).

3. Some Theoretical Aspects

3.1. The Definition of a Corresponding Refusal Graph

To deal with nondeterministic service specifications, we will introduce the concept of refusal graph,

shortly Rgraph.. The following definition is used when we define a Rgraph for a given FLTS.

Definition 10 (After set): Given an FLTS M = (Q, Σ, δ, q0) and •o »�•, we define the after set of a state p

 Q for •o »�•  as AΣo(p) = {p' | p = >•o p’. For any s p(Q)}, we denote sτ = 
∪

p∈S AΣo(p) .

The After set AΣo(p) intuitively describes all the reachable states from a state p by executing zero, one or

more events e•-•o ≈{ τ}.

Definition 11  (Refusal graph):  A Rgraph. is a 5-tuple GΣo = (S, Σo, δ, R, s0), where

S is a finite set of states;

Σο is a set of events;

δ: S∞Σο∅S is a transition function;

R: S∅p(p(Σο)) is a mapping from S to a set of subsets of Σο. R(s) is called a set of refusal sets of

state s.

s0  S is the initial state.

This definition is similar to the definition of an FLTS. However, there are two differences: first, from

the definition of the transition relation δ: S∞Σο∅S, a Rgraph is deterministic; second, there is a mapping

relation R: S∅p(p(Σο)) that assigns a set of subsets of Σο tο each state s in S, written R(s). R(s) is called

a set of refusal set for state s, which will be explained by the following definition.

Definition 12  (Correspondence between an FLTS and a Rgraph): Given an FLTS M = (Q, Σ, δ, q0) and

a Rgraph GΣο(M) = (S, Σο, δ', R, s0), where Σο∏Σ. We say that GΣο(M) is a corresponding Rgraph of M

iff:
1) S = {s| s={qQ|q0 = t >•o q} for all t  TrΣο(M) }, which implies S p(p(Q)) for the observable events

Σο.

2) s0 = AΣo(q0);

3) ∀si, sjS, we have si−e∅sj iff sj = 
( ∪
p’∈si

{q’ p’ − e . q’ })
τ.
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4) ∀sS, R(s) = (
∪

q ∈s RefΣο(M, q));

Obviously, given a different Σο, we have a different Rgraph. In this definition, a set of states in M is

considered as one state in GΣο(M). This is similar to the method given in [10] for transforming a

nondeterministic finite state machine to a trace equivalent deterministic finite state machine, except for
the refusal set. By ignoring the set of refusal sets for each state in GΣο(M) we get a deterministic FLTS,

denoted as PΣο(M). This definition implies that Rgraph is unique up to an isomorphism because of the

following two facts:

1) If there are two corresponding Rgraphs,  GΣο(M) and G’Σο(M), for a given FLTS M, then

TrΣο(GΣο(M)) = TrΣο(G’Σο(M)).

2) For any trace t, if  s0 = t >•o s in GΣο(M), then there is a state s’ in G’Σο(M) such that  s0’ = t >•o s’

and R(s) = R(s’).

Therefore, we have the following lemma.

Lemma 1 (Uniqueness of the Rgraph): For any FLTS, its corresponding Rgraph is unique up to an

isomorphism.

Example 1: For the given FLTS M specified by Fig.4(a), where Σο = {c, d, b}, the obtained refusal

graph is shown in Fig.4(b). In Fig.4(b), we have the shadowed boxes: s0 = AΣo(0), s1 =AΣo(3), s2 =

AΣo(4), s3 = AΣo(6). The refusal sets are shown beside each state of the Rgraph.
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Fig.4   (a) The specification M,  (b) The Rgraph of M.

3.2. Existence of Protocol Converter

Our goal is to construct a deterministic converter C such that  M0||C Σο Sc. This can be implemented

in two steps: first, we may compute M0#GΣs(Sc) to obtain from M0 all execution sequences that satisfy

the saftety property, i.e., TrΣs(M0#GΣs(Sc)) ∏ TrΣs(Sc). Second, since some behaviours in M0#GΣs(Sc)

may  not satisfy the progress property, we need to prevent them from happening for avoiding deadlocks.

To do so, we first define the concept of a machine with grouped states.

Definition 13 (Machine with grouped states  (MGS)): Given an FLTS M = (Q, Σ, δ, q0), we define a

corresponding machine with grouped states, written MGSΣο(M) = (S, Σ, δ’, s0q0), which is an FLTS such

that:
1) S = ≈si, where si ↔ sj = φ for ij; each siS represents a group of states si = {siq|qsi}, where si is as

defined for the corresponding Rgraph GΣο(M).

2) For any si, sjS, and any siqsi, sjpsj,  we have siq−e∅sjp in MGSΣο(M) iff q−e∅q in M for e Σ≈{τ}.

MGSΣο(M) is different from GΣο(M) in four aspects: first, the state space is different; second, the set

of events is Σ, instead of Σο; third, the transition relation in MGSΣο(M) is defined by using the states of

si; fourth, there are no refusals associated with the states in MGSΣο(M). An  important relationship

between MGSΣο(M) and M is stated by the following lemma.

Lemma 2:  For any FLTS M = (Q, Σ, δ, p) and any Σο∏Σ,  MGSΣο(M)≅M.
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To implement the two-step construction, we face a fundamental problem: what behaviour in M0 may be

inhibited? To answer this question, we have the following important theorem.

Theorem 1: Given M0 = (Q0, Σ0, δ0, p0), Sc = (Qs, Σs, δs, q0s) and a Σc=Σ0−Σs, let H be a submachine
of MGSΣc(M0#GΣs(Sc)). H ≅ M0#PΣc(H) iff H satisfies the following two conditions:

1) For each state (p, s)  H, where, p is a state of M0 and s is a state of GΣs(Sc), and ∀eΣs≈{τ},

p−e∅p’ in M0 implies there must be a state (p’, s’) in H such that (p, s)−e∅(p’, s’).

2) For each state group s in H and eΣo, if ∃(p, s)  s and state p in M0 such that (p−e∅)((p, s)−e →  )

then (p’, s’)−e →  for ∀(p’, s’)s.

The first condition implies that if an event in Σs ≈ {τ} occurs following a sample path in E(H), then

the extended sample path must remains in E(H), provided that the extended path is in E(M0). The second

conditions means that for a given s in H and (p, s)  s, if an event eΣo is enabled in M0 at state p, but is

disabled at state (p, s) in H,  then all states in s should disable event e. The result of this theorem shows
that the interaction between M0 and PΣc(H) behaves exactly like what H does if H satisfies the two

conditions. We call this property of H invariance property with respect to M0 and Sc.

Theorem 2: Given M0 = (Q0, Σ0, δ0, p0), Sc = (Qs, Σs, δs, q0s) and a projection Σc=Σ0−Σs. There is  a

deterministic protocol converter C = (Qc, Σc, δc, q0c) such that M0||C Σs Sc iff there exists a submachine

H of MGSΣc(M0#GΣs(Sc)) having the invariance property with respect to M0 and Sc and satisfying H

Σs Sc.

Theorem 1 and Theorem 2 imply that we can construct a protocol converter by finding a submachine
H of MGSΣc(M0#GΣs(Sc)), which has the invariance property with respect to M0 and Sc and satisfies H

Σs Sc.

3.3. Optimization

As we have discussed in Section 2.2, the converter satisfying the condition in Theorem 2 may not be

exactly what we want, since it may contain unnecessary states and transitions. To solve this problem, we

have the following two basic observations:

1) Some superfluous transitions and states in the protocol converter are due to the property of the

channel’s behaviour: the channel is able to transmit any messages (including the unnecessary ones).

So the unnecessary message sequences are also included in M0. However, the existing algorithms

have not used any effective measure to remove them [2] [7] [11].
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2) Some superfluous transitions and states may be due to superfluous transitions and states in the

original protocols to be converted. Therefore, we make the assumption that there are no superfluous

transitions and states in the given protocols.

Based on the observations above,  the following theorem describes the basic idea of how to generate

an optimized protocol converter.

Theorem 3: Given two protocols A and B, a global service specification Sc, the channel specifications

Cha and Chb. Let Cha’ = Cha#P•a2-•s(A2),  Chb’ = Chb#P•b1-•s(B1), M0 = (A1||Cha)∞(Chb||B2) and M0’ =

(A1||Cha’)∞(Chb’||B2). If there exists a deterministic converter C such that  M0||C Σs Sc, then

1) There is a maximum solution C’ such that  M0’||C’ Σs Sc.

2) C’ is an optimized converter  for the given M0 and Sc.

This theorem implies that an optimized converter can be obtained by first obtaining some constraints

from the given protocol entities, and removing those message sequences with the constraints from the

given channel specifications that may result in superfluous states and transitions in the converter, then

constructing the optimized converter with the modified channel specifications.

3.4. Diagnosis of the Reduction Relation

From Theorem 1 and Theorem 2, in order to construct a protocol converter we need to find a
submachine H of MGSΣc(M0#GΣs(Sc)) such that H satisfies H Σs Sc. The following theorem is for this

purpose.

Theorem 4: Given M0 = (Q, Σ0, δ, p0) and Sc = (Qs, Σs, δs, q0). A submachine H of

MGSΣc(M0#GΣs(Sc)) satisfies H Σs Sc iff for every state (p, s) of H, there is at least one refusal set Rf

R(s) such that RefΣs(H, (p, s)) ∏ Rf, where s is a state of GΣs(Sc).

4. Algorithm for Protocol Conversion

4.1. The Algorithm

Based on the theorem 2 through 4 explained above, it is easy to construct an algorithm for protocol

conversion. The following algorithm  is divided into five steps. In Step 1, the constraints for optimization

are derived from the given protocol entities according to Theorem 3, and applied to the channel

specifications. M0 is obtained by composing the protocol specifications and the modified channel

specifications. In the second step, the execution sequences in M0 that violate the safety property is
removed by computing M0’ = M0#GΣs(Sc) and the states that do not satisfy Condition 1 of Theorem 1
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are deleted by marking them Bad States (BD). In the third step, we construct a submachine F of
MGSΣc(M0’) such that the states and transitions that violate the conditions of Theorem 1 are removed. In

Step 4, we construct a submachine H of F such that the states and transitions that do not satisfy Theorem

2 (the progress property and the invariance property) are marked out, and the converter is obtained in
Step 5 by computing C = PΣc(H).

Algorithm-Conversion

/* Input: The Protocols A =(A1, A2) and B= (B1, B2), the channel cha of protocol A, the channel 

chb of protocol B, service specification Sc = (Qs, Σs, δs,  q0s), and Σc=Σ0-Σs.

/* Output: an optimized protocol converter C.

Begin

Step 1 Compute  M0 from protocols and channels  (Theorem 3):

1) Derive the constraints: A2’ = P•a2 - •s(A2) and B1’ = P•b1- •s(B1).

2) Imposing the constraints to the channel specifications: Cha’ = Cha#A2’ and Chb’ = Chb#B1’.

3) Construct M0 = (A1||Cha’)∞(Chb’||B2) = (Q, Σ0, δ, p0)

Step 2Compute M0’ = M0#GΣs(Sc) to get the  behaviour  from M0 satisfying the safety property:

Compute M0’ = M0#GΣs(Sc) and mark any state (p, s) of M0’  BS ("Bad State")  if there is a state p’

in M0 such that  p − e ∅ p’ for eΣs, but there is not a state s’ in GΣs(Sc) such that s − e ∅ s’ (condition

1 of Theorem 1).  The result is denoted as M0’ = (Qp, Σp, δp,  (p0, s0)), where s0 is the initial state of

GΣs(Sc);

Step 3   Construct a submachine F of  MGSΣc(M0’) by removing all execution sequences of

MGSΣo(M0’) that violate the conditions of Theorem 1.

Create s0 = AΣc((p0, s0)) and mark it TP ("To be Processed");

Create a transition labelled eΣs ≈{τ} from (p, s)s0 to (p’, s’)s0 whenever (p, s)−e∅(p’, s’) exists.

Do the following while there is an si marked TP:

1) If there is a state (p, s)si marked BS then mark si BS; otherwise for every eΣc do the following:

a) Compute  si(e)= 

∪
(p, s)∈si

{AΣc((p’, s’))|(p,s)−e∅(p’, s’)δp};
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b) If there is a state (p, s)  si(e) marked BS  then forbid any transition labelled e at si;

otherwise do the following:

i) if si(e) is not empty and there is no previously created sj containing exactly  all  the

state pairs in si(e), do the following:

-  Create such an sj containing all the state pairs in  si(e).

- Create a transition labelled e’Σs≈{τ} from (p, s)  sj to (p’, s’)   sj whenever (p,  s) −
e’ ∅ (p’, s’) exists.

- Mark sj TP;

ii) Create a transition labelled e from (p, s)  si to (p’, s’)  sj  whenever (p,  s) − e ∅ (p’, s’)

exists.

2) Change the mark of si from TP to PD ("ProcesseD")

Step 4 Construct an FLTS H by removing the states and transitions from  F that violate FΣsSc  (Theorem

2 and Theorem 4) and retaining  the conditions of Theorem 1.:

Repeat

a) For each sj marked BS in F and any state (p’, s’)  sj, if there is an si in F and any state (p, s)  si
such that  (p,  s) − e ∅ (p’, s’) then forbid all transitions labelled e at si.

b) For each  si and each state (p, s)  si, if there is no Rf  R(s) such that RefΣs(F, (p, s)) ∏ Rf  then

mark si BS.

Until no more si has been marked BS during the last repetition.

Step 5     Generate the converter C from H  (Theorem 2):

If s0 is marked BS then report "no solution C", otherwise compute C = PΣc(H). (The states marked

BS do not belong to H).

End

Since M0 and Sc are assumed to be finite, this algorithm will eventually terminate. It is obvious that

the computational complexity of Step 3 is exponential in the worst case. However, according to our
experience, the number of states of MGSΣc(M0’)  is of the same order  as M0’ for many applications. The

Step 4 of the algorithm can be implemented more efficiently by recursively checking only the states in

which at least one transition is removed by the most recent manipulations of the algorithm.

Theorem 5: If there exists a deterministic converter C’ such that  A1||Cha||C’||Chb||B2 Σs Sc, then

Algorithm-Conversion will generate an optimized protocol converter C such that A1||Cha||C||Chb||B2

Σs Sc.
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4.2. An  Example Application

In this section, we apply our algorithm to the conversion between the AB protocol and the NS protocol

used in [4] and [7]. The AB protocol is shown in Fig.5. The "put" and "get" events constitute the

interface with the user. The events labelled with τ are internal events that model timeout or message loss.

Other events are coupled with the channels. The AB protocol attaches a one bit sequence number to each

message transmitted. Sending data messages are denoted as "di" (where i = 1, 2), and receiving data

messages are denoted as "Di". For each received data message "Di", the receiver returns an acknowledge

message "Ai". If the sender received an acknowledgment "ai" whose sequence number does not match the

sequence number of the last-sent data message, or a timeout event τ occurred, it will retransmit the data

message. The NS protocol is shown in Fig.6. The "putn" and "getn" events constitute the interface with

the user. This protocol does not use message sequence numbers. Sending data messages are denoted as

"d", and receiving data messages are denoted as "D". For each received data message "D", the receiver

returns an acknowledge message "A". The sender keeps sending the same message "d"  after timeout,

until it receives an acknowledgment "a".  Both protocols guarantee that a message will be delivered at

least once. While the NS protocol may deliver the same message multiple times, the AB protocol delivers

a message exactly once. The two channel specifications are depicted in Fig.7. Both are not reliable. The

message losses  or corruption are represented by internal events. The desired service specification is

shown in Fig.8, which tolerates duplicated messages.

Fig.9 shows the constraints, A1’ and N0’,  obtained from the two protocol entities A1 and N0,

respectively. The modified channel specifications, Chab’ = Chab#A1’ and Chns’ = Chns#N0’, are given in

Fig.10. Fig.11 shows M0 constructed from A0, N1, Chab’ and Chns’. Fig.12 is the refusal graph for the

service specification. Fig.13(a) is the optimized converter C constructed by Algorithm-Conversion.
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(a) The Sender (N0)            (b) The Receiver (N1)

Fig.6 The NS protocol
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Fig.13  (a) The optimized converter by Algorithm-Conversion ; b) the unoptimized converter

Discussion: This example is the same used in [4] and [7]. Since the algorithm proposed in [4] does

not deal with nondeterministic service specifications, the service specification in [4] is specified by not

only using observable events, but also explicitly using timeout  and message loss events.  In this paper,

we simply model the message loss and timeout by internal event τ, which simplifies the specification and

the algorithm. Modelling service specification by explicitly using message losses and timeout events is

not what we want.  As discussed in [4] and [7],  in the worst case the number of states to be checked by

the algorithm proposed in [4] is  2|Qm0| ∞ |Qsc|, where |Qm0| and |Qsc| denote the number of states of

M0 and Sc, respectively. From the construction of MGSΣc(M0#GΣs(Sc)), the number of states of

MGSΣc(M0#GΣs(Sc)) is mainly determined by its transitions in the worst case. Our algorithm can reduce
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the computation significantly compared with the algorithms proposed in [4] [7] [16], since the major

computation needed is in Step 3 (in fact it is exponential in the worst case), and the unnecessary

execution sequences appeared in the unoptimized converter are removed by  Step 1 (therefore the number
of states and transitions of MGSΣc(M0#GΣs(Sc)) can be reduced significantly).  If we do not apply Step

1 to the example given above, the number of states needs to be checked will be several times larger than

that needed by Algorithm-Conversion in Step 3 and Step 4. The mathematical analysis in this aspect is

difficult in general.  Fig.13(b) shows the unoptimized converter directly generated by algorithms

proposed in [4] [7] [16], in which six states and sixteen transitions are superfluous.

5. Conclusions

In this paper we have defined the concept of optimized protocol converter, and proposed a simple top-

down algorithm to construct optimized converters from a given service specification and two protocol

specifications.  The basic idea is to derive constraints from the protocol specifications and impose the

constraints on the channel specifications. Compared with related works, our method has the following

three advantages: (1) it generates an optimized converter; (2) The service specification may be

nondeterministic; (3) It  may need less computation.

This  algorithm may also be adapted to construct controllers for discrete event systems [18], as

described in [22].
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Appendix

Proof of Lemma 2:

Construct a relation ζ= {<p,  sip>|p is a state of M, si is a state group of MGSΣo(M), sipsi}, then for

any <p, sip>  ζ,  p−e∅p’ in M implies sip −e∅ sjp’ in MGSΣo(M); and sip −e∅ sjp’ implies p−e∅ p’

and sjp’  sj  according to Definition 13. Hence  <p’, sjp’ >  ζ. Therefore,  M ≅ MGSΣo(M).

The proof of Theorem 1:

Let us construct a relation ζ= {<(p, s), (p, sh)>|(p, s) is a state of H, (p, sh) is a state of M0#PΣo(H)

and (p, s)  sh in PΣo(H)}. Obviously <(p0, s0), (p0, sh0)>  ζ. If H ≅ M0#PΣo(H), then for any <(p,

s), (p, sh)> ζ,  (p, s)−e∅ (p’, s’) implies (p, sh) −e∅ (p’, sh’); and (p, sh) −e∅ (p’, sh’) implies (p,
s)−e∅ (p’, s’) and (p’, s’)  sh’ in PΣo(H). Hence  <(p’, s’), (p’, sh’)>  ζ, and ζ is a strong bisimulation

relation.

(>) Assume that H ≅ M0#PΣo(H). If there is a state (p, s) in H, where, p is a state of M0 and s is a state

of GΣs(Sc), and an event eΣs≈{τ}, such that p−e∅p’ in M0 but (p, s)−e → in H, then  at state (p, sh)

of M0#PΣo(H), where sh is a state of PΣo(H) and (p, s)  sh,  (p, sh)−e∅ according to # product.

Therefore,  <(p, s), (p, sh)> ζ. This contradicts with H ≅ M0#PΣo(H).

If there is State-set s in H and eΣo, and ∃(p, s)  sh  such that (p−e∅)((p, s)−e →  ) and (p’, s’)−e∅ for
some (p’, s’)sh, then (p, sh) −e∅ must be true in M0#PΣo(H) according to # product. Therefore,

<(p, s), (p, sh)> ζ. This  also contradicts with H ≅ M0#PΣo(H).

(<) Construct a relation ζ= {<(p, s), (p, sh)>|(p, s) is a state of H, (p, sh) is a state of M0#PΣo(H) and

(p, s)  sh in PΣo(H)}. If the two conditions of Theorem 1 are satisfied, then for any <(p, s), (p, sh)>

ζ,  (p, sh) −e∅ (p’, sh’) in M0#PΣo(H) iff (p, s)−e∅(p’, s’) in H and (p’, s’)  sh’ in PΣo(H). So,  <(p’,

s’), (p’, sh’)> ζ. Since <(p0, s0), (p0, sh0)>  ζ by the construction of ζ, we have H ≅ M0#PΣo(H).

The proof of Theorem 2:

(>) If such a H exists, according to Theorem 1, M0#PΣo(H) ≅ H,  therefore M0||PΣo(H) ≅ H|Σo, where
H|Σo denotes the FLTS derived from H by replacing every event eΣo with an internal event τ.
From the condition H Σs Sc, we have M0||C Σs Sc, where C = PΣo(H).

(<) If there is a solution C such that M0||C Σs Sc, let H’ = M0#C, we have H’ Σo Sc. Obviously, H’ is a

submachine of M0#GΣs(Sc) if we rename the states. Construct a relation ζ= {<(p, s), (p, sh)>|(p, s)
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is a state of H’, (p, sh) is a state of M0#PΣo(H’) and (p, s)  sh in PΣo(H’)}. Obviously <(p0, s0), (p0,

sh0)>  ζ. Then, for any <(p, s), (p, sh)> ζ,  (p, sh) −e∅ (p’, sh’) in M0#PΣo(H) iff (p, s)−e∅(p’, s’) in

H and (p’, s’)  sh’ in PΣo(H).  Therefore, H’ ≅ M0#PΣo(H’). Let H = MGSΣo(H’), from Lemma 2,

we proved the theorem.

The proof of Theorem 3:

1) Assuming there is a converter C such that M0||C Σs Sc, then there is a submachine H of

MGSΣo(M0#GΣs(Sc)) satisfying the conditions of Theorem 2. Let M0’ = (A1||Cha’)∞(Chb’||B2),

and remove the transitions and states from MGSΣo(M0’#GΣs(Sc)) that do not satisfy the conditions

of Theorem 2, we get a submachine H’ of MGSΣo(M0’#GΣs(Sc)). H’ can be considered to be a

submachine of H after removing the transitions and states that violate the conditions Tr•a2(H)»Tr•a2-

•s(A2) and Tr•b1(H)»�Tr•b1-•s(B1). From the requirements ScΣa1 A1||Cha||A2 and ScΣb2 B1||Chb||B2,

if H is not empty, then H’ is not empty. Therefore,  there is a maximum solution C’ such that
M0’||C’ Σs Sc.

2) From M’ = (A1||Cha’)∞(Chb’||B2), we have Tr•a2(C’)»TrΣc(A2) and Tr•b1(C’»�TrΣc(B1). Hence, C’ is

optimized according Definition 9.

The proof of Theorem 4:

(>) If H Σs Sc,  for any state (p, s) in H, where s is a state of GΣs(Sc), there must be a trace t TrΣs(H)

↔TrΣs(Sc) such that q0c = t > q’ in Sc such that RefΣs(H, (p, s)) ∏ RefΣs(Sc, q’), where q’  sh in

GΣs(Sc). Therefore, there is at least one refusal set Rf  R(s) such that RefΣs(H, (p, s)) ∏ Rf.

(<) From the definition of # product, TrΣs(H) ∏ TrΣs(Sc),  i.e., Condition 1 of Definition 6 is true. For

any trace t TrΣs(H) ↔TrΣs(Sc), and any state (p, s) after t in H, if there is at least one refusal set Rf

R(s) such that RefΣs(H, (p, s)) ∏ Rf, then there must be a state q’ after t in Sc such that q’s and

RefΣs(Sc, q’) = Rf.  Therefore,  Condition 2 of Definition 6 is true. Hence H Σs Sc.

The proof of Theorem 5:

If there exists a deterministic converter C’ such that  A1||Cha||C’||Chb||B2 Σs Sc, then

A1||Cha’||C’||Chb’||B2 Σs Sc is also true according to Theorem 3. Let M0’ = (A1||Cha’)∞(Chb’||B2),

according to Theorem 2, no execution sequences  of E(A1||Cha’||C’||Chb’||B2) will be removed in

Step 2, Step 3 and Step 4. Therefore, s0 will not be marked BS. The algorithm will generate a
converter C such that A1||Cha||C||Chb||B2 Σs Sc. Since Step 1 of the algorithm will generate M0’,

the conditions Tr•a2(C)»TrΣc(A2) and Tr•b1(C)»�TrΣc(B1) are satisfied. The theorem is proved.
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