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Abstract

A challenging issue is the derivation of a �nite test suite from a given LOTOS speci�ca-

tion modeled by a labeled transition system (LTS) such that complete fault coverage is

guaranteed for a certain class of implementations with respect to a particular conformance

relation. It is shown in this paper that this problem can be solved by translating an LTS

into an input/output �nite state machine (FSM) for trace or failure semantics, respec-

tively, and subsequently applying existing FSM-based methods for test derivation with

complete fault coverage. It is also demonstrated that the obtained tests can be further

optimized taking into account the speci�cs of the FSMs constructed from the LTSs.

1. Introduction

Conformance testing for communication protocols is one of the essential and challenging

issues. Because of the complexity of protocols, it is generally accepted that formal tech-

niques must be used. Amongst such formal description techniques (FDTs) are LOTOS,

which is based on Labeled Transition Systems (LTSs), and SDL and Estelle, which are

based on the Finite State Machine (FSM) model. Much work on the derivation of tests

from a given system speci�cation has been done separately for the two models [15].

Systematic approaches have been developed for protocol conformance testing and the

generation of appropriate test suites based on the FSM model. Most work in this area

is limited to completely speci�ed, deterministic speci�cations [5, 8, 19, 14]. However,

some recent research has addressed nondeterministic and partially speci�ed speci�ca-

tions [12, 13]. A number of competing methods for deriving tests from FSMs that guar-

antee complete fault coverage for the given maximal number of states in implementations

have been elaborated [15].

Compared to FSMs, LTSs are in some sense a more general descriptive model, since

interactions of a speci�ed system with its environment are usually considered rendezvous
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interactions making no distinction between input and output. LTSs are usually not com-

pletely speci�ed; the unspeci�ed interactions are not possible. In the protocol engineering

community, there has been much work done on the derivation of test suites from a given

basic LOTOS, or corresponding LTS-based speci�cation [3, 18, 20, 11], most of which

deal with nondeterminism. Test derivation from LTSs in various semantics is currently

an active research area.

Several attempts have been made to apply the ideas underlying the FSM-based meth-

ods to the LTS model [4, 7, 1]. In particular, this research is directed towards rede�ning

the state identi�cation and eventually the checking experiments in the LTS realm. [4]

tries the UIO-based state identi�ers which, as it is well known, do not always exist; [7]

considers the characterization sets; and [1] introduces the state identi�cation machines.

However, in spite of these attempts, the problem of deriving a �nite test suite with com-

plete fault coverage from an arbitrary LTS for a given conformance relation remains open.

Here we take another approach, initially outlined in [15]. It is suggested there that tests

for a given LTS speci�cation and conformance relation could be obtained from tests di-

rectly generated by the existing FSM-based methods from a proper FSM constructed from

the LTS in the chosen semantics. This approach has the advantage of allowing reuse of

existing FSM-based methods and testing tools for the LTS speci�cations. Evidently, the

translation of an LTS into an FSM is semantic-driven and should be elaborated on a case-

by-case basis. In this paper, we try to elaborate this general idea for the two particular

types of semantics, namely, the trace and failure semantics. We formally show that LTS

speci�cations can be modeled by proper input/output (I/O) FSMs in the trace or failure

semantics, and that complete test suites produced from the corresponding FSMs and then

converted back to the LTS formalism can guarantee the given conformance relation when

the number of multi-states [7] of any implementation is bounded by a known integer. We

also demonstrate that the test suites can be further optimized taking into account the

speci�cs of the FSMs derived from the LTSs.

In Section 2, we give basic de�nitions and notations of the FSM and LTS models and

conformance relations. In Section 3, the FSMmodels for LTSs, in the failure semantics and

in the trace semantics respectively, are de�ned, and the transformations are validated. In

Section 4, the proposed FSM approach to test derivation from a given LTS speci�cation

is illustrated, and the optimization of the tests as well as other related problems are

discussed.
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Figure 1: An FSM graph

2. Basic De�nitions and Notations

In this section, we recall some basic de�nition and notations which are used to discuss

both �nite state machines and labeled transition systems [3, 13].

2.1 Finite State Machine

De�nition 1 Finite State Machine (FSM). A �nite state machine is a 5-tuple < S;X; Y;

h; s0 >, where:

� S is a �nite set of states, and s0 2 S, is the initial state.

� X is a �nite set of inputs.

� Y is a �nite set of outputs, and it may include � which represents the null output,

that is, no output.

� h is a behavior function, h : D ! powerset(S � Y )nf;g, where D � S �X and ; is

the empty set. (q; b) 2 h(p; a) is also written p�a=b!q, which is called a transition

from p to q with the label a=b.

The behavior function de�nes the possible transitions of the machine. If D = S �X

then the �nite state machine is called completely speci�ed or a complete FSM (CFSM),

otherwise, it is partially speci�ed or a partial FSM (PFSM). If jh(p; a)j = 1 for all (p; a) 2

D then the FSM is deterministic (DFSM); otherwise, it is nondeterministic (NFSM). Note

that the �nite state machines in the above de�nition may be complete nondeterministic

(CNFSM) or partial nondeterministic (PNFSM).

An FSM can also be represented by a directed graph in which the nodes are the

states and each directed edge with a label is a transition linking two states, as shown in

Figure 1. For the convenience of the presentation, we use I;P;S; : : : to represent FSMs;

I; P;Q; : : :, for sets of states; a; b; c; : : :, for inputs or outputs; and i; p; q; s : : :, for states.

Other notations are given in Table 1.

By convention, the traces of an FSM S are the sequences in Tr(s0), thus we also denote

Tr(S) = Tr(s0). In the following, we de�ne two relations between FSMs, which are useful

for test generation.
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notation meaning

� X � Y , a set of input/output pairs; � denotes such a pair

�� set of sequences over �; 
 denotes such a sequence

p=")q p = q; " is the empty sequence

p=
)q there exist pk for 0 � k � n such that

p = p0��1!p1 : : :��n!pn = q; 
 = �1 : : : �k

p=
) there exists q such that p=
)q

Tr(p) Tr(p) = f
 2 ��jp=
)g


in for 
 2 ��, 
in 2 X� is an input sequence obtained by

deleting all outputs in 


Trin(p) Trin(p) = f
injp=
)g

Table 1: Notation for �nite state machines

De�nition 2 Reduction. The reduction relation between two states p and q in FSMs,

written p � q, holds if and only if Trin(q) � Trin(p) and for all 
in 2 Trin(q) : Tr(p) �

Tr(q).

Given two FSMs S and I, we say that I is a reduction of S, written I � S, if and only if

i0 � s0.

This conformance relation is de�ned in [15] and requires that all output sequences that

are produced by the implementation in response to all acceptable input sequences should

be described by its speci�cation. Any sequence in Trin(s0) is said to be an acceptable

input sequence for the FSM S.

De�nition 3 Equivalence. The equivalence relation between two states p and q in FSMs,

written p � q, holds if and only if Tr(p) = Tr(q).

Given two FSMs S and I with initial states s0 and i0 respectively, we say that I is equivalent

to S, written S � I, if and only if s0 � i0.

The above de�nition of the equivalence is given in [13, 12] for CNFSMs and PNFSMs,

similar to that in [8, 5] for deterministic and completely speci�ed FSMs.

It can be shown that the reduction relation is a pre-order one and I � S if and only if

S � I and I � S.

De�nition 4 Observable FSMs (OFSMs). An FSM S is said to be observable if and only

if for all p 2 S and all a=b 2 �, jfq j 8(q; b) 2 h(p; a)gj � 1:
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notation meaning

�� set of sequences over �; � denotes such a sequence

p��1 : : : �n!q there exists pk for 0 � k � n such that

p = p0��1!p1 : : :��n!pn = q

p=")q p��n!q (1 � n) or p = q (note: �n means n times � )

p=a)q there exist p1; p2 such that p1=")p1�a!p2=")q

p=�)q there exists pk for 0 � k � n such that

p = p0=a1)p1 : : :=an)pn = q;� = a1 : : : an

p=�) there exists q such that p=�)q

p 6=�) no q exists such that p=�)q

out(p) out(p) = fa 2 �jp=a)g

p after � p after � = fq 2 Sjp=�)qg

Tr(p) Tr(p) = f� 2 ��jp=�)g

Table 2: Notation for labeled transition systems

In observable machines, a state and an I/O pair can uniquely determine at most one

next state. However, OFSMs may still be nondeterministic in the sense that a state and

an input can not determine a unique next state and a unique output. On the other hand,

deterministic FSMs are observable. Any non-observable FSM can be transformed into an

equivalent OFSM, in which each state corresponds to a subset of states in the original

FSM. The test generation methods for ONFSMs can be found in [12, 13, 17, 16].

2.2 Labeled Transition System

De�nition 5 Labeled transition system (LTS). A labeled transition system is a 4-tuple

< S;�;�; s0 >, where:

� S is a �nite non-empty set of states, s0 2 S, is the initial state.

� � is a �nite set of labels, called observable actions; � 62 � is called an internal action.

� � � S � (� [ f�g)� S is a transition set. An element (p; �; q) is denoted by p��!q.

A state p is unstable if there exists q 2 S such that p��!q 2 �; otherwise it is stable.

If there exists p��! q 2 �, p is said to be active; otherwise it is inactive. A stable

LTS has no unstable states, whereas a unstable LTS has such states. For a stable state

p, we de�ne the blocking set of p as blk(p) = �nfa 2 � j p�a!g. The blocking set of an

unstable state blk(p) = ;.

An LTS is said to be nondeterministic if it is unstable or there exist p�a!p1; p�a!

p2 2 � but p1 6= p2. In a deterministic LTS, the outgoing transitions of any state are

uniquely labeled.
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Figure 2: An LTS graph

The notations are shown in Table 2 that are relevant to a given LTS, as introduced in

[3]. Here we also use I;P;S; : : : to represent LTSs; I; P;Q; : : :, for sets of states; a; b; c; : : :,

for actions; and i; p; q; s : : :, for states. Similarly, Tr(S) = Tr(s0), S after � = s0 after �,

and the sequences in Tr(S) are called the traces of S. Besides, the transition s��n! t (1 �

n) is called a � -Path. When s = t, the � -Path forms a � -Cycle.

An LTS can also be represented by a directed graph where nodes are states and labeled

edges are transitions. An LTS graph is shown in Figure 2.

There are di�erent criteria for determining whether an implementation conforms to

its LTS speci�cation [15]. In this paper, we use the following implementation relations as

the criteria of the LTS conformance.

De�nition 6 Trace equivalence. The trace equivalence relation between two LTSs S and

I, written S =tr I, holds if and only if Tr(S) = Tr(I).

The above de�nition of trace equivalence corresponds to the equivalence relation be-

tween speci�cations and implementations in the FSM formalism [5, 8, 12]. The relation

requires that a conforming implementation has the same set of traces as its speci�cation.

De�nition 7 Refusal function. The refusal function of an LTS S, Ref : S � �� !

powerset(powerset(�)), is de�ned at each p 2 S for each � in �� by Ref(p; �) = fA �

� j 9q 2 p after � (8a 2 A; q 6=a) )g:

The refusal function gives the set of all the action sets which may be refused by the

LTS after a given trace � is executed from a given state p. Ref(p; �) is called a refusal

set at p after �. Similarly, the refusal set of the LTS after � is that of its initial state

after �, so Ref(s0; �) = Ref(S; �). Ref(p; ") is called a state refusal set of state p. The

notation Ref(p; ") may be simpli�ed into Ref(p).

De�nition 8 Failure reduction. The failure reduction relation between two LTSs S and

I, written I red S, holds if and only if for all � 2 �� Ref(I; �) � Ref(S; �).
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The failure reduction relation [3] between the speci�cation S and its implementation I

requires that everything that I does must be allowed by S. The de�nition states that for

any sequence � in ��, if � is a trace of I then it is also a trace of S; and after � is applied,

if an action set A may be refused by I then A may also be refused by S.

De�nition 9 Failure equivalence (or testing equivalence). The failure equivalence re-

lation between two LTSs S and I, written S =te I, holds if and only if for each � in

��; Ref(S; �) = Ref(I; �).

Obviously, S =te I implies that S red I and I red S. Therefore, the failure equivalence

not only states that everything that I does must be allowed by S, but also requires that

everything prescribed by S should be implemented by I.

If a set A is refused after �, obviously, each B � A is refused as well. Thus, we may

consider a minimal representation of the refusal functions of LTSs, denoting Refmin(p; �),

by deleting each element in Ref(p; �) that is a subset of another. Generally, for a set

of sets R, Rmin = RnfA j 9B 2 R (A � B)g. Apparently, we can obtain Ref(p; �) =
S
(A2Refmin(p;�)) powerset(A).

In the case of nondeterminism, after an observable action sequence, an LTS may enter

one of a number of di�erent states. In order to consider all possibilities, a state subset

(multi-state [7]), which contains all the states which are reachable by the LTS after this

action sequence, is used.

De�nition 10 Multi-state set. The multi-state set of LTS S is a set �S = fSi � S j 9� 2

Tr(S) (S after � = Si)g.

Note that the empty sequence " is supposed to be in ��. S0 = s0 after " belongs to the

multi-state set, and is called the initial multi-state. The multi-state set can be obtained by

a known algorithm which performs a deterministic transformation of a nondeterministic

automaton using the trace-equivalence [10, 7, 4]. For Figure 2, the multi-state set is

ffs0; s1g; fs2; s3g; fs2g; fs0; s1; s4; s5g; fs5gg. Obviously, each LTS has one and only one

multi-state set.

As said before, in the case of nondeterminism, after an observable action sequence,

di�erent states in a corresponding multi-state may be reached. Thus from the test per-

spective it makes sense to de�ne the transition checking and state identi�cation on multi-

states, rather than single states. The viewpoint is re
ected in the FSM realm by the

presentation of a nondeterministic FSM speci�cation as an observable FSM, in which
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P =�)Q =def 8q 2 Q 9p 2 P (p=�)q)

Tr(P ) =
S
(p2P ) Tr(p) out(P ) =

S
(p2P ) out(p)

Ref(P; �) =
S
(p2P )Ref(p; �) Ref(P ) =

S
(p2P )Ref(p)

P after � =
S
(p2P ) p after �

Table 3: Extended notations for labeled transition systems

each state is a subset of states of the non-observable FSM. The viewpoint is also re
ected

by the refusal graphs [6].

Next, we extend some of the above notations to a subset of states, as shown in Table 3.

From the extended notations, we can directly derive the following proposition:

Proposition 1 Given LTSs S and I with the initial multi-states S0 and I0,

1. Tr(S) = Tr(S0);

2. S after � = S0 after �;

3. Ref(S; �) = Ref(S0; �);

4. Ref(S; �) = Ref(Si) if S after � = Si;

3. Transforming LTSs to FSMs

We focus in this section on how to represent the behavior speci�ed by a given LTS, based

on the trace semantics or failure semantics respectively, using an FSM model.

3.1 General Idea

In the context of conformance testing, an LTS implementation under test (IUT) is

viewed as a black box, which, in each interaction, chooses autonomously one action from

a set of o�ered actions to execute a transition, or it blocks all the actions [9]. According to

the LOTOS semantics, no further action can be executed after the deadlock occurs. Under

the assumption that at least one action is o�ered in each interaction, we have 2j�j � 1

possible sets of o�ered actions to test the conformance of the IUT to its speci�cation in

the failure semantics for each interaction. Now we wish to model the given behavior by

an FSM, in which, for each interaction with the LTS, the set of o�ered actions is viewed

as an input, the chosen action in the executed transition as an output, and the deadlock

as a \null" output [15]. Producing the null output, the FSM enters a speci�c state that

has the null output for all inputs. Based on this interpretation, we can represent a given

LTS speci�cation as an FSM, which models the behavior of the corresponding LTS in the

trace semantics or in the failure semantics, respectively.
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Figure 3: Representation of an LTS using the FSM model

In the case that we are only interested in the trace semantics, all relevant properties can

be tested by o�ering single actions. Therefore we assume a simpli�ed FSM model in this

case which de�nes the behavior only for single action o�ers, thereby reducing the number

of inputs from 2j�j � 1 to j�j. For the case that the environment o�ers several actions

simultaneously, we assume that a demon chooses arbitrarily one of the o�ered actions for

execution by the FSM. The deadlock properties of the system are not completely modeled.

Therefore the implementation may deadlock before the end of a possible test case. We

consider this an inconclusive test result, and as usual for nondeterministic systems, the

test should be repeated.

3.1.1 Trace Semantics

Given an LTS, we wish to construct an FSM that produces as output all of the traces

of the LTS and signals by the null output � that the given input action cannot form

a valid trace of the LTS. As a simple example, Figure 3 (a) shows an LTS speci�cation

and (b) its corresponding FSM representation in the trace semantics. In (a), the LTS

has the alphabet set � = fa; bg. In (b), the FSM has the input set X = �, the output

set Y = fa; b;�g; and each transition is labeled with an input/output pair, in which the

output is either the same as the input or �. For example, a=a means that when a is

o�ered, a can be executed, and b=� means that when action b is o�ered, nothing but

deadlock can be observed. To keep the picture clear, label a; b=� corresponds to the pairs

a=� and b=�.

The transformation from an LTS to the FSM involves the mapping of the LTS multi-

states onto the FSM states. In the above example, fs0g is mapped to p0, fs1; s2g to p1,

fs3g to p3 and fs4g to p2.

The sink state s� in our FSM model represents the situation of the corresponding

LTS after any deadlock has occurred and before a reset is applied. Once the deadlock is
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detected, the tester has to stop the current test run, regardless of whether it has been

completed successfully [3]. This is modeled in our FSM by the sink state s� and all

transitions to/from s� which output the null output �.

3.1.2 Failure Semantics

We can also construct from a given LTS such an FSM that not only produces as output

all the traces of the LTS, but also signals by the null output � that certain sets of actions

on its input form a refusal set of the LTS after a given trace. An example of the FSM

representation for the LTS in Figure 3 (a) in the failure semantics is shown in Figure 3

(c). This FSM has the input set X = ffag; fbg; fa; bgg and the output set Y = fa; b;�g;

and each transition is labeled with an input/output pair, in which the output is either an

action in the input or �. For example, fa; bg=a, in which fa; bg is the set of o�ered actions

and a is the action that is chosen for execution. If the output is �, then a deadlock may

be observed for the set of o�ered actions. The mapping from multi-states of the LTS to

states of the FSM as well as the sink state s� are the same as for the trace semantics.

It can be shown that, given an LTS, the FSM constructed for the trace semantics is

a deterministic submachine of the FSM for the failure semantics. Both machines have

the same states. The trace FSM only determines whether or not an input action can

form a valid trace for the corresponding LTS. So does the failure FSM, and it also indi-

cates whether or not a set of actions o�ered as input may be refused after a valid trace.

The di�erence between these two FSMs re
ects the fact that the failure equivalence is a

re�nement of the trace equivalence.

In the following sections, we will formalize this idea of representing an LTS speci�cation

by an FSM model.

3.2 Trace Finite State Machines

The FSM model for a given LTS speci�cation in the trace semantics, called the corre-

sponding trace �nite state machine (TFSM), is de�ned as follows.

De�nition 11 Trace �nite state machine w.r.t. LTS. Given an LTS S=< S;�;�; s0 >,

a trace �nite state machine w.r.t. S, is a �nite state machine P =< P;X; Y; h; p0 >, such

that:

� X = �.

� Y nf�g = �, where � represents the null output.
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� P is a �nite state set, and the sink state s� is in P .

� Let �S be the multi-state set of S. There exists a one-to-one mapping  : �S!Pnfs�g

and for all Si 2 �S and all a 2 X,

� ( (Sj); a) 2 h( (Si); a) if and only if Si=a)Sj;

� (s�;�) 2 h( (Si); a) if and only if a 2 �nout(Si);

� f(s�;�)g = h(s�; a).

According to the de�nition, it is possible to construct from the LTS S the corresponding

TFSM P, which is a complete FSM. Figure 3 (b) is an example of the TFSM w.r.t. the

LTS in Figure 3 (a). From the above de�nition, it can be seen that all transitions in the

TFSM are labeled with a pair of the form \a=a" or \b=�". Furthermore, each trace of

the TFSM is a sequence of pairs of the form \a=a", possibly followed by a sequence of

one or several pairs \b=�". It is implied that once the �rst � occurs, the TFSM enters

the special sink state s�, and outputs � for any subsequent input.

Given an action sequence � 2 ��, we use evot(�) to represent an input/output sequence

such that both of its input part and output part are �. Formally, we de�ne evot(") = ";

and evot(�:a) = evot(�):a=a. TFSMs have the following properties.

Proposition 2 Any TFSM is deterministic and completely speci�ed.

Proposition 3 Given an LTS S and its corresponding TFSM P, for all � 2 �� and all


 = evot(�) 2 ��, � 2 Tr(S) if and only if 
 2 Tr(P).

Proposition 3 comes directly from the de�nitions of TFSMs and the multi-state set.

This proposition shows the way in which an I/O FSM models the behavior of an LTS in

the trace semantics. The TFSM and its corresponding LTS exhibit identical behavior:

any action sequence is a trace of the LTS if and only if it is accepted and produced by its

TFSM. On the other hand, since the TFSM is completely speci�ed, any action sequence

that is not a trace of the LTS corresponds to a trace of TFSMs with � outputs.

Accordingly, the trace equivalence relation in LTSs directly corresponds to the equiv-

alence relation in FSMs, as stated by the following theorem.

Theorem 1 For any given two LTSs S, I and their corresponding TFSMs S0, I0, I =tr S

if and only if I0 � S0.

By virtue of Theorem 1, the tests for the TFSM model can be used to test the LTS

implementations with respect to their speci�cations for the trace equivalence relation.

Now it becomes clear that the methods based on CDFSMs [5, 8, 14, 19] are fully applicable
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to derive tests from LTS speci�cations. However, the tests derived from the TFSM model

should be transformed to tests in the LTS context, because LTSs have a di�erent, i.e.

rendez-vous, interface to interact with their environment. We explain this transformation

in Section 4.

3.3 Failure Finite State Machines

In this section, we present the FSM model for a given LTS speci�cation in failure

semantics. It is similar to the TFSM constructuion, and is called a failure �nite state

machine, or FFSM. In the FFSM, sets of actions, along with single actions, are treated

as inputs.

De�nition 12 Failure �nite state machine w.r.t. LTS. Given an LTS S=< S;�;�; s0 >,

a failure �nite state machine w.r.t. S, is a �nite state machine P =< P;X; Y; h; p0 >, such

that:

� X = powerset(�)nf;g.

� Y nf�g = �, where � represents the null output.

� P is a �nite state set, and the sink state s� is in P .

� Let �S be the multi-state set of S. There exists a one-to-one mapping  : �S!Pnfs�g

and for all Si 2 �S and all A 2 X,

� ( (Sj); a) 2 h( (Si); A) if and only if a 2 A and Si=a)Sj, or

� (s�;�) 2 h( (Si); A) if and only if A 2 Ref(Si);

� f(s�;�)g = h(s�; A).

Figure 3 (c) shows an example of the FFSM w.r.t. the LTS in Figure 3 (a). From the

above de�nition, it can be seen that all transitions in the FFSM are labeled with a pair of

the form \A=a" where a 2 A, or \B=�". Similar to the TFSM, each trace of the FFSM

is a sequence of pairs of the form \A=a", possibly followed by a sequence of one or several

pairs \B=�"; and once the �rst � occurs, the FFSM also enters the state s�, and outputs

� for any subsequent input.

It can be easily shown that fa 2 �jpi�A=a!g = out(Si) and fA � �jpi�A=�!g[f;g =

Ref(Si) for each state pi in P, where Si is a multi-state in its LTS S and pi =  (Si).

Therefore we de�ne out(p) = fa 2 � j p�A=a!g and Ref(p) = fA � � j p�A=�!g[f;g:

Similarly, for � 2 ��, we also de�ne evof (�): evof (") = "; and evof(�:a) = evof(�):A=a

where a 2 A and A 2 X. The properties of FFSMs are expressed by the following

propositions.

Proposition 4 For any FFSM P, for all p 2 P and all B 2 Refmin(p) out(p) [B = �.

12



From � = out(p)[B we get �nout(p) � B, which means that in any state, the output

complement is always refused.

Proposition 5 Any FFSM is observable and completely speci�ed.

Unlike a TFSM, an FFSM is nondeterministic if its corresponding LTS is nondeter-

ministic.

Proposition 6 Given an LTS S and its corresponding FFSM P, for all � 2 �� and all


 = evof (�) 2 ��, if there exists p 2 P such that p0=
)p, then Ref(p) = Ref(S; �).

This proposition shows the way in which an I/O FSM models the behavior of an LTS

in the failure semantics. The FFSM and its corresponding LTS exhibit identical behavior:

a set A may be refused after trace � by the LTS if and only if its FFSM may produce

output � once A is applied after trace evof(�).

Accordingly, the failure equivalence and reduction relations of LTSs directly corre-

spond to the equivalence and reduction relations in FSMs, as stated by the following

theorem.

Theorem 2 For any given two LTSs S, I and their corresponding FFSMs S0, I0,

(1) I red S if and only if I
0 � S

0. (2) I =te S if and only if I
0 � S

0.

By virtue of Theorem 2, the tests for the FFSM model can be used to test the LTS

implementations with respect to their speci�cation for the conformance relations in the

failure semantics. The existing methods for CNFSMs and the reduction relation [16,

17] or equivalence relation [12, 13] can be exploited to derive relevant tests from LTS

speci�cations through the FFSMs. Like in the case of trace testing, the tests obtained

should be translated into tests that obey a rendez-vous interface of LTSs.

However, it should be noted that the failure FSMs constitute a speci�c subclass of

FSMs that have the following peculiarity from the test perspective: Certain transitions

are implied by others and may not require testing according to the LTS semantics. (see

Section 4.2.) This observation suggests that the test derivation methods based on the

FSM model should be modi�ed for FFSMs, rather than directly applied.

4. Test Generation

4.1 Testing trace equivalence

It follows from the results of the previous section that the derivation of a �nite test

suite with complete fault coverage from an LTS speci�cation with respect to the trace

13
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Figure 4: An example for test generation

equivalence can be solved by transforming the speci�cation into an TFSM, applying a

CDFSM-based method to it, and then converting the obtained tests back to the LTS

formalism. The approach is illustrated by the following examples.

From the de�nition of the corresponding TFSM, we can get the TFSM shown in

Figure 4 (a) for the LTS speci�cation S of Figure 2. This TFSM is not minimal, so

it is transformed into its minimal form P, shown in Figure 4 (b), as required by the

W{method [5].

Let any LTS implementation of the LTS speci�cation S be viewed as a TFSM and

let the number of states in an equivalent minimal form of the TFSM be not more than

the number of states in P. According to the W{method, the set of input sequences of a

complete test suite TS is constructed in the following way: TSin = Q:(f"g[�):W , where

Q is a state cover, Q:(f"g[�) is a transition cover and W is a characterization set. From

the TFSM in Figure 4 we may select Q = f"; a; b; cg and W = fa; b:ag. The resulting test

suite is as follows.

fa=a:b=b:a=a; b=�:b=�:a=�; c=c:b=b:a=�; a=a:a=�:a=�; a=a:a=�:b=�:a=�;

a=a:b=b:b=�:a=�; a=a:c=c:a=�; a=a:c=c:b=�:a=�; b=�:a=�:a=�; b=�:a=�:b=�:a=�;

b=�:b=�:b=�:a=�; b=�:c=�:a=�; b=�:c=�:b=�:a=�; c=c:a=�:a=�; c=c:a=�:b=�:a=�;

c=c:b=b:b=�:a=�; c=c:c=c:a=�; c=c:c=c:b=�:a=�g

Since all implementations of P are assumed to be TFSMs, in which the � for an input

implies � for all subsequent inputs, there is a certain redundancy in this test suite. For

example, the su�x a=�:a=� of test case b=�:a=�:a=� is not necessary because of the �

for the �rst input b. According to the LTS semantics, if b can not form a valid trace of

S, then b:a:a can not do it either. These su�xes can be removed and the resulting tests

still constitute a complete test suite of the TFSM:

14



fa=a:b=b:a=a; b=�; c=c:b=b:a=�; a=a:a=�; a=a:b=b:b=�; a=a:c=c:a=�; a=a:c=c:b=�;

c=a:a=�; c=c:b=b:b=�; c=c:c=c:a=�; c=c:c=c:b=�g

In general, for any complete test suite of a given TFSM [2] w.r.t. a certain class of

TFSMs, after removing the su�xes of tests that follow the �rst pair \b=�", the resulting

test suite is also complete w.r.t. the same class. In order to state this in a formal way, we

use pref(TS) to represent all pre�xes of tests in TS, i.e. pref(TS) = f
1 j 
1 2 ��^
1:
2 2

TSg. The following theorem gives the validity of the simpli�cation of tests.

Theorem 3 Given a TFSM S, if TS is a complete test suite w.r.t. a certain class of TF-

SMs then TS0 = f
 2 pref(TS) j 9�:b 2 ��((
 = evot(�:b)^ 
 2 TS)_ 
 = evot(�):b=�)g

is also a complete test suite w.r.t. the same class.

Another solution to the redundancy problem is to modify the existing method in

such a way that the sink state is excluded from the computation. The null output � will

distinguish the sink state from others; and furthermore, in the LTS semantics it represents

the IUT in the deadlock, so it is not necessary to check the transitions which leave this

state.

As an example, we consider again the TFSM of Figure 4 (b), p4 is equivalent to the

sink state s�, but we keep it separately. Exculding the sink state, we use the harmonized

identi�ers [14] H = ffa; bg; fb:ag; fb:ag;fa; bgg rather than the characterization set W ,

because the W set also causes redundancy. A state cover is now f"; a; a:c; cg. From this

we obtain the transition cover T = f"; a; b; c; a:a; a:b; a:c; a:c:a; a:c:b; a:c:c; c:a; c:b; c:cg. In

the transition cover, b, a:a, a:c:a, a:c:b, a:c:c and c:a lead to s�, so no identi�er is needed

to check the tail state. Thus, the resulting test suite is:

fb=�; a=a:a=�; c=a:a=�; a=a:b=b:a=a; a=a:b=b:b=�; a=a:c=c:a=�; a=a:c=c:b=�;

a=a:c=c:c=�; c=c:b=b:a=�; c=c:b=b:b=�; c=c:c=c:a=�; c=c:c=c:b=�g

The test cases for the TFSM model can be transformed for the LTS testing by con-

verting each action sequence into a corresponding LTS with state verdicts. Let s0�a1!

s1 : : : sn�1�an!sn be an LTS corresponding to action sequence a1:a2 : : : :an, which outputs

� at ak in the TSFM model, k � 1. Then we have the state verdicts as follows.

si =

8>><
>>:

inconclusive 1 � i � k � 1

pass i = k

fail i � k
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Figure 5: A test suite for the LTS speci�cation in Figure 2

An LTS test suite obtained by transforming the above test suite of the TFSM in

Figure 4 (b) is shown in Figure 5. This test suite can be used to test implementations of

the LTS speci�cation in Figure 2 with respect to trace equivalence.

4.2 FFSMs

In an abstract I/O FSM, every transition is usually completely independent of others.

However, this is not the case for an FFSM, as we mentioned before; certain transitions are

implied by others. Consider, for example, a transition from a multi-state Si labeled by

action a, in a given LTS. In the FFSM, such a transition yields exactly 2j�j�1 transitions

with the same output a from the corresponding state. These transitions have di�erent

inputs denoting all the supersets of a and are implied by a single transition labeled by

a=fag.

Implied transitions in an FFSM should not be treated as completely independent for

test derivation. The traditional transition checking approach relies on the general transi-

tion fault model, according to which any transition can be mutated independently of the

others [2]. The dependency among transitions of the FFSM would be fully neglected if an

existing test derivation method is applied to the FFSM in a straightforward manner, and

hence any resulting test suite with complete fault coverage would de�nitely be redundant.

Consider two transitions p0�fag=a!p1 and p0�fabg=a!p1 in the FFSM in Figure 3 (c)

as an example, where once the �rst is checked there is no need to check the second. The

reason is that if p0�fabg=�!s� is implemented then it implies p0�fag=�!s�.

Another distinctive feature of FFSMs comes from the closure property of refusal sets.

Consider a refusal set Ref(Si), jRef(Si)j > 1, of multi-state Si in the given LTS. This

set creates exactly 2jRef(Si)j�1 transitions in the corresponding FFSM. Again, there is no

need to test all these transitions separately. Checking transitions corresponding to the

minimal refusal set Refmim(Si) is su�cient.
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Finally, similar to TFSMs, in FFSMs, the sink state does not require any identi�cation

and the transitions which leave this state do not require checking.

It follows from the above analysis that one can also derive tests for the LTS with

respect to the failure semantics based on the existing FSM-based methods for FFSMs in

a way similar to TFSMs { by directly applying an existing method for a test suite and

subsequently removing redundancy in it, or by modifying the existing method to avoid

the redundancy. However, since the implications among transitions in FFSMs raise a new

redundancy of tests, a further research is needed for removing or avoiding this redundancy.

This is our work in progress.

5. Conclusion

LTSs are the basic semantics for LOTOS and other speci�cation formalisms. This paper

deals with test suite development from a speci�cation given in the LTS formalism. We have

shown that in the context of the trace semantics, LTSs can be represented equivalently

by an input/output FSM model { the trace �nite state machines (TFSMs); and in the

context of the failure semantics, by the failure �nite state machines (FFSMs). The bene�t

of this transformation is that the problem of deriving a conformance test suite for an LTS

can be transferred into the realm of the FSM model, where the test derivation theory has

been elaborated for several decades and a number of testing tools have been constructed

already.

Trace FSMs are deterministic, completely speci�ed FSMs, so the existing methods

for CDFSMs can be applied to the TFSMs directly for the derivation of test suites to

check the corresponding LTSs with trace equivalence. An example is presented which

illustrates the process of test derivation from an LTS speci�cation for trace equivalence,

by transforming the LTS into a TFSM and subsequently applying the W{method. The

removal of redundant tests is discussed. A slight modi�cation of the HSI{method for

TFSMs is also proposed to avoid the redundancy of tests.

Failure FSMs are observable, completely speci�ed, nondeterministic FSMs, so the

existing testing methods for CNFSMs can be applied to the FFSMs for the derivation

of test suites to check the corresponding LTSs in the failure semantics. However, since

certain transitions in FFSMs may not require testing according to the LTS semantics, an

adaptation of the existing methods to FFSMs is needed to avoid redundancy. Our work

in progress deals with this problem.
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Appendix

In this appendix we give the proofs for the theorems and propositions included in the

paper.

Proposition 2 Any TFSM is deterministic and completely speci�ed.

Proof: Suppose there exist pk; pi; pj 2 P; a 2 X such that pk�a=a!pi, pk�a=y!pj and

pi 6= pj where y = a or �. From the TFSM de�nition, y = � is impossible, so we have

y = a. Let pk =  (Sk); pi =  (Si); pj =  (Sj), Sk = S after �0 and � = �0:a. Obviously,

if pi 6= pj , then Si 6= Sj because  is a one-to-one mapping. However, it is impossible since

S after � = Si = Sj by the de�nition of the multi-state set. Therefore P is deterministic.

Theorem 1 For any given two LTSs S, I and their corresponding TFSMs S0, I0, I =tr S if

and only if I0 � S0.

Proof: (1). ). Since I =tr S, for any P = I after � and Q = S after �, � 2 ��,

out(P ) = out(Q); and further from Proposition 3, for any 
 2 �� where 
 = evot(�) there

is i00 = 
) i0 in I0 if and only if there is s00 = 
) s0 in S0. out(P ) = out(Q) means that

fb 2 � j i0�b=�!g = fb 2 � j s0�b=�!g where i0 =  (P ) and s0 =  (Q). Thus it is

shown that a set of all the traces of I0 which have at most one \b=�" is equal to the set of

the traces of S0 which have at most one \b=�". Furthermore, any trace with two or more

pairs of the form \b=�" is implied by its pre�x with only one \b=�", thus Tr(I0) = Tr(S0),

that is, I0 � S0.

(. From Proposition 3, if I0 � S0, that is, Tr(I0) = Tr(S0), then Tr(I) = Tr(S).

Proposition 4 For any FFSM P, for all p 2 P and all B 2 Refmin(p) out(p) [ B = �.

Proof: Let P is the FFSM of LTS S. From De�nition 12, for each node p 2 P; p 6= s�,

there exists Si 2 �S such that p =  (Si) and Refmin(Si) = Refmin(p).

If there are no � -Cycles in S, then Ref(Si) =
S
(s2Si) powerset(blk(s)). Note that

blk(s) = ; for unstable s. Let s 2 Si be stable and blk(s) be in Refmin(Si). From the
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de�nition of out(p), out(Si) = out(p), out(p) � out(s). So, � = out(p) [ blk(s) for each

blk(s) 2 Refmin(p).

If there are � -Cycles in Si, then each of the � -Cycles can be collapsed into a single state

with the failure equivalence. Let C be the state set in one of the � -Cycles, w be the state

after collapsing C. If w is unstable, none of elements in Ref(Si) are determined by C.

If c is stable, then Refmin(C) = fblk(w)g. Thus for each B 2 Refmin(Si) (Refmin(p)),

there exists s 2 Si where s is a stable state or s is in a C. Similarly, out(p) � out(s). So,

� = out(p) [B.

For the sink state s�, out(s�) = ; and Refmin(s�) = f�g, Proposition 4 also holds.

Proposition 5 Any FFSM P is observable and completely speci�ed.

Proof: From Proposition 4, for FFSM P, � = out(p) [ B for each state p 2 P and

B 2 Refmin(p). As a result, for all A 2 X and all p 2 P , A 3 a for a 2 out(p), or

A � B for B 2 Refmin(p) since A � �. From De�nition 12, the transition s�A=�! s�

or s�A=a! is speci�ed in P.

Suppose there exist pk; pi; pj 2 P such that pk�A=a! pi, pk�A=a!pj and pi 6= pj .

Let pk =  (Sk); pi =  (Si); pj =  (Sj), Sk = S after �0 and � = �0:a. Obviously, if

pi 6= pj , then Si 6= Sj because  is a one-to-one mapping. However, it is impossible since

S after � = Si = Sj from the de�nition of the multi-state set. So P is observable.

Proposition 6 Given LTS S and its corresponding FFSM P, for all � 2 �� and all


 = evof (�) 2 ��, if there exists p 2 P such that p0=
)p, then Ref(p) = Ref(S; �).

Proof: We �rst prove that any evof(�) 2 Tr(P) if and only if � 2 Tr(S).

(1). For each trace � 2 Tr(S), let transitions s0 = a1 ) s1 : : : sn�1 = an ) sn have �,

1 � n. Obviously, for each si, 0 � i < n, there exists S0; S1; : : : ; Sn 2 �S such that

s0 2 S0; s1 2 S2; : : : ; sn 2 Sn. Therefore there exist transitions  (S0)= evof(�)) (Sn)

in P. On the other hand, If there exists 
 in Tr(P) where 
 = evof(�), Similarly, because

 is a one-to-one mapping, � is in Tr(S).

(2). If there exists 
 2 Tr(P) such that 
 = evof(�); � 2 ��, let p0=
)pi, then from the

above proof, Si = S after � and pi =  (Si). Furthermore Ref(S; �) = Ref(Si) according

to Proposition 1. From the de�nition of the Ref(pi), Ref(S; �) = Ref(pi).

Theorem 2 For any given two LTSs S, I and their corresponding FFSMs S0, I0, (1) I red S

if and only if I0 � S0. (2) I =te S if and only if I0 � S0.
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Proof: (1). ). From Proposition 5, FFSM I0 and FFSM S0 are completely speci�ed,

so Trin(I0) = Trin(S0). Since I red S, that is, Ref(I; �) � Ref(S; �), from Proposition 6,

for any 
 2 �� where 
 = evof (�) if 
 2 Tr(I 0) then 
 2 Tr(S0), and further if there is

i00=
) i0 in I0 then there exists s00=
)s0 in S0 and Ref(i0) � Ref(s0). It is shown that a

set of all the traces of I0 which have at most one \B=�" is a subset of a set of all the traces

of S0 which have at most one \B=�". Furthermore, any trace with two or more pairs of

the form \B=�" is implied by its pre�x with only one \B=�", thus, Tr(I0) � Tr(S0), that

is, I0 � S0.

(. If I0 � S0, then for any � 2 ��, let 
 = evof(�), if there exists i00= 
) i0 in I' then

there exists s00=
)s0 in S and Ref(i0) � Ref(s0), which, from Proposition 6, mean that

Ref(I; �) � Ref(S; �) for � 2 Tr(I). On the other hand, for � 62 Tr(I), (� 62 Tr(S)),

Ref(I; �) = ; (Ref(S; �) = ;). Thus I red S holds.

(2). ). From the de�nition, if I =te S then I red S and S red I. From the above proof,

I0 � S0 and S0 � I0, that is , I0 � S0.

(. Similarly, if I0 � S0 then I0 � S0 and S0 � I0. From the above proof, I red S and S red I,

that is, I =te S.

Theorem 3 Given a TFSM S, if TS is a complete test suite w.r.t. a certain class of TFSMs

then TS0 = f
 2 pref(TS) j 9�:b 2 ��((
 = evot(�:b) ^ 
 2 TS) _ 
 = evot(�):b=�)g is

also a complete test suite w.r.t. the same class.

Proof: pref(TS) is a complete test suite if and only if TS is complete. Let pref(TS) =

TS1 [ TS2, where TS1 is a set of the tests in pref(TS) with the two or more pairs \b=�",

and TS2 = TSnTS1 is a set of the tests in pref(TS) with at most one \b=�", obviously,

pref(TS0) = TS2. If there exists any implementation I in the class of TFSMs that is not

equivalent to S, then since pref(TS) is complete, there should exist 
 in pref(TS) such

that I fails (pref(TS) 6� Tr(I)). If 
 is in TS2 then 
 is also in pref(TS0). If 
 2 TS1,

then there exists 
 0 in TS2 which is a pre�x of 
 and has one tail \b=�". From this, we

can conclude that I also fails 
0 because if 
0 2 Tr(I) then for any 
t of the form \b=�",


0:
t 2 Tr(I). Thus pref(TS
0) is a complete test suite, that is, TS0 is complete.
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