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Abstract: The use of formal description techniques 
allows the partial automation of the design, the 
validation, and the implementation of 
communication protocols and distn‘buted algorithms. 
In this paper, we present a methodology for 
validation of distributed algorithms and protocols, 
and our experiences of using the Estelle (71 
language, and a simulation and validation tool, called 
Veda [12], to simulate and validate complex 
distributed algorithms for  the distributed 
implementation of multi-rendezvous. Some design 
errors in published distributed rendezvous algorithms 
were found. We obtain from these experiences 
heuristic guidelines for trouble shooting of 
distributed algorithms. 
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1.  Introduction 

In distributed systems, processes 
proceed with different speeds and 
communicate with each other by message 
passing with unknown bound on message 
transmission delay. This asynchronous 
nature, together with concurrency and 
overlapping of different processing 
activities, makes coordination between 
processes difficult, and complicates the 
design and validation of distributed 
algorithms and protocols. The validation 
methods can be classified into logical proof, 
exhaustive reachability analysis, and 
simulation methhods. 

The logical proof method proceeds 
by proving assertions about the values of 
program variables. However, it is not 

possible to derive and prove the assertions in 
an algorithmic manner from the 
specification. This method relies on the 
human intuition to formulate critical 
assertions, and it is very difficult to apply 
this method to complex distributed 
algorithms and protocols. 

The exhaustive methods consider all 
possible situations that may occur during the 
execution of distributed algorithms and 
protocols which are modeled by several 
interconnected processes, each can be 
modeled by a simple or extended finite state 
machine (FSM). The global state is 
determined by the states of each of the 
individual processes and the “messages” in 
transit between them. The method is aimed at 
deriving a reachability graph of all the global 
states that are reachable from the initial 
global state. The reachability graph is 
analyzed for deadlock, livelock, and 
unspecified receptions. This method is called 
reachability analysis. Another similar method 
is based on Petri net analysis. These two 
methods tend to lead to state space 
explosion when applied to complex 
distributed algorithms. To apply the above 
proof techniques, we have to simplify the 
description of the algorithm or the protocol. 
For instance, we could consider only a 
simple “phase” of the algorithm or protocol 
(and we may miss the problems related to 
inter-phase relations) or we could consider a 
reduced architecture (two or three stations). 

The simulation method proceeds by 
executing the specification in a centralized 
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way. It is aimed at inspecting; as many 
reachable system states as possible by 
randomly-walking through the state space 
[23]. Simulation can also be 
some heuristic guidelines. The real 
distributed environment is modeled and 
embedded in the simulation processes. It 
avoids the limitations of the above 
verification methods, at the expense of 
possibly missing some errors. 

We present in this paper a 
methodology for validation of distributed 
algorithms and protocols, and olur 
experiences and results of using the fomial 
specification language Estelle 171, and, a 
simulation tool called Veda [ 123, to simul;%te 
and validate some complex distributed 
rendezvous algorithms. The first algorithm 
we simulated was a virtual ring rendezvous 
algorithm [8]. It was designed in the context 
of the distributed implementation of LOTOS 
specifications [5]. Before we implemented 
the algorithm on a real network, we first 
perfonned its validation. In this process we 
found some design problems. Then we tried 
other algorithms [13,20], and found similar 
problems. We summarize these experiences 
in heuristic guidelines for trouble shooting of 
distributed algorithms. 

e rest of this paper is organized as 
2, we present a 

gy for distributed 
algorithms and protocols, tools needed to 
support it. Following this methodology, we 
have validated several distributed rendezvous 
algorithms as presented in Section 3. We 
summarize the experiences obtained f h m  
this validation process in 
guidelines for trouble shooting of 
algorithms in Section 4. The paper mds with 
a conclusion. 

and Tool Support 

2.1 Methodolo 

Formal description techniques have 
been proposed for protocol engineering to 
support the different phases of the life cycle 
of protocol development. For the validation 
of distributed algorithms and protocols 
within an FDT-based ~ R v ~ r o n m € ~ ~ t  19, 10, 

ropose the following steps 

(a) Defining the Requirements: This 
phase consists of designing a formal model 
of the service to be provided and of the 
properties to be satisfied by protocols and 
algorithms. In the case of protocols, this is 
called the service description. This task is 
difficult in general, becaiuse the assumptions 
of correctness are almost never explicitly 
stated in the informal design description. 
However, we do not need to write a full 
service description. We (;an restrict ourselves 
to the verification of selected properties of 
particular interest. The: description of the 
service may be linked to the verification 
technique used (different techniques have 
different abilities of checking properties). 
For instancx, Ve 2.0 [ 11 uses an observer 
language to describe the properties. This is 
powerful, but limited to safety properties, 
including bounded liveness. 

pedornned in sequence. 

(b) Modeling: 
protocol describe 
loose pseudo-@ode fashion, we should first 
make a formal description of it in Estelle [7], 

fforts are needed for the 
architecture aspects of a 

description of an algorithm usually makes 
very rough and naive ;assumptions in this 
area. This .is very important because crucial 
choices in {his area will influ 
ability to detect certain kin 
Therefore, some infonnatio 

istributed algorithm because 

virorunent may have to be 

cl Conformance 
I: This phase is 

references etc.), and 
simulations just to chc 
model can be executed 1 
and it is ;a faithful re 
algorithm c r  a protocol. At this point, we are 
not looking for a foimal proof, which 
anyway cannot exist. But we can perform 
some basic tests by trying to reproduce, with 
the interactive facilities of the simulator. It is 

w how much of the fo 
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specification has been covered in the process 
of running these few typical examples. 
Ideally, this should be 100%, however, this 
level may not always be easy to reach. 

After steps (a), (b) and (c) have been 
performed, we are reasonably confident that 
the simulation will tell us something about 
the original informal description of design. 
We can now proceed to the real validation 
phases. Two levels of validation can be 
distinguished: 

- A naive level consists of going on with 
simulation scenarios and checking the results 
(messages exchanged, states reached by 
stations) until it is very rare to find any error 
during the analysis of simulation runs. This 
is a simple prolongation of phase (c). 

- A higher-level validation, as described 
under points (d) and (e) consists of 
performing an automated intensive 
verification based on a formal model 
captured in phase (a). This formal model 
will serve as an input to the automatic 
verification tool in order to replace the 
human analysis of traces and configurations 
by a much faster verification done by a 
program. 

(d) Random Simulation: In this phase, 
verification proceeds through long random 
simulation runs. The ability to detect errors 
may be influenced by the ingenuity of the 
(human) validator to use varied simulation 
parameters (such as transmission delays, 
error rates, rates of requests, depending on 
the model for the environment). 

cation: Verification is done by 
going through exhaustive analysis, 
reachability analysis or model-checking, for 
instance. 

.2 Tool Support 

We will describe in this section the 
tools and their features needed to support 
each of the above phases. Although the 
methodology is independent of any choice of 
tool, the discussion is based on the 
experience we acquired with a series of tools 
for Estelle [7]: Veda 2.0 [I]? Xesar [21], 

EWS [2 ] .  Veda 2.0 has been used for most 
of these steps. 

Phase (a) may depend on the choice 
of validation techniques used for phases (d) 
and (e). Different tools would accept 
different forms of requirement 
specifications: e.g., temporal logic formulas, 
FSM or EFSM specification for a service, 
behavior trees. In our case, things were 
made simpler by the fact that Veda 2.0 
implements both a model-checking technique 
(e) and a random simulator (d), using a 
common description for the service in both 
cases. Service properties or requirements are 
described in the observer language, a 
modified syntax taken from Estelle [7]. The 
observer comes in during the course of 
execution to check the correctness during 
behavior explorations. 

Phase (b) goes from informal to 
formal. Tool support may consist of 
syntactical help ( ~ a ~ h i ~  tax-directed 
editors, e.g., Veda 2.0 a graphical 
editor), and a generation of 
systematic parts buted model. For 
instance, most d algorithms make 
assumptions about the underlying 
communication networks: topology (ring 
structure, or various s), reliability (loss 
or corruption of m es), transmission 
parameters (order preserved, transmission 
delays), etc. A model of such a network may 
be built from standard building blocks. This 
idea has been implemented in e.g., the Oscar 
tool [ 181. And also, for many tools, a closed 
environment is assumed. Unspecified 
environment modules can be derived 
automatically by using a tool like the 
Universal Test Drivers Generator [14]. We 
have not used any such generation tool for 
the experiment reported in this paper. 

require a compiler 
and animation facilities. Apart from usual 
traces, Veda 2.0 offers “watch windows” 
that can be opened on instances of modules 
to trace their changes of states or the contents 
of their input queues. Other tools, like Grope 
[19] offer much more: it is possible to 
provide the user with graphic representation 
of the actual behavior including motion of 
messages along channel links between 
modules, and the change of states of the 

112 



traces added. 

used, the system that we 
is correct. 

3. Simulat 
Distributed 

Processes do not 
communicate wit 

distinct identifier. 
considered when 
achitecture. 

extension of t 
more than two 
rendezvous. A rendezvous can only happen 
when all the processes ~ ~ v o ~ ~ ~ d  in the 
rendezvous are ready, i.e., there is 
synchronization among all 
belonging to the same r 
process can only parti 
rendezvous at a time, i.e., there 
exclusion between a 
share C O ~ ~ W  

8s referred to as the 
problem [6]. 

made in Section 3 
em is considered in 

1 the processes in 
connected by Estelle 
addressed by their 

bership information of 
initialization part 

in the Section 2.1, it is 
the architecture of a 

ring algorithm; the 
Ramesh's algorithm 



p 3  
The virtual ring configuration 

The umbrella configuration 

P 

-v 
p3 

The lattice configuration 

Fig. 1. Different configurations 

A given algorithm has to be able to 
work in all possible actual configurations of 
one of the above three types. However, the 
designer may consider only a few 
situations. After going through the 
simulation and validation without finding 
errors with the configuration shown in 
Fig.1, we have written a program to 
generate randomly the membership 
configuration for each of the above three 
types as follows. Recall that there is a set of 
“n” processes in the system. For each 
interaction, we choose at random an integer 
“k” ( 0 < k <= n) to be the number of 
processes involved in the interaction, and we 
choose at random “k” times from the set of 
“n” processes to select the members of the 
interaction. 

The results described in the next 
session indicate that careful design of the 
configurations helps to detect errors. 

For the validation of protocols and 
distributed algorithms, it is good to have a 
random delay box in modeling the 
communication channel since lot of design 
errors are due to race condition and relative 
delay. 

3.3 Verification and Results 

After going through long simulations 
without finding any error, we would like to 
perform an automatic intensive verification. 
The important property that a distributed 
rendezvous algorithm should have, is to 
satisfy mutual exclusion and 
synchronization. 

We wrote a program in the Veda 
observer to check automatically that 
processes obey these conditions in the 
execution. The fairness property can be 
checked by looking at the traces. If 
rendezvous always happens at certain 
interactions, and never happens on some 
other interactions, we would suspect that the 
algorithm is unfair. Further analysis is 
necessary to come to a conclusion, as 
discussed later together with the example 
shown in Fig. 3. 

Veda 2.0 provides reachability 
analysis. The state limit depends on the 
memory of the machine used, and is of the 
order of several minions. 

Many errors have been found during 
simulation and validation activities. They fall 
into two large categories: 

(1) Errors in the Estelle specification 

The specification is an unfaithful 
representation of the design. Specification 
errors are most likely detected in the 
simulation through modeling, debugging and 
conformance checking. These are errors in 
Estelle coding, such as the following: 
- Value out of range; 
- Variables are not initialized, not updated 
properly, or not re-initialized after each 
session; 
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- The guard of a transition is not specified 
correctly to cover all the cases considered in 
the design. 

(2) Design Errors 

Design errors are much more 
serious. In most cases, they could be 
detected by running the simulation and 
analyzing simulation traces. They could be 
many types, such as the following: 

- Internal logical consistency is not satisfied 
after some design modifications; - Incomplete designs, unspecified receptions; - Non-progress cycles; 
- System deadlocks (i.e., circular waiting); - Deadlock due to the delay in the FIFO 
queue; - Erron due to wllision or relative delay. 

Examples of Errors Detected 

Many errors were found in the 
validation process. Due to the space 
limitation, we can not list them alll. Here we 
only give two examples. A design problem 
was found in the Ramesh's algorithm [20]. 
There are three processes, and two 
rendezvous between P1, P2 and P2, P3 as 
shown in Fig. 2. P3 sends Req(P3, E) to 
capture P2 for rendezvous. P2 sends 
Req(P2, PI) to capture PI. However, P2 
could not capture itself without capturing PI 
first. So when P2 receives Req(P3, P-3) 
from P3, P2 has to send YE§ to P'3, and P2 
will receive Success for rendezvous from 
P3. Then P2 goes to the initial state. The 
YES message sent by P1 to P2 in response 
to Req(P2, PI) will not be processed, 
therefore P1 will wait forever. 

A possible way to fix this problem is 
to send a special Cmcel message from P2 to 
P1, and P2 has to wait for this Cancel 
message to come back. So if there is a 
message PES) sent out from P1 to P2, this 
special CanceZ message will carry this 
information to P2, and P2 will wait until it 
receives this (YES) message before it goes 
to the initial state. 

When we simulated Kumar's 
algorithm [ 131, we designed a combination 

of the virtual ring configuration as shown in 
the Fig.3, which permits, us to 

F' 1 P2 P3 

Q2 state 

Q1 state 

E state 

I 

Fig. 2. Unprocessed message YES left in 
e channel 

P4 

P5 
pmess token 

Fig. 3. A scenarb sf 
rendezvous implementation 

observe the fact that rendezvous always 
happens at interaction C1 in the simula 
and shows that the algorithm is unfair. 
Kumar's a.lgori a token has to be 
circulated in the order of decreasing process 
identifier. The implementation could be such 
that Token 1 always mives at process P1 
earlier than other tokens, and captures P1 
first. This is why rendezvous may always 
happen at interaction 1, and may never 
happen at the other two interactions. We 
conclude that this algorithm is unfair. 
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4. Hints for trouble shooting of 
distributed algorithms 

The asynchronous nature of 
distributed systems makes the design and 
verification of distributed algorithms 
difficult. The errors detected by simulation 
and exhaustive validation are related to this 
nature. Based on our experiences with the 
validation of rendezvous algorithms, we 
present in the following several points that 
may be useful to detect errors in distributed 
algorithms in general. 

(a) If an algorithm has to be able to work 
continuously, overlapping of different 
rounds (sessions) is likely to lead to 
problems related to variables, contents of 
queues, or token reallocations. These 
problems may cause total or partial system 
blocking. 

@) Some distributed algorithms use FIFO 
queues. In the specification, the size of the 
FIFO queues of these algorithms is infinite, 
but in an implementation it is finite. This 
may lead to message losses due to queue 
overflow. 

(c) Random selection has been used in 
distributed algorithms for fair conflict 
resolutions [8], [15]. A practical problem 
may arise with the random number 
generator. When the random number 
generated is not very “random,” it may take 
many random selections before a successful 
selection can be made, or it may even lead to 
livelock in extreme cases. 

(d) Relative delay of messages could cause 
problems. One can always ask the question 
what will happen if a certain message is late. 
The sequence of messages is an important 
aspect to examine, the execution behavior 
can depend on it. 

(e) In order to detect errors more effectively, 
simulation with different randomly generated 
architecture (different combinations of 
certain type of configurations) is 
recommended. Different architecture may 
have different aspects that are not covered in 
the original design. 

5. Conclusion 

In this paper, we present a 
methodology for the validation of distributed 
algorithms and protocols, and our 
experiences of using the Estelle language, 
and a simulation and vali 
Veda, to simulate and validate complex 
distributed algorithms for the d i s ~ b u t e d  
implementation of multi-rendezvous. Some 
design errors in published distributed 
rendezvous algorithms were found. We 
obtain from these experiences heuristic 
guidelines for trouble shooting of 
distributed algorithms. Although the 
experiences come directly fiom validation of 
distributed algorithms, it is applicable to 
protocols which can be considered as special 
cases of distributed algorithms. 

The effectiveness of the random 
simulation technique is discussed in [23]. 
West claimed that a random exploration of 
the reachable-state is as effective as an 
attempt to perform an exhaustive state 
exploration. Our experiments also support 
this claim. We found that simulation is very 
effective to detect errors especial at the early 
stage of validation process. One major 
disadvantages of simulation is that there is 
no clear termination of the simulation 
process. Therefore, there is no way to 
determine when all the errors have found. In 
practice, we can terminate simulation after 
several days or a week Without finding any 
errors. The application of the methodology 
proposed here gives us a high level of 
confidence in the quality of the formal 
design. 
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