
1

�
Deriving Protocol Specifications from Service

Specifications Written in LOTOS+

Christian Kant*, Teruo Higashino** and Gregor v. Bochmann

D�partement d'IRO, Universit� de Montr�al,
C.P. 6128, Succursale A, Montr�al, Qu�bec, H3C 3J7, Canada

ABSTRACT

A complete communication system is broken down into a number of protocol layers each of
which provides services to the layer above it and uses services provided by its underlying layer.
A service specification defines a particular ordering of the operations that a given layer provides
to the layer above it. The active elements in each layer are called entities and they use a protocol in
order to implement their service definition. On the basis of this relation between the service and
protocol concepts we have developed algorithms for deriving protocol entity specifications from a
formal service specification. The derived protocol entities ensure the correct ordering of the
service primitives by exchanging synchronization messages through an underlying
communication medium. This paper presents a new version of our derivation algorithms; it is an
extension of the method to a more comprehensive specification language. This version of the
algorithm can handle now all operators and unrestricted process invocation and recursion as
defined by basic LOTOS. The correctness of the derivation algorithm is formally proved.

1. Introduction

Communication protocols within a distributed system are usually organized in a hierarchy of
layers [OSI 84]. In this context two concepts are of prime importance: the communication service
provided by a particular layer and the protocol to be followed by the protocol entities of that layer
[Boch 90]. The relation between these two concepts is illustrated by the following architectural
model (Fig. 1). A service is realized by a service provider, which is a distributed system. At this
level of abstraction the system is seen as a black box offering some specified communication
service to some service users. The service is available through a certain number of Service Access
Points (SAP's), in the following also called places (Fig. 1-a).The service specification is a
description of the temporal ordering of service primitives occurring at the SAP's.

On the protocol level, several entities PE, in general one per service access point, may cooperate
to provide the required service (Fig. 1b); they exchange synchronization messages through a
communication medium, using a lower level service. In the following we assume that in the
communication medium there is a communication channel from each entity i to any other entity j;
each communication channel is assumed to be a FIFO queue whose capacity is infinite. The
channel does not lose, duplicate or insert messages; each of the messages is delivered after an
arbitrary delay.

In the area of communication protocols, analysis techniques have been developed to detect design
errors, such as deadlocks, unspecified receptions and non-executable interactions, and to
determine whether a given protocol satisfies a given service specification. In this paper we
follow another design paradigm: protocol synthesis. Since the protocol is seen as the logical
implementation of the service [Viss 85], one may ask whether it is possible to formally derive,
from a given service specification, a correct protocol specification which provides that service.

+ Reseach supported in part by the IDACOM-NSERC-CWARC Industrial Research Chair on Communication
Protocols
* Christian Kant is with the Universit� de Moncton, Canada.
** Teruo Higashino is with Osaka University, Japan; he was on leave at Universit� de Montr�al, Canada, during 1990.

2

Based on the above architectural model, we can phrase the question in more precise terms as
follows: given a service specification es (see Fig. 1-a) is it possible to formally derive the
specifications PEi(es) (see Fig. 1-b) for all protocol entities (1 ≤ i ≤ n) ?

. . .

. . .
. . .

Service e s

Figure 1-a : Service architecture Figure 1-b : Protocol architecture

SAPs SAPs

communication medium

(e)sPE1
entity 1

PE2 (es)

entity 2

1 2 n 1 2 n

PEn(es)
entity n

Various approaches to protocol synthesis have been described in the literature (for a survey, see
[Prob 91]). Our approach, introduced in [Boch 86] and extended in [Khen 89], is the first to
consider the derivation of a protocol from a given service specification without any further
information. This paper shows how this approach can be extended to handle service
specifications which are written in a language close to LOTOS [Lotos 89].

LOTOS is a language which has been developed within ISO for the formal specification of
standard OSI protocols and services. A system is described in LOTOS as a collection of
processes. A process consists by definition of a sequence of actions. A process definition will
specify its behavior, i.e. the sequence of observable actions that may be executed by the process
in question. LOTOS provides a set of operators which are used to specify process behaviors as
expressions. The operators define in the simplest case the relative order between two actions, but
they may be used also to build up complex expressions out of elementary actions and/or other
expressions. A sub-language ignoring the aspects of interaction parameters and data type,
sometimes called "Basic LOTOS" [Bolo 87], contains such operators as sequential execution of
simple interactions ";" , choice of alternatives "[]", independent parallelism "|||", dependent
parallelism with rendezvous interactions "||", sequential composition ">>" of complex
expressions including process invocations, and the disabling operator "[>" which expresses the
interruption of a particular sequence of actions by a disabling event, providing such an event
occurs.

In the previous works we considered only a subset of the above language operators (";", "[]" and
"|||"). Then in [Khen 89] we introduced the process invocation but for simplicity we restricted it
to tail recursion. In this paper, important extensions are proposed which handle new operators
such as "||", ">>" and "[>"; arbitrary process invocations are also allowed. It is possible now, in
particular, to describe interaction sequences of the form "(a)n ; (b)n", for n > 0, which are not
regular.

Section 2 describes in more detail the language used for service and protocol specification.
Section 3 explains the basic ideas of the protocol derivation algorithm which is described formally
in Section 4. The algorithm proceeds in several steps. First, based on the syntax analysis of the
service specification, a certain number of attributes are evaluated for the different nodes of the
syntax tree (see Section 4.1). Then a recursive algorithm is applied which traverses the syntax
tree from the top down and evaluates the protocol specification for each of the given SAP's, as
explained in Section 4.2. An outline of a formal proof of the correctness of the algorithm is
provided in Section 5. Section 6 contains the conclusions.

2. Specification language

The specification language supported by our derivation algorithm is functionally close to Basic
LOTOS, except that the hiding of interactions is not supported. The language is used for the
specification of the communication services, as well as for the derived protocol specifications. As
in LOTOS, a distributed system is described in terms of processes. The whole system is a

3

process which is build-up of some cooperating sub-processes. Each one of these sub-processes
is also build-up of some sub-sub-processes, so the system is described as a structured set of
processes.

A process may execute two kinds of actions;
- internal actions, unobservable by its environment defined here by the symbol "i", and
- interactions, which are actions executed in synchronization with the environment.
A process is observable only trough its interactions, so its behavior will be formally described by
an expression defining the temporal order of possible interactions. Even though we are interested
in the observable behavior of a process, sometimes the use of the internal actions in a process
specification might be necessary [Bolo 87].
Table 1 gives the syntax overview of the language. The format of a specification is given by rule
1, where "Def_block" defines the system behavior. Process and interaction parameters are not
supported.

Table 1: Syntax of Specification language

Nr . Syntactic rule

 (1) Spec --> SPEC Def_block ENDSPEC
 (2) Def_block --> e WHERE Process_block
 (3) Def_block --> e
 (4) Process_block --> Process_def Process_block
 (5) Process_block --> Process_def
 (6) Process_def --> PROC Proc_Id = Def_block END
 (7) e --> Dis >> e
 (8) e --> Dis
 (9) Dis --> Par [> Dis
 (10) Dis --> Par
 (11) Par --> Choice |[event_subset]| Par
 (12) Par --> Choice ||| Par
(13) Par --> Choice
(14) Choice --> Seq [] Choice
(15) Choice --> Seq
(16) Seq --> Event_Id ; Seq
(17) Seq --> Event_Id ; exit
(18) Seq --> Proc_Id
(19) Seq --> (e)

In Table 1 "Proc_Id" and "Event_Id" are defined using some terminal symbols; " SPEC",
"ENDSPEC", "PROC", "END", "WHERE", ">>", "[>", "|[", "]|", "|||", "[]", "(", ")", ";" and
"exit" are terminal symbols and "event_subset" is a set of "Event_Id".

An "Event_Id" may denote either:
 - a service primitive interaction, and is written in this case as "Identifierplace", where
"Identifier" represents the service primitive itself, and "place" defines the service access point at
which the interaction takes place; for example the event "a2" represents the service primitive "a" at
the service access point 2, or
 - a send_a_message interaction, written in this case as "si(m)", which means the sending of
the message "m" to the place "i", or
 - a receive_a_message interaction, written as "rj(m)" which means the receiving of the
message "m" from the place "j".

A "Proc_Id" denotes a process, and is written as "Identifier"; to distinguish between process
identifiers and service primitive identifiers, the former will be written using capital letters.

The sequential composition operator ";" (rule (16)) defines a new expression by prefixing
another one with an "Event_Id". For instance, the expression "ai ; Seq" specifies a process that

4

executes interaction "a" at place "i", then behaves as defined by "Seq". "exit" in rule (17)
specifies the successful termination of a sequence of actions.

The expression "Seq [] Choice" (see rule (14)) specifies a process that behaves either as defined
by expression "Seq" or as defined by expression "Choice". Depending on the initial actions of
each alternative, the choice may be resolved either by:
- the process, as in the following expression

"i ; Event_Id...[] i ; Event_Id..."
where the initial action of each alternative is an internal, unobservable action "i", or by
- the process environment, as in the expression

"Event_Id...[] Event_Id..."
where the initial action of each alternative is an interaction.

For instance, in the expression
 "a1 ; ... [] i ; b1 ; ..."

the choice to execute either "a1" or "b1" is not made by the user in place 1, but by the process
itself; deciding to execute in an unobservable manner the internal action "i", the process
constrains afterwards the execution of "b1". Obviously, this situation differs from that described
by the expression:

"a1 ; ... [] b1 ; ..."
where the process offers both "a1" and "b1"; here it is the user ability to execute either "a1" or
"b1" who decides the choice between those interactions.

The general parallel operator, "|[event_subset]|", as defined in rule (11), specifies that the actions
of "Choice" and "Par" in the expression "Choice |[event_subset]| Par" are executed in parallel,
either with synchronization, if some of their interactions are in "event_subset", or independently
(without synchronization) otherwise. When the "event_subset" is empty, the parallel operator
"|[event_subset]|" may be written as "|||" and expresses in this case an arbitrary interleaving of the
actions of "Choice" with the actions of "Par" (see rule (12)). When "event_subset" is the set of
all events in the given expression then the parallel operator "|[event_subset]|" is written "||".

In the expression "Dis >> e", the operator ">>" is called "enabling operator" (rule (7)). It is used
to specify that if the process defined by "Dis" terminates successfully, then the execution of the
process defined by "e" is enabled. This operator is conveniently used in conjunction with explicit
process invocation: parts of a specification may be defined as separate processes (see rule(6)) and
then invoked in a desired sequence (rules (16) and (18)). For instance, we can write:

SPEC (a1 ; b2 ; B) >> (d3 ; exit) WHERE (Example 1)
PROC B = END
ENDSPEC

which defines the sequential execution of the actions "a1", "b2", followed by the execution of the
actions defined for process B (process instantiation); when B terminates, the initial (calling)
process resumes with the action "d3". A process may invoke itself or be involved in mutual
recursion. In this case we say that the process is recursive. An example is:

SPEC A WHERE
PROC A = (ai ; A >> bk ; exit) [] (ai ; bk ; exit) END (Example 2)
ENDSPEC

Here any instance of A may execute either "ai ; A >> bk" or "ai ; bk". If the first alternative is
chosen then a new instance of A is created by the invocation of A after "ai". If the second
alternative is chosen the current instance is eventually ended and the previous invocation of A, if
any, will be resumed. We conclude that this specification defines a sequence of "n" actions "ai ; ai

; ai ai " followed by a sequence of "n" actions "bk ;bk ;bk ; bk" for some n > 0.

In describing a system, it is often necessary to specify the case of the interruption of the normal
course of a process execution, by means of events signaling an abnormal situation. For this

5

purpose, the operator "[>" (disabling) can be used. In the expression "Par [> Dis" (see rule(9))
the process defined by "Par" may be at any time interrupted by the occurrence of the first
executable event of "Dis", and thereafter, only the actions of "Dis" are executed. On the other
hand, if "Par" terminates without any interruption by "Dis", then "Dis" will never be executed.
We assume that the expression "Dis" in "Par [> Dis" may be written in an action prefix form as:

Dis = (Event_Idi[]

i=1..n
 ; Seqi)

where "Event_Idi" are event identifiers used in "Dis". Using expansion theorems [Lotos 89]
every finitely branching expression can be written in action prefix form, so with this assumption
we restrict "Dis" to finitely branching expressions. Even more, we will consider in the following
that, if a service specification contains disabling expressions, they are transformed in action
prefix forms, before any processing by our algorithm. This allows us to formally define the
above restriction on disabling expressions by the syntax of specification language: rule(9) in
Table 1 is replaced by the following rules:

Table 1 (extension)

 (91) Dis --> Par [> Mc

 (92) Mc --> Pref [] Mc

 (93) Mc --> Pref

 (94) Pref --> Event_Id ; Seq

Let us consider an example. Suppose we have three users at three different places, connected
through a communication service. The user at place 1 will read sequentially a file, using read1, a
primitive who gives access to the next record of the file, and passes it to the communication
service. Actually the record should be defined as a parameter for the read1 operation, but as our
language does not support parameters we will consider that to each interaction read1 it is
associated a distinct record. The same observation applies to all interactions of this example. The
reading of the file continues up to the end, when the user at place 1 executes the operation eof1.
The behavior of the user at place 1 may be described as follows:

SPEC A WHERE
PROC A = read1 ; A [] eof1 ; exit END
ENDSPEC

Another user at place 3 can write a file. The initial empty file is created with the primitive make3
and the records are written with the primitive write3, which takes the last received record and
writes it to the local file. The user at place 3 may also request the end of all the operations, issuing
at any time the interrupt3 primitive. Its behavior may be described by the following
specification:

SPEC make3 ; C WHERE
PROC C = write3 ; C [> interrupt3 ; exit END
ENDSPEC

Now suppose that these users want to copy a file from place 1 into a file in place 3, but in reverse
order. The users may use for that a third user in place 2, which can execute either push2, to
insert the last received record in a local stack or pop2 to extract the top of the stack and send it to
the communication medium. The specification of this user is:
SPEC B WHERE
PROC B = push2 ; B [] pop2 ; B END
ENDSPEC

It is important to note that all the above primitives are executed as interaction between the
communication service and the users (see Fig. 2). For instance, if the user at place 1 is ready to

6

execute read1, the action won't be executed until the communication service is also ready to
execute it.
In order to accomplish the proposed task, the users' operations must be defined such as:
- every record in the place 1 be read, carried to the place 2 and inserted here in the local stack;
- at the end, when all the records were pushed in the stack at place 2, the file at place 3 be created,
and
- every record popped from the stack at place 2, be carried to the place 3 and inserted sequentially
in the local file.

user 1 user 2 user 3

entity 1 entity 2 entity 3

under lying communication service

users

communication

service

read
eof

push
pop

write
interrupt

Figure 2: Example of Service

This sequence of actions might be implemented by a specific communication service, which
formal specification may be defined as follows:

SPEC S [> interrupt3 ; exit WHERE
PROC S = (read1; push2; S >> pop2; write3; exit) (Example 3)
 [] (eof1; make3; exit) END
ENDSPEC

3. The principles of protocol derivation

We have studied the protocol derivation problem with different specification languages. The first
results [Boch 86] were obtained for a language using only a few operators (";", "[]" and "|||").
Then a more powerful language was considered in [Khen 89], which mainly introduced the
process instantiation. We present in this paper a solution for the protocol derivation problem
based on the language described in Section 2, which allows the use of all operators and
unrestricted process invocation and recursion as defined by basic LOTOS.

If we assume the existence of a central controller (a server PE), we can derive a trivial solution
where only one PE (the server PE) has a copy of the given service specification and it informs all
other PE's (client PE's) when each action should be executed by exchanging messages, and
where all the client PE's execute their actions after they receive the messages from the server PE
and they return a message to the server PE after each action is executed. Although this solution is
simple, such a centralized control method requires many synchronization messages and the load
for the server PE becomes large. In order to solve these drawbacks, we adopt the following
distributed control method.

The basic idea of the protocol derivation algorithm is to get protocol entity specifications by the
"projection" of the given service specification onto the service places, which means roughly:

- to select from the service specification, and assign to the protocol entity "i", only those actions
defined to be local to "i", and

7

- to add all the necessary synchronization messages that must be exchanged between places such
that the temporal order of actions at different places satisfies the order defined by the service
specification,

for all places 1≤ i ≤ n.

The algorithm attempts to preserve the syntactic structure of the service specification in every
protocol entity specification, in terms of:
- processes (every protocol entity specification will consist of an equal number of process
definitions, with the same names and with the same structure as in the service specification);
- parallel, choice, enable and disable operators in the process expressions.

Selecting the proper actions for each place, within a global service expression, without taking into
account the need of synchronization would be a trivial task. It is clear that the central problem of
the protocol derivation is to find out when a synchronization between the cooperating entities is
necessary and what are the places involved in every particular synchronization. In the following
we will deal intuitively with this problem.

The information concerning the need of synchronization between places is implicitly defined in
the service specification by the operators linking sub-expressions, events and/or processes. For
instance, in the expression "a1 ; Seq" which means, execute first "a" at place "1" then execute the
actions of "Seq", a synchronization is needed between place "1" and all places where "Seq" is
initiated. We say that the action prefix operator ";" requires, or implicitly defines, a
synchronization.

Not all operators require synchronization. For instance, the operator "|||" means independent
parallel execution of two (sub) expressions, and so it does not set by itself any sequential
constraint between its constituent actions.
For the specification language presented in Section 2 we assume that the service decomposition
onto the places, may introduce an exchange of synchronization messages for any:
- action prefix ";" and sequential ">>" operators,
- choice operator "[]",
- interrupt operator "[>", and
- process instantiation.
In order to answer the question of what are the places involved in synchronization we have to
consider every action and/or expression in its particular context of the service specification and try
to find out what are the places related by the above operators. This can be done by assigning
attributes to every non terminal symbol "x" in the parsing tree of the given specification,
according to the context-free grammar defined in Table 1, as follows (see Section 4.1 for more
details):

SP(x) the set of places where "x" is initiated, called Starting Places of the non terminal "x";
EP(x) the set of places where the last actions of "x" are executed, called Ending Places of

"x";
AP(x) the set of places involved in "x", called All Places of "x".

In addition, a unique attribute ALL is defined for a given specification, which describes the set of
all places involved in that specification; it is nothing else than the attribute AP for the start symbol
"SPEC".

The above attributes are used to determine which places need to synchronize their actions. For
instance, in the expression "a1 ; Seq" we assume that after "a1" is executed, place "1" must send
some synchronization messages to the Starting Places of "Seq", and the Starting Places of "Seq"
must receive these messages before any action of "Seq" is executed.

The derivation algorithm proceeds in several steps. First, based on the syntax analysis of the
service specification, the attributes SP, EP and AP are evaluated for every node of the syntax
tree. Then for every place "p" of the service specification a recursive function Tp is applied to the
root node of the service syntax tree (see for details Section 4.2). This function traverses the tree

8

from the top down, selects the nodes to assign to place "p" and generates, when necessary,
sending and/or receiving interactions to be inserted in the entity for place "p".

The generation of sending/receiving interactions is conducted following a set of rules, one for
each syntactical rule of the specification language (see Table 3 in Section 4.2). As mentioned
above, only the operators ";", ">>", "[]", "[>" and process instantiations in the service
expression may generate sending/receiving actions in protocol entity expressions. Consequently
the remaining of this section is dedicated to the presentation of the principles of protocol
derivation for each of these cases. Section 3.1 presents the simplest and the most evident case,
i.e. of a service expression containing action prefix ";" and sequential ">>" operators. Section
3.2 is concerned with the derivation of the choice expressions. Section 3.3 presents the principles
of derivation for service expressions which contains the disabling operator "[>". The principles
of protocol derivation from a service specification including recursion and process invocation are
presented in Sections 3.4 and Section 3.5 presents some particular problems which may arise
when several instances of a process are invoked.

3.1 Sequence of actions

The obvious need of synchronization is that defined for the distributed execution of some
sequential actions. The specification language provides for that the action prefix operator ";" used
with atomic actions (events) and the sequential operator ">>" (enabling) used with structured
actions. The difference between these operators is syntactical rather than semantic. Let "e1 op
e2" be a sequential expression, where "op" is either ";" or ">>" and e1 and e2 are some
expressions. (If "op" is ";" then e1 must be an event). With these operators we express a
sequential constraint, i.e. allow the execution of the right side of the expression only after a
complete termination of the actions of the left side. In a distributed environment, we suppose that
the actions of the left side will terminate in some places, namely EP(e1), and the actions of the
right side will start in some other places, namely SP(e2). To implement the sequential constraint
between e1 and e2, every ending place of e1 has to send a synchronization message to every
starting place of e2 and conversely every starting place of e2 should not be allowed to proceed
before receiving a synchronization message from every ending place of e1.

These sending/receiving actions needed for the synchronized execution of a distributed sequence
of actions, will be generated in our algorithm by the functions Synch_Leftp and
Synch_Rightp (see tables 3 and 4 in Section 4.2) as follows:

Applying the function Tp to the given service expression "e1 op e2", we derive for every place
"p" an expression of the form:

"Tp(e1) op (Synch_Leftp(e1,e2) >> Synch_Rightp(e1,e2) >> Tp(e2))"
where

Synch_Leftp(e1,e2) = if (p ∈ EP(e1)) then
 send _a _message to every SP(e2)
 else "empty" endif
and

Synch_Rightp(e1,e2) = if (p ∈ SP(e2)) then
 receive_a_message from every EP(e1)
 else "empty" endif

"empty" means that no actions are to be generated in the specified place.

As an example consider the following service expression:

SPEC ...a1 ; exit >> b2 ; ENDSPEC (Example 4)

for which we expect the following protocol specifications:

place 1: SPEC a1 ; (s2(x) ; exit) >> (empty)...... ENDSPEC

9

place 2: SPEC (empty) >> (r1(x) ; exit) >> b2 ENDSPEC

3.2 Choice between Alternatives

Let us consider expressions of the form "e1 [] e2" where e1 and e2 are some expressions, which
specifies a choice to execute either the actions of e1 or the actions of e2. If this expression
specifies a service, then we expect that its projection generates a similar choice expression for
every place of the service specification, where each alternative will be the projection of e1 and e2,
respectively. Consequently we are tempted to propose the following derivation rule:

Tp(e1 [] e2) = Tp(e1) [] Tp(e2)

Suppose now that the derivation with this rule, will generate for some particular place an empty
alternative of the form "empty [] ei" which means, "do nothing or, as an alternative, the actions as
defined by ei". This kind of expression may be generally accepted, but when the choice is
followed by some other actions, we cannot anymore decide when these subsequent actions have
to be started: after the execution of ei or immediately, without executing ei. As an example of
such a situation let us consider the following service specification:

SPEC A WHERE (Example 5)
PROC A = (a1 ; b2 ; A >> c2 ; d3 ; exit) [] e1 ; f3 ; exit END
ENDSPEC

for which we derive with the above rule the following protocol specifications:

place 1: SPEC A WHERE
 PROC A = (a1.....; A >>) [] (e1 ;; exit) END
 ENDSPEC

place 2: SPEC A WHERE
 PROC A = (..b2... ; A >>c2....) [] END
 ENDSPEC

place 3: SPEC A WHERE
 PROC A = (........ ; A >> ..d3..) [] (.....; f3 ; exit) END
 ENDSPEC

Suppose that place 1, decides to execute a1. Place 2 will then execute b2 and following the
recursive call to A, place 1 is again required to make a choice. The decision to execute a1 may be
taken several times. Eventually, place 1 may decide to execute e1 in the right alternative. As the
place 2 has not actions defined for this alternative, the derived corresponding expression will be
strictly empty, meaning no actions. Consequently the choice made by the place 1 to execute e1,
and implicitly to stop the recursive calls of A, would not be reflected in the place 2. In this case
place 2 will never be able to execute c2, which follows each recursive call of A, because it does
not know about the choice made by the place 1. What is required here is the reception of a
synchronization message from the place 1, allowing place 2 to continue. We define a general
requirement of non-empty alternatives in protocol specification.

This requirement may be easily implemented by a message exchange initiated by the first place of
any alternative, which has the purpose to send synchronization messages to all places of the
choice expression which do not participate in the alternative. The non-participating places may be
determined using the attributes AP (All Places) as follows:

- the non-participating places in the left alternative are AP(e2) - AP(e1);
- the non-participating places in the right alternative are AP(e1) - AP(e2);

The sending/receiving actions for choice synchronization are generated during the protocol
derivation by the function Alternative (see Tables 3 and 4 in Section 4.2). Applying the

10

function Tp to the service expression "e1 [] e2", we derive for every place "p" an expression of
the form:

"(Tp(e1) >> Alternativep(e1,e2)) [] (Tp(e2) >> Alternativep(e2,e1))"
where

Alternativep(u,v) := if (p ∈ SP(u)) then
 send _a _message to every AP(v) - AP(u)
 else
 if (p ∈ (AP(v) - AP(u)) then
 receive_a_message from every SP(u)
 else "empty" endif
 endif

For Example 5 we expect protocol specifications of the form:

place 1: SPEC A WHERE
 PROC A = (a1.....; A >>) [] (e1 ;; exit) >> (s2(x) ; exit) END
 ENDSPEC

place 2: SPEC A WHERE
 PROC A = (..b2... ; A >>c2....) [] (r1(x) ; exit) END
 ENDSPEC

place 3: SPEC A WHERE
 PROC A = (........ ; A >> ..d3..) [] (.....; f3 ; exit) END
 ENDSPEC

With our method two restrictions are imposed for the choice expressions of the form "e1 [] e2" :

R1 : SP(e1) = SP(e2) = {p} , for some p ∈ ALL
R2: EP(e1) = EP(e2).

With an expression "e1 [] e2" we specify that the service provider offers both the starting events
of "e1" and "e2", but only one of them must be executed, depending on the choice made by the
environment (the users of the service). Once the choice is made, the alternative event should not
be offered any more. If SP(e1) and SP(e2) are different, the choice becomes more complicated,
because we cannot "disable" instantly the not chosen alternative. Suppose the user in SP(e1)
chooses to execute e1; a synchronization message to prevent the execution of e2 is not effective,
as would be possible for the user in SP(e2) to make his choice before the message arrives.
Restriction R1 simplifies the implementation of the decision of which alternative should be
executed: the choice is made locally in the entity where the alternative starts. Possibilities for
removing this restriction are discussed in [Kant 92, Kant 93].

Restriction R2 was defined in [Khen 89] in order to simplify the derivation algorithm. To
illustrate, let "(e1 [] e2) >> e3" be a service expression and EP(e1) ≠ EP(e2). In this case EP(e1
[] e2) cannot be any more expressed as a simple set of places and the synchronization of "(e1 []
e2)" with "e3" becomes more complicated.

3.3 Disabling

Let us consider the disabling operator "[>" in an expression of the form "e1 [> ai ; e2" where "ai" is an
event and "e1" and "e2" are some expressions. The LOTOS semantics for this expression defines two
properties:
(a) An occurrence of the event "ai" is possible any time and shall interrupt the execution of "e1", that is,
after the execution of "ai", no further event of "e1" may be executed.
(b) If the sequence "e1" terminates without any interruption by the disabling event "ai", then "ai ; e2" will
never be executed.

11

This semantics is based on the principle of interleaving of individual interactions, which is not a natural
model in a distributed environment. Actually, it turns out that this semantics is very difficult to be
precisely implemented in a distributed environment, as discussed below.

In the following, we define a distributed implementation of the disabling operator with a slightly
modified semantics, which seems to be more intuitive for a distributed environment. The idea of this
implementation is to broadcast a signal (message) from the place "i" to all places involved in "e1", when
the execution of "ai" occurs.

A problem may arise when these actions are executed in a distributed system, where every "p" of the
service specification has to execute a sequence of the form "u [> v". It is clear that we should not allow
places to freely terminate their "u" sequence, because if this happens the corresponding sequence "v" will
be erased. If free termination would be allowed, then for some places the sequence "v" may be erased
while for others, it may still be possible. In other words, the execution of the interruption sequence might
not be possible for all places, would the disabling event occur. For instance, in Example 6 below, place 1
should not be allowed to terminate before the place 3 executes "c3". It is clear that the protocol entities
must synchronize the termination of "normal" actions, defined by "u". These sending/receiving actions
for termination synchronization are generated during the protocol derivation by the function Rel (see
Tables 3 and 4 in Section 4.2) as follows:

Applying the function Tp to the service expression "e1 [> ai ; e2" , we derive for every place "p" an
expression of the form:

 Ò(Tp(e1) >> Relp(e1)) [> Tp(ai ; e2) "
where

Relp(e1) := if (p ∈ EP(e1)) then
 send_a_message to (ALL- p)
 "|||"
 receive_a_message from (EP(e1) - p)
 else
 receive_a_message from (EP(e1) - p)
 endif

Tp(ai ; e2) := Tp(ai) ; (Interrp(ai) >> Synch_Leftp(ai ,e2) >>
 Synch_Rightp(ai ,e2) >> Tp(e2))

Interrp(e) := if (p ∈ SP(e)) then
 send_a_message to (ALL - SP(e))
 else
 if (p ∈ (ALL - SP(e)) then
 receive_a_message from SP(e)
 else "empty" endif
 endif

Synch_Leftp and Synch_Rightp will generate synchronization messages for the ";" operator, as
discussed in Section 3.1. As an example, we consider the following service specification:

PROC A = (a1 ; b2 ; c3 ; exit) [> (d3 ;.... exit) END (Example 6)

for which we expect the following protocol specifications :

place
 1 PROC A=a1;..... >> (r3(x);exit) [> (r3(y);exit) END
 2 PROC A=..;b2;.. >> (r3(x);exit) [> (r3(y);exit)END
 3 PROC A=...;c3;exit >> (s1(x);exit ||| s2(x);exit) [> d3; (s1(y);exit ||| s2(y);exit)END

12

The above protocol specifications show that the place 3 may initiate an interruption, as stated by the
service. When the interrupt event d3 occurs, the place 3 sends a specific message to all other places. On
reception, these places will interrupt their "normal" execution and execute their interrupt sequence, if any.

As for the choice expressions, there are some restrictions imposed for the disabling expressions of the
form "e1 [> e2". First, restriction R2 is extended to disabling expressions and a new restriction R3 is
added, as follows:

R2: EP(e1) = EP(e2)
R3: EP(e1) ⊃ SP(e2)

The disrupting event of "e2" may occur just before the last action in "e1", and if SP(e2) ⊄ EP(e1), we
may have a problem similar to the choice between actions executable on different places. Restriction R3
is introduced in order to simplify the implementation of this control.

As noted earlier, this distributed implementation of the disabling operator does not exactly satisfy the
LOTOS semantics. It has the following shortcomings:
(i) Property (b) is not satisfied. For the example given at the beginning of this subsection, the execution
of "e1" may terminate before the message signaling the event "ai" arrives.
(ii) Property (a) is satisfied only approximately due to message delays. For instance, an event of "e1"
may occur after the execution of the event "ai", because of the message signaling the occurrence of "ai"
has not yet arrived.

Nevertheless, we consider that the above implementation of the disabling operator is reasonable for a
distributed environment. First of all, in most cases where the disabling operator is used (for instance, for
the disconnecting the data transfer phase of a communication protocol), the expression "e1" does not
terminate. Therefore shortcoming (i) is not relevant. Secondly, in a distributed environment, a more
intuitive semantics of the operator should be based on partial-order semantics which captures the cause-
effect relationships between the different events in the system (see for instance [Viss 90, Coel 92]). Such
a semantics may well be defined in such a manner as to correspond to the implementation described
above.

An alternative implementation of interruption that avoids the problem of the message delay could be
based on the principle that before "ai" can be executed, a request for interruption must be issued first.
This request is followed by messages sent to all involved sites to interrupt the progress of the events
belonging to "e1" and to return an acknowledgment. When all these acknowledgments are received the
interrupt event "ai" may occur. Such an implementation would satisfy properties (a) and (b), as defined
above, and would satisfy trace equivalence with the original LOTOS semantics. However, it would still
not be testing equivalent nor observationally congruent to the original LOTOS semantics, as indicated by
the following example. Assume that "e1" consists of concurrent repeated executions of interactions b and
c on two different sites. Due to different message delays, the proposed implementation could lead to a
system state when b has already been interrupted, while c is still possible. The original LOTOS semantics
excludes such a state, because the occurrence of "ai" interrupts the events at all sites simultaneously.

3.4 Process Invocation and Recursion

Let us consider Example 2, given in Section 2.

SPEC A WHERE
PROC A = ai ; A >> bk ; exit [] ai ; bk ; exit END
ENDSPEC

This specification defines the sequence (ai)n ; (bk)n , (for same n > 0). Let us follow the
execution of this expression and suppose, for instance, that at the beginning, the first alternative
(at the left) of the operator "[]" is chosen: after the event "ai", a new instance of A (say A') is
activated. Again, if the first alternative is chosen, another instance of A (say A'') is activated.
Suppose now that for this new instance, the second alternative (at the right) of the operator "[]" is
chosen; this means that process A'' will terminate with the execution of sequence "ai;bk;exit".

13

Since this process is terminated, process A' will resume in exactly the point where it was
interrupted by the activation of A'', i.e. with the event "bk" specified after the ">>" operator.
Process A' eventually ends, and the process A is now reactivated, and "bk" is again executed.

As stated before, the derivation is defined as a projection of the service expression onto the
service places. It is natural to assume that every protocol expression will have the same structure
as the service expression, i.e. will define a recursive execution of a local process (see, for
instance, Fig. 3).

We have to provide the synchronization between processes A, one in place i and the other in place
k. Suppose we have already defined some synchronization between distributed actions, implying
that if two successive actions are executed in two different places then the first place will send a
message to the second as soon as it finishes its action, and the second will wait for the message
from the first one before it starts its own action (see Section 3.1). In this way the synchronization
between the pair processes A (in place i and k) is implicitly done. But if these two places are not
both involved in actions required before the invocation of A, as in Example 2, the implicit
synchronization of processes (at the action level) is not possible anymore, and some new
synchronization must be introduced. We call it "synchronization at the process level". For the
purpose of this paper we define the process synchronization as taking place at every process
invocation.

service level

protocol level

projection onto
 place i

projection onto
 place k

PROC A =A.........exit END

PROC A =A....exit END PROC A =A....exit END

Figure 3 Projection of the service on a set of places

More precisely, a process invocation "A" in a service expression "e" will generate in every place
"p" a local process invocation "A", preceded either by:

- sending messages to every place in (ALL - SP(A)), if (p∈SP(A)), or by
- receiving a message from SP(A), otherwise.

These sending/receiving actions for process synchronization are generated during the protocol
derivation by the function Proc_Synch, as defined below (see Tables 3 and 4 in Section 4.2).

Applying the function Tp to the service expression "A" , we derive for every place "p" an
expression of the form:

"(Proc_Synchp(A) >> A)"
where

Proc_Synchp(e) := if (p ∈ SP(e)) then
 send_a_message to every (ALL - SP(e))
 else
 receive_a_message from every SP(e)
 endif

For Example 2, for instance, we expect to obtain protocol entities of the following form:

place i : SPEC A WHERE
PROC A = ai ; sk(x) ; A >>exit []exit END
ENDSPEC

place k : SPEC A WHERE

14

PROC A = ri(x) ; A >>exit [] exit END
ENDSPEC

3.5 Multiple instances of a process

Let us consider the following example:

SPEC B ||| B WHERE
PROC B = (a1 ; (b2 ; exit ||| c3 ; exit)) >> g4 ; exit END (Example 7)
ENDSPEC

In every place, there are two instances of B; let us call them, respectively, the left instance of B
and the right instance of B. In order to execute "g4" (in any B process), place 4 must get
synchronization messages from the preceding places, i.e. from places 2 and 3.

Now, suppose that for the left instance of B, after "a1" is executed, "b2" is executed and then a
synchronization message is sent from place 2 to place 4 ("c3" will be subsequently executed). For
the right B, after "a1" is executed, "c3" is executed and then a synchronization message is sent
from place 3 to place 4 ("b2" will be subsequently executed).

Consequently, place 4 receives two synchronization messages, one from place 2, and the other
from place 3. Should this place execute now "g4", as specified in the definition of B, and if so, in
what process B? (Remember, there are two in every place.) The problem here is that the
synchronization messages do not identify the originator process. The situation may get worse if
process B is recursive, as in the following specification:

SPEC A WHERE
PROC A = (a1 ; ... A [> b2 ; d1 ; exit) [] c1 ; ... exit END (Example 8)
ENDSPEC

Here, several instances of A may be created, as specified by the recursive expression of the
process A; disrupting interactions "b2" are defined for every one of these instances. The recursive
creation of A will end when, in the last instance of A, the place 1 will chose to execute "c1". In
the case a "b2" event occurs, as shown in section 3.2, a message must be sent from the place 2 to
all places in the disrupting expression "(a1 ; ...A [> b2 ; d1 ; exit)". But there are possibly
several instances of A, and as the system cannot discriminate between instances of the same
process, it cannot properly decide which of these instances must be interrupted.

We conclude that the identification of the originator process in every synchronization message is
required. This may be done by a parameterization of every process instance with an occurrence
number "s". At every process invocation, which corresponds to the creation of a new instance of
the process, the variable "s" is modified (using some numbering scheme that generates unique
process numbers) and the new process will receive, as a dynamic attribute, the current value of
"s". Every send_a_message or receive_a_message action will be also parameterized with the
process occurrence number attribute . If the specification does not contain any explicitly defined
process, as in the following case:

SPEC a1 ; b2 ; exit ENDSPEC
then the messages are parameterized with the default occurrence number "0".

4. Definition of the protocol derivation algorithm

The algorithm producing the protocol specifications proceeds through the following steps:

Step 1: Construct the derivation tree for the given service specification. (Transform, if
necessary, the disabling expressions in action prefix form - see Section 2).

Step 2: Synthesize attributes SP, EP and AP at each node of the tree (see Section 4.1).
Step 3: For each place p (p = 1..n), apply the function Tp, as defined in Table 3, to the root

node of the service specification derivation tree.

15

The result, for each place, is a character string in the form of a specification containing a set of
processes with the same identifiers as in the original service specification; however, the definition
of their bodies is changed. Only the service interactions occurring at the place for which the
protocol entity is derived will be included in the protocol specification and additional statements
for the sending and receiving synchronization messages will be added.

4.1. Attribute evaluation

The second step of the protocol derivation algorithm is the evaluation of attributes for every node
of the syntax tree of a given specification. The attributes associated with each node "x" in the
syntax tree are SP(x), EP(x) and AP(x) as introduced in Section 3.

The grammar of the specification language presented in Table 1 may be augmented so that
attribute evaluation rules are given for each rule of the syntax. These new rules are presented in
Table 2. Here the attribute evaluation rules are listed using the convention that the right-hand side
of each equation is the definition of the left-hand side. For some rules, subscripts have been used
to distinguish between occurrences of the same non terminals. The attributes SP, EP and AP for a
non terminal symbol are defined in terms of the attributes of its immediate descendants; therefore
they are called synthesized attributes (see [Aho 85] for details on attribute grammars).

Two kinds of leaf nodes may exist. For the leaf nodes generated for the Event_Id symbol the
attributes SP, EP and AP are set to the value {place(Event-Id)}. Here "place" is a function from
the set of service primitives to the set of places: place(ai) = i.

The attributes SP, EP and AP of a leaf node corresponding to a process reference (generated by
rule (18)) can be considered variables. We equate the variables of such a leaf node, for instance
A, with the values obtained by synthesis for the node Process_def corresponding to the same
process identifier A. Therefore, the evaluation of SP for a given process, gives rise to an
equation defining SP in terms of places corresponding to the explicit events defined in that
process, and in terms of variables representing the SP values of those processes which are
invoked; and similarly for EP and AP. These equations, which are in general recursive, can be
solved by applying the rule that the equation SP(A) := SP(A) ∪ X implies the solution SP(A) :=
X, where SP(A) is the value of the SP attribute for process identified by A.

An iterative method may also be applied to solve these recursive equations. The bottom-up
attribute evaluation is performed several times, each pass representing a step of the iteration. For
the first step, the values of the SP, EP and AP attributes of the process leaf nodes are set to the
empty set. In each subsequent step, the values of these attributes are set equal to the synthesized
values obtained for the corresponding process definition nodes. The iteration terminates when
the attribute values of all process root nodes have not changed during the last step.

For Example 3 in Section 2, the syntax tree is illustrated in Fig. 4. Some of the attributes are
expressed in terms of the variables SP(S), EP(S) and AP(S). We find immediately SP(S) = {1},
EP(S) = {3} and AP(S) = {1,2,3}.
One more attribute must be added to the above list. The synchronization messages received by a
given place must be identified with their "purpose", i.e. to which local action are they related. The
algorithm will generate these messages in an incremental mode, applying the function Tp to the
root node of the service specification derivation tree, and then to every node of that tree. By
generalization we may say that the synchronization is defined between nodes of the derivation
tree. A unique identification of the nodes is necessary and this may be done by an attribute N
associated with each node "x" of the syntax tree. N(x) may be, for instance, an integer obtained
by numbering the nodes of the tree in a preorder traversal scheme.

16

Table 2: Attribute Evaluation Rules

Nr . S y n t a c t i c
rule

 Attribute SP (Starting
P l a c e s)

 (1) Spec --> SPEC Def_block ENDSPEC SP(Spec) = SP(Def_block)
 (2) Def_block --> e WHERE Process_block SP(Def_block) = SP(e)
 (3) Def_block --> e SP(Def_block) = SP(e)
 (4) Process_block1 --> Process_def Process_block2 SP(Process_block1) = SP(Process_def)

 (5) Process_block --> Process_def SP(Process_block) = SP(Process_def)
 (6) Process_def --> PROC Proc_Id = Def_block END SP(Process_def) = SP(Def_block)
 (7) e1 --> Dis >> e2 SP(e1) = SP(Dis)

 (8) e --> Dis SP(e) = SP(Dis)

 (91) Dis --> Par [> Mc SP(Dis) = SP(Par) ∪ SP(Mc)

 (92) Mc1 --> Pref [] Mc2 SP(Mc1) = SP(Pref) = SP(Mc2)

 (93) Mc --> Pref SP(Mc) = SP(Pref)

 (94) Pref --> Event_Id ; Seq SP(Seq) = {place(Event_Id)}

 (10) Dis --> Par SP(Dis) = SP(Par)
 (11) Par1 --> Choice |[event_subset]| Par2 SP(Par1) = SP(Choice) ∪ SP(Par2)

 (12) Par1 --> Choice ||| Par2 SP(Par1) = SP(Choice) ∪ SP(Par2)

(13) Par --> Choice SP(Par) = SP(Choice)
(14) Choice1 --> Seq [] Choice2 SP(Choice1) = SP(Seq) = SP(Choice2)

(15) Choice --> Seq SP(Choice) = SP(Seq)
(16) Seq1 --> Event_Id ; Seq2 SP(Seq1) = {place(Event_Id)}

(17) Seq --> Event_Id ; exit SP(Seq) = {place(Event_Id)}
(18) Seq --> Proc_Id SP(Seq) = see Note at the end
(19) Seq --> (e) SP(Seq) = SP(e)

Attribute EP (Ending Places) Attribute AP (All Places)
 (1) EP(Spec) = EP(Def_block) AP(Spec) = AP(Def_block)
 (2) EP(Def_block) = EP(e) AP(Def_block) = AP(e)
 (3) EP(Def_block) = EP(e) AP(Def_block) = AP(e)
 (4) EP(Process_block1) = EP(Process_block2) AP(Process_block1) = AP(Process_def) ∪ AP(Process_block2)

 (5) EP(Process_block) = EP(Process_def) AP(Process_block) = AP(Process_def)
 (6) EP(Process_def) = EP(Def_block) AP(Process_def) = AP(Def_block)
 (7) EP(e1) = EP(e2) AP(e1) = AP(Dis) ∪ AP(e2)

 (8) EP(e) = EP(Dis) AP(e) = AP(Dis)

 (91) EP(Dis) = EP(Par) = EP(Mc) AP(Dis) = AP(Par) ∪ AP(Mc)

 (92) EP(Mc1) = EP(Pref) = EP(Mc2) AP(Mc1) = AP(Pref) ∪ AP(Mc2)

 (93) EP(Mc) = EP(Pref) AP(Mc) = AP(Pref)

 (94

)
EP(Pref) = EP(Seq) AP(Pref) = {place(Event_Id)} ∪ AP(Seq)

 (10) EP(Dis) = EP(Par) AP(Dis) = AP(Par)
 (11) EP(Par1) = EP(Choice) ∪ EP(Par2) AP(Par1) = AP(Choice) ∪ AP(Par2)

(12) EP(Par1) = EP(Choice) ∪ EP(Par2) AP(Par1) = AP(Choice) ∪ AP(Par2)

(13) EP(Par) = EP(Choice) AP(Par) = AP(Choice)
(14) EP(Choice1) = EP(Seq) = EP(Choice2) AP(Choice1) = AP(Seq) ∪ AP(Choice2)

(15) EP(Choice) = EP(Seq) AP(Choice) = AP(Seq)
(16) EP(Seq1) = EP(Seq2) AP(Seq1) = {place(Event_Id)} ∪ AP(Seq2)

(17) EP(Seq) = {place(Event_Id)} AP(Seq) = {place(Event_Id)}
(18) EP(Seq) = see Note at the end AP(Seq) = see Note at the end
(19) EP(Seq) = EP(e) AP(Seq) = AP(e)

Note: The definition of the synthesized attributes for the non terminal symbol Seq in rule (18) is
different from the standard attribute evaluation scheme, as explained in Section 4.1.

17

SPEC S [> interrupt ; exit WHERE

PROC S = (read ; push ; S >> pop ; write ; exit)
 []
 (eof ; make ; exit) END�
ENDSPEC

3

1 2 2 3

1 3

{1,2,3}

{1}

1

{3}

WHERE{1,2,3}

S [> interrupt ; exit
{1} {3}

2

{1,2,3}

PROC S = (read ; push ; S >> pop ; write ; exit)
 []
 (eof ; make ; exit) END

{1} {3}

5

3 1 2 2 3

1 3

3

S
{1} {3}

{1,2,3} [> {3}

 interrupt ; exit
{3}

4

3 (read ; push ; S >> pop ; write ; exit)

6

1 2 2 3

{1} {3}

{1,2,3} []

eof ; make ; exit

15

1 3

{1} {3}

{1,3}

16
{1} {3}

{3}

 make ; exit
{1} {3}

17

3
eof 1

 ;{1}
read ; push ; S

7

1 2

{1} {3}

{1,2,3} >>

pop ; write ; exit

12

3

{2} {3}

{2,3}

13
{2} {3}

{3}

{2}
{3}

14

3

 ;{2}

8
{1} {2}

 push ; S
{1} {3}

9

read1

 ;{1} {1,2,3}

2

10

 S

11

 ; {1,2,3}{2}

{2} {2}
push

2

{1} {3}

2

pop 2
write ; exit

Legend

Exp

NSP

AP

EP

{3}

Figure 4 Derivation tree for the specification of Example 3

4.2. Protocol derivation

Tables 3 and 4 give the derivation rules Tp corresponding to the syntactic rules of the
specification language, used in Step 3 of the algorithm. For the specification of each protocol
entity we obtain a set of processes with the same identifiers as in the original service
specification. For a given place only local events are selected from the service specification; in
addition synchronization messages are provided, depending on the context defined by the syntax.
Sending/receiving synchronization messages are defined for the sequential operators ";" and
">>", for the disabling operator "[>", for alternative operator "[]" and for process invocation. No
synchronization is required for the parallel ("|||" and "|[event_subset]|") operators. The derivation
rules, as defined in Table 3, may lead sometimes to a local exchange of messages, for
synchronization purposes. [Khen 89] presents some methods to eliminate non-essential
messages. The string "empty" represents no action and can be eliminated using the following
rules:

18

"empty ; e" = "e"
"empty >> e = "e"
"e >> empty = "e"
"e ||| empty" = "e"

A Protocol Generator (PG), written in Prolog, has been realized on the basis of the derivation
algorithm presented in this section. The PG automatically eliminates un-necessary or irrelevant
sequences of characters (as, for instance, the above sequences containing the string "empty") in
the derived protocol specifications. Experiments made on several case studies, including a
Transport Service Specification [Kant 93], have demonstrated the PG effectiveness. In order to
ensure a proper generation of protocol entities, the prototype checks the syntax of the given
service specification and its conformance to the restrictions R1, R2 and R3 defined in Section 3.
However no automatic decision is taken, nor any suggestion is given on how the user has to
proceed to transform its service specification into an acceptable input specifications for the PG.
Some possibilities to remove the restrictions are discussed in [Kant 92, Kant 93].

For Example 3 of Section 2 we obtain the following protocol specification, parameterized by the
place p:

SPEC (((Proc_Synchp(A) >> A) >> Relp(A)) [> (Projp(interrupt3) ; (Interrp(interrupt3)) WHERE

PROC A =((Tp(read1;push2;A) >> Synch_Leftp((read1;push2;A),(pop2;write3;exit)) >>

 Synch_Rightp((read1;push2;A),(pop2;write3;exit)) >>

(Tp(pop2;write3;exit)) >> Alternativep(read1;push2;A >> pop2;write3;exit))

 [] (Tp(read1;write3;exit) >> Alternativep(read1;push2;A >> pop2;write3;exit)) END
ENDSPEC

Using the definitions of Table 4 and applying the rules of Table 3 again, we obtain finally for the
different places the following protocol entity specifications:

Place 1

SPEC (((s2(1);exit ||| s3(1);exit) >> A) >> (r3(1);exit)) [> (r3(2);exit) WHERE
PROC A= (read1;((s2(6);exit) >> (r2(7);exit) >>
 (s2(8);exit ||| s3(8);exit) >> A))
 []
 (read1; (s3(16);exit) >> (s2(19);exit)) END
ENDSPEC

Place2

SPEC (((r1(1);exit) >> A) >> (r3(1);exit)) [> (r3(2);exit) WHERE
PROC A = (((r1(6);exit) >> push2;((s1(7);exit) >>
 (r1(8);exit) >> A)) >> (r3(10);exit) >> pop2; (s3(11);exit))
 []
 (r1(19);exit) END
ENDSPEC

Place3

SPEC (((r1(1);exit) >> A) >> (s1(1);exit ||| s2(1);exit)) [> (interrupt3; (s1(2);exit ||| s2(2);exit))
WHERE
PROC A= (((r1(8);exit) >> A) >> (s2(10);exit) >> (r2(11);exit) >> write3;exit)
 []
 ((r1(16);exit) >> write3;exit) END
ENDSPEC

19

Table 3. Function Tp

Nr . Syntactic rule
(1) Spec --> SPEC Def_block ENDSPEC
(2) Def_block --> e WHERE Process_block
(3) Def_block --> e
(4) Process_block1 --> Process_def Process_block2
(5) Process_block --> Process_def
(6) Process_def --> PROC Proc_Id = Def_block END
(7) e1 --> Dis >> e2
(8) e --> Dis
(91) Dis --> Par [> Mc

(92) Mc1 --> Pref [] Mc2
(93) Mc --> Pref

(94) Pref --> Event_Id ; Seq
(10) Dis --> Par
(11) Par1 --> Choice |[event_subset]| Par2
(12) Par1 --> Choice ||| Par2
(13) Par --> Choice
(14) Choice1 --> Seq [] Choice2
(15) Choice --> Seq
(16) Seq1 --> Event_Id ; Seq2
(17) Seq --> Event_Id ; exit
(18) Seq --> Proc_Id
(19) Seq --> (e)

 Derivation rule
(1) Tp(Spec) := "SPEC" Tp(Def_block) "ENDSPEC"

(2) Tp(Def_block) := Tp(e) "WHERE" Tp(Process_block)

(3) Tp(Def_block) := Tp(e)

(4) Tp(Process_block1) := Tp(Process_def) Tp(Process_block2)

(5) Tp(Process_block) := Tp(Process_def)

(6) Tp(Process_def) := "PROC" Proc_Id "=" Tp(Def_block) "END"

(7) Tp(e1) := Tp(Dis) ">>" Synch_Leftp(Dis,e2) ">>" Synch_Rightp(Dis,e2) ">>" Tp(e2)

(8) Tp(e) := Tp(Dis)

(91) Tp(Dis) := "((" Tp(Par) ")>>(" Relp(Par) ^)) [> (" Tp(Mc) ")"

(92) Tp(Mc1) := "(" Tp(Pref) ">>" Alternativep(Pref,Mc2) ") [] ("
 Tp(Mc2)">>" Alternativep(Mc2,Pref) ")"

(93) Tp(Mc) := Tp(Pref)

(94) Tp(Pref) := Projp("Event_Id") "; (" Interrp(Event_Id,Seq) ">>"
Synch_Leftp(Event_Id,Seq)">>" Synch_Rightp(Event_Id,Seq)">>" Tp(Seq) ")"

(10) Tp(Dis) := Tp(Par)

(11) Tp(Par1) := Tp(Choice) "|[" Selectp(event_subset) "]|" Tp(Par2)

(12) Tp(Par1) := Tp(Choice) "|||" Tp(Par2)

(13) Tp(Par) := Tp(Choice)

(14) Tp(Choice1) := "(" Tp(Seq) ">>" Alternativep(Seq,Choice2) ") [] ("
 Tp(Choice2) ">>" Alternativep(Choice2,Seq) ")"

(15) Tp(choice) := Tp(Seq)

(16) Tp(Seq1) := Projp("Event_Id") ";" "(" Synch_Leftp(Event_Id,Seq2) ">>"
 Synch_Rightp(Event_Id,Seq2) ">>" Tp(Seq2) ")"

(17) Tp(Seq) := Projp("Event_Id") "; exit"

(18) Tp(Seq) := "(" Proc_Synchp(Proc_Id) ">>" Proc_Id ")"

(19) Tp(Seq) := "(" Tp(e) ")"

20

Table 4: Functions used in Tp

Synch_Leftp (e1,e2) := if (p ∈ EP(e1)) then
 send ((SP(e2) - {p}),N(e1))
else "empty" endif

Synch_Rightp (e1,e2) := if (p ∈ SP(e2)) then
 receive ((EP(e1) - {p}), N(e1))
else "empty" endif

Relp (e) := if (p ∈ EP(e)) then
 send ((ALL - p), N(e))
 "|||"
 receive ((EP(e) - p),N(e))
else
 receive (EP(e),N(e))
endif

Interrp (e1,e2) := if (p ∈ SP(e1)) then
 send ((ALL - SP(e1) - SP(e2)), N(e1))
else
 if (p ∈ (ALL - SP(e1) - SP(e2)) then
 receive (SP(e1), N(e1))
 else "empty" endif
endif

selectp (set) := if set = {} then {}
else if (there exists a member "e" ∈ set and place(e) = p) then
 {e} ∪ selectp(set-{e})
 else
 selectp(set-{e})
 endif
endif

Projp(e) := if (p = place(e)) then e else "empty" endif
Alternativep (e1,e2) := if (p ∈ SP(e1)) then

 send ((AP(e2)-AP(e1)),N(e1))
else
 if (p ∈ (AP(e2) - AP(e1))) then
 receive (SP(e1),N(e1))
 else "empty" endif
endif

Proc_Synch(e) := if (p ∈ SP(e)) then
 send (ALL - SP(e),N(e))
else
 receive(SP(e), N(e))
endif

send (P,N) := if P = {} then "empty"
if P = {i,j,...k} then "(si (s,N);exit ||| ..||| sk(s,N);exit)"

receive(P,N) := if P = {} then "empty"
if P = {i,j,...,k} then "(ri(s,N);exit ||| ...||| rk(s,N);exit)"

4.3 Message complexity

An interesting point of discussion is the amount of synchronization messages generated by our
algorithm. The factor which directly determines the number of synchronization messages is the
number of places in the service specification. Let "n" be the number of elements of the set ALL.
The algorithm will generate:

- for each operator ";" or ">>" at most one message;
- for each operator "[]" at most "n" messages (the worst case is when the sets of places in
alternatives are disjoint);

21

- for each operator "[>":
 with the function Rel, at most "n - 1" messages, and
 with the function Interr, at most "n - 2" messages, giving a total of at most "2n - 3"
messages;
- for every process instantiation at most "n - 1".

The algorithm does not generate any message for the parallel operator, but each parallel
expression may be a multiplication factor of 2 for the messages sent to it or received from it. For
instance, given the expression:

e1 >> (e2 ||| e3) >> e4

the number of messages needed to synchronize "e1" with the parallel expression "(e2 ||| e3)" is 2,
instead of 1 as defined by the sequential operator ">>" and the number of messages needed to
synchronize the parallel expression "(e2 ||| e3)" with "e4" is 2, instead of 1 as defined by the
operator ">>".

It was shown in Section 3.2 that the algorithm avoids the generation of empty alternatives in
choice expressions, if necessary, by some message exchange, as defined by the function
Alternative (see Tables 3 and 4). The purpose of the empty alternative avoidance is to guarantee
a correct synchronization between the actions of the choice expression and its following actions.
Let us consider for instance the expression:

e1 >> (e2 [] e3) >> e4

Avoiding empty alternatives by derivation of (e2 [] e3), might request some message exchange
involving places in e2 and e3.

5. Correctness

As we mentioned in Section 3.3, the disabling operator "[>" is very difficult to be precisely
implemented in a distributed environment. Therefore, we have defined a distributed
implementation of the disabling operator with a slightly modified semantics, which seems to be
more intuitive for a distributed environment. Therefore, in this section, we prove the correctness
of our transformation under the assumption that the disabling operator "[>" is not contained in a
given service specification.

5.1 Statement of the Problem

It was stated in Section 1 that a communication service described by an expression S, may be
seen as being provided by several communicating entities PE1, PE2, ...PEn. Any message sent
by an entity PEi is delivered by a reliable communication medium to the destination entity PEj.
Based on this architectural model we assume that between the service, the entities and the medium
there exists the following equivalence relation:

 S ≈ hide G in ((PE1 ||| PE2 |||....||| PEn) |[G]| Medium) (1)

where "≈" means observation congruence [Lotos 89]. If two LOTOS expressions B1 and B2 are
observation congruent, written B1≈ B2, B1 may be replaced by B2, and vice versa, in any
LOTOS context without changing the meaning. Hiding, with the LOTOS operator "hide", allows
to transform some observable actions of a process into unobservable ones. Any occurring action
of the set G is transformed into an i-action [Bolo 87]. In our case, G is a list of sending and
receiving actions for synchronization of PE1, PE2...PEn (see Section 5.2 below).

Let S be a service expression and PE1(S), PE2(S), ... PEn(S) be the protocol entity expressions
derived by a given method from the service expression S. We say that the derivation method is
correct if the service expression S and the protocol expressions PE1(S), PE2(S), ... PEn(S)
satisfy the equivalence relation above.

22

Then the following theorem will express the correctness of our derivation algorithm:

Theorem: Let S be a service expression and T1(S), T2(S),....,Tn(S) the protocol entity
expressions obtained from the algorithm presented in Section 4 . Then:

 S ≈ hide G in ((T1(S) ||| T2(S) ||| ...||| Tn(S)) |[G]| Medium)

An outline of the proof is given in the Section 5.3. For more details see [Kant 92].

5.2 Specification of the Medium

The sending actions were denoted in Section 2 by "sk(m)", meaning: send the message "m" to the
entity "k" (the sending entity is not explicitly defined), and the receiving actions by "ri(m)",
meaning: receive the message "m" from the entity "i" (again, the receiving entity is not explicitly
defined). These forms of the sending and receiving actions, which we call short forms, should
be used only in the local context of a given entity (as we did so far), or in the case of a system
with only two entities. In a global context of a system with more than two entities, it is important
to distinguish between two send actions sk(m), both destined to the entity k, but executed in two
different places, let us say "i" and respectively "j". In this case we have to use long forms for
writing these sending actions as:

sk
i (m) and sk

j (m), respectively

The same observation applies to the receiving actions: in order to distinguish between two
receiving actions rj(m), both from the place "j", but executed in two different places, say "i" and
"k", we write these actions as:

rj
i(m) and rj

k(m), respectively

With this notations we can define G as:

G = {sj
i(m), ri

j(m) | i=1..n, j=1..n, i≠j,m∈M}

where M is a finite set of messages.

The communication medium is composed out of a number of channels, one channel for each pair
of places (see Fig. 5). We assume for the proof that at most one message may be in transit over a
given channel. We assume also that any message sent by an entity Ti is delivered by the
communication medium to the destination entity Tj without loss or duplication or inserted
messages; each message is delivered after an arbitrary finite delay.

Consequently we have:

Channeljk = (sk
j (m) ; rj

k(m) ; []
m∈M

Channeljk)

and
Medium = |||

j=1..n,
k=1..n

 (Channel)jk

23

Communication medium

Tj (es) Tk (es)

r
k

j
(m) s

k

j
(m) r

j

k
(m) s

j

k
(m)

Figure 5. Communication medium

5.3 Proving the correctness of the derivation algorithm by induction

5.3.1 Overview of the method

The proof of the theorem stated in Section 5.1 may be done using the observation congruence
laws [Lotos 89] and induction as follows. Let Σ be the set of all service expressions which can be
constructed with the syntactic rules of Table 1 from some elementary expressions ei and operators
of the set Ω = {;, [], |||, |[e]|, [>, >>}. Let Tp, with p = 1..n, be a transformation of an
expression S ∈ Σ into a set of protocol entity expressions {T1, T2,Tn}. We would like to
show that the given function Tp derives correct protocol expressions for any service expression S
∈ Σ, constructed with an arbitrary but finite number of operators of the set Ω.

In order to prove this we will apply the principle of induction on the syntax tree of the expression
S as follows:

1. First we prove the initial conditions (the base of the induction). We consider all service
expressions S consisting of a single elementary expression ei of the form S = ei, and prove that

 ei ≈ hide G in (T1(ei) ||| T2(ei) |||...||| Tn(ei) |[G]| Medium) (2)

2. We prove the inductive step and consider service expressions of the form "S = S1 op S2",
where S1, S2 ∈ Σ and "op" is any operator of the set Ω. We prove that

 S ≈ hide G in (T1(S) ||| T2(S) ||| ... ||| Tn(S) |[G]| Medium) (3)

holds under the assumption that the derivations Tp(S1) and Tp(S2) are correct, that is
S1 ≈ hide G in (T1(S1) ||| T2(S1) |||...||| Tn(S1) |[G]| Medium)

and
 S2 ≈ hide G in (T1(S2) ||| T2(S2) |||...||| Tn(S2) |[G]| Medium)

This induction step must be proven separately for every operator "op" ∈ Ω. This means that we
have to consider, separately, each syntactic rule in Table 1, with its corresponding derivation rule
in Table 3.

By induction we can conclude that the function Tp will provide correct protocol expressions for
any expression S ∈ Σ, constructed by an arbitrary but finite number of operators "op" and
elementary expression "ei".

We give in the following sections the proof of the initial conditions and the proof of the induction
step for the sequential operator ">>". For the other operators, the induction step can be proven in
a similar manner [Kant 92].

5.3.2 Proving the Initial Conditions

24

As shown above, the basic case corresponds to elementary service expressions of the form S =
ei, where ei is defined by the rule (17) of the syntax of the specification language (see Table 1 in
Section 2). Therefore we have to consider expressions of the form:

S = ai ; exit (4)

where "ai" is the primitive "a" offered at place "i". In the following we show that the function Tp,
defined in Table 3 of Section 4, derives correct protocol expressions for these service
expressions.

The function Tp applied to the service expression (4) yields

Tp(S) := Projp(ai) ; exit = ai ; exit for p = i
and

Tp(S) := Projp(ai) ; exit = exit for p ≠ i

where Projp(ai) is as defined in Table 4 of Section 4. No synchronization messages are
generated by the derivation function Tp, therefore G = ∅. We have to prove that:

S ≈ hide G in ((T1(S) ||| ... |||Ti(S) ||| ... ||| Tn(S)) |[G]| Medium)

The right side becomes

 hide G in (ai ; exit) = ai ; exit

which is equal to S. Therefore we conclude that the derivation function Tp applied to elementary
expression of the form (4) always yields correct protocol expressions.

5.3.3 Proving the Induction Step for the Sequential Composition Operator ">>"

As an example of the induction step let us consider service expressions constructed by the
syntactic rule (7) (see Table 1). In this case the general form "S = S1 op S2" becomes "S = S1
>> S2" where ">>" stands for the operator "op". The corresponding derivation rule is:

Tp(S) := Tp(S1) >> Synch_leftp(S1,S2) >> Synch_rightp(S1,S2) >> Tp(S2)

where "Tp(S1)" and "Tp(S2)" are the derivations for the expressions "S1" and "S2" respectively,
and the functions "Synch_leftp(S1,S2)" and "Synch_rightp(S1,S2)" are as defined in Table
4.

To simplify the situation and without loss of generality we assume that there are three places in
the specification, i.e. ALL = {i,j,k}, and that EP(S1) = {i}, SP(S2) = {j} and N(S1) = m. This
simplification will allow us to temporarily drop the upper index in the notation of the
synchronization messages, which will make the following explanation more readable. For the
three protocol entities we obtain:

Ti(S) = Ti(S1) >> (sj(m) ; exit) >> Ti(S2) (5)
Tj(S) = Tj(S1) >> (ri(m) ; exit) >> Tj(S2) (6)
Tk(S) = Tk(S1) >> Tk(S2) (7)

The set of synchronization messages generated by the algorithm is

G = {sj(m),ri(m),...} = {sj(m),ri(m) } U G1 U G2

where G1 and G2 are subsets of synchronization messages relative to S1 and S2, respectively.
The medium includes the interactions sj(m) and ri(m), that is:

Medium = Channelij ||| Med1 ||| Med2 (8)

25

where
Channelij = sj(m) ; ri(m) ; Channelij

and Med1, Med2 are channel expressions relative to S1 and S2, respectively. We have to prove
that

S ≈ hide G in ((Ti(S) ||| Tj(S) ||| Tk(S)) |[G]| Medium) (9)

with the induction hypothesis

S1 ≈ hide G in ((Ti(S1) ||| Tj(S1) ||| Tk(S1)) |[G]| Med1) (10)
S2 ≈ hide G in ((Ti(S2) ||| Tj(S2) ||| Tk(S2)) |[G]| Med2) (11)

Knowing that Ti(S), Tj(S) and Tk(S) do not have any common event, but each of them has
common events with Medium, we can write the right side of (9) as follows:

hide G in ((Ti(S) ||| Tj(S) ||| Tk(S)) |[G]| Medium) =
 = hide G in (((Ti(S) |[G]| Medium) |[G]| Tj(S)) |[G]| Tk(S)) (12)

We will develop successively the expression (12). Taking first (Ti(S) |[G]| Medium) and using
(5) we have

Ti(S) |[G]| Medium = (Ti(S1) >> (sj(m) ; exit) >> Ti(S2)) |[G]| Medium

Given the Medium expression (8) it is easy, although tedious, to show by expansion (see T1 in
Annex A) that:

Ti(S) |[G]| Medium =
= Ti(S1) |[G1]| Med1 >> (sj(m);exit) |[sj(m), ri(m)]| (sj(m);ri(m);exit) >> Ti(S2) |[G2]| Med2 =
= Ti(S1) |[G1]| Med1 >> (sj(m) ; ri(m) ; exit) >> Ti(S2) |[G2]| Med2

Then, using the last result and (6):

(Ti(S) |[G]| Medium) |[G]| Tj(S) =
= (Ti(S1) |[G1]| Med1 >> (sj(m) ; ri(m) ; exit) >> Ti(S2) |[G2]| Med2) |[G]| Tj(S) =
= ((Ti(S1) |[G1]| Med1) |[G1]| Tj(S1)) >> (sj(m) ; ri(m) ; exit) >>
 ((Ti(S2) |[G2]| Med2) |[G2]| Tj(S2))
Finally, using (7):

((Ti(S) |[G]| Medium) |[G]| Tj(S)) |[G]| Tk(S) =
= (((Ti(S1) |[G1]| Med1) |[G1]| Tj(S1)) |[G1]| Tk(S1)) >> (sj(m) ; ri(m) ; exit) >>
 (((Ti(S2) |[G2]| Med2) |[G2]| Tj(S2)) |[G2]| Tk(S2))

Using H8 and then H5 from Annex A, the right side of the expression (12) becomes:

 hide G in (((Ti(S) |[G]| Medium) |[G]| Tj(S)) |[G]| Tk(S)) =
= (hide G in (((Ti(S1) |[G1]| Med1) |[G1]| Tj(S1)) |[G1]| Tk(S1))) >> i ; exit >>
 i ; exit >> (hide G in (((Ti(S2) |[G2]| Med2) |[G2]| Tj(S2)) |[G2]| Tk(S2)))

Using the above result in (12) and based on I1 (see Annex A) we have:

hide G in ((Ti(S) ||| Tj(S) ||| Tk(S)) |[G]| Medium) =
= (hide G1 in ((Ti(S1) ||| Tj(S1) ||| Tk(S1)) |[G1]| Medium)) >>
 (hide G2 in ((Ti(S2) ||| Tj(S2) ||| Tk(S2)) |[G2]| Medium))

Substituting (10) and (11) in the above expression we have:

hide G in ((Ti(S) ||| Tj(S) ||| Tk(S)) |[G]| Medium) = S1 >> S2

26

which is equal to S.

6. Discussion and Conclusions

We have presented an algorithm for automatic derivation of protocol specifications from formal
specifications of a communication service. This algorithm is an extension of previous algorithms
[Boch 86, Khen 89, Gotz 90] to a more comprehensive specification language which can handle
all operators and unrestricted process invocation and recursion as defined by LOTOS [Lotos 89],
a Formal Description Technique developed within ISO for the formal specification of open
distributed systems.

One of the nice features of our derivation algorithm is the preservation of the structure of the
service specification in every derived protocol specification. Aside from positive methodological
aspects for systems design, this feature presents a major advantage in the proof of the correctness
of the derivation algorithm, which is outlined in Section 5. The proof is based essentially on the
bisimulation congruence relation between the given service specification and the parallel
composition of protocol specifications and the communication medium. The proof is done by
induction over the abstract syntax tree of the given service specification.

We have built a Protocol Generator (PG) prototype based on the derivation algorithm, which was
used for all examples presented in this paper. The experience with this tool demonstrated the
effectiveness of our method.

The following discussion relates our approach to other methods of protocol derivation. [Prob 91]
describes certain criteria than can be used to classify and compare different protocol synthesis
methods. They divide these methods into two broad categories, based on the starting point for the
design:

(a) methods starting either from a partial protocol description or from a complete description of
one entity and synthesizing the complete protocol [Kaku 88], [Rama 86], [Goud 84], [Sidh 82],
[Zafi 80]. The synthesis is based on the duality inherent in message exchange: for each message
sent by a protocol entity, there must be a protocol entity prepared to receive it. For all these
methods, there is no particular way to specify service requirements that should be satisfied.

(b) methods starting from a given service definition and synthesizing all entities involved in the
service definition [Sale 90], [Lang 90], [Chu 88], [Gotz 90], [Khen 89].

Our work belongs to the second category. Compared with the other work in this category, the
method described in this paper supports a more powerful specification language. The other
methods are based on finite state machines, except for [Lang 90], [Gotz 90 and [Khen 89] which
are even further restricted. [Chu 88] and [Lang 90] apply to two-party protocols only.

Our method is based on a different formalism, a so-called "process-algebra" [Miln 80]. These
algebras define a rigorous set of transformation rules and equivalence relations that allow a
designer to reason formally about the behavior of a system. In particular, this feature allowed us
to deal with the formal proof of our derivation algorithm. The proof of correctness given in this
paper is an important development of our previous work [Khen 89, Gotz 90]. Formal proofs of
other methods are given in [Lang 90] and [Sale 90].

We assumed in this paper a reliable underlying communication medium. For the case of a non-
reliable underlying communication service it is possible to use our algorithm as a first step
(assuming a reliable medium) and then use a procedure which will systematically transform the
error-free protocol into an error-recoverable one. This approach may be similar to [Rama 86],
however, the case of multi-party protocols must be considered with care; currently we are
working on the integration of such possibilities to our algorithm. The methods described by
[Sale 90] and [Chu 88] also provide for error-recoverable protocol specifications.

With the exception of [Gotz 90], none of the synthesis methods considers services with
interaction parameters. The extension of the algorithm presented in this paper to service and

27

protocol specifications with interaction parameters may be pursued along the lines described in
[Gotz 90]. This implies the addition of supplementary parameters to the synchronization
messages and, in some cases, additional message exchanges between different places. A simple
extension for the case with interaction parameters are considered in [Yasu 94].

REFERENCES

[Aho 85] A. Aho, R. Sethi and J. D. Ullman, Compilers Principles, Techniques and Tools,
Addison-Wesley, 1985.

[Boch 86] G. v. Bochmann and R. Gotzhein, Deriving protocol specifications from service
specifications, Proceedings of the ACM SIGCOMM '86 Symposium, Vermont,
USA, pp.148-156, 1986.

[Boch 90] G. v. Bochmann, Protocol specification for OSI, Computer Networks and ISDN
Systems 18, pp.167-184, April 1990.

[Boch 90b] G. v. Bochmann, Specifications of a Simplified Transport Protocol Using
Different Formal Description Techniques, Computer Networks and ISDN 18, pp.
335-377, 1989/90.

[Bolo 87] Bolognesi T. and Brinksma E., Introduction to the ISO Specification Language
LOTOS, in Computer Networks and ISDN Systems, Vol. 14, No. 1, pp. 25-59,
1987.

[Brin 85] E. Brinksma and G. Karjoth, A Specification of the OSI Transport Service in
LOTOS, in Protocol Specification, Testing and Verification IV, Y.Yemeni, R.
Strom and S.Yemeni (Ed). Elsevier Science Publishers B.V. (North Holland),
1985.

[Coel 92] R. J. Coelho da Costa and J-P Courtiat, A True Concurrency Semantics for
LOTOS, in Proceedings of the Fifth International IFIP WG 6.1 Conference on
Formal Description Technique (FORTE'92), pp.347-362, Oct. 1992.

[Chu 88] P. M. Chu and M.T. Liu, Protocol Synthesis in a State Transition Model.
Proceedings IEEE COMPSAC ' 88, pp. 505-512, 1988.

[Gotz 90] R. Gotzhein and G.v. Bochmann Deriving protocol specifications from service
specifications including parameters. ACM Transactions on Computer Systems,
Vol. 8, No. 4, pp. 255-283, 1990.

[Goud 84] M. Gouda and Y. Yu Synthesis of communicating finite-state machines with
guaranteed progress. IEEE Transactions on Communications, COM-32, No.7,
pp.779-788, July 1984.

[Hals 88] Halsall F., Data Communications, Computer Networks and OSI, Addison-
Wesley, 1988.

[ISO 8072] ISO, Information Processing System - Open Systems Interconnection-Transport
Service Definition IS 8072, 1985.

[ISO 8073] ISO, Information Processing System - Open Systems Interconnection,
Connection Oriented Transport Protocol Specification, IS 8073, 1985.

[Kaku 88] Kakuda Y.,Wakahara Y., Component-based synthesis of protocols for unlimited
number of processes, in Proc. COMPSACÕ87 pp. 721-730, 1988.

[Kant 92] Kant C. Deriving Protocol Specifications from Service Specifications Written in
LOTOS, Research Report #805, Dept. I.R.O., Universit� de Montreal, 1992.

[Kant 93] Kant C. Deriving Protocol Specifications from Service Specifications, Ph.D.
thesis, Universit� de Montreal.

[Khen 89] F. Khendek, G. v. Bochmann and C. Kant, New results on deriving protocol
specifications from services specifications, Proceedings of the ACM
SIGCOMM'89, pp.136-145, 1989.

[Kurs 89] Kurshan R.P. and McMillan K., A Structural Induction Theorem for Processes,
ACM, 1989.

[Lang 90] R. Langerak, Decomposition of functionality; a correctness-preserving LOTOS
transformation, in Proceedings of the Tenth International IFIP WG 6.1
Symposium on Protocol Specification, Testing and Verification, Ottawa, pp.229-
242, June 1990.

[Lotos 89] ISO, Information Processing System - Open Systems Interconnection - LOTOS -
A Formal Description Technique based on the Temporal Ordering of Observational
Behavior, IS 8807, Jan. 1989.

28

[Merl 83] P. Merlin and G. v. Bochmann On the construction of sub module specifications
and communication protocols. ACM Trans. on Programming Languages and
Systems, No.1, pp.1-25, Jan.1983.

[Miln 80] Milner R., A Calculus of Communicating Systems, Springer-Verlag LNCS 92,
Berlin 1980.

[OSI 84] ISO, Information Processing System - Open Systems Interconnection - Basic
Reference Model, ISO 7498, 1984.

[Prob 91] R. Probert and K. Saleh, Synthesis of Communication Protocols: Survey and
Assessment, IEEE Transactions on Computers, Vol. 40,No. 4. pp. 468-475,
1991.

[Rama 85] C.V. Ramamoorthy, S. T. Dong and Y. Usuda An Implementation of an
Automated Protocol Synthesizer (APS) and its Application to the X.21 Protocol.
IEEE Transactions on Software Engineering, Vol. SE-11, No.9, pp. 886-908,
Sept.1985.

[Rama 86] C.V., Ramamoorthy, Y. Yaw, R. Aggarwal and J. Song, Synthesis of Two-Party
Error-Recoverable Protocols., Proceedings of the ACM SIGCOMM '86
Symposium, Vermont, USA, pp.227-235, 1986.

[Rana 83] S.P. Rana A Distributed Solution of the Distributed Termination Problem,
Information Processing Letters 17, pp. 43-46, 1983.

[Sale 90] K. Saleh and R. Probert A Service-based Method for the Synthesis of
Communication Int. J. Mini and Microcomput. Special Issue on Distributed
Systems, vol. 12, No. 3, pp. 97-103, 1990.

[Scol 86] Scollo G.,Pappalardo G.,Logrippo L.,Brinksma E., The OSI Transport Service
and its Formal Description in LOTOS, in L. Csaba, K. Tarnay, T. Szentivanyi
(eds.) Computer Network Usage: Recent Experiences, pp. 465-488, North-
Holland, Amsterdam 1986.

[Scol 87] Scollo G., Formal Description of the OSI Transport Service in LOTOS, contrib. to
ISO/TC97/SC6/WG4 special group on FDT in LOTOS, Berlin 20-23, Oct., 1987.

[Sidh 82] Sidhu D.P., Protocol Design Rules, in Proc. Second IFIP Int. Symp. Protocol
Specification, Testing and Verification, pp. 283-300, 1982.

[Tane 88] Tanenbaum A., Computer Networks, Prentice Hall, 1988
[Viss 85] C. Vissers and L. Logrippo, The importance of the concept of service in the

design of data communications protocols, in Proc. of the Fifth IFIP Workshop on
Protocol Specification, Verification and Testing, Toulouse, pp.3-17, 1985.

[Viss 88] C. Vissers, G. Scollo and M.v. Sinderen, Architecture and Specification Style in
Formal Descriptions of Distributed Systems, in: Proc. IFIP Symposium on
Protocol Specification, Testing and Verification, Atlantic City, pp.189-204, 1988.

[Viss 90] C. Vissers, FDT's for open distributed systems, a retrospective and a prospective
view, in Proceedings of the Tenth International IFIP WG 6.1 Symposium on
Protocol Specification, Testing and Verification, pp.341-362, Ottawa, June 1990.

[Yasu 94] K. Yasumoto, T. Higashino and K. Taniguchi, Software Process Description
using LOTOS and Its Enaction, in Proc. of the 16th Int. Conf. on Software
Engineering (ICSE-16), pp.169-178, May 1994.

[Zafi 80] P. Zafiropulo, C.H. West, H. Rudin, D.D. Cowan and D. Brand Towards
analyzing and synthesizing protocols. IEEE Transactions on Communications,
Vol. COM-28, No.4, pp.651-661, April 1980.

29

Annex A:

Observation Congruence laws.1

In B1 = B2, the expressions B1 and B2 are observation congruent; B1 may be replaced by B2 in
all LOTOS context without changing the meaning.

Choice.

 B1 [] B2 = B2 [] B1 (C1)
 B1 [] (B2 [] B3) = (B1 [] B2) [] B3 (C2)
 B1 [] B1 = B1 (C3)

Parallel:

 B1 | B2 = B2 | B1 (P1)
 B1 | (B2 | B3) = (B1 | B2) | B3 (P2)
 B1 |[list]| B2 = B1 |[list']| B2 (P3)

where list' is any list containing
the same elements as list

 B1 |[list]| B2 = B1 || B2 if L(B1) ∩ L(B2) ⊆ list (P4)
L(B) is the set of free gate identifiers

 B1 |[]| B2 = B1 ||| B2 (P5)

Hiding:

 hide list in B = hide list' in B (H1)
where list' is any list containing
the same elements as list

 hide list in B = hide list' in B where list' = list ∩ L(B) (H2)
 hide list in hide list' in B = hide list'' in B (H3)

where list'' list ∪ list'
 hide list in B = B if list ∩ L(Β) = ∅ (Η4)
 hide list in (a ; B) = i ; hide a in B if a ∈ list (H5)
 hide list in (B1 [] B2) = (hide list in B1)
 [] (hide list in B2) (H6)
 hide list in (B1 |[list']| B2) = (hide list in B1) |[list']|
 (hide list in B2) (H7)
 if list ∩ list'= ∅
 hide list in (B1 >> B2) = (hide list in B1) >>
 (hide list in B2) (H8)
 hide list in (B1 [> B2) = (hide list in B1) [>
 (hide list in B2) (H9)

Enabling:

 exit >> B = i ; B (E1)
 (B1 >> B2) >> B3 = B1 >>(B2 >> B3) (E2)
Disabling:

 B1 [> (B2 [> B3) = (B1 [> B2) [> B3 (D1)
 (B1 [> B2) [] B2) = (B1 [> B2) (D2)
 exit [> B = exit [] B

1 from [LOTOS 89]

30

Internal actions:

 a ; i ; B = a ; B (I1)
 B [] i ; B = i ; B (I2)
 a ; (B1 [] i ; B2) [] a ; B2 = a ; (B1 [] i ; B2) (I3)

Expansion theorems:

Notation:

 B1 [] B2 [] ...[] Bn is written []{B1, ...Bn}
 Let B = [] { bi ; Bi | i ∈ I }
 C = [] { cj ; Cj | j ∈ J }

 B|[A]|C = [] { bi ; (Bi | C) | bi ∉ A , i ∈ I } (T1)
 [] [] { cj ; (B | Cj) | cj ∉ A , j ∈ J }
 [] [] { a ; (Bi | Cj) | a = bi =cj , a ∈ A }

 B [> C = C (T2)
 [] [] { bi ; (Bi [>C) | i ∈ I }

 hide A in B = [] { bi ; hide A in Bi | bi ∉ A , i ∈ I } (T3)
 [] [] { i ; hide A in Bi | bi ∈ A , i ∈ I }

