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Abstract

The paper addresses the problem of testing a component embedded within a given modular system. A context of the component represents
the rest of the system and serves as its operational or testing environment. A framework for testing in context is presented based on the model
of a system of communicating finite state machines. In particular, the problems of test executability and fault propagation in the presence of
the context are identified and discussed. The proposed solution to these problems consists in computing so-called approximation of the
specification in context, i.e. the FSM model of the component's properties that can be controlled and observed through the context. The
approximation assures executability of tests and fault propagation through the context and serves as a base for test derivation. A conformance
relation used for test derivation is shown to be the reduction relation between an implementation and the approximation of the given
specification. This relation requires that the implementation produces a (sub)set of output sequences that can be produced by its specification
in response to every input sequence. An approach to test generation for the reduction relation and deterministic implementations is also
presented.
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1. Introduction

There have been many research efforts on conform-
ance test derivation for protocols based on their formal
models and the black-box view of an implementation
under test (IUT). According to the black-box testing strat-
egy, a test suite is generated from, for example, an isolated
FSM representing the protocol behavior. Testing an FSM
implementation in isolation is basically the FSM equiva-
lence problem. In this classical problem, we are given two
machines with the same input alphabet: one is referred to as
the specification machine, the other is referred to as the
implementation machine. It is required to determine by test-
ing whether the two are equivalent. Equivalent machines
have the same input/output behavior which is completely
controllable and observable in testing. Any discrepancy in
their behaviors can be immediately detected provided that
a proper test is applied.

In practice, however, an IUT is often tested through its
environment or context. This is the case, for example, in
the distributed test method of IS 9646. The IUT may also
represent only an embedded part of a complex system
under test which has some components that have been
thoroughly tested in isolation (the embedded test method).
In such situations, its input/output behavior is not directly
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controllable and observable. Intuitively, this means that not
every aspect of the implementation behavior can be tested
because it cannot be executed at all, or the context of the
implementation tolerates certain faults. Deriving tests for
an embedded FSM implementation significantly differs
from that for an FSM in isolation. Testing in context is
the core problem in assessing correctness of protocol imple-
mentations, hardware systems and object-oriented software.
This is a difficult problem when it comes to fault coverage;
not much work was done on systematic methods for deriv-
ing tests with a guaranteed fault coverage oriented towards
testing in context.

In this paper we provide a basic framework to analyze
the problems arising from testing in context. The framework
is based on the model of a system of communicating finite
state machines. The problems of test executability and fault
propagation in the presence of the context are identified
and discussed within the presented framework. The pro-
posed solution to these problems consists in computing
a so-called approximation of the specification in context,
i.e. the FSM model of the component's properties that can
be controlled and observed through the context. The idea is
to reduce testing in context to testing in isolation, so tests
with a guaranteed fault coverage can be derived from the
approximations in the form of tests for the reduction relation
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between FSMs. An approach to test generation for the
reduction relation and deterministic implementations is
also presented.

This paper is structured as follows. In the next section, we
define basic constructs used in the model of communicating
FSMs. The following sections give our basic framework for
analyzing and testing properties of an embedded component
in the presence of the context. Finally, the conclusion relates
our work with that in the area of system decomposition.

2. Communicating FSMs

2.1. Basic notions and definitions

A finite state machine (FSM), often simply called a
machine throughout this paper, is an initialized (possibly
nondeterministic) Mealy machine which can be formally
defined as follows [1]. A finite state machine A is a
6-tuple (S,X, Y,h, s0,DA), where S is a set of n states with
SQ as the initial state; X — a finite set of input symbols; Y - a
finite set of output symbols; DA — a specification domain
which is a subset of 5 x X; and h - a behavior function
h : DA -» P(S x 7), where P(S x Y), is the powerset of S x Y.

Let a = Xi,x2...xic E X*, a. is called an acceptable input
sequence for state st 6E S, if there exist k states
Sfi, si2, • ••,% ES and an output sequence y =
y \yi •••>'* ̂  ^* sucri that there is a sequence of transitions

> sit in the machine. We use X* to denote the set of all the
acceptable input sequences for state s, and X*A for state s0,
i.e. for A. The FSM A is an observable machine [2], if
|{s'|<V,y) E h(s,x)} | <1 for all (s,x) GDA and all y £ 7.
This means, in observable machines, a state and an input/
output (I/O) sequence uniquely determine the next state. In
this paper, we consider only observable machines. The
machine A becomes deterministic when |A(s,jc)| = 1 for
all (s,x)EDA. In a deterministic FSM, instead of the
behavior function which is required for defining nondeter-
ministic FSMs, we use two functions: the next state function
5, and the output function A.

An FSM A is said to be completely specified, if
DA = S x X. We will omit the specification domain DA in
the case of completely specified machines. If DA is a proper
subset of S x X then A is considered partially specified. An
FSM can also be referred to as a complete or a partial
machine. We will consider mainly partial machines with
'harmonized traces', i.e. machines with the following prop-
erty [3]. If an observable FSM starting from its initial state
can reach two different states when an input sequence is
applied, then these two states accept the same subset of
inputs.

We extend the behavior function of a partial machine
with harmonized traces to a function on the set X^ of all
acceptable input sequences containing the empty sequence
e, i.e. h-.SxX^— » P(S x 7*). For convenience we use the

same notation h for the extended function as well, since
in the context of this paper such identification of these
notations does not imply any contradiction. Assume
h(s,B) = {(s, e)} for all sE.S, and suppose that h(s,@) is
already specified. Then

h(s,j3x) = {s',yy) 3s" ES[(s",-y) G h(s,P)

&(s',y)<=h(s",x)]}.

The function h1 is the next state function, while h2 is the
output function [1] of A, h1 is the first and h2 is the second
projection of h, i.e.

h\s,x) = {s' 3yEY[(s',y)Eh(5,x)]},

h2(s,x)={y\3s'ES[(sr,y)Eh(s,x)]}.

Given sequences a, /3 over the same alphabet, we write
a < /3 if a is an arbitrary prefix of /3. A similar notation
will be used to indicate that an I/O sequence a/d is a prefix
of another I/O sequence /3/-y, i.e. we write a/5 < (My if
a < /3 and 8 < y (note that a and 6, ft and y are assumed
to be of the same length, respectively). Clearly, the set^ of
acceptable input sequences of A is a prefix closed language.

A partial machine A with harmonized traces can often be
treated as a special complete nondeterministic machine A
by treating its undefined transitions as 'don't care' transi-
tions to a trap state [4]. Such transitions are labeled with an
input not accepted by the current state of A and all outputs in
7. The trap state has looping transitions labeled with all
inputs in X and all outputs in 7. Input sequences leading
A into the trap state are sequences not acceptable by A, they
constitute the set X*\XA. The machine A is said to be a
completed form of A.

We will be interested in machines which are initially
connected. Given an FSM A = (S,X, Y, h, sQ,DA~), A is said
to be initially connected i f V s E S B a E XA (s E. hl(so, a)).

The equivalence relation between two FSMs A —
(S,X,Y,h,s0,DA) and B = (T,X,Y,H,t0,DB), written
A = B, holds, iff

(ii)\/aEX*A(h2(s0,ct)=H2(t0,a)).

The equivalence relation between FSMs is sometimes called
trace equivalence. The traces of a machine are those I/O
sequences accepted by its initial state. Equivalent machines
exhibit identical behaviors, i.e. they execute the same traces.

Given a set of input sequences WQX^HX^, assume that
there exists an input sequence a. E W such that A and B
produce different sets of output sequences when a. is applied
to their initial states. In this case, A and B are not equivalent
machines (w.r.t. the set W), written as A =£WB. When the
set W is not important, we use A + B to denote nonequiva-
lence of A and B.

We also need another relation, generalized from the
classical equivalence relation, a so-called V-equivalence,
where VCX*. For A and B to be V-equivalent machines,
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written A =VB, the two machines are required to produce
the same set of output sequences whenever an input sequence
from the set V CJ^J C\X^ is applied to their initial states.

Given two machines, it is always possible to deter-
mine a maximal set V of input sequences w.r.t. which
they are equivalent. Consider as an example, two
complete deterministic FSMs, A — (S,X, Y, 8, \0) and
B = (T,X,Y,A,A,t0). We define an automaton A H5 =
(S x T,X, u>,s0to) as follows. a(st,x) = s't' iff

(i) d(s,x) = s' and A(t,x) = t';
(ii) \(s,x) = A(t,x).

Proposition 1. The set L(A(~\B) of acceptable input
sequences for the initial state s0t0 of the automaton A (~}B
is the maximal set of input sequences w.r.t. which the two
machines A and B are equivalent, i.e. A =VB for all
VCL(AC\B).

In the case where V = X*A =X*B,A and B are equivalent
machines.

Given the FSMs A = (S,X,Y,h,sQ,DA) and B =
(T,X,Y,H,t0,DB), B is said to be quasi-equivalent [1] to
A, iff

(i) X * CJi"*-
(ii) vt GA* (H2(t0,a) = h2(s0,a));

otherwise, B is not quasi-equivalent to A.
B is said to be a reduction of A, B ^ A, iff

(ii) V a G X*A (H2(t0, a) C h2(s0, a));

otherwise, B is not a reduction of A, B ̂  A.
Similar to the ^-equivalence, we will also use the reduc-

tion relation and its negation w.r.t. a given set V of input
sequences, namely, ̂ v, 56 v.

Note that the above relations are defined for machines
over the same input alphabet. However, in some cases, we
may need to compare two machines even when their input
alphabets are not necessarily identical. In such a case, we
assume that a machine ignores all input actions that are not
in its input alphabet by producing a null output n while
maintaining its current state. This assumption corresponds
to a particular completeness assumption widely used in the
context of protocol conformance testing [5]. Under this
convention, input alphabets become identical, as required
by the corresponding definitions.

The introduced relations serve as the conformance rela-
tions between implementations and their specifications for
deriving test suites. We assume that all potential faults are
represented by a finite set 3(Af, Y) of 'mutant' completely
specified FSMs of the specification machine Spec defined
over the alphabets X and Y. The set 3(Z, 7) is the fault
model. If this set is a universal set of all machines with at
most m states then we denote it 3m.

A test suite is a finite set of finite input sequences
accepted by the FSM Spec. A test suite TS is said to be

complete for Spec w.r.t. the equivalence relation in the
class 3(^,7) iff

for all Imp G 3(AT, Y)Imp ± Spec implies Imp ±TS Spec.

A complete test suite guarantees full coverage of all faults
within the defined fault model. Let 3(AT,F) = 3m. Then a
complete test suite in this class is called an w-complete
test suite [6]. Similarly, a complete (w-complete) test suite
for Spec w.r.t. quasi-equivalence and reduction relations
can be defined. For test derivation approaches for FSMs,
the reader is referred elsewhere [IT'S, 7, 8].

2.2. Behavior of communicating FSMs

Many complex systems are typically specified as a
collection of communicating components. Assuming that
the behavior of each component of a system under test is
known and can be described by an FSM, a system of com-
municating machines serves as a model of the given system.

Let K be a collection of deterministic FSMs Mi =
(Si,Ui,Zi,di,\i,Sot), where i = 1, ...,N. For K to form a
meaningful system, it must satisfy certain constraints.
Specifically, external inputs AT and external outputs Y should
be distinct action sets to enable interactions between the
overall system and its environment, i.e. X f~l Y = 0. An
external input x should be accepted by at least one machine,
i.e. XC(Ujt^), but not be produced by any component
machine, i.e. X n (U,Z,-) — 0. An external output y in
turn, should be produced by at least one machine,
i.e. Y C (U,Z;), but ignored by every component machine,
i.e. 7 n (U,[/i) = 0. A component machine Mf should not
communicate with itself, i.e. [7; n Z, = 0, but machines
together should be able to accept all internal output actions
produced, i.e. (U,C/;)\Z3(U,Z,-)\7. Given two machines
Mt and Mj, they communicate if there exists an internal
action in the intersection Z, n Uj. In the context of testing,
we assume that communications are performed asynchron-
ously via bounded reliable channels and bounded input
buffers; to simplify our discussions we further consider
bounded input queues where actions are stored. Moreover,
for the sake of our discussion in this paper, we assume that
the system at hand has a single message in transit. The
intention behind these limitations is to obtain a finite state
model of the global system. The collection K with these
properties is what we mean by a (finite) system of communi-
cating FSMs (ComFSMs).

In order to be able to describe the external behavior of
the given system of communicating machines by the FSM
model as well, we impose an I/O ordering constraint on a
manner the environment interacts with the system. Specifi-
cally, a next external input is only submitted to the system
after it has produced an external output in response to the
previous input. The external output might be a null output.

The joint behavior of a finite system of ComFSMs can be
described by means of a finite product machine and finite
composed machine, since the number of all possible global
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Test Context

Reference System

I pass

fail

Fig. 1. A test architecture.

states of the system is limited. The former describes the
joint behavior of component machines in terms of all
actions within the system, whereas the latter describes
the observed behavior in terms of external inputs x and
outputs y.

The product machine II = MI x . . . x MN is customary
represented by a global graph, obtained by performing
reachability computation [9-13]. A global state consists
of states of input queues and states of individual machines
and can be represented in the form of a 2 x N matrix

SI...SM

where the first row contains states of each input queue and
the second row contains current states of the machines.
According to the I/O ordering constraint, global states fall
into the two categories, stable and transient states. A stable
state has empty input queues, and thus it is ready to accept
an external input action. Accepting such an action, the
system changes its current state from a stable to a transient
state where it cannot accept any external action. The system
returns to a stable state after it has produced an external
output action or a sequence of them. Transitions between
global states are labeled with an action causing a corres-
ponding change of a global state. Note that the number of
stable states in the system is bounded by the product of the
numbers of states of the component machines, whereas
that of the transient states depends in general on the size
of queues and the total number of actions in the system. The
product machine of a system of communicating machines
can be deemed as a labeled transition system (LTS). The
action set of this LTS is the union of all alphabets of
the communicating machines.

Based on the product machine II, a composed machine
M i o • • • oMN can be obtained. Here ' ° ' is a hiding operation
on all internal actions in the product machine. However,
MI o • • • oMN becomes an FSM under certain assumptions
only, e.g. the product machine should have neither dead-
locks nor livelocks. Hiding internal actions usually amounts
to determinizing the LTS (an automation), and coupling

external inputs and external outputs into labels of transitions
between stable states.

3. A framework for testing in context

3.1. Conformance relation

Conformance testing is usually an experiment carried out
by executing test cases of an appropriate test suite against
a given system under test. We assume that the system under
test consists of two parts, an implementation under test
(IUT) and a test context, also simply called context. The
context is the part of the system in which the IUT is
embedded, and via which the IUT communicates with
the tester. The context is in fact a lumped, i.e. composed
machine of all components of the system, except the com-
ponent under test. The context of the component serves as
its operational or testing environment [14, 15] which does
not require testing. In the case where the context is com-
pletely transparent (absent), testing in context reduces to
the classical black-box testing. The three entities, the IUT,
test context and tester, constitute the test architecture shown
in Fig. 1.

The architecture can be considered as a detailed view of
that in Ref. [16]. In particular, we further structure the tester,
assuming that it implements a given test suite by executing
test cases, i.e. external input sequences, simultaneously
against both, the system under test and the specification,
called a reference system. Test verdicts are produced by a
part of tester called a verdict machine. In other words, the
tester itself consists of three entities, test suite, reference
system, and verdict machine. The verdict machine observes
external output traces of the reference system and system
under test and produces a verdict pass or fail for the pair
of expected and obtained output traces. Verdict assignment
reflects Conformance requirements. For a completely speci-
fied deterministic specification, trace equivalence, i.e. the
FSM equivalence, serves as a Conformance relation. In
this case, the system under test is required to implement
the entire behavior described in the specification. The ver-
dict machine is quite simple, it compares every pair of
actions in the observed traces. If actions are identical then
the machine produces the verdict pass which also indicates
that a next test event can be executed. As soon as a dis-
crepancy occurs, the machine produces the verdict fail,
terminating further test execution (the tester may continue
if fault diagnosis is desired, but this case falls out of the
scope of this paper and is left for further study). Thus,
the verdict machine has two states, an active one and state
stop. We also require that the verdict machine produces
the verdict fail if a system under test falls into livelock. A
timeout mechanism can be used to detect such behavior.

We say that the IUT passes a test case (an external
sequence) if the verdict pass is produced for all prefixes
of the sequence. The IUT fails a test case (test suite)
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if the verdict fail is produced. An IUT is a conforming
implementation if and only if the tester produces the verdict
pass for all possible test cases.

To formalize the corresponding conformance relation
between an implementation (IUT) and its specification we
further assume that all the entities of the test architecture
can be described by communicating FSMs. In particular,
assume that C is a context FSM. Also, let Imp be an imple-
mentation FSM. The FSMs Spec and Imp are assumed to be
defined over the input set U and output set Z. We denote
the class of all FSMs over these alphabets by <!>([/, Z).
$(U,Z) 3 Spec, Imp. When an arbitrary machine A of this
class is composed with the given context a livelock or dead-
lock may occur. As a result, the composition may not
possess a composed FSM. Since our tester is equipped
with a proper timer we further assume that such implemen-
tations can be detected during test execution and excluded
from the set of possible implementations. The set of possible
implementation machines, denoted by 3(17, Z) is then
defined as follows. 3([7,Z) = [A \ G $(t/,Z) and A°C
is an FSM}.

Given two FSMs Spec and C, a composed machine
RS = Spec°C is nothing else but the reference system.
Similarly, a composed machine IS = Imp o C models the
system under test (implemented system). Outputs of the two
composed machines are compared and a corresponding
verdict is produced by the verdict machine. Assuming that
the behavior of the reference system is completely specified,
the external equivalence is defined as follows:

Imp = iff Imp°C = Spec°C.

Imp — cSpec is interpreted as 'implementation is equivalent
to its specification in the context'; or we say 'Imp is exter-
nally equivalent to Spec', for short. We also write
Imp i=cSpec if Imp and Spec are not externally equivalent.

Obviously, equivalent FSMs are also externally equiva-
lent, regardless of the context C, that is

Imp — Spec implies Imp =

but the converse is not true.
We will also use a weaker relation, the V-external equiva-

lence for a given F QX* ,V =£ 0. It is denned based on the
V-equivalence of the composed machines:

Imp = cySpec iff Imp°C — vSpec °C.

Based on the conformance relation, we can now formally
define an m-complete test suite for the given specification
in context.

Given the Spec and the context C, let TS be a test suite
of external input sequences, TSCX*. TS is said to be com-
plete for Spec in the context C w.r.t. the class 3(£7,Z) iff

for all Imp & 3(l7,Z)/mp * cSpec

implies Imp ¥= CTSSpec.

An w-complete test suite in the context C is a complete test
suite w.r.t. the class 3_.

Fig. 2. A system of ComFSMs.

In a similar way, we can define a more general relation for
partially specified systems, based on the quasi-equivalence
relation between the composed machines. However, the
level of specifiedness of the system is not crucial for our
framework; to simplify our discussion we further assume in
this paper that we are dealing with complete FSMs. Another
option left for further study is to define yet another relation,
based on the reduction relation. Such relation would be
appropriate, for example, when the global system is non-
deterministic. Hereinafter, we mainly consider reference
systems consisting of complete deterministic machines.

3.2. Context and conforming behavior

Given a Spec and context C, our final objective is to have
an /n-complete test suite for Spec. The conformance relation
to be tested is the external equivalence and unlike the case
of testing an FSM in isolation, it is expressed in terms of
actions that even do not explicitly belong to the alphabets
of the specification. These actions should form the desired
test suite. Testing in context significantly differs from that
in isolation, and thus requires new approaches to deriving
complete test suites.

Intuitively, a test has to be constructed in such a way
that it excites a fault and propagates its effect through the
context. The fault is a property of a non-conforming behav-
ior of an implementation to be detected by executing the
test. Then to distinguish conforming and non-conforming
behaviors it is necessary to know first what constitutes
the conforming behavior of an arbitrary IUT such that can
be executed in the given context.

Consider an example system of ComFSMs consisting
of three machines R, Q and T, as shown in Fig. 2. The set
of external inputs isX = {xi,X2\, the set of external outputs
is Y = {yi,y2}. We will use this system of ComFSMs
to identify the problems arising from testing in context,
assuming that the second machine Q of Fig. 2 is the speci-
fication machine Spec, and the remaining machines form
the context C.

The corresponding product machine is shown in Fig. 3(a),
and the composed machine RS extracted from it is in
Fig. 3(b). Here a rather simplified version of the diagram

zl

xl/y2

(a) (b)

Fig. 3. The product (a) and composed (b) machines.
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ul/z3

Fig. 4. A machine / externally equivalent to Spec.

for the product machine is presented; in particular, states of
component machines related only to the two reachable
stable global states with empty buffers are indicated.

A straightforward way to derive a complete test suite for
Spec is to follow a black-box testing approach ignoring
the fact that the context does not require any testing at all.
Within this approach, the composed machine RS is the
specification to derive tests from. Then one may apply, for
example the W-method [17,18] which gives an m-complete
test suite, where m is an upper bound on the number of states
in implementations of the specification machine RS. Assum-
ing, for example, that no fault in implementations of Spec
increases the number of states, we conclude that in the worst
case m may reach eight, that is the product of the numbers of
states of communicating machines. The composed machine
RS (Fig. 2(b)) has just two reachable states out of eight
possible states, but the remaining six states can become
reachable should a fault occur. A rigorous analysis is needed
to identify the exact number of reachable states in all mutant
composed machines, assuming that faults are located in a
given component and can increase its state number up to
a certain integer. According to the W-method, the set of
input sequences VXm~n + lW is an m-complete test suite.
Here the set V is a state cover of RS, X = {xl,x2}, m = 8,
n = 2, W is a characterization set of RS. In particular, V =
[e,x1},Xm~" + 1 = (e,x1,x2}m, W= {x1}, where e is the
empty sequence. Concatenating these sets, we obtain a com-
plete test suite with 192 test cases which total length is 1664
test events. Such a huge test suite is supposed to solely test
one machine within the given system of three communi-
cating machines, instead, it exhaustively tests the entire
system. The problem is that black-box testing performs test-
ing not only in context as required, but it also tests the context
itself, which is not required. Clearly, a more sophisticated
approach should tune tests for the given component only.

One may attempt to derive the required tests directly from
the specification machine Spec. The problem now is that
there may exist other machines that are not equivalent to
Spec in isolation, but are externally equivalent. Consider our
example. Fig. 4 shows an FSM / that is externally equivalent
to Spec but not equivalent to it in isolation. The machine T
produces the same outputs regardless of which of the two
feeds its inputs. In other words, the FSM / composed with
the context complies with the overall specification, i.e. with
the composed machine RS (Fig. 3(b)). The specified system
behavior would not change if one uses the FSM / as the
specification for the component Q instead of Spec. To com-
pute a test suite for testing in context, Spec alone is
obviously not sufficient. All other machines externally
equivalent to Spec have also to be taken into consideration.

Suppose one has somehow found all externally equivalent

deterministic machines (within a certain limit of the num-
ber of states). Let they constitute a set 3€C3(t/,Z). A
complete external test suite should then verify whether or
not an arbitrary machine from a given class of implemen-
tations is equivalent to a machine from 3e. Note that in the
extreme case, 3e = 3(t/, Z ), there is no need to test anything
at all, as the context tolerates any behavior of the IUT.

Compared with the traditional testing of deterministic
FSMs in isolation, which is essentially a two-machines
equivalence problem, testing in context should not rely on
a single deterministic specification machine.

Based on the set of conforming implementations one
could further try to compute the required test suite by first
deriving internal test suites from every machine of 3e and
then translating them into external ones such that all internal
tests are indeed executed (excited). However, this approach
fails. And not because the number of machines to be
checked for the external equivalence to Spec is huge even
within a limited number of states. The real problem is that
certain internal tests have no appropriate external test at all.
They are not executable in the given context. Take our
example. The specification machine Spec is completely
specified, so its test suite may well contain for example an
internal test u2"i- However, a direct analysis of the FSM R
of the context shows that starting from the initial state, the
sequence H2«i can never be excited as the initial state
produces only «j in response to both xt and x2.

3.3. Test executability

The problem of test executability originates from the fact
that the machines of the set 3e including Spec itself, are
specified in isolation and give no information on which of
their input sequences can be excited when they are com-
posed with the context. Under our convention, each of these
machines is also defined over the external input actions x,
specifically, it maintains its current state and produces the
null output n in response to any x in all states. Intuitively, to
facilitate translation of internal tests into external ones,
every machine of the set 3e should be unrolled (while pre-
serving its behavior) in such a way that a mapping of exter-
nal input sequences into internal input sequences becomes
an explicit part of its behavior. This motivates the following
definition.

Let C = (T,X U Z, U U Y, A, A, t0) be the context, where
the output function A consists of the two mappings,
A" and Ay(A = A" U Ay ). A" : Tx (XUZ)-> U. Ay : Tx

Definition 1. Let A — (Q, U, Z, u>, A, q0) be a deterministic
FSM such that A — c Spec. An FSM over the inputs X\JU,
outputs Z U {n} is a (maximal) conforming part of A, if
for each of its I/O sequences a/y there exists a sequence
x1@i...xk@k/ndi...n8k, where 0tEU*, 5,-£Z*, i = 1,
...,k such that a/y <Xi(i1 ...xk^k/n81 ...nbk, and the
following conditions hold for all i— l,...,k:
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Xfa,, ft... ft) = «!...«,•.

(1)

(2)
ul,u2/zl,z2,z3 Lju2/zl,z2,z3

•- - (k

u2/z2
ul/zl

The conforming part of A is further denoted by A. Infor-
mally, the machine A exhibits the maximal part of the
behavior of A that can be executed together with the context
C. The FSM A is assumed to be externally equivalent to
Spec, thus the composed machine A°C is the reference
system RS. The condition (1) requires that the internal I/O
sequence bi...bkl@i...&k can be executed by the given con-
text when the external sequence xl... xk is fed to the system.
Eq. (2) says that the internal sequence ft .../S^/Sj ...64
should also be executed by the given FSM A. Input traces
of A describe the required mapping of external input
sequences into internal input sequences.

To devise a method for computing the conforming part
of an arbitrary machine externally equivalent to Spec, we
consider the Spec itself and its corresponding product
machine Spec x C. It contains all possible execution
sequences in response to all external input sequences. The
FSM Spec is obtained from it by first projecting out external
output actions y and then coupling external input actions x
with the null output n and internal input actions u with
corresponding internal output actions z.

Fig. 5 shows the conforming part Spec of the specification
machine Spec extracted from the product machine shown in
Fig. 3(a). The state depicted in bold is the initial state.
According to the I/O ordering constraint, states of Spec
fall into two categories: states accepting external inputs x
and states accepting internal inputs u. The former accept
every external input, since the composed machine is com-
pletely specified. The latter accept just a single u, since the
context is deterministic.

A partially specified machine Spec contains I/O
sequences of the specification machine which can be exe-
cuted with the given context C. At the same time, we have
also the complete characterization of the complementary
part of the behavior of the specification which is not exe-
cutable with the given context and therefore is redundant. In
fact, consider the completed form of Spec, as explained
earlier, once all 'don't care' transitions are replaced by
transitions to the trap state, all sequences leading to its
trap state are not acceptable sequences of Spec, i.e. they
are not executable.

Such a characterization can be used for various purposes,
for example, to simplify the design of Spec if desired. In our
example, take the transition of the initial state of Spec
labeled with u2/zl. It follows from Spec that no external
tester can ever test this transition. There is no need to imple-
ment such redundant transitions.

Fig. 5. The conforming part Spec of Spec.

ul/zl,z3

Fig. 6. The FSM E containing all conforming implementations of Spec.

Thus, to compute a conforming part of an FSM A exter-
nally equivalent to Spec simply amounts to composing it
with the context into a product machine, projecting out
external irrelevant actions, and coupling input and output
actions, hereby containing its executable part. This is due
to the fact that its composed machine is nothing more than
the composed machine RS. The conforming part A and its
completed form A enjoy an important property.

Proposition 2. Let A = cSpec and B < A, BE. 3(t/,Z).
Then B = cSpec.

Several completely specified machines can be reductions of
the completed form of A; these machines have a common
conforming part, i.e. the machine A itself. By definition, the
machine A contains only executable sequences, therefore
any of its input sequences gives a test which can be executed
by the context C composed with A.

Given the set 3e of all externally equivalent (determinis-
tic) machines, one can separately compute their conforming
parts in order to eventually come up with external tests.
However, Proposition 2 suggests that there could be a
'maximal' machine containing all other externally equiva-
lent machines. In fact, all these machines can be captured
by a single machine. Specifically, the set 3g is the set of all
deterministic reductions of the single nondeterministic
FSM E that is the most general solution to the equation
E°C = Spec oC with E being a free variable.

Proposition 3. Ip = cSpec iff Imp < E.

For a cascaded composition of FSMs, we refer elsewhere
[3, 19-21]; synchronous systems with feedbacks were
considered [22]. For more references, see the concluding
section of this paper. Corollary 3, given later in this paper,
implies the existence of such a solution for asynchronously
communicating FSMs considered in this paper.

In our running example, the FSM E is shown in Fig. 6.
Here a 'black hole' represents the trap state.

Proposition 3 gives a precise characterization of faults
tolerated by and hence undetectable with the given context.
Deterministic reductions of the FSM E that are not equiva-
lent to the FSM Spec correspond to the implementations
that would not conform to Spec in isolation, but when tested
through the context, become conforming to Spec.

Note that in an extreme case, where 3e = 3([/,Z),
the machine E becomes a chaos machine Ch =
({p},U,Z,H,p), where H(p,u) = {(p,z) \zEZ} for all
uEU. The trap state in Fig. 6 represents such a chaos
machine.

As explained above, to ensure executability of tests we
should be interested not in externally equivalent machines,
but in their conforming parts. Now that we have their
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aggregated characterization in the form of the single FSME,
we could compute the required parts simultaneously for all
machines of the set 3e. But, first we have to generalize
Definition 1 to cover nondeterministic machines externally
equivalent to Spec.

Definition 2. Let A - (Q, U,Z,h,q0) be an FSM such that
A =c Spec. An FSM over the inputs XL) U, outputs Z U { n }
is a conforming part of A, if for each of its I/O sequences
a/7 there exists a sequence Xi0i...xkl3k/ndi ...ndh where
ft E17*, 8,-EZ*, i=l,...,k such that a/y <x1f31

...x/cl3k/n8i...ndjl, and the following conditions hold
for all i= l,...,k:

Similar to the deterministic case, the conforming part E of
the FSM E can be computed from a product machine E x C.
It is defined over sequences of internal inputs executable
with the given context, interleaved with corresponding
external inputs. Therefore, the external projection of an
input sequence Xij3i...xkpk is exactly an external test
Xi-..xk which excites an internal test /^...ft that is the
internal projection of an input sequence x\0\kj3k. The
only difference from the deterministic case lies in the fact
that an external sequence x^...xk may induce several
sequences.

Fig. 7 shows the conforming part E for our example.
Comparing Figs. 6 and 7, one may now conclude that a
certain part of the FSM E is not executable, namely the
transition to a black hole followed by a universal behavior.
The FSM E can be deemed as an aggregated conforming
part of all implementations externally equivalent to Spec.
Compared with the conforming part of the specification
Spec, the FSM E has an additional transition labeled with
Ui/Z3.

Combining Propositions 2 and 3, we immediately have
the following characterization of the external equivalence,
based on the completed form E of the machine E.

Proposition 4. Imp =cSpec iff Imp < E.

3.4. Fault propagation

Since all conforming implementations, and only they, are
reductions of the FSM E, and given that a test derived from
an acceptable sequence is executable, one may now attempt
deriving a test suite from such a machine.

To examine such an approach, we assume for simplicity
that the class of implementations includes implementation

ul/zl,z3

Fig. 7. The conforming part of all conforming implementations of Spec.

ul/z3u2/zl u2/z2

u1/zl

Fig. 8. A nonconforming implementation A of Spec.

machines with single output faults. In our example, there
exist five such implementation machines. We wish to derive
a test suite for these faults. Consider the FSM E (Fig. 6), the
transition labeled with MJ/ZJ may have two types of output
faults, z2 and z3; the transition labeled with M2/z2 may also
have two, z\d z3; and the one labeled with «1/z1,z3 just a
single fault, z2. A transition tour of the FSM E gives a test
suite that can distinguish these faulty implementations from
the specification E. In particular, the sequence ^1w1x2M2;ciMi
is a test sequence which traverses all transitions of E
(Fig. 7). According to E, any conforming implementation
should produce either nz1nz2nz1 or «Zi«z2«z3 in response
to this input sequence. However, consider an implemen-
tation machine A with a single output fault «i/z3 (instead of
MI/ZJ) shown in Fig. 8. A + cSpec.

This machine produces the output sequence nz3«z2nzj
in response to x1Mj^2M2^1M1. It is not a valid internal reac-
tion according to the FSM E (Fig. 7). Unfortunately, when
the external projection xix2Xi of the sequence xlulx2u2xlu^
is executed against the system as a whole, the fault Mx/z3

remains undetected. In fact, the context accepts the internal
output sequence z3z2zj and produces the external output
sequence yiy2y2 of the composed machine RS (Fig. 3(b)).
The fault is detected internally, but not externally. The
shortest transition tour does not give a test suite complete
in the class of single output faults.

The fault would have been detected if another external
test, e.g. XiXi were executed. This test cannot be obtained
from the shortest transition tour of the FSM E. The conclu-
sion is that even though the FSM E is a conforming part of
all possible conforming implementations and provides for
the executability of tests, it does not guarantee that a given
test internally detecting a fault shows its presence on the
external output (fault is not propagated to the external out-
put). The problem of fault propagation would, of course,
disappear if we could observe behavior of any embedded
implementation.

Proposition 5. Let A be an implementation machine such
that it is not a reduction of E w.r.t. an input sequence
Xi@i...xkl3k. Then there exists a prefix j of the sequence
0i ...ft sucn that A is not a reduction ofE w.r.t. y and the
sequence y is executed on input of A when the external
sequence Xi...xk is applied to the context.

This means that the sequence Xi...xk is an external test
which detects the nonconforming implementation A assum-
ing that its behavior is externally observed.

Proof. Let x^/B^ ...xt@t be a longest prefix of x^fti ...xkj3k

such that A is not a reduction of E w.r.t. jq/Si ...xt$t and
di... di be the output sequence produced by A in response
to ft... ft for i = 1,...,?, thus n5j... «§, does not belong to
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the set of output sequences of E in response t o x i f t i ...xtf3t.
Executing the sequence xl&-i ...xkfitlnbl ...ndt the FSM E
cannot enter the trap state, since otherwise xlj3l ...x,0t is
not the longest prefix with the above property. By this
reason, the sequence xlP1...xt_1P,_1/n51...nd,_l is an
I/O sequence of E, and according to the definition of E,
the sequence Jc1^1...jc(_1/3(_1jcr/n81...n6f_1n is an I/O
sequence of E. Therefore j3t =£ e.

Suppose then that ft = @t> w, w G U. The sequence
Xil3i...xt(3t/ndi...ndt does not take the FSM E into the
trap state, hence the sequence x1@i ...xtf3t</ndi ...5,< is an
I/O sequence of E, i.e. A"(f0,x161 ...^;6;) = ft ...ft, i = I ,
...,t - 1 and

(a) A"(f0,xifii...*»«,<) = 0i-ft 'or
(b) A"(f0,*iSi -*A') = ft ...ft W G U.

If (a) holds or w' + w in (b) then w is not an acceptable input
in the state q which E enters executing the I/O sequence
xl$l...xt$t>/nbl...nbt>. Then E moves into the trap state
from state q with the input w, i.e. any continuation of
ndi...ndt<, in particular, ndi ...ndt belongs to the set of out-
put reactions of E to the input sequence of Xidi ...x,dt. Thus,
Au(t0,xidl ...xtbti) = j3j ...ft and the sequence fa ...0, is
executed on input of A when the external sequence xl... xt

is applied to the context.
The implementation machine A is not a reduction of E

w.r.t. the sequence j3i... ft, otherwise the sequence
XiPi...Xt@t/ndi...n8t is an I/O sequence of E and thus
that of E due to Definition 2 and the fact that
A"(f0,*iSi...*rSr') = 0i-ft. 0

Thus, a nonconforming implementation can be detected
by executing a test suite derived for the FSM E w.r.t. the
reduction relation provided that the behavior of the IUT
is externally observed. Testing in context with observers
may have useful applications [23, 24]. Our objective here,
however, is to solve a more general case where no internal
observer is allowed.

The problem of the conforming part E is that it comprises
conforming parts of all implementations externally equiva-
lent to Spec, but it lacks conforming parts of implemen-
tations which are V-externally equivalent to Spec, where
V+X*. As a result, the fact that an implementation is
not a reduction of the machine E w.r.t. a certain input
sequence does not necessarily imply that the implementa-
tion is not externally equivalent to Spec w.r.t. to its external
projection. In the case of the implementation A (Fig. 8),
A + cSpec, and it is not a reduction of E, but A is externally
equivalent to Spec w.r.t. the sequencex^x2Xi. Such a conform-
ing part of all machines should be taken into account, as well.

Therefore we formally define what constitutes the con-
forming part of a deterministic FSM A, such that A =
c,vSpec, where V = L((A°C)C\ °C)) CX*. In fact,
this is a more general version of Definition 1.

Definition 3. Let C = (T,XUZ,UU Y, A, A,t0) be the
context, A = (Q, U, Z, co, A, q0) be an arbitrary deterministic

FSM such that A=cySpec where V = L((A°C)r\ An FSM A over the inputs XUU, outputs

Z U {n} is the conforming part of A, if for each of its HO
sequences a/y there exists a sequence Xij3i...xk(3k/
n61...ndfo where x1...xk£V, ft G t/*, S ( - G Z * , z = l,
...,k such that afj <*i0i ...xkpk/nSi ...ndk, and the
following conditions hold for all 1= 1, ...,k:

... ft) =

To compute A we may proceed in the following manner.
First, given A, the maximal set V of external input sequences
such that A = cvSpec can be computed according to Propo-
sition 1. We have V -L((A°C) n (Spec°C)). Then the
behavior of A caused by all sequences in V can be obtained
using the procedure for computing the conforming part of an
externally equivalent machine. However, sequences causing
a nonconforming behavior should be distinguished from
unexecutable ones. By construction, A has two types of
states: states accepting external inputs and states accepting
internal inputs. Assume A enters a state accepting external
inputs in response to an input sequence x1 01 . . . xk @k, where
xl ...xk G V, and*! ...x^x^+i (£ V. Such a situation corres-
ponds now to a functional error between the two composed
machines, A°C and Spec°C. To distinguish sequences
causing nonconforming behavior from unexecutable ones
we introduce a designated output fail into the completed
form A and A and replace the corresponding 'don't care'
transition with the transition to the trap state. The transition
is labeled with a pair xk+i/fail. 'Don't care' transitions
related to unexecutable sequences in the completed form
A of A are treated as explained earlier.

Hereafter, by the 'conforming part' of A we mean either
A or A and distinguish them only by the notation. To sim-
plify the graphical representation of the completed form we
will not explicitly present transitions leading to the trap
state, except for transitions with fail.

It is possible to merge both steps into a single-step pro-
cedure. In particular, we again compose the given machine
A and the context C into a product machine. However, to
compare the external behavior of the obtained system with
that of the reference system, the composed machine RS
and the verdict machine Ver should also be included into
the product machine. To ensure that ^-equivalence holds
between the two machines, the product machine A x C x
RS x Ver should produce the verdict pass for a given input
sequence. The verdict fail indicates that the corresponding
sequence distinguishes A oC from Spec°C. Stated in other
words, the machine A is placed in the test system shown in
Fig. 1. Each external input sequence is fed to the system
until the verdict fail is produced. At this point, the verdict
machines stops, and we are no longer interested in the
behavior of A, as it became non-conforming. Note that
the verdict fail is never produced whenever we are given
a machine of the set 3e.
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The conforming part is constructed from the obtained
product machine similar to the above considered cases. We
consider a path initiated by x, if it leads to the verdict pass
then x is coupled with n and internal input actions u of
the path are coupled with corresponding internal output
actions z. Otherwise, the x is paired with fail and the path
is discarded.

Fig. 9 illustrates the construction of the conforming part
of the machine A shown in Fig. 8. Note that actions y are
not shown here to simplify the graph. The state where the
verdict machine stops is presented by a black square.

The conforming part of A is shown in Fig. 10, where a
black hole represents the trap state. A is not externally
equivalent to Spec w.r.t. the sequence x^, so the machine
A has a state which is reached by applying xi and which
outputs fail in response to Xi .

Several important properties of the conforming part of
an FSM, related to the problem of fault propagation, can
now be established.

Proposition 6. Let A be an implementation machine such
that A = c,vSpec, where V = L ((A °C) Pi (Spec °C)\d
a sequence Xi/3i...xk@k/n5i...n5k of A be not an I/O
sequence of its conforming part A. Then Xi...xk(£V.

Proof. Assume that the output sequence produced by A in
response to the input sequence Xi/3i...xkpk does not belong
to the set of output responses of the completed form A to
this sequence. According to the definition of the completed
form, it is possible iff there exists j ^ k such that the input

ul/zl

sequence V. Therefore, xi...xk$.V. D

Proposition 7. Given A, the conforming part of an imple-
mentation machine AE3(t/,Z), there exists an input
sequence Jtj ft . . . xk f3k, where ftt £ U*, such that A is not
a reduction of A w.r.t. Xifii ...xk(3k iff A is not externally
equivalent to Spec w.r.t. Xi...xk.

Proof. First part immediately follows from Proposition 6.
Second part. We assume that A°C and Spec°C are

not equivalent w.r.t. x\...xk while they are equivalent
w.r.t. Xi...xk_i. In other words, Xi...xk_l(=V, and
Xi...xk£V. Also let Xi@i...xk_i@k_i/ndi...n8k_1 be
the corresponding executable sequence of A with the context
C. By Definition 3, the sequence jc1/31...jrt_1|8t_1 is an
acceptable sequence of A, and by definition of the com-
pleted form A, there exists a single output sequence
ndi...n8k_! fail in the completed form caused by the

iu2/z2

xl/fail

Fig. 10. The conforming part of A.

input sequence XiP1...xkj3k_1xk. Then the sequence
x1f31...xkp'k/nd1...ndk cannot be an I/O sequence of A.
Thus, A is not a reduction of A w.r.t. Xi@i...xkf3k. 0

Thus, the conforming part of the given implementation
machine distinguishes three types of input sequences: (a)
executable sequences which constitute the conforming
behavior of the given machine; (b) executable sequences
which constitute the nonconforming behavior (they produce
the output fail); and (c) unexecutable sequences. In other
words, we have determined the mapping of external input
sequences into internal sequences which propagate all
faults of an arbitrary implementation to the external output
once the implementation is not externally equivalent to
its specification. The mapping is an inherent property of
the conforming part offering a way to cope with the fault
propagation problem for the implementation machine at
hand. Then it remains to find such a mapping for all possible
implementations. In fact, we can avoid the necessity of
processing deterministic machines one by one. The idea
is the same as capturing conforming parts of machines
externally equivalent to Spec by the means of a nondeter-
ministic machine.

Similarly, we determine the conforming part of an
arbitrary nondeterministic FSM which might not be exter-
nally equivalent to Spec. Our intention is to eventually
consider the replacement of Spec by a chaos machine
Ch = ({p},U,Z,H), where H(p,u) = {(p,z)\z<=Z] for
all net / . Clearly, A < Ch for all A G 3(l/,Z), thus Ch
represents all possible implementation machines. This
results in the following generalization of the previous
definitions to cover nondeterministic machines:

Definition 4. Let A = (Q,U,Z,h,q0) be an FSM such
that A = c,vSpec, where V = L ((A °C) n (Spec oC)). An
FSM over the inputs X U U, outputs Z U {n} is the con-
forming part A. of A if for each of its HO sequences a/y
three exists a sequence Xi@i...xk@k/ndi...n5k, where
xl...xk£.V, ftet/*, <5;GZ*, i-l,...,k such that
a /y < Xi j31 . . . xk @k /ndi . . . ndk, and the following conditions
hold for all i = 1, ...,k:

Fig. 9. Computing the conforming part of A (Fig. 8).

The conforming part of the chaos machine can be seen
as the loosest description of the behavior of an embedded
machine that can be controlled and observed through
the context. It establishes boundaries for a conforming
behavior of any possible implementation of Spec in the
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u2/zl ul/z? u2/zl

Fig. 11. Computing a conforming part of the chaos machine.

given context. Its unacceptable (unexecutable) sequences
reflect unnecessary properties which the component may
possess or not. These properties cannot be assessed by test-
ing the component in the given context. The completed
form of Ch is called the approximation of the specification
in the context and is denoted [[Spec]].

Computing the approximation, we again construct the
product machine Ch x C x RS x Ver, as in the previous
cases. Combining global states we may now omit states
of the chaos machine, as it has just a single state. The
only difference from the above considered cases is that
the output fail is coupled with an input x only when no
path leads to the verdict pass. Except of this, we apply the
technique explained above. Fig. 11 illustrates the computa-
tions for our example specification.

Fig. 12 shows the approximation [[Spec]]. Here we
have deliberately depicted states in two different shapes
to highlight their origins from Fig. 11. Comparing the
approximation [[Spec]] with the conforming part E of all
externally equivalent machines (Fig. 7) one can see that E
is a submachine of [[Spec]]. The reason is simple, the chaos
machine can do whatever any deterministic or nondeter-
ministic machine can, i.e A < Ch for all A G 3([7,Z).
Moreover, the conforming part Ch of the chaos machine
contains all I/O sequences of A for all A in 3(17, Z). This
observation suggests that the approximation possesses
the property of the conforming part of an arbitrary imple-
mentation machine, as stated in Proposition 7.

Theorem 1. An implementation machine A G 3([/,Z) is not
externally equivalent to Spec w.r.t. an input sequence
Xi...xk iff there exists an input sequence Xi^1...xkPk

such that A is not a reduction of [[Spec]] w.r.t. x1 Pi. ..xk@k.

ul/zl,z3

ul/z3

ul/zl xl/y2x2/y2 z2/y2

Fig. 13. The FSMs C, Spec and Spec °C.

x2/y2

x2/y2

Corollary 1. Let
A < [[Spec]].

,Z). Then A=cSpec iff

Corollary 2. An external part of an m-complete test suite
for [[Spec]] w.r.t. the reduction relation is an m-complete
test suite for Spec in the context C.

Corollary 3. There exists an FSM E such that any imple-
mentation externally equivalent to Spec is a reduction of
FSME.

Thus, we have established that the approximation of the
specification in context can serve as a proper characteri-
zation of the behavior of a component in context. Based
on the approximation, test suite development for testing in
context can be performed like for testing in isolation. It
is sufficient first to derive a complete test suite for the
approximation w.r.t. the reduction relation and second to
delete internal inputs out of obtained tests leaving external
inputs controlled by the tester. The outlined approach relies
on the existence of a suitable test derivation technique for
a nondeterministic machine w.r.t. the reduction relation.
This is the subject of the next section.

Before we switch to this subject, we would like to present
another example which shows that the approximation of a
component at hand can be computed systematically even
in the case of a system with a complete topology allowing
multiple interactions between component machines. In fact,
the system of ComFSMs (Fig. 2) used throughout our dis-
cussion was a simplified snapshot of a complex communi-
cations taking place between an embedded component and
its context. We have intentionally divided the context
into two separate machines. Test delivery and fault propa-
gation is hampered by the two machines independently.
This helped us to identify the problems arising from testing
in context. Clearly, in more realistic situations, execut-
ability of tests is also affected by faults. We present
here yet another tiny system of two ComFSMs. Fig. 13
shows the system and its composed machine. The process

zl

Fig. 12. The approximation [[Spec]]. Fig. 14. Computing [[Spec]].
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Fig. 15. The approximation [[Spec]].

of computing the approximation is illustrated in Fig. 14,
and finally Fig. 15 presents the obtained approximation.

4. Test suite derivation for nondeterministic FSMs

As follows from the results of the previous section, an
external test suite for an embedded component with respect
to trace equivalence for external behavior can be obtained
from a test suite derived for a nondeterministic FSM based
on the reduction conformance relation.

Let A = (S,X, Y,h,s0) be an initially connected observ-
able (possibly nondeterministic) FSM; 3m be a set of deter-
ministic FSMs with the input alphabet X, the output
alphabet Y, and with at most m states. The FSM A is the
specification machine and the set 3m represents all possible
deterministic implementations. A conforming implementa-
tion is a deterministic reduction of A. The definition of an in-
complete test suite is as follows.

A test suite TS is said to be m-complete for A w.r.t. the
reduction relation iff

for all B 6E 3m £ Spec implies B £ TS Spec.

We introduce several auxiliary notions. Given A =
(S,X,Y,h,s0) if there exists an input sequence at such that
hl(s$, a) = [Sj] then st is said to be deterministically reach-
able, written D-reachable, in A. A is said to be D-connected
if each of its states is D-reachable. In particular, every
initially connected deterministic machine is D-connected.

We define a D-reachable state cover set V for the given
FSM A in the following way. For each D-reachable state 5;
in S we select an input sequence «; which uniquely brings
A from the initial state into s{. V is the set of selected
sequences for all D-reachable states.

A sequence /3,;- separates states s, and Sj if sets of output
responses of A in the states st and Sj to j3,;- do not intersect. In
this case, states s, and Sj are said to be separable. Assume
such a sequence is found for each pair of separable states.
The set W of these sequences is said to be a characterization
set of A; a subset W, of sequences in W separating state st

from any other state separable from sf is said to be a state
identifier of the state s,-.

Theorem 2. Let the given observable FSM A be D-con-
nected and have all states pairwise separable. Then the

set VXm " + 1 W is an m-complete test suite for A w.r.t.
the reduction relation [25].

The above proposition characterizes a subclass of observ-
able FSMs for which an m-complete test suite w.r.t. the
reduction relation can be derived in a systematic way similar
to that for the class of deterministic FSMs. The cardinal
difference lies in characterization sets and state identifiers.
Separable states are not equivalent, however, nonequivalent
states are not necessarily separable. As our preliminary
results [3, 25] show, the approach based on concepts of
separable and D-reachable states can be generalized to
arbitrary observable machines, however, because of space
limitation we will report on this generalization in a
separate paper.

We also note that approximations of specifications
constitute a special subclass of machines with distinct
properties. In particular, the input alphabet comprises
external and internal inputs; the former are required for
external tests, the latter will be eventually dropped out. Out-
puts are not directly observed during test execution. Then
certain tests can be functionally more powerful than the
others in the sense that they induce fewer 'permissible'
internal output sequences of the component under test.
Such a redundancy of tests could be identified and removed.
Another feature of approximation is the possible existence
of the designated output fail. It is exists, it indicates what
behavior an implementation should not exhibit to comply
with the specification. As a result, the approximation may
have certain states which do not correspond to any state in
any conforming implementation. We conjecture that state
identification should be accordingly adjusted. Several
examples at hand, such as the machine in Fig. 12 show
that a complete test suite can be reduced with no loss of
its fault coverage. Detailed elaboration of heuristics for
improving the test derivation technique based on specifics
of approximation machines is our current research topic.

Finally, to complete our running example, we give an
m-complete test suite for the approximation in Fig. 12.
We assume that faults do not increase the number of states
in the embedded component, i.e. m = 2. Following the
approach of this section and applying heuristics mentioned
above, we have obtained the following external test suite:

total length is 20. Note that the complete test suite with
192 test cases which total length is 1664 was derived
for the same component and the same assumption on its
faults, following a black-box testing approach.

5. Conclusion

A basic framework for testing in context has been given.
The framework is based on the model of a system of com-
municating finite state machines. The problems of test
executability and fault propagation in the presence of the
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context are identified and discussed within the presented
framework. The proposed solution to these problems con-
sists in computing a so-called approximation of the specifi-
cation in context, i.e. the FSM model of the component's
properties that can be controlled and observed through the
context. The idea is to reduce testing in context to testing
in isolation, so tests with a guaranteed fault coverage can
be derived from the approximations in the form of tests for
the reduction relation between FSMs.

As our discussion shows, the problem of testing in con-
text has much in common with that of solving compositional
equations. In fact, the problem of computing the most
general solution E to the equation E°C = Spec°C has
been studied extensively. Solving such equations is a core
problem in various areas: top-down design, decomposition,
module validation, protocol derivation, hardware optimi-
zation, and others. In particular, the problem was addressed
in terms of process algebras and the LTS model [11,26-29].
In term of FSMs, it was explicitly or implicitly tackled
in a number of papers [3, 19-22, 30-36]. The solution
gives the weakest requirements imposed on components
and corresponds to what is called 'the maximal set of per-
missible behaviors for an FSM' in the context of hard-
ware optimization, however, here mainly synchronously
communicating machines are considered. As we have
demonstrated in this paper, the problem of testing in context
is close to the above problem, however it cannot be reduced
toil.

The framework presented in this paper also gives the
most general solution to the above equation, however
it does so in a different way by imposing an additional
requirement on the solution to ensure executability of
the tests needed to achieve complete fault coverage in
implementations. It seems that by lifting this requirement
the most general solution can also be obtained from our, so-
called approximation. However, this requires further inves-
tigation.
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