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Abstract 
In this paper, we propose a diagnostic method for the 
case where the system specification (implementation) 
is given in the form of two communicating finite state 
machines (CFSMs). The method decides if it is 
possible to locate the faulty machine in the system, 
once a fault has been detected in its corresponding 
implementation. If this is possible, it also locates the 
faulty machine. Two simple examples are used to 
demonstrate the different steps of the method. 
 
 
1. Introduction 
 
Testing is an important step in the development cycle 
of both software and hardware systems. In the 
software domain, where a system is represented by an 
FSM model, a lot of research work has been directed 
for such tests (for surveys of test derivation see [1] 
and [2]).  
 
We consider a system architecture consisting of two 
FSM machines called components, as shown as 
“System Under Test” in Figure 1. The system 
contains a machine, called “Context machine” which 
communicates with the environment and the other 
machine, called “Embedded machine”. The 
interactions between the two components (the 
embedded machine and the context) is assumed to be 
hidden or unobservable. 
 
In this paper, we present an important 
complementary step to testing the given system once 
a fault has been detected in its implementation. The 
method consists of a new diagnostic method that 
decides if it is possible to locate the faulty component 
in the given system. If this is possible, the faulty 
machine is found. 

 
The method starts by identifying the difference 
between how the system should behave 
(expectations), and how it is actually behaving 
(observations). The difference between these 
expectations and observations are called symptoms.  
In order to explain these symptoms, diagnostic 
candidates for both components are generated.         
A diagnostic candidate is defined to be the minimal 
difference between the specification of a given 
machine and its corresponding implementation, 
capable of explaining all symptoms. If there are no 
candidates generated for one of the components  then 
the other component is declared faulty. Otherwise, 
the method continues to locate the faulty machine. 
 
This paper is organized as follows. In section 2,         
a system of two CFSMs is presented.     In Section 3, 
a fault model for the given systems is defined.          
In Section 4, the diagnostic method is described in 
details followed by two simple examples that 
demonstrate its different steps in Section 5. Section 6 
concludes the paper. 
 
2. A System of Two CFSMs 
 
Complex systems are often specified as a collection 
of communicating FSMs. A system of two 
communicating FSMSs, called embedded machine 
(M2) and context machine (M1), is shown  in the 
upper part of Figure 1. The alphabet X and Y 
represent the externally observable input/output 
actions of the system, while the U and Z alphabets 
represent the internal (hidden) input/output 
interactions between the two components. As in [3], 
we assume that the sets of actions X, Y, U, and Z are 
pair-wise disjoint.  
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Figure1. A system of two CFSMs and a their Tester 
 
For the rest of the paper, we assume that the two 
(deterministic) FSMs , M1 and M2,  of the given 
system communicate asynchronously via bounded 
input queues where the internal actions of U and Z 
are stored.  
 
A deterministic FSM Mi (i = 1, 2)  in such a system 
of 2 CFSMs  can be  represented  by a  quintuple    
(Si, Ii, Oi, NextStaFunci, OutFunci) where : 
 
Si is the set of states of Mi. It includes the initial state 
si0, 
Ii is the set of input symbols. It includes the reset 
input (r), 
Oi is the set of output symbols. It includes the null 
output (-), 
The next-state function is NextStaFunci: Si x Ii → Si, 

The output function is OutFunci : Si x Ii  →  Yi. 
 
We also assume that the system at hand has never 
more than one message in transit, i.e. a next external 
input is submitted to the system only after it has 
produced an external output y to the previous input. 
Under these assumptions, the joint behavior of M1 
and M2 can be described by means of a composed 
machine, called Reference System, RS=M1 ° M2.    
RS describes the joint behavior of M1 and M2 in 
terms of  external inputs x and  external outputs y. 
Consider for example the two machine M1 and M2 as 
shown in Figure 2, and their corresponding Reference 
System RS = M1 ° M2 as shown in Figure 3. The set 
of external inputs is X={x1, x2, x3}, the set of external 
outputs is Y = {y1, y2, y3}, the set of internal inputs is 
U ={u1, u2, u3}, and the set of internal outputs is        
Z = { z1, z2, z3 }. 

S1 S'2

t1: x1/u1

t2:x2/u2

t4:z1/y1

t6:z3/y3

t'1: u1/z1

t'3: u3/z3

t'2: u2/z2

M1 M2

t3:x3/u3
t5:z2/y2

U

X Y

Z

Figure 2. A system of two CFSMs, M1 and M2. 
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Figure 3. Reference System of  the M1 and M2 of  
 
The tester, lower part of  Figure 1, implements a 
given test by executing external input sequences (test 
cases) simultaneously against both the system under 
test (SUT) consisting of the implementation of M1 
and M2, and the reference system in order to generate 
the observed and expected outputs. 
 
3. Fault Model for the System of CFSMs 
 
We assume a fault model which is based on faults 
made on labeled transitions [4].     Here, we assume 
that one and only of the two machines of the given 
system has a single output fault. We say a transition 
has an output fault if, for the corresponding state and 
received input, the implementation of the component 
provides an output different from the one specified 
by the output function. An implementation has a 
single output fault if one and only one of its 
transitions has an output fault. 
 
 
4. A Method for Locating the Faulty Machine in 

the Given System 
 
We assume that a test suite (TS) is given and that at 
least one erroneous output is detected. We apply the 
TS to the SUT and the reference system. For each test 
case tci of TS, the expected output sequence is 
written as oi = oi,1,oi,2,...,oi,mi , where output oi,j is 
expected after input ii,j, while the observed output 
sequence is written as: ôi = ôi,1,ôi,2,...,ôi,mi. We 
compare the observed outputs with the expected 
outputs and identify all symptoms. Any difference 
(oi,j ≠ ôi,j  ) represents a symptom. 
 
For each symptom (oi,j ≠ ôi,j), and for each machine 
Mi in the system (i=1,2), we do the following: 
 

(i) To determine a corresponding conflict paths. 
A conflict path for a given symptom is the 

sequence of transitions that are supposed to be 
executed by the machine,  according to the 
specification of the two components, for the 
generation of the symptom output; therefore, at 
least one of these transitions must be faulty if the 
given machine contains the fault. For example, 
the conflict path for machine Ml is formed by all 
transitions executed by Ml when the 
corresponding test case is applied. No transitions 
executed after the observation of the symptom in 
a test case will be included in the conflict path.  
 
(ii) To determine the transitions which are 
suspected to be faulty (called tentative candidate 
transitions), we form the intersection of the 
transitions of all conflict paths of (i). For each 
tentative candidate transition Tk of machine Mi, 
we form its corresponding tentative diagnostic 
candidates. These are candidates that may 
succeed to explain the observable behavior of the 
given SUT. Each candidate is formed by 
computing and assigning to Tk a possible output 
fault and by leaving all remaining transitions of 
Mi unchanged. This process is repeated for all 
faulty outputs of Tk (all outputs except the 
specified output). 
 
(iii) Afterwards, we eliminate from the tentative 
diagnostic candidates all candidates that do not 
succeed to explain all observations of the SUT. 
A particular tentative diagnostic candidate fails 
to explain all observations, if its expected 
outputs are not equal to the observed outputs of 
the SUT for at least one test case of TS. All 
remaining candidates are considered as 
diagnostic candidates. 
 

Let NumCandM1 be the number of diagnostic 
candidates of M1 and DCM1,k (k = 1… NumCandM1) 
be the diagnostic candidates of M1. Let NumCandM2 
be the number of diagnostic candidates of M2 and 
DCM2,k (k = 1… NumCandM2) be the diagnostic 
candidates of M2. 
 
If  NumCandM1 = 0, then M2 is the erroneous 
machine, and if NumCandM2 = 0 then M1 is 
erroneous, else we proceed as follows: 
a- From :   DCM1,k  °  M2     for k =1… NumCandM1 
b- From :   DCM2,k  °  M1      for k =1… NumCandM2 
 
Two FSMs are said to be equivalent if and only if for 
all possible input sequences, they produce the same 
output sequences. If any of the machines computed in 
(a) is equivalent to any machine computed in (b), 
then the faulty machine (M1 or M2) can not be 
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identified.   This is due to the fact that there is at least 
one possible fault in M1 and a possible fault in M2 
such that the behavior of the composed system for 
both of these possible faults is the same. However, if 
none of the machines computed in (a) is equivalent to 
any machine computed in (b), we can locate the 
faulty machine as follows: 
 
We generate additional tests for distinguishing 
between the diagnostic candidates using the test 
development approach described by Gill [4]. This 
method determines a test sequence which allows the 
distinction between any two given finite state 
machines. In our context, each diagnosis, DCMi,k  °  
Mj  (for i, j = 1,2,  j # i, k ≤ NumCandMi) 
corresponds to a particular (faulty) implementation of 
Mi determined by its k-th fault predicted by DCMi,k 
and the assumed non-faulty  implementation of Mj. 
 
Given a set of n diagnoses, Gill's method may be 
applied to distinguish between any two selected 
diagnoses, say D(1) and D(2). The application of the 
derived test sequence to the implementation will lead 
to one of the following situations: 
 
(1) The observed output is equal to the one expected 
for D(1). 
 
(2) The observed output is equal to the one expected 
for D(2). 
 
(3) The observed output is different from both of the 
outputs expected for D(1) and D(2). 
 
In cases (1) or (2), we know that D(2) or D(1), 
respectively, is a wrong diagnosis. In case (3), we 
know that both, D(1) and D(2) are wrong diagnosis. We 
have therefore reduced the number of possible 
diagnoses and may continue until only one diagnosis 
remains.  
 
 
5. Two Application Examples 
 
In the following two subsections, two examples are 
given to demonstrate the different steps of the 
diagnostic method described in Section 4. In these 
examples, a reset transition tr is assumed to be 
available for both the specification and the 
implementation. We use the symbol "r" to denote the 
input for such a transition and the null symbol "-" to 
denote its output. A reset input  r  resets both 
machines in the system to their initial states.  
 
 
 

 
5.1. A Simple Example 
 
 Suppose that the test suite TS = {r-x1, r-x2, r-x3 } is 
given for the two CFSMs specification shown in 
Figure 2 .  
 
The application of TS to the specification of Figure 2 
and its corresponding implementation of M1 and M2 
(which equal to the specification with the exception 
that t1 of M1 has the output fault u2) yields the 
expected and observed output sequences depicted in 
Table 1. 
 
Tc# 
 

tc1 tc2 tc3 

Inputs 
 

r, x1 r, x2 
 

r, x3 

Specified 
transitions 
 

t1, t’1, t4 t2, t’2, t5 
 

t3, t’3, t6  

Expected Output
 

y1 y2 
 

y3 
 

Observed Output y 2 y2 
 

y3 
 

Table1. Test cases and their outputs  
 
A difference between observed and expected outputs 
is detected for test cases tc1. Therefore, the symptom 
is:  Symp1 = (o

tc1,1
 # ô

1,1
)  

 
Corresponding to the above symptom, we determine 
the following conflict paths for both machines M1 
and M2, which are equal to tentative candidate faulty 
transitions for this particular example: 
   ConfpM11 =   t1, t4 

   ConfpM21 =  t’1 
 
Corresponding to these tentative candidate 
transitions, we compute the following  tentative 
diagnostic candidates for M1 and M2: 
 
TdiagcM1

1 =  M1 where t1 has been changed to x1/u2 
instead of x1/u1 
TdiagcM1

2 =  M1 where t1 has been changed to x1/u3 
instead of x1/u1 
TdiagcM1

3 =  M1 where t4 has been changed to z1/y2 
instead of z1/y1 
TdiagcM1

4 =  M1 where t4 has been changed to z1/y3 
instead of z1/y1 
TdiagcM2

1 =  M2 where t’1 has been changed to u1/z2 
instead of u1/z1 
TdiagcM2

2 =  M2 where t’1 has been changed to u1/z3 
instead of u1/z1 
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Notice that TdiagcM1

2  , TdiagcM1
4 ,  and TdiagcM2

2  
do not explain all observable outputs of the SUT, and 
thus are not considered as diagnostic candidates. For 
example, if the fault is as specified in TdiagcM1

2 (t1: 
x1/u3), the SUT should produce for the external 
output y2 for the external input r-x1 of Tc1; however, 
it produces the external output y2 as shown in Table 
1. The remaining tentative diagnostic candidates are 
considered as diagnostic candidates DiagcM1

1, 
DiagcM1

3 , and DiagcM2
1,  respectively. For these 

candidates, we form the following composed 
machines    DiagcM1

1 ° M2,    DiagcM1
3 ° M2,   and   

DiagcM2
1 ° M1.  These machines are equivalent, and 

therefore we can not determine which machine is 
faulty by testing the composed system in the given 
architecture. 
 
 
5.2 A More Complex Example 
 
Suppose that the test suite TS = {r-x1-x1, r-x2-x1-x2-
x1} is given for the two CFSMs specification shown 
in Figure 4 .  
 
The application of TS to the specification of Figure 4 
and its corresponding implementation of M1 and M2 
(which equal to the specification with the exception 
that t’3 of M2 has the output fault z3 ) yields the 
expected and observed output sequences depicted in 
Table 2. 
 
A difference between observed and expected outputs 
is detected for the test cases tc1 and tc2. Therefore, 
the symptoms are:  
Symp1 = (o

tc1,2 # ôtc1,2
) 

Symp2 = (otc2,4
 # ôtc2,4

) 

 
Let us start by determining the conflict paths, 
tentative diagnostic candidates, and the diagnostic 
candidates of M1. Corresponding to the above 
symptoms, we determine the following conflict paths 
for machine M1: 
 
   ConfpM11 =   t1, t4, t4 

   ConfpM12 =   t2, t5, t1,t4, t2, t3 ,t1, t4 
 
The tentative candidate transitions that correspond to 
the above conflict paths are t1, and  t4. 
Corresponding to these transitions, we compute the 
following tentative diagnostics:  
 
TdiagcM1

1 =  M1 where t1 has been changed to x1/u2 
instead of x1/u1 
TdiagcM1

2 =  M1 where t4 has been changed to z2/y1 
instead of z2/y2 
TdiagcM1

3 =  M1 where t4 has been changed to z2/y3 
instead of z2/y2 
 
The reader can check that all these tentative 
candidates do not explain the observable behavior of 
the given SUT. For example, if the fault is as 
specified in TdiagcM1

1 (t1:x1/u2), the SUT  should 
produce the external output y3 for the external input 
r-x1      of tc1; however, it produces y2 as shown in 
Table 2. Therefore, M1 cannot be the faulty machine. 
The fault must be located in M2. Actually, for this 
example, the diagnostic candidate of M2 that 
explains all observed outputs of the given SUT, is 
where t’3  of M2 has been changed from u1/z2 to 
u1/z3. 
 

 

S1 S'1 S'2

t1: x1/u1

t3:z1/y1t4:z2/y2

t5:z3/y3

t'1: u1/z2

t'3: u1/z2t'4: u2/z3 t'2: u2/z1

M1 M2

t2:x2/u2

Z

X Y

U

Figure 4. A system of two CFSMs M1 and M2. 
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tc# 

 
tc1 

 
tc2 

 
Inputs r, x1, x1 

 
r, x2, x1, x2, x1 

Specified transitions 
 

t1, t’1, t4, t1, t’3, t4 t2, t’4, t5, t1, t’1, t4, t2, t’2, t3, t1, t’3, t4 

Expected Outputs y2   y2 y3 y2 y1 y2  
 

Observed Outputs y2  y3 
 

y3 y2 y1 y3  
 

Table 2. Test cases and their corresponding outputs 
 
 
6. Conclusion and future work 
 
In this paper, we proposed a diagnostic method that 
decides if it is possible to locate the faulty machine in 
a system of two CFSMs, once a fault has been 
detected in its implementation. If this is possible, it 
also locates the faulty machine. Currently, we are 
enhancing our method to cover an extended fault 
model. This fault model would also cover transfer 
faults. We say that a transition has a transfer fault if, 
for the corresponding state and received input, the 
implementation enters a different state than specified 
by the next-state function.  
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