Submodule construction for systems of 1/0O automata*

J. Drissi1, G. v. Bochmann2

1 Dept. d'IRO, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, H3C 3J7,
Canada, Phone: (514) 343-6161, Fax: (514) 343-5834, driss @iro.umontreal.ca
2 School of Information Technology & Engineering, University of Ottawa ,
Colonnel By Hall (A510), P.O.Box 450 Sn A,Ottawa,Ont.,K1IN 6N5, Canada,
Phone : (613) 562-5800 ext. 6205, Fax 562-5175 , bochmann@site.uottawa.ca

Abstract. This paper addresses the problem of designing a submodule of a given system of
communicating 1/0O automata. The problem may be formulated mathematically by the

equation (C||X)®. A under the constraint Ix=In, where C represents the specification of the
known part of the system, called the context, A represents the specification of the whole system,
X represents the specification of the submodule to be constructed, || is a composition operator,

. is a conformance relation and In is the required set of inputs for X. As conformance
relation, we consider the safe realization and the subtype relation. The subtype relation is a
generalization of the well known criteria of trace equivalence, complete trace equivalence, quasi
equivalence and reduction, while the weaker safe realization relation is implied by all those
criteria. We propose two algorithms for solving the problem with respect to the safe realization
and the subtype relation and we characterize the set of solutions in each case.

1 Introduction

One common problem, encountered in the hierarchical design of complex systems, in the synthesis
of controllers and in the reuse of components, is the submodule construction problem, also called
factorization problem or equation solving problem. The submodule construction problem (SCP) is
to construct the specification of a submodule X when the specification of the system and all
submodules but X are given. Such a problem may be formulated mathematically by the equation
(CIX)™. A, where C represents the specification of the known part of the system, A represent the
specification of the whole system, || is a composition operator and . is a conformance relation.
The SCP was first formulated and treated in [13], where specifications are expressed in terms of
execution sequences, and trace equivalence was used as conformance relation. In [19], the author
uses Milner's Calculus of Communicating Systems to model the same problem. Many other works
[7, 18] have been done using labelled transition systems as a model for the specifications and the

* This work was partially supported by the NSERC Strategic grant SRTGP200 "Methods for the systematic testing of
distributed software systems" and an NSERC Research grant.

strong and/or the observational equivalences as conformance relations. In [4], we consider this
problem in the context of the input/output Finite State Machine model (1/0 FSM) [5]. The direct
application of an approach based on the LTS modél is not possible since the solutions obtained are
not in general 1/0 FSMs. We have to add constraints on the environment behavior to obtain the
system's behavior in the form of an I/O Finite State Machine. We have developed a method for
constructing all the solutions when the specifications are given in the form of deterministic
completely specified input/output Finite State Machines and the trace equivalence relation is used as
conformance relation. This work was generalized in [16] to the case where the specifications are
given in the form of nondeterministic completely specified input/output Finite State Machines and
the reduction relation is used as conformance relation.

We will generalize our previous work by dealing with nondeterministic partially specified
input/output Finite State Machines and by using other criteria such as compl ete trace equivalence,
quasi-equivalence and reduction of nondeterminism. For this purpose, we consider partial 1/0
automata for systems specification, which is more general than input/output Finite State Machines.
An 1/0O automata corresponding to a given input/output Finite State Machine can aways be obtained
by unfolding each atomic input/output transition s-x/y->s' into two consecutive transitions s-x->s’
and s’ -y->s' of the corresponding I/O automaton. A fundamental property of the model of 1/0
automata is that there is a very clear distinction between those actions that are performed under the
control of the automaton and those actions that are performed under the control of its environment.
An automaton's transitions are classified as either "input” or "output”.

In typed object-oriented languages the notion of subtype, that is, a conformity relation
between types, is defined. A type P conforms to another type Q if P provides at |east the operations
of Q (P may also provide additional operations). Moreover, the types of the results of P's
operations must conform to the types of the results of the corresponding operations of Q. Finally,
the types of the arguments of Q's operations must conform to those of P's operations [2]. The idea
behind the notion of subtype is the ability to use an instance of a subtype of atype T whenever an
instance of type T isrequired to do ajob.

While the subtyping relation of object-oriented languages are mainly concerned with the
available operations and the types of their parameters, we are concerned in this paper with the
dynamic behavior of objects, that is, of 1/0 automata, considering the allowed sequences of input
and output operations. We will define a subtype criterion, denoted 4, for the same purpose asin
object-oriented languages, i.e. the possibility to replace any subsystem by an instance of its
subtypes without changing the system's behavior.

When composing a collection of partial 1/0 automata, problems due to unspecified reception
may appear when areceiving /0O automaton does not have an input transition originating from the
present state when the sending 10A executes a corresponding output transition. A composition of a
collection of 1/O automatais said to be safeif it does not contains unspecified receptions [8, 14].

We define the safe realization of an I/O automaton A by a composite |OA B=B;||B2||...||Bn,
denoted B <g A as follows: for any environment modeled by an I/O automaton E, if the
composition of A and E is safe then the composition of By, B, ..., By and E is also safe. The safe
realization criterion does not allow us to enforce mandatory output behaviors in certain given
states, i.e. an IOA B which is a safe realization of an IOA A, will accept all the inputs accepted
from the initia state of A and may produce no output. In the paper "Modal Specifications' [9], the
author presents atheory of Modal Specifications which imposes restrictions on the transitions of
possible implementations by telling which transitions are mandatory and which are admissible.
This allows a refinement ordering between Modal Specifications to be defined. To deal with the
problem of mandatory output behaviors and also to be able to represent the set of solutions to the
equation (C ||X)A A as the set of subtypes of a particular type (or model) in the same modelling
framework, we enhance the model of 1/0O automata by allowing the imposing of conditions on the
set of traces from a given state. We call such amodel an "1/0O automata with optional complete
traces'. With each state s we associate two sets: the first set contains sets of traces from s such that
at least one trace in each set must be present in any implementation of this automaton; the second
set is a subset of the traces from s and each time an execution, starting in s, is a prefix of an
element of this set, the execution should progress to complete atrace in this set. We assume that an
implementation is a normal (partial) I/0 automaton. We will introduce a progress property which
formalizes the preceding notion. Moreover, by requiring safe realization and realization of the
progress property, we obtain the subtype relation. We show in this paper that the subtype relation
isageneralization of the well known criteria trace equivalence, complete trace equivalence, quasi
equivalence and reduction.

Since in a composition of a collection of 10As the sets of inputs are not digoint, we
generalize the architecture by allowing the component that will be designed, to observe some
interactions between the environment and the context. This is done by adding to the equation a
constraint on the required set of inputs of the solution. For the two criteria, safe realization and
subtype, we propose for each an algorithm that produces an 1/0 automaton solution to the equation
(C [X) 1. A under the constraint Ix=In if such a solution exists. We prove that the set of possible
solutions is then either the set of safe realizations or the set of subtypes of the obtained solution,
depending on which criterion was in the equation.

3

This paper is structured as follows. In Section 2, we define basic notions. In Section 3, we
introduce the safe realization and the subtype relations and we compare them with the trace
equivalence, complete trace equivalence, quasi equivalence and reduction criteria. Section 4
presents the submodule construction problem and the architecture in which this problem will be
solved. In Section 5, we propose an algorithm for solving the problem with respect to the safe
realization relation and we characterize the set of solutions. In Section 6, we propose an agorithm
to solve the problem with respect to the subtype relation and we characterize the set of solutions. In
Section 7, we show that the submodule construction problem for non-deterministic partially
specified input/output Finite State Machines is a particular case of the results in Section 6 for the
trace equivalence, quasi equivalence and reduction criteria. Finally, in Section 8 we conclude the
paper. The proofs of the theorems are in the annex.

2 Input-Output Automata

2.1 Basic notions and definitions

In this paper, an I/O automaton (briefly 10A) A, isab5-tuple (Sa, Ia, Oa, Ta, Soa) Where Spisa
finite set of states with spa astheinitial state, 14 is anon-empty, finite set of inputs, Oa is anon-
empty, finite set of outputs with IanOa=@ and TaoSSax(IauOa)xSa is a transition set. An
element (s, U, S)eTa is denoted by s-u+s'. If for each seSa and al x=la there exists s'eSp such
that s-x+ ', then A is said to be completely specified or input-enabled; otherwise A is
partially specified. An 10A A is said to be nondeter ministic if there exist s-u+ s, s-u+s"
and s'#s" for some s and u; otherwise A isdeterministic. For a deterministic |OA A, the
outgoing transitions of each state are uniquely labeled. For each state seSp, we denote
inp(s)={xela| 3s'eSa s-x+s}, out(s)={y=0a| s=Sa s-y+S}, entering(s)={u=(1au04)|
3seSa s-u»s}, and leaving(s)=inp(s)wout(s). The input-enabled form of an IOA A, denoted
by lef(A), is obtained by adding to each state s transitions for the non-specified inputs (I A\inp(s))
leading to the special state Fail, i.e., [f(A)=(Sa, 1a, Oa, TAU(Use sy({ Stx(Ia\inp(s)){ Fail})),

SoA) -

If there exist states sy, ..., Sk+1€ Sa such that (s, aj, Si+1)e Ta, for each i =1,... .k, then
the k-tuple ((s1, a1, S2), (S2, @2, S3),(Sk, ak, Sk+1)) is said to be an execution starting in s;.
The sequence o=a1...ak € (Iau0p)* issaid to be atrace from the state s1. The set of traces from
the state sis denoted Tra(S) and we denoteit Tra if s=Soa. For adeterministic IOA A, astate s and
a segquence oe Tra(S) uniquely determine the final state of the trace o which we denote sq. A state
s of an IOA A isreachable from a state s if there exists oe Tra(S) such that s;=s'. If sisthe
initial state of Athen s issaid to be reachable. The set {s1, S, ..., Sk, Sk+1}, denoted by S(s, o),
represents the set of states reachable from s; by a prefix of o. For each sequence oe £* and a

4

subset X' of X, the Z'-projection of o, denoted Pryx(0), is obtained by deleting from ¢ each
symbol which isnot in Z'. For simplicity, we denote also by Pr 4(o), the projection of ¢ over the
alphabet (IaU0p) of the IOA A. For a set of traces Y, we denote by Pry(Y), the set containing the
X'-projection of the elementsin Y. For aset X containing sets of traces, we denote by Pry(X), the

set {Prz(Y)| YeX}.

The connected component of A containing the initial state is the IOA CC(A)=(&c, Ic,
Oc, Tc, Soc) such that Sc={'se Sa| s reachable}, Ic=Ia, Oc=0a, Tc={(s, U, S)eTa| s S} and
Soc=SoA- If A=CC(A) then A is said to be initially connected.

We define a chaos 1 OA, whose traces contain all the words over the alphabet, by
Ch=({ch}, I, O, H, ch), where H={(ch, t, ch) | tsILUC}.

2.2 The composition of I/0O automata

A system can be considered as a finite collection of |OAs communicating with one another and
with the environment. The composition of 1O0As is defined in the case of complete IOAsin [12],
and in the case of partial IOAsin [8, 14]. In the second case problems due to unspecified reception
may appear when areceiving |OA does not have an input transition originating from the present
state when the sending | OA executes a corresponding output transition.

Definition 1 : Given a collection of 10As (Ai=(Sa;, lai, Oai, Ta;» Soi))1<i<n, Such that the sets
(Oaj)1<i<n are pairwise digoint. The composition of (Aj)1<i<n, denoted A1||A2||...||An, is defined
as the connected component of the IOA A=(Sa, Ia, Oa, Ta, Soa) Where :

- SA=SA1XSAX ... XSAn,

- Ia=(Ia 0l A0 . UlA)\(Opa; W0 ...U0A,),

- Oa=0p;U0A,L ...L0A,,

- ((s1, S2, --Sn), U, (1, S2', ..,Sn'))eTa iff for @l ie{1, 2, ..., n}, if us(laoUOp;) then

(si, U, s")Tp;, else si=s/',

- SoA=(So1, S02; ---sSon)-

The composition of 10As is commutative and associative. This composition allows a
number of |OAsto accept the same input simultaneously.

Following the work of [14], we define a safety property which formalizes the non-
occurrence of an unspecified reception in the composition A of a collection of 10A (Ai=(Sa;, | Ai»
Oai» TA» Soi))1<i<n. We denote by € the empty word.

Definition 2 : Given a collection of 10A (Ai=(Sa;, |Ai» Oai, TA;, Soi))1<i<n, the composition
A=A1||A2]||...||An is safe, written & (A), iff any word t in (IauOAa)* such that
Prai(t)e Tra.(Ia{e}) for al i, isatrace of A (i.e. te Trp).

We illustrate the preceding concepts with the following example (Figure 1, 2, 3). We
consider the IOAs A1 and Ay with 1o, ={x, X', z}, Oa;={u, v}, Ia,={u} and Oa,={Zz}. For the
composition A=A1]||A2 we have Ia={x, X'} and Oa={u, z, y}.

> |>@u>@z>@

Figurel: The |OA Ap Figure2: The IOA A

Figure 3: The |IOA A1]|A2

We define now a hiding operator which alows us, for example, to hide actions considered
to be internal in a composition. Given an |0A A and a subset X of (1au0a), we define Hg(A) to
be the |OA obtained from A by first replacing al the actionsin X by the internal action t and then
determinizing the obtained automaton. In Figure 4, we have D=Hyy, z} (A1llA2), Ip={X, X} and
Op={y}.

Figure 4 : The IOA Hyy, 2 (A1llA2)
3 The conformance relations
3.1 The safe realization relation

Definition 3 : For an IOA A and a composite |OA B=B1||B2||...||Bn, with 1ao=Ig, we say that B
realizes A with safety, written B <g A, iff for every IOA E, with Ig=0a and Og=la, T (E||A)
implies T (E|[B1]||B2]|...||Bn)-

6

Definition 3 means that for any environment E over the alphabet of A if the composition of
A and E is safe then the composition of B1, Bo, ..., By and E must also be safe, i.e. in any
reachable state of the composition E||B1||B2]|...||Bn, there is no unspecified reception.

Definition 4 : The reflection of an IOA A=(Sa, Ia, Oa, Ta, Soa) is the IOA A=(Sp, |4, OA,
Ta, Soa) Where 1 3=04, OA=IA.

If for any state of A, we add some outputs then the composition of the obtained |OA with A
will be non safe. Also, if we add some outputs for any state of A, the composition of the obtained
|OA with A will be non safe. Intuitively, A represents the most liberal environment in with A is
safe.

Lemma 1: For an IOA A and a composite |OA B=B1||B2||...||Bn, with Ia=1g, the following
propositions are equivalent :

i - 5(A|B1l1Bll-..[Bn),

ii - for every IOA E, with IE=Op and Og=l a, T(E||A) = T (E||B1]|B2]|---|IBn)-

In the example in Figure 3, the IOA A=A1]|A2 is not safe since for the trace t=xux'z in
(IauOa)* we have Pra;(t)e Tra;.(1a;) and Pra,(t)e Tra,, but we do not have te Tra. However,
for the IOA Sgiven in Figure 5, we have that the I/O automaton A=A1||A2 realizes Swith safety,
since Sdoes not allow for the visible trace xx' corresponding to the above tracet.

y X z
X X
O =2 SOOI OMIMG
X' y u
Figure 5 : The I/O automaton S Figure 6 : The I/O automaton Az

If we consider the IOA Az in Figure 6 with Ip;=1a; and Oa3;=0a,, We remark that
A3|[A2=A1]|A2 but Az||A2 does not realize Swith safety since for the trace t'=xuzyx'u in (IauOa)*
we have Pras(t)e Tras, Pras(t)e Tra,.(la,) and Prg(t)e Trs, but t' is not a trace of the
composition S [|Az]|A.

3.2 The subtype relation

The safe realization relation is a weak criterion since it allows an IOA B which is a safe
realization of an IOA A, to accept all the inputs accepted from the initial state of A and to produce
no output. To deal with the notion of task completion, which imposes conditions on the set of
outputs produced after a given execution and also to be able to represent the set of solutionsto the

v

equation (C ||X)4 A as the set of subtypes of an element in the same model, we need to enhance
the definition of an IOA to take into account these conditions. This leads to the definition of 1/0
automata with optional complete traces.

Definition 5 : An 1/O automaton with optional complete traces A (briefly IOAWOCT), isa 3-
tuple (IOAaA, MTa, OCTa) where IOAA isan IOA, MTa ={(s, MTA(S))| se Sa} with
MTa(S)=2Tr0adS) and OCTa={ (s, OCTA(9))| se Sa} with OCTA(S)Tr10a4(S).

An IOAWOCT A can be considered to be a specification. The sets MTa(s) and OCTa(S)
impose constraints on the traces of valid implementations of A. We consider implementations in the
form of IOA. An element Y of MTa(S) imposes that at |east one trace of Y, is a possible trace of
the implementation in the state corresponding to s. Moreover, each time, an execution starting in
the state corresponding to s in the implementation has a trace whose projection over the alphabet of
IOAA isaprefix of an element of OCTa(S), this execution should progress to complete some trace
whose projection over the alphabet of IOAa isin OCTa(s). We note that if OCTa(s) contains only
elements of length equal to one, it does not impose any constraint on the implementations having
the same alphabet as |OAa. In the case where the implementation has a different alphabet from the
alphabet of IOAp, the elements of length equal to one in OCT(S) prohibit traces without external
output.

An |OA A can be viewed as an IOAWOCT, which we call Awoct, and which is constructed
as follow : IOAawoct=A and for each state s of A MT awoct(s)={{y}| ye out(s)} and

OCT awoct(s)=@. With this consideration, the set of IOAsisincluded in the set of IOAWOCTS.

Consider an IOAWOCT A and an environment E such that & (E|[|OAa). If we want to
replace A in the environment E by an IOA B which is a subtype of A, then B must be a safe
realization of 10Ap, i.e. B <g |OAa, moreover, since in each state s of |OAp, there are some
conditions on the set Tr pa,(S), then B must realize these conditions. In the following definition,
we formalize this notion by what we call the progress property. We note Pref(X) the set of al non-
empty prefixes of elements of a set of traces X.

Definition 6 : Given a deterministic IOAWOCT A, we say that the deterministic |OA B with
IB=l10A, realizes the progress property with respect to the IOAWOCT A, written B <p A, iff
If MTa(Soi0a.)#D then

I - for every X of MTa(Soi0A4), Prioaa(Tre(SoB))NX#3,
ii - for every o1€ Trg(SoB), if Prioas(o1)e Pref(OCTAa(Soi0A,)) then there exists

02¢€ Trg((SoB) ;) Such that Prjoa,(0102)e OCTA(Sol0Aw) -

8

And, for every ote Trg with te (I10a,VO10A,), If 6'=Prjoa(ot)e Trioa, and

MTA((Sol0AW 0')#D then

iii - for every X of MTa((Sol0Ax) o), Prioaa(TrB((SoB) ot)) NX#E,
iv - for every o1€ Tre((SoB)ot), If Prioas(o1)e Pref(OCTa((Soi0An) o?)) then there exists

02€ Tre((SoB)ots,) SUch that Prjoa,(0102)e OCTA((Sol0A) o)

The conditions (i) and (iii) impose that one trace from each element of MTa((Soi0Ax) o) 1S
present in the projection over the alphabet of 10Aa of Tre((SoB)ot). The conditions (ii) and (iv)
impose that each trace of Trg((SoB)ot) Whose projection over the alphabet of IOA, isaprefix of an
element of OCTA((So10A4) &), Can progress to complete a trace in Tre((So)st) Whose projection
over the alphabet of IOAa isan element of OCTA((So10AL) &)

Now, we give a formal definition for the notion that an 10A is a conforming
implementation of an IOAWOCT by requiring safe realization and realization of the progress

property.

Definition 7 : Given a deterministic |OA B and a deterministic |IOAWOCT A with Ig=l|pa B iS
said to be a conforming implementation of A, written B<gonfA, iff B <p Aand B <z, 10AA .

We remark that in the case where |OAp is completely specified, B<confA and IS 1 a
implies Prioa(Tre)STr oA

We say that an IOAWOCT B is a subtype of an IOAWOCT A if all conforming
implementations of B are also conforming implementations of A.

Definition 8 : A deterministic IOAWOCT B is a subtype of a deterministic OAWOCT A, written

Lemma 2 : Given a deterministic IOA B and a deterministic IOAWOCT A with Ig=l|pa,- The
following propositions are equivalent :
i-B Scoan i - BWOCt./?SA.

3.3 Others conformance relations

We will compare some well known conformance relations with the subtype and the safe
redization relations.

3.3.1 Trace equivalence

The IOAs A and B are said to be trace-equivalent, written B=A, iff Tra =Trg. Given an
IOA A, atrace oe Trp is said to be a complete trace iff leaving((Soa)6)=9. The set of complete

traces is denoted CTra. The IOA B is said to be complete trace-equivalent to the IOA A, written
B=cteA, iff Tra =Trg and CTra =CTrg [6]. In the case of deterministic |0As, the complete trace-
equivalence reduces to the trace-equivalence.

Lemma 3: Given two deterministic IOAs A and B, with I =Ig and Oa =Og. The following
propositions are equivalent :
I - B =cteA,

ii-B ScoanWOCt and A SconfBWOCt.
3.3.2 Quasi-equivalence

The IOA B is said to be quasi-equivalent to the IOA A, written B <geA, iff
VoeTra (oeTrg A out((Soa) 6)=0ut((SoB) o))
The quasi-equivalence relation requires that Tra& Trg and after any tracein Tra, Aand B
produce the same set of outputs[11, 17].

Lemma 4: Given two deterministic IOAs A and B, with I =Ig and Oa =Og. The following
propositions are equivalent :

i - B <geA,

i - B <gonfAWOCt,

3.3.3 Reduction of nondeter minism

The IOA B is said to be a reduction of the IOA A, written B <,egA, iff for each trace o in
Traif oisinTrg then :
iNP((SoA) o) <iNP((SoB) 6) A OUL((SoB) 5) = OUt((Soa) o) A (OUL((Soa) 6)#D = out((SoB) 6)*D).

Lemma 5: Given two deterministic IOAs A and B, with |5 =lg and Oa =Og. We denote by Ared
the IOAWOCT such that IOAA™=A and for each state s of A MTared(s)={ out(s)}
andOCTa™(s)=@. The following propositions are equivalent :

i - B<redA,

i - B <gonfAred.

Lemma 6: Each of the above conformance relations (trace equivalence, complete trace
equivalence, quasi equivalence and reduction) impliesthe safe realization criterion, that is, if one of
these relations holds between two deterministic IOAs B and A then B is a safe realization of A.

10

4 The design of a submodule
4.1 The architecture

We use the composition of two communicating components (Figure 7) to discuss problems related
to the design of a component of a compound system.

alphabet of the context

External inputs of C non-observable ! External inputs which are not in the input
by the component

External inputs of C+ observable by the component

Y

Component?

*, Internal inputs of C
Context C

Internal outputs of C

I -)
External outputs of i:*observabl e by the component

External outputs of C — External outputs which
non-observable by the component OA are not produced by the context

Figure 7: The composition of two communicating components C and Comp

We consider the class of systems which can be represented by two deterministic |OA that
communicate with one another and with an environment. One deterministic 10A, called the context
C, models the known part of the system, the behavior of which is given, while the other
deterministic 10A, called the new component Comp, represents the behavior of a certain
component of the system (the submodule to be designed). The set of inputs accepted by the system
from the environment can be divided into three digoint sets. The first is the set of inputs of the
context C non observable by the component, the second is the set of inputs of the context
observable by the component, and the third represents the set of inputs of the system which are not
visible by the context. Similarly, the set of outputs delivered by the system to the environment can
be divided in three digjoint sets. The first is the set of outputs delivered by the context C to the
environment which are not observable by the new component, the second is the set of outputs
delivered by the context C to the environment which are observable by the component, and the
third represents the set of outputs of the component accepted by the environment and not delivered
to the context.

4.2 The problem

The problem is known as the problem of submodule construction, redesign or equation
solving, where an appropriate conformity criterion should hold between a designed system and its

11

given specification A and where the system consists of a given component C and a new component
X to be designed. In this paper, we consider this problem as a problem of equation solution in the
realm of 10A for the equation (C||X)®.A under the constraint Ix=In with X being a free variable,
. isaconformance relation and In a given set of inputs.

In Section 5, we propose an algorithm which takes as input two deterministic IOAs, A and
C, and aset In such that (1a\lc)u(Oc\Oa)cIncl auOc, and produces as output an IOA Solg (if it
exists) with I sy, =In and Ogyl . =(Ic\ A)w(OaA\Oc), such that the composition of C with Solg isa
safe realization of A. In Section 6, we propose an algorithm which takes as input a deterministic
IOA C, adeterministic IOAWOCT A, and a set In such that (1a\lc)u(Oc\Op)cincliauOc, and
produces as output an IOAWOCT Sol (if it exists) with Ijoag,=In and Ojoag,=(Ic\lA)w(Oa\Oc),
such that the composition of C with IOAg isaconforming implementation of A. The existence of
asolution for a given equation depends on the selected set of inputs for the component.

Lemma 7 : If for agiven set of inputs In there is no solution, then for any subset of In thereisno
solution.

5 The solution for the safe realization criterion
5.1 The proposed method

We use a chaos | OA which represents all the traces over the input alphabet | AuO¢ and the output
alphabet (1c\la)u(0Oa\Oc); any solution of (CJ|X) <z A istrace included in this chaos automaton.
The main idea of our approach is to remove from the chaos automaton all the traces which
combined with traces of the context C in the environment A may cause a non-safe behavior. This
will allow us to capture the set (if not empty) of the permissible traces of the component to be
designed in the form of an IOA Solg, called the generic safe solution. A permissible traceisatrace
of asolution of (C || X) <g A. We give in the next paragraph an algorithm which constructs the
generic safe solution if it exists. Asinput, the algorithm requires two deterministic |lOAs C and A
and a set In such that (1a\lc)u(Oc\Op)cInclauOc. The set In will be used as the input set for
the generic solution.

To be able to characterize those traces of the composition of the chaos automaton and the
context C in the environment A which lead to a non conforming behavior with respect to A, we
find in Step 1 the input-enabled forms of A and C, and then construct the composed | OA
R=I€f(C)||ICh||lef(A). Since a state of Ris atriplet of states of 1&f(C), Ch and I€ef(A), each time we
reach a state of R which contains Fail|ef(&) or Failef(c), we replace this state by Failr. The
complexity in the worst case of Step 1 is polynomial in the number of states of A and C and the

12

number of elementsin the alphabet of A ||C. In Step 2, we replace in Rall the actions that are not in
the aphabet of the component to be designed by the internal action T and we determinize. Since a

state of the obtained automaton, denoted Ry, corresponds to a subset of states of R, we declare any
state of Ry which contains Failr as Failr,. The complexity of Step 2 is in the worst case

exponential in the number of states of A and C. In the third and last step, we remove recursively
from Ry all the traces which lead to the Failr, state. The complexity of step 3 isin the worst case

polynomial in the number of states of R;.

Algorithm 1
Input : The specification of the context C, the specification of the system A and a set of inputs In.
Output : An10A Solg; with I5y1.=In (equa to R1) which satisfies the equation (Cl[Solg)<gAif a
solution exists.
Step 1 : R:=lef(C)||Ch|lef(A).
Step 2 : Ry:=H(,uoc\in)(R).
Step 3 : (Remove-Fail-state)

WHILE exist atransitions-t » Failg, DO

IF t=(1c\Ma)U(0OaA\Oc) THEN Remove this transition;

ELSE
|F s=sor, THEN return "NO SOLUTION"; STOP;

EL SE Replace each transition ¢c- t' » sby c- t' » Failr;;
R1:=CC(Ry);

Theorem 1 : Given two deterministic IOAs A and C, and given a set In such that
(1AM c)u(Oc\Op)cIncl auOg, if Algorithm 1 produces an I10A Solg then (C || Solg) <z A, else
thereis no solution for (C ||X) <g A with the specified input aphabet In.

Example :

Figure 8 : the /O automata C and the I/O automata A and the 1/0O automata Sol g

We consider for the context the IOA C shown in Figure 8 with Ic={x1, X2, 21, 22, 73, Z4},
Oc={u, y1, y2}, and for the whole system the IOA A shown in Figure 9 with Iao={X1, X2, X3},

13

Oa={y1, y2, y3} and In={x1, X3, u}. We obtain the solution Solg shown in Figure 10 with the
output set Osolg={21, 22, Z3, 24, Y3} .

5.2 The set of solutions

The solution obtained by the previous method is a generic one, which means that we can
derive from it the set of solutions of the equation (C || X) <g A.

Theorem 2 : Given two deterministic IOAs A and C, and given a set In such that
(1aA\lc)u(Oc\Op)cIncl auOc, an |OA B, with Ig=In and Og=0Osg.;, is asolution of the equation
(C|IX) <g Aiff B<g Solg.

Example: Figure 11 shows some other solutions for the example above.

Figure 11 : Some safe redlizations of Solg
6 The solution for the subtype criterion

Asdiscussed in Section 4.2, we are looking for a solution to the submodule construction problem
when the conforming implementation relation is used. More formally, for agiven IOA C and an
IOAWOCT A and a set In such that (1a\lc)u(Oc\Oa)cinclauOc we want to find an 10A X
such that (C [|[X)<confA and Ix=In. We describe in Subsection 6.1 an algorithm which returns a
generic solution in the form of an IOAWOCT. A generic solution is a solution from which all the
solutions can be derived. We show in Subsection 6.2 that all the solutions to the equation
(ClIX)<confA under the constraint Ix=In are the conforming implementations of the generic
solution. We give in the next paragraph an algorithm which constructs the generic solution if it
exists. As input, the algorithm requires two deterministic IOA C and Sol g, and an IOAWOCT A.
To simplify the algorithm, we consider only the case where for each state s of IOAj,
OCTa(s)=out(s) and MTa(s)c20ut(s). We denote this restricted class IOAWO, for 1/0 automaton
with options. This means that each output of sis optional and at |east one output of each element of
MTa(S) is a mandatory output.

6.1 The Algorithm

14

We use the I0A Solg which represent the solution to the equation (C ||X) <g 10AA (see Section 5)
as a starting point. Any solution of (C [|[X)<confA is trace included in Solg. The main idea of our
approach is to remove from Sol g al those traces which, when combined with traces of the context
C in the environment A, may cause a non-conforming behavior with respect to the mandatory
traces MTp or the optional complete traces OCTa. This will allow us to capture the set of the
permissible traces of the component to be designed in the form of an IOAWOCT Sol, called the
generic solution (if this set is not empty). A permissible trace is a trace of an IOA which isa
solution of (C ||X)<confA. The agorithm proceeds in six steps. In Step 1, we construct the
composition of C, Solg and |OAA then we associate to each state of the composition the mandatory
constraints associated to the corresponding state of 1OAAa. In Step 2, we process the states from
which a constraint is not satisfied and the non-controlabl e transitions which lead to the Fail state,
i.e. atransition labelled with an action which is not an output of the component to be designed. In
Step 3, we associate with each constrained state ¢ an |OA whose set of tracesis equal to the subset
of Trioag(C) which is the union of the traces that contain no external action and the traces that
contain a single external action (an output action) as their last element. This IOA will alow usin
the next steps to characterize the mandatory and the complete traces of the solution we are looking
for. In Step 4, we hide the actions which are not in the alphabet of the solution and we associate to
each state the corresponding constraints. In Step 5, we remove recursively all non-conforming
traces. Finally, in Step 6 we construct the generic solution in the form of an IOAWOCT Sol.

Figure 12 : The IOA 10Aa and the IOA C.
To illustrate the work done in each step of the algorithm, we use the following example. We
consider for the context the IOA C shown in Figure 12 with [c={x1, X2, z1, 2, 73, 24}, Oc={u,
y1, Y2}, and for the whole system the IOAWO A corresponding to the IOAa of Figure 12, with
lloas={X1, X2, X3}, Or10a,={Y1, Y2, y3}, and
MTa={(A, @), (B, {{y1}}). (C, {{y2}}). (D, {{ys}})}, and
OCTA={(A, D), (B, {{y1, y2}}). (C, {{y2, y3}}), (D, {{y3}})}, and In={x1, X3, u}.

Since the algorithm requires as input the solution for the safe realization relation, we use
first Algorithm 1 to obtain the IOA Solg shown in Figure 13.

15

Figure 13 : The I0A Sol .

Algorithm 2

Input : The specification of the context in the form of an IOA C, the specification of the system
behavior in the form of an IOAWO A and a set of inputs In.

Output : An IOAWOCT Sol with I1p0ag,=IN which satisfies the equation (C||l OAso)<confA if @
solution exists.

Step 1. In this step, we construct an IOAWOCT R such that |OAR is the composition of C, Solg;
and |6\A_\/A, and we initialize the sets MTr(c) and OCTg(c) with the empty set for each state c of
[OAR. If MTA(Soi0A,) 1S NOt empty, we assign it to MTR(SoR). For each state c=(sy, Sp, Sg) in
Soa\{ Soi0ag} such that entering(c)M(ljoa,wOi0a,) and MTa(s3) are not empty, we assign to
MTR(c) the set MTa(s3). This means that for a state ¢ of IOAR where MTR(C) is not empty a
progress property must hold. The complexity of this step is in the worst case polynomial in the
number of states of I0OAx and C, and the number of elements in the alphabet of I0AA ||C (i.e.
O(nmr2) where n=number of states of A, m=number of states of C and r=number of element in the
aphabet of A||C).

|OAR=C||S0l 5| OA;

FOR each state c=(s1, S, s3) in Soag DO MTR(C):=@; OCTR(C):=,

IF MTA(Soi0A.)%8 THEN MTR(So10AR): =M TA(Sol 0AW);

FOR each state c=(s1, S2, S3) in Soag \{Soioag} such that entering(c)N(l1oa,wO10a,) %D

and MTa(s3)#@ DO MTR(C):=MTAa(Sg);

Figure 14 : The IOA IOAR

16

For the example, we obtain at the end of Step 1 the IOA I0AR shown in Figure 14 and the

set of constraints MTR={(0, @), (1, {{y1}}), (2, ©), (3, @), (4 D), (5 {{y2}}). (6, D), (7, D),
(8, 9), (9, D), (10, {{y1}}). (11, @), (12, @), (13, {{y2}}), (14, {{ys}}), (15, {{ys}})}.

Step 2. In this step, we remove from |OAr some non-conforming traces. For a state ¢ of I0AR, a
state which can be reached from ¢ with an internal trace is said to be an internal successor of c; the
set containing all external outputs of itsinternal successorsis denoted ext-out-after(c); the state cis
said to be a silent state if ext-out-after(c) is empty. For a state ¢ of IOAR where MTR(C) is not
empty, if ext-out-after(c) does not meet the constraints imposed by MTR(c) then we return "NO
SOLUTION" in the case where c istheinitial state, otherwise all the transitions s- t » ¢ labelled
with an external action will be replaced by s-t+ Failg and we replace |OAR by its initially
connected component; else for each silent internal successor ¢' of ¢ we return "NO SOLUTION" in
the case where c' isthe initial state, otherwise we replace each transition s-t = ¢' by s-t + Failr
and we replace |OAR by its connected component. If the intersection of entering(Failr) and
(lloaswOc) is not empty, for each transition s- t + Failg with t in the intersection, we return "NO
SOLUTION" in the case where sisthe initia state, otherwise we replace each transitions-t=+ s
by s-t+ Failr and we replace |OAR by its connected component. This processing is repeated
until the IOA IOAR can not be updated. At the end of this step, any constrained state satisfies its
constraints and may have only Failr as silent internal successor; moreover al the transitions
leading to Failr are labelled with controllable actions, i.e. outputs of the component to be
designed. To achieve this, we construct two sets : the set NonSlentStates containing those states
of IOAR where an external output occurs; and the set ConstrainedStates which initially contains al
states ¢ of IOAR where MTR(c) is not empty. We repeat the following processing until the set
ConstrainedStates is empty : we remove from ConstrainedStates an element ¢, and we determine
the set of itsinternal successors, denoted Succint(c); if there exists an element in MTR(c) such that
its intersection with ext-out-after(c) is empty, then we return "NO SOLUTION" in the case where ¢
istheinitial state, otherwise we replace each transition s-t = c by s- t » Failr for each external
action t and we assign the empty set to MTR(c) and we replace | OAR by its connected component;
now, if all the constraints imposed by MTgr(c) are satisfied, i.e. MTR(C) is not empty, we turn our
attention to the silent states in Succint(c); for each such state ¢', we return "NO SOLUTION" in
the case where it isthe initial state, otherwise we replace each transition s-t =+ ¢ by s- t» Failg
and we replace |OAR by its connected component; if the intersection of entering(Failr) and
(lloaswOc) is not empty, for each transition s- t + Failg with t in the intersection, we return "NO
SOLUTION" in the case where sisthe initia state, otherwise we replace each transitions-t=+ s
by s- t+ Failr and we replace IOAR by its connected component, then we update the set
ConstrainedStates by assigning to it the set containing each state of |OARr where MTR(c) is not

17

empty. The complexity of this step in the worst case is polynomial in the number of states of I0AA
and C, and the number of elements in the alphabet of I0A ||C (i.e. O(n3m3r3) where n=number of
states of A, m=number of states of C and r=number of element in the alphabet of A||C).

Procedur e Remove-some-non-conforming-traces
IntActions :=(1cuOc)\(l10AVOI10AY);
NonSlentSates={ se S oa | out(S)\NO|0A%D} ;
ConstrainedStates := { ce Soag | MTR(C)23} ;
WHILE ConstrainedStates #2 DO
¢ := an element of ConstrainedSates;
CongtrainedSates := ConstrainedStates \{ c};
Succint(c)={c'e R{ Failr} | oe IntActions* such that c'=cg};
ext-out-after (€) :=Uuc g e nt(c) out(c)NOjoa, ;
TempMT :=MTR(C);
WHILE TempMT=#@ DO
Y := an element of TempMT;
TempMT = TempMT\{ Y};
|F Y next-out-after (c)=@ THEN /I the constraints for state ¢ are not satisfied
IF c=so10ag THEN return "NO SOLUTION"; STOP;
EL SE
replaces-t+ cby st Failr for each t in entering(c)N(l10a,O10AY);
MTR(c):=@; TempMT:=@; |IOAR:=CC(IOAR);
ENDWHILE TempMT=0
IF MTr(c)2@ THEN
WHILE Succint(c)=d DO
c' := an element of Succint(c);
Succint(c) := Succint(c)\{c'};
I F Succint(c')mnNonSlentSates=@ THEN
IF ¢'=s010ar THEN return "NO SOLUTION"; STOP;
ELSE
replaces-t= c' by st Failgfor each t in entering(c');
|OAR:=CC(IO0AR); Succint(c) := Succint(C)NS oA
ENDWHILE Succint(c)=d
I F entering(Failr)N(l10aA,vO0c)2d THEN
TempTrans:={(s, t, Failr)e Tioag | t € (ll0AxVOC)}
WHILE TempTransz@ DO

18

(s, t', FailR) := an element of TempTrans;
I|F s=sg10ac THEN return "NO SOLUTION"; STOP;

ELSE
replaces’ -t" + s by s' -t"» Failrfor each t" in entering(s);
|IOAR:=CC(I0AR);

TempTrans:={(s, t, Failr)e Tioag | t € (ll0A,VOC)};
ENDWHILE TempTranszd
ConstrainedStates := { ce Soag | MTR(C)%=3} ;
ENDWHILE ConstrainedSates #2
For our example, the work donein Step 2 is as follow. After state 10, the required external

output y» is not possible, then this state is replaced by Failr. Since now there exists a transition
labelled with a non-controllable action leading to Failr (9-x3->FailR) the state 9 is replaced by
Failr. The obtained connected component is shown in Figure 15, and the updated set of
constraints is MTR={ (0, &), (1, {{y1}}), (2, D), (3, D), (4 D), (5, {{y2}}). (6, D), (7, D), (8,
2), (15, {{ya}}}-

Figure 15 : the obtained I0A IOAR at the end of Step 2

Step 3. In this step, we associate to each state ¢ of IOAR where MTR(c) is not empty, an |OA
CONST(c) whose set of tracesis equal to the subset of Trjpag(C) Which is the union of the traces
that contain no external action and the traces that contain a single external action (an output action)
astheir last element. ThisIOA will allow usin the following steps of the algorithm to characterize
the mandatory and the compl ete traces of the solution we are looking for. To be able to compose
CONST(c) with the IOA obtained from IOAR after hiding some actions and to preserve al the
possible external outputs after ¢ in CONST(c), we assign the empty set to Oconsr(c) and the set
containing all the actions present in IOAR to | consr(c). The complexity in the worst case of this
step is polynomial in the number of states of |0AR (i.e. O(n2m?2r) where n=number of states of A,
m=number of states of C and r=number of element in the alphabet of A||C).

19

Procedur e Updating-information
FOR each state ¢ in §oag\{ Failr} such that MTR(c)z@ DO

IntActions :=(1cuOc)\(l10AOI10AY);
TempStates := {C'e Soag | Joe IntActions* such that c'=cg};
TempTrans:={(s, t, S)e Trioag | S, Se TempStates and te IntActions} ;
TempTransFina :={(s, t, Final) | se TempStates and te leaving(s)NOj0a, and s=FailRr};
TempTransFail := {(s, t, Failr)e Tripag | S TempStates and te Oj0a,} ;
I|F TempTransFind#d THEN TempStates := TempStates_{ Final};
I|F TempTransFail#@d THEN TempStates := TempStates A Failg} ;
TempTrans := TempTransuTempTransFinalUTempTransFail;
CONSIT(c):=(TempStates, ||oarOl0ar D, TEMPTTanNs, c);

Y3

Figure 16 : The IOAs CONST(1), CONST(5) and CONST(15).

Step 4. In this step, we hide the actions that are in (I,0a,M Oc)\In and construct
Hq, 0aJORN n(IOAR). Since a state of the obtained automaton, denoted Ry, is a subset of states of

IOAR, we declare any state of Ry which contains Failr as Failr,. Moreover, we assign to
TempConstraint(sor,) the set of pairs (MTRr(c), CONST(c)) for c in spr, such that MTR(C) is not
empty. For each state sin SR \{ Sor,, FailR,}, if entering(s) contains some external actions, we
assign to TempConstraint(s) the set of pairs (MTgr(c), CONST(c)) for c in s such that MTR(C) is
not empty, otherwise we assign to TempConstraint(s)) the set of pairs (MTr(c), CONST(c)) for ¢
in s such that MTR(c) is not empty and c is reachable in IOAR from c" in swith an external action
in (Iloa,WOC)\I, i.e. there exists s in Ry, ¢'ins and ¢ in swith s=Si, ¢"=C't ¢ in |OAR and
c=c"yfor oin ((Ijoa,wOc)\In)* and uin (I,oa,wOc)\In. The complexity in the worst case of this
step is exponentia in the number of states of IOAR. We denote by € the empty word.

Procedure Hide-actions-in-(1oa,wOc)\In
ConstrainedStates := { ce Soag | MTR(C)23} ;
SRlZZQ; TR1::®; SoRliz{ ce Soar | o< ((IloawOc)\IN)* such that c=(Spi0AR) o} ;

20

SR =SSR\ SoR,}; TempStates = {spr }; L :=InU(IcM0a) U (010a,\0C);
TempConstraint(spr,) :={ (MTR(c), CONST(c))| ce sor,NConstrainedSates}
WHILE TempStates@ DO
s:= an element of TempStates;
TempStates.=TempStates\{ s} ;
FOR eachtinL DO
FOR eachcinsDO
Succh(c)={ c'e Soaxl e ((l10a,wOc)\In) T such that c'=ct o} ;
S:=U e scch(c);
s':=su{ct|ces};
IF s'#@ THEN
IF Failge s" THEN Tr:=Tr,U{ (s, t, Failr,)}; Sr,;:=SR,U{Failr};
ELSE
TR, =TrV{ (s t, ")},
IF s"¢Sg, THEN
SR, =RV s'}; TempStates:=TempStates{s"};
TempConstraint(s"):=;
IF te ((Oc\Ojoas)w(Ic\ioas) THEN
TempConstraint(s"'):={ (MTR(c), CONST(c))| ce SnConstrainedSates}
wTempConstraint(s");
ELSE
TempConstraint(s"):={ (MTgr(c), CONST(c))| ce s'nConstrainedSates} ;
ENDWHILE TempStates#@

Figure 17 : The IOA Ry

At the end of Step 4 the obtained IOA Ry for our example is shown in Figure 17 and we
have the following constraints:
TempConstraint(M)={ ({{y2}}, CONST(5))}, TempConstraint(O)={ ({{y1}}, CONST(1))} and
TempConstraint(V)={ ({{yz}}, CONST(15))}.

21

Step 5. In this step, we recursively remove the traces which lead to Failg,. To achieve this, we

initialize the set ConstrainedStates with the set containing each state ¢ of R1 where
TempConstraint(c) is not empty, and we remove all the transitions which lead to Failg,. We repeat
the following processing until the set ConstrainedStates is empty : we remove from
ConstrainedStates an element s, and we assign TempConstraint(s) to atemporary set Temp; while
Temp is not empty, we remove from it an element (MTR(c), CONST(c)); we assign to CONST(c)
its composition with the IOA obtained from Ry where sis considered as the initial state; if there
exists an element in MTR(C) such that its intersection with the set of external outputs present in

CONST(c) is empty, then we return "NO SOLUTION" in the case where sistheinitial state of Ry,
otherwise we replace each transition s-t »sby s-t »Failg, and we replace Ry by its initially

connected component and we assign to Temp the empty set; if the intersection of entering(Failr,)
and In is not empty, for each transition s'-t »Failr, with t in the intersection, we return "NO

SOLUTION" in the case where s" istheinitial state, otherwise we replace each transition s-t »s"
by s-t »Failr, and we replace Ry by itsinitially connected component. Then we redefine the set

ConstrainedSates by assigning to it the set containing each state ¢ of R; where TempConstraint(c)
is not empty and we remove all the transitions which lead to Failr; if sremainsin Sz, we turn
our attention to those states in CONST(c), different from ¢ and Final, from which we can not reach
a state where an external output occurs; for each such state ¢’ in Sconsr(c), We replace each
transition c"- t» ¢' by ¢"- t» Failconsr(c); then we replace CONST(c) by itsinitially connected
component; now for each transition ¢"- t » Failconsr(c), we determine atrace o such that c5=c"
and we replace the transition s5 -t +s by sg-t »Failr; if the intersection of entering(Failr,) and In
is not empty, for each transition s"-t+ Failr, with t in the intersection, we return "NO
SOLUTION" in the case where s" istheinitial state, otherwise we replace each transitions-t = s
by s-t+ Failr, and we replace Ry by itsinitially connected component. Then we redefine the set
ConstrainedStates by assigning to it the set containing each state of R; where TempConstraint(c) is
not empty and we remove al the transitions which lead to Failg,. The complexity in the worst case

of this step is polynomial in the number of states of R;.

Procedure Remove-Fail-state

CongtrainedStates := { ce g, | TempConstraint(c)=dy} ;

IR, :=In; OR, :=(Ic\l10a.)(010a,\OC);

TR, = TRl\{ (c t, Fai|R1)E TRl};

WHILE ConstrainedStates #@ DO
s:= an element of ConstrainedSates;
CongtrainedSates :=ConstrainedSates \{ s} ;
Temp := TempConstraint(s);

22

WHILE Temp #@ DO
(MTR(c), CONST(c)) := an element of Temp;
Temp :=Temp\{ (MTR(c), CONST(c))};
CONST(c) := CONST(c)|| (Sr;: Ir;» ORy» TRy» 9);

Templ :=Ug SconsT© out(c)NO10A, ;

Temp2 :=MTR(c);
WHILE Temp2+d DO
Y := an element of Temp2;
Temp2 := Temp2{ Y};
IFYNTempl=d THEN
IF s=sor, THEN return "NO SOLUTION"; STOP;
ELSE
replaces-t= sby s-t= Failg, for each tin entering(s);
R1:=CC(Ry); Temp:=@; Temp2:=@;
| F entering(Failg)nIn#3 THEN
Temp3 :={(s", t, Failr)e Tr, | t €In};
WHILE Temp3#@ DO
(s', t, Failg) := an element of Temp3;
IF s'=sopr THEN return "NO SOLUTION"; STOP;
ELSE
replace s - t'» s" by s - t'> Failgr, for each t' in entering(s");
R1:=CC(Ry);
Temp3 :={(s, t', Failr)e TR, |t' €In};
ENDWHILE Temp3zQ@
ConstrainedStates := { pe Sg | TempConstraint(p)#d} ;
TR, = TRl\{ (p, t, Fai|Rl)E TRl} :
ENDWHILE Temp2zd
|F se Sg, THEN
NonSlentStates={ s'e Sconsr(c) | out(s)NOjo0a#D} ;
Temp4=Sconsr(o\{ ¢, Final};
WHILE Temp4+@ DO
c' .= an element of Temp4;
Temp4 := Temp4\{c};
I FSuccint(c')mNonSlentStates=@ THEN
SconsT(c) := SconsT(c)UA{ Failconst(c)}
replacec’- t= c' by ¢'- t» Failconsr(c) for each t in entering(c');

23

CONST(c):=CC(CONST(c)); Temp4:=Temp4nScoNST(c):
ENDWHILE Temp4+d
I F Failconsrt(c)e Sconst(c) THEN
Temp5=(;
FOR each transition ¢'- t » Failconsr(c) DO
ot .= the shortest trace in Trconsr(c) such that cg, =c';
Temp5 := Temp5u{ 6t };
WHILE Temp52@ DO
ot .= an element of Temp5;
Temp5 := Temp5Y{ ot };
replace sg, - t + S by sg, - t» Failg;
ENDWHILE Temp52Qd
IF entering(Failg)nIn#@ THEN
Temp6 :={(s", t, Failr)e Tr, [t eIn};
WHILE Temp62@ DO
(s', t, FailR) := an element of Tempé6;
IF s"=sor THEN return "NO SOLUTION"; STOP;
ELSE
replace s -t'» s" by s - t'» Failgr, for each t' in entering(s");
R1:=CC(Ry);
Temp6 :={(s, t', Failr)e TR, |t' €In};
ENDWHILE Temp6+d
Temp:=Q;
ConstrainedStates := { pe Sg | TempConstraint(p)#d} ;
TR, :=TrRM(p, t, Failr)e TR };
ENDWHILE Tempz@
ENDWHILE ConstrainedStates #@

Figure 18 : The IOAs R, CONST(1), CONST(5) and CONST(15) after Step 5.
24

For our example, the work done in Step 5 is as follow. We first remove from R; the
transition Q-y3->Failg,. After updating the IOA CONST(5), the transition labelled by z3 leadsto a

state from which no external output can be reached. Then the trace uzz is used to replace the state Q
of Ry by Failg,. After removing the transition P-z3->Failr, all the constraints are satisfied and the

obtained I0As R1, CONST(1), CONST(5) and CONST(15) are shown in Figure 18.

Step 6. In this step, we construct the generic solution in the form of the IOAWOCT Sol . The
IOA 10Ag isequal to Ry. To obtain the sets MTg, and OCTg , We initialize the sets MTgg(9)
and OCTg(s) with the empty set for each state sin §oag,- If TempConstraint(s) is not empty
then for each element (MTR(c), CONST(c)), we assign to atemporary set Temp2 the set of traces
leading to the state Final in CONST(c), moreover for each element Y in MTR(c) if its intersection
with the set of external outputs occurring in ¢ is empty then we add to MTg(S) the projection over
the aphabet of IOAg, of the subset of Temp2 containing traces which end with an element in'Y;
we assign to atemporary set Temp3 the projection over the alphabet of I0Ag, of Temp2, and we
remove from Temp3 the empty word and the elements which are not in OCTgy(S) and which are
proper prefixes of elements not in OCTgy(S), and from OCTgy(S) we remove the elements which
are not in Temp3 and which are proper prefixes of elements not in Temp3. Then we assign to
OCTgy (9) its union with Temp3. Due to cycles labelled with internal actions, the sets OCTgy)(C)
and MTg(C) could be infinite. To represent such infinite sets we represent them as finite sets of
regular expressions or as finite sets of IOAs. The complexity in the worst case of this step is
polynomial in the number of states of R;.

Construction of the | OAWOCT Sol

I0Ag = Ry;
OCTgy =0,
MTsy =@;

L :=Inu(lc\lioax)W(010a,\OC);
FOR each state sisin §oag, DO
OCTg (9) :=@;
MTso (S) :=0;
WHILE TempConstraint(s)=d DO
(MTR(c), CONST(c)) := an element of TempConstraint(s);
TempConstraint(s) :=TempConstraint(s)\{ (MTRr(c), CONST(c))};
Templ := out(c)"Oc;
Temp2 :={ oe TrconsT(c)(C) | co=Final};
WHILE MTR(c)2@ DO
Y := an element in MTR(C);

25

MTR(C) := MTR(C){ Y};
IFYNTempl=@ THEN
MTsol (5) :=MTsol (s)(PrL({ oc Temp2 | Proo, { 0)€ Y});
ENDWHILE MTR(c)=d
Temp3 :=Pr(Temp2)\{ &} ;
OCTg () :=OCTgy (S){ 0e OCTgy (s) and oz Temp3 and o is a proper prefix of an
element in Temp3};
Temp3 :=Temp3Y oe Temp3 and oz OCTgy (S) and o isa proper prefix of an element
in OCTg (9)};
OCTg (8) :=OCTgy (S)uTemps3;
ENDWHILE TempConstraint(s)=d
MTsol (8):={ YNOCTsl (8) | Ye MTsol ()} 5
MTso (9):=MTg ()\{ YE MTgq (9) | there exits Y'e MTgy (S) with Y'Y},
OCTg () :=0OCTg (5)\{ 0 OCTgy () | length of cisequal to 1};
OCTgy :=OCTg W (S, OCTg (9)};
MTsol :=MTsol U{(s, MTs0l (9))};
ENDFOR
S0l :=(10As, MTg , OCTgy);

Figure 19 : The IOA I0Ag!.

For the obtained IOAWOCT Sol, IOAgy is shown in Figure 19, and
MTsol ={(M, {{uz2}}), (O, {{u(zou + z3u)*z1}}), (N, @), (P, @), (V, {{ys}})}, and
OCTsol ={(M, {uzz}), (O, {u(zau + z3u)*z1, U(zou + z3u)*z4}), (N, D), (P, D), (V, D)}

Theorem 3 : Given a deterministic IOA C, a deterministic [IOAWO A, and a given input set In
such that (1)0a,\c)w(Oc\Oioa)cInclioaUOc, if Algorithm 2 produces an IOAWOCT Sol then

(CI1OAsy1)<confA, else thereis no solution for (C|[X)<confA With the specified set of inputs In.
6.2 The set of solutions

The solution obtained by the algorithm above is a generic one, which means that we can
derive from it the set of solutions of the equation (C||X)<confA.

26

Theorem 4 : Given a deterministic IOA C, a deterministic |IOAWO A, and an input set In such
that (I10a\c)U(Oc\O10a)cInclioa M Oc, if Algorithm 2 produces an IOAWOCT Sol then for
any |0OA B, with Ig=In and Og=Og;, the following propositions are equivalent :

i - (ClIB)<confA,

|| - BSConfSOL

Example : Figure 20 shows some solution IOAs which are subtypes of the generic solution Sol
shown in Figure 19.

Figure 20 : Some subtypes of Sol.

7 The case of input/output Finite State Machines

We turn our attention now to see how the results of this paper can be adapted to deal with the
resolution of the equation (CJ||X)#. A where the specifications of C and A are given as non-
deterministic partialy specified input/output Finite State Machines and . represents the quasi-
equivalence or the reduction relation. In order to apply our algorithms in this context, we first
transform the specifications of C and A into the corresponding 1O0As, denoted 10A(C) and
IOA(A), by unfolding the transitions. In the case where 1, is the quasi-equivalence relation, we
denote by A' the IOAWOCT IOA(A)Woct, and in the case where . is the reduction criterion, we
denote by A' the IOAWOCT I0A(A)"ed, then we resolve the equation (I0OA(C)|IX)AA' under the
constraint 1x=(l oaa)\lioac))V(Or1oa(c)\Ojoa(a)). If we obtain a generic solution Sol, we
construct the FSM FSMg1=(S, 110Ag,: O10Ag,» Ny So). The set of states §oag, enjoys a nice

property, it can be devided into two sets : the first set contains the states s such that leaving(s) is
included in Ijp0ag, and entering(s) is not empty and included in Ojpag,, this set containsthe initial

state of I0Ag; the second set contains the states s such that leaving(s) is not empty and included

27

in Oj0ag, and entering(s) are not empty and included in ljpag,. From this observation, the set of
states of FSM g is equal to the first set; and for each state sj of FSMgy, there is a transition
Si—>Viw—sk in FSMg if there are transitions si—v—sj and §—>w—sk in |OAg). Since for any
solution D to the equation (CJ|X) . A the corresponding |OA IOA(D) is a solution to the equation
(IOA(C)|IX) A A", the set of solutions to the equation (C|[X)#. A is the set of FSMs quasi-
equivalent to an FSM derived from some subtype of Sol which is trace included in Sol. In the
particular case where the FSMs C and A are completely specified, the quasi equivalence relation
reduces to trace equivalence and we obtain the set of solutions to the equation for completely
specified FSMs and trace equivalence using the same algorithms.

We note that Theorem 4 of Section 6 provides a new exact characterization of the set of
solutions. In previous works it was necessary to check whether there is no livelock, i.e. cycle
labelled only with internal actions, when combining a candidate solution with the context C [4, 16,
22], or to assume that at |east one of the FSM's, context or solution, hasto be aMoore FSM [1].

8 Conclusion

We have presented in this paper an approach to solve the problem of submodule constructionin
the realm of 1/0O automata. This problem may be formulated mathematically by the equation
(C|IX)#. A under the constraint 1x=In, where C represents the specification of the known part of
the system, A represents the specification of the whole system, X represents the specification of
the submodul e to be constructed, || is a composition operator, . isa conformance relation and
In is the required set of inputs for X. The conformance relations considered are the safe
realization criterion and the subtype relation. For the safe realization criterion the set of
solutions to the equation (if they exist) can be represented as the set of safe redlizations of an 1/0
automaton Solg. An agorithm for finding Sol g is given. For defining the subtype relation we
enhance the I/0O automata model to allow the description of mandatory behaviors and we show
that the set of solutions to the equation (if they exist) can be represented as the set of subtypes of
an 1/0 automaton with optional complete traces Sol. An agorithm for finding Sol is given.

We also show that the submodule construction problem for non-deterministic partially
specified input/output Finite State Machinesis a particular case of thiswork for various criteria.
The algorithms proposed in this paper were implemented in Javain the context of atool for the
construction of submodules[3].

28

References

[1] A. Aziz, F. Balarin, R. K. Brayton, M. D. DiBenedetto and A. Saldanha, Supervisory
Control of Finite State Machines, Proceedings of the 7th International Conference, CAV'95,
Liege, Belgium., pp. 279-292, July 3-5, 1995.

[2] A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, Distribution and Abstract
Types in Emerald, |EEE Transaction on Software Engineering, vol. SE-13, no. 1, pp. 65-
76, January 1987.

[3] J. Drissi and G. v. Bochmann, Submodule construction tool, in the proceeding of
CIMCA'99, Vienna, Austria, 1999.

[4] J. Drissi, N. Yevtushenko, A. Petrenko and G. v. Bochmann, On the design of a
submodule based on the input/output FSM model, Technical Report no. 1120, DIRO,
University of Montreal, 1998.

[5] A. Gill, Introduction to the theory of Finite-State Machines, Mc Graw-Hill Book Company,
Inc, 1962.

[6] R. J. v. Glabbeek, The Linear Time-Branching Time Spectrum, Proceedings of CONCUR'90,
Theories of Consurrency : Unification and Extension, pp. 278-297, Amsterdam, The
Netherlands, August 27-30, 1990.

[7] E. Haghverdi and H. Ural, An Algorithm for Submodule Construcyion, Technical report of the
Department of computer Science, University of Ottawa, 1996.

[8] S. G. H. Kelekar George W., Synthesis of protocols and protocol converters using the
submodule construction approach, Proceedings of Protocol Specification, Testing and
Verification, XI11, A. Danthine, G. Leduc, P. Wolper (Editors), 1994.

[9] K. G. Larsen, Modal Specification, Proceedings of International Workshop, Automatic
Verification Methods for Finite State Machines, pp. 232-246, Grenoble, France, June 1989.

[10] B. Lin, G. de Jong and T. Kolks, Hierarchical Optimization of Asynchronous Circuits,
Proceedings of the 32nd Design Automation Conference, pp 712-717, 1995.

[11] G. Luo, A. Petrenko and G. v. Bochmann, Selecting test sequences for partially-specified
nondeter ministic finite state machines, Technical report #864, University of Montreal, 1993.

[12] N. A. Lynch and M. R. Tuttle, AN INTRODUCTION TO INPUT/OUTPUT
AUTOMATA, MIT/LCS/TM-373, Laboratory for computer science, Massachusetts I nstitute
of Technology, Nov. 1998.

[13] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications and
Communication Protocols, ACM Trans. on Programming Languages and Systems, Vol. 5,
No. 1, pp. 1-25, Jan. 1983.

29

[14] R. Negulescu and J. A. Brzozowski, Relative Liveness : from intuition to automated
verification, Research report CS-95-32, University of Waterloo, Canada, 1995.

[15] A. Petrenko, N. Yevtushenko and G. v. Bochmann, Experiments on Nondeter ministic
Systems for the Reduction Relation, IWTCS96.

[16] A. Petrenko and N. Y evtushenko, Solving asynchronous equations, in the proceeding of
FORTE/PSTV'98, Paris, 1998.

[17] M. Phalippou, Relations d'implantation et hypotheses de test sur des automates a entrées et
sorties, Thése de Doctorat, Bordeaux, France, 1994.

[18] H. Qin and P. Lewis, Factorisation of Finite State Machines under Strong and
Observational Equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp 284-307,
July-Sept. 1991.

[19] M. W. Shields, Implicit System Specification and the Interface Equation, Computer
Journal, Vol. 32, 5, pp. 399-412, Oct. 1989.

[20] P. H. Starke, Abstract automata, American Elsevier Publishing Company, Inc-New Y ork,
1972.

[21] S. H. Unger, Asynchronous Sequential Switching Circuits, New York, Wiley-
Interscience, 1969.

[22] Y. Watanabe and R. K. Brayton, The maximal set of permissible behaviors for fsm
networks, Proc. of the IEEE/ACM International Conference on Computer-Aided Design, pp
316-320, 1993.

[23] D. Wood, Theory of Computation, John Wiley & Sons, Inc, 1987.

30

Annex : Proofs of Theorems and some Lemmas

Lemma 1: For an IOA A and a composite |OA B=B1||B2]|...||Bn, With Ia=Ig, the following
propositions are equivalent :
i - S (A|B1l1B2ll.---[IBn),
ii - for every IOA E, with |E=0Op and Og=l a, T(E||A) = S(E||B1]|B2]|---|IBn)-

Proof of Lemma 1 :
First part : (i) = (ii)

Let E be an IOA, with I[E=Oa and Og=lp, such that & (E||A). We have to prove that

I (E[|B1[B2l|-..|[Bn). For atrace o, we note oyk] the prefix of o of length k.

Suppose that there exists oe (I (g)|B,|B,)|...[1Br) Y O(E|B4]IB]I...|[B,))* With |o]=m such that :

Pre(o)e Tre.(Ieu{e}) A Prg(o)e Trg,.(Ig\A{ €}) for 1<i<n

First, we show by induction that Prg(o)e Tra.

If Pre(oy1))=¢ then Pre(op1))e Tra

If Pre(oryy)elg, since T (A||B1]IB2]l...||Br) then

Pre(or1))e Tral A A Prg(oy1))e Trg,.(Ig;u{€}) for 1<i<n = Prg(op1))e Tra

If Pre(or1))e O, since T(EJ|A) then Pre(op1))e Tre A Pra(opgy)e Trala = Pre(opgy)e Tra

Assume that Pre(ojk))e Tra for 1<k<m, we put Prg(oyk+1))=Pre(oyx)) t

If t=¢ then Pre(ofk+1))e Tra

If te g, since T (A||B1||B2|l...|[Bn) then

PrE(O'[k+1])E TralA A PrBi(O'[k+1])E TI‘Bi.(l Biu{ e}) for I<isn= PFE(G[k+1])G Tra

If te Og, since T (EJ|A) then Pre(ojk+11)€ Tre A Pra(ork+1))e Trala = Pre(ojk+1))e Tra

By the principle of induction Prg(o)e Tr a.

Since % (A||B1/|B2]|...||Bn) then

Pre(o)e Tra A Prg(o)e Trg,.(Ig\ A €}) for 1<i<n = Prg(o)e Trg, for 1<i<n

Since & (E||A) then Prg(o)e Tre.(Ieu{e}) A Pre(o)e Tra = Pre(o)e Tre

Therefore oe Tr(g|B,|1B,]!...|[B,)-

We conclude that & (E||B1/|B2||..||Bn)-
Second part : (ii) = (i)

This part is obvious since A is an | AO with 15=0p and Ox=I 5, and we have T (E||A). o

The proofs of Lemma 2, Lemma 3, Lemma 4, Lemma5 and Lemma 6 are obvious.

31

Theorem 1 : Given two deterministic IOAs A and C, and given a set In such that
(Ia\lc)u(Oc\Op)cIncl auOg, if Algorithm 1 produces an 10A Sol g then (C || Solg) <g A and
In=lg), else thereis no solution for (C |[X) <5 A with the specified input alphabet In.
Proof of Theorem 1 :
First part :
If the Algorithm 1 produce an |OA Sol g then we have to prove that (C|[Sol 5)<gA. Suppose
that there exists oe (I(cjjsol 51A)VO(C||S0l 5 ||A))* Such that :
Prc(o)e Tre.(Icwf{ €})APrsol ¢ (0)e Trsol-(Isolg\U{ €}) APra(o)e Tra.(Oau{ e})aog Tr(c|isol 5 |18)
we consider a o such that for any proper prefix the previous property don't holds.
Since : Prc(o)e Trief(c)APr solg (0)e TrenaPra(o)e Triefd) THEN oe Trr
Thisimply that o leadsto the Fail state at some step of algorithm 1 and then was removed.
Let o=0't,
IF te Ogolg THEN Prgoi(0)2 Trsolg(Iso1\U{ €}), contradiction.
IF te (IauOc) THEN after removing t, o' leads to the Fail state and o'¢ Tr(c||sol g |A)
contradiction.
We conclude that (C||Sol g)<g A.
Second part :
If the algorithm returns "NO SOLUTION", then there exists oe (1au0¢)*, with o=c'.t and
Prc(o)e Trc and Pra(o')e Tra and te (Ianlc)u(OanOc), such that (sgr)s=FailR.
Suppose that there exists an |OA B with Ig=In and (C||B)<gA. If o'=¢ then o’e Tr(c|g||A),
else by induction we show that o’e Tr(c)g||&), |€t |o’|=n and o’[k] the prefix of o’ of length k
for O<k<n,
- Since (C||B)<gA, then Prg(o’[1))e Trg.(Isw{e}) = o'[11€ Tr(c|B|A),
- Assume that o’[je Tr(c)g||&) for 1<k<n, we will show that o’[k+1)€ Tr(c|B|IA)
Since o'[kje Tr(c|||a) then Prg(o’[k))e Tra, which imply Prg(o’[k+1))e Tre.(IB{ €})
Since (C||B)<gA, then Prg(c’[k+1))e Tre.(IBw{€}) = o'[k+11€ Tr(C|BJ|A)-
By the principle of induction o’e Tr(c|g||4).
Now, if te (Ianlc) then Prc(o)e Tre.(Icu{e})APrg(o)e Trg.(Igu{e})APra(o)e Tra but
og Tr(c|B||A) Since Prc(o)¢ Trc, contradiction.
If te (OanOc) then Prc(o)e TreaPrg(o)e Tre.(Igu{e})APra(o)e Tra.(Oau{e}) but
og Tr(c|B|I&) Since Pra(o)¢ Tra, contradiction.
We conclude that there is no 10A B with |g=In such that (C||B)<gA. !

Theorem 2 : Given two deterministic IOAs A and C, and given a set In such that
(1aA\lc)u(Oc\Op)cIncl auOc, an |OA B, with Ig=In and Og=0Osg;, is asolution of the equation
(C|IX) <g Aiff B<g Solg.

32

Proof of Theorem 2 :
We will usein this proof the fact (C||Solg)<gA , i.e. for each oe (I(cjjsol 5 [1) O (C||S0l 5||A)) *
Prc(o)e Tre.(Icw{ e})APrsolo (0)e Trol.(Isolg\ U €})APra(o)e Tra.(Oa{e}) =
o€ T (Clisol 5 1A)
First part : (C||B)<gzA = B<g Solg
Consider oe (Is15\WOsol)*, we have to prove that :
o€ Trlz.(Osol\ U €}) A o€ Trp.(Igfe}) = oe Trg||sol 5)

We put o=01.t.

Casel: telglg,
we have oe Trgl; A o€ Trg.lg,
by construction of Solg, there exists o2.te Tr(cj|&) such that Prg-(02.t)=0
therefore Prc(oo.t)e Tre A Pra(o2.t)e Tra A Prg(oo.t)e Tre.lg
since (C||IB)<gAthen oe Trg
therefore oe Tr(g||Sol 5)-

Case 2: te Ogl
we have oe Trgp);.Osol A 0 TIB,
If o1#¢, by construction of Sols;, there exists o3e Tr(c)a) such that Prgy - (03)=01 and
Pr ol (03]Kk])%01 for O<k<|o3], else we put o3=¢
therefore Prc(os.t)e Tre.(Ic{ e})A Pra(oz.t)e Tra.(Oau{e}) A Prg(o3.t)e Trg
since (C||B)<zA then o3.te Tr(c)A)
If Prg(o3.t)e Trsolg, by construction of Solg there exists 03.04.t.05.t'e Tr(jef(C)|1ef(A))
which leads to Fail with o4 ((1auOc)\IN)*, o5e (1AU0c)* and t'e ((I a0l c)w(OanOC))
since (C||B)<gA then Prg(o3.04.t.05)e Trg
Now, if t'e (Ianlc) then

Prc(os.04.t.05.t')e Tre.(Icu{ €})APrg(os.04.t.05.t")e Trg.(Igu{€})
APra(os.oat.o5.t)eTra
but 03.04.t.05.t'¢ Tr(c)g||A) Since Prc(os.o4.t.o5.t')¢ Trc, contradiction.
If t'e (OaNOc) then
Prc(o3.04.t.05.t')e TrcaPrg(o3.o4.t.05.t')e Tre.(Igu{€})
APra(o3.04.t.05.1)e Tra.(Oau{e})

but 03.04.t.05.t'¢ Tr(c||g||A) Since Pra(o3.04.t.05.t") Tra, contradiction.
therefore Prg(o3.t)e Trol; and oe Tr(g||Sol 5)

We conclude that B<g Sol g

Second part : B<gSolg = (C||B)<gA
Consider oe (I(c))a)~O(c||A))* , we have to prove that
Prc(o)e Tre.(Icu{ e})APrg(o)e Trg.(Iu{ e})APra(o)e Tra.(Oau{e}) = oe Tr(c|g|A)

33

We put o=071.t, with o1€ Tr(c)8||A)
Let 0'=Prg(o1) and |o’|=n, we show by induction that o’e Trg|
If 0'[1]€ Osolg, SiNCE B<g S0l g then o'[1)€ Trspl5.Oolg A 0[11€ TrB = 0[11€ Trsolg
If o'[1]€ Isolg, then there exists a prefix o2 of o1 such that 62=03.0'71] and
Prsoiz(02)=0'[1], since (C||Sol 5)<5A then

Prc(o2)e Tre A Prggig(02)e Trsolg.l solg A Pra(o2)e Tra = o'[1)=Prsoiz(02)e Trsolg
Assume that o'[kje Trsolg for 1<k<n, we put o’'[k+1]=0"[k].t"'
If t'e Osol g, SINCE B<g;S0l5; then o'[k+1)€ Trsolg-Osolg A O'[k+1]€ TIB = O'[k+1]€ Trsolg
If t'elsol, then there exists a prefix o4 of o7 such that o4=o5.t' and Prgo|(04)=0"[k+1],
since (C||Solg)<z A then

Prc(oa)e Tre A Preolg(04)e Trsolg. I solg A Pra(oa)e Tra = 0'[k+1)=Pr solz(04)e Trsolg

By the principle of induction o’e Trgy), therefore o1€ Tr ()0l 5||A)-
Casel: te Oglg,

We have Prgy) (o)< Trg, and since B<g Solg; then Prgy-(0)e Trsolg

since (C||Sol g)<z A then

Prc(o)e Tre.(Icvu{ e})APrsoig(0)e TrsoigAPra(o)e Tra.(Oau{e}) = oe Tr(c|isol5|18)

therefore oe Tr(c)ja) and then oe Tr(c|g||A)
Case 2 : t¢ Ogpl g,

since (C||Solg)<gA

Prc(o)e Tre.(Ic e})APrsyi- (0)e Trsolg.(Isolg\U{ €})APra(o)e Tra.(Oau{e}) =
o€ Tr(Clisol 5 1A)

If te Isol then Prgyi(0)=0".te Trgoi

since B<gSolg; then o’.te Trg therefore oe Tr(cg||A)

If t¢ 1501 then Prg(o)=0’e Trstherefore oe Tr(c|g|A)
We conclude that (C||B)<gA. O

Theorem 3 : Given a deterministic IOA C, a deterministic IOAWO A, and a given input set In
such that (Iyoaa\lc)w(Oc\Ooa)cInclioavOc, if Algorithm 2 produces an IOAWOCT Sol then
(CI1OAsy1)<confA, else thereis no solution for (C|[X)<confA With the specified set of inputs In.
Proof of Theorem 3 :
First part : (C|[|OAsy|)<confA
If Algorithm 2 produces an IOAWCT Sol then we have to prove that (C|||OAso)<confA. By
definition of the relation <cgonf, thisis equivalent to (C||| OAsy)<g5 | OAa and (C||lOAs)SFA.
- (C||IIOAsy)<51OAp isequivaent to IOAg <5 Ol
Consider oe (I515UOs0l)*, by construction |0Ag) is trace included in Solg
Then o€ Trgplg.Osolg A O TroAg, = 0€ Trsolg

34

We put o=07.t, with te | g5/ and suppose that
o€ Trsolg A O€ TroAg, - Solg A 0 T OA,
Then t was removed from Tr(c||solg|[I0As), DUt te Iso; implies o1¢ Trioag,.
contradiction.
Therefore |I0OAgy <0l g
- To prove (C|[|OAgy)SPA, we have two cases :
case1l: If MTa(Soi0a,)#9 then
i - suppose that there exists Ye MTa((Soi0a,)) such that
Prioa,(Tr (cjlloAg,) ((So(cll0Ag,))) N Y=D
Thenin Step 2 or Step 5 of Algorithm 2, "NO SOLUTION" is returned, contradiction.
il - suppose that there exists 1€ Tr(cjjl0Ag,) ((So(Cll0Ag,))) Such that
Prioa,(01)=¢ and Prioa,(Tr(c|i0Ag,) ((So(Cll0Ag,)) 5)) MOUt((Soi 0A,)) =D
Thenin Step 2 or Step 5 of Algorithm 2 o3 will be removed from Tr(cjjsol [OAR)
Then o1¢ Tr(c|l10A,|[10As) and therefore o1¢ Tr(cjlo0ag,), Contradiction.
case 2 : consider o=01.te Tr(cjjl0Ag,) Such that
te (lloa,w0104,), 0'=Prioa,(0)e Trioa, and MTa((Soi0A,))22
We have o€ Tr(c|j0Ag, || OA):
i - suppose that there exists Ye MTa((Soi0A,) ') such that
Prioa,(Tr(c|iloAg,) ((So(Cjl0Ag,)))N Y=D
Thenin Step 2 or Step 5 of Algorithm 2 o will lead to Failg, and t will be removed
Therefore o2 Tr(cjj0Ag, ||| OAs), CONtradiction.
ii - suppose that there exists o2 Tr(cjj0Ag,) ((So(CJll0Ag,)) o) Such that
Prioa,(02)=¢ and Prioa,(TT(cjli0Ag,) ((So(C|ll 0Ag,)) 50,)) MOUL((Sol 0AL)) =D
Thenin Step 2 or Step 5 of Algorithm 2 oo, will be removed from Tr(cjisol5[|0Aw)»
Then o02¢ Tr (|l 0Ag, ||| 0As) @Nd therefore ooog Tr(cjioag,), Contradiction.
Therefore (C||lOAgy)SFA.
We conclude that (Cl||OAsy|)<confA.
Second part :
If the generic solution Solg does not exists, we have shown in Theorem 1 that there is no
solution for (CJ||X)<z10Aa with the specified set of input In and therefore there is no soution
for (C||X)<confA with the specified set of input In.
Now, suppose that the generic solution Solg exists, and Algorithm 2 return "NO
SOLUTION", and there exists an |0A B with (C||B)<confA,
Since (C||Sol 5)<51OAA and (C||B)<g A then by Theorem 2 B<g Sol 5,
Therefore Tr(cjjg|li0A:) < TF (CljSol [l 0Aw)

35

Since (C||B)<confA, any time we remove atrace from Tr(cj|sol5[jl0A) iN Step 2 or Step 5,
this trace can not be in Tr(c||g[l10An)

Algorithm 2 return "NO SOLUTION" if theinitial state of C||SoI5||I6ATA must be removed
due to the elimination of atracein step 2 or Step 5,

Therefore the initial state of C”B”'B\A_\/A can not satisfy a constraint, contradiction.

We conclude that there is no 10A B such that (C||B)<confA. o

Theorem 4 : Given adeterministic IOA C, a deterministic IOAWO A, and an input set In such
that (I10a,\lc)U(Oc\O10a)<InclioavOc, if Algorithm 2 produces an IOAWOCT Sol then for
any |OA B, with Ig=In and Og=Ogy;, the following propositions are equivalent :
i - (ClIB)<confA,
ii - B<contSol.
Proof of Theorem 4 :
First part : (C||B)<confA = B<confS0l
1 - The proof of B <gl10Ag
consider oe (IgUOR)* and let |o]=n, we will provethat :
o€ Trioag-(O{e})A oe Trg .(Ig U{e}) = o€ Tr(g|0A)
Since (C||B)<gA then by Theorem 2 B <z Sol .
Therefore Tr (cjig)i 0ay =TT (Cl1Sol 1l OAs)
Casel: oeTripag A 0 TrB .IB
Since Trioag, S Tr ol then oe TrgyiA o€ Trg .Ig = oe Trp
Therefore oe Tr (B|j10Aw)
Case2: oe Tripag-OB A 0TI
Since Trjoag, ST sol then o€ Trgpl.Osol A 0 Trg = o€ Trsl
We put o=01.t white te Op,
Suppose that o¢ Trioag,, SINCe o1€ Trioag, then o was removed from Trg. in Step 2
orinStep 5
- o wasremoved from Trgy|; in Step 2
Then there exists 02.te Tr(cjisol 5[l 0A) SUCh that Prgoio(02.t)=0
Moreover op.te Tr(c|B)
Let 03=04.11=Pra(02) and or=05.t1.06 such that Pra(os.t1)=03,
There exists Ye MTa((Soi0An) 5) SUCh that
YN T (Cl1Sol 5[l OAL) (So(Cl|Sol 51| 0AR)) 05.t,) =D
Since (C||B)<pA, then there exists 07.t2e Tr(c|B)(So(C||B)) os.t,) SUch that
Pra(o7.tp)=toe Y
Therefore og=(05.t1.07.t2)€ Tr(c|B|jl0AR)

36

Since B <5 Sol; and (C||Sol;)<gA then oge Tr(cjjsol 5[0A)
Contradiction with the fact that o was removed from Trg in Step 2.
- o wasremoved from Trgy| in Step 5
Then o1.t leadsto Failg, at someiteration of Step 5
Since Tr(c)l0Ax) S T (C||Sol 5[l 0Aw): ClIB is not a conforming implementation of A,
Contradiction.
Then we have oe Trjoag, and then oe Tr(g|jl0Agy)
We conclude B <5l OAg
2 - The proof of B <pSol
Consider oe Trg such that o€ Trjpag, and MTsy|((Sol0As,) 0)ZD
Let Ye MTso1((SoloAsy) o), by construction of Sol there exists
01€ Tr(C|lOAs[[| OAs) » O2€ Tr10AA Y26 MTA((So10A) 5,)
Y1 TT (CJl OAsulll OAX) ((So(CJl OAsa] OA)) 57) @D
Y3 Tr (CJll Al 0AR) ((So(Cl OAg [0A)) 67)
such that
0=Prg(01), 02=Prioas(01), Y=Pre(Y1), OCTsol((Sol0As:) 0)=PrB(Y3), Prioas(Y1)cY2
and for each fB.te Tr(cjjl oAyl 0AR) (So(Cll OAs | 0AR)) 51) With te Ojoa,,
Pra(B.t)=te Yo = B.te Y1
Pra(B.t)=te OCTa((Sol0AW 0,) = Bte Y3
i - Since o1€ Tr(C|j0Ag ||| 0A) @nd Prg(o1)e Trg then o1€ Tr(c|g|j10AW)
Since (C||B)<pA then there exists o3=04.t1€ Tr(c|B)(So(C|B))s,) Such that
Prioas(03)=t1€ Y2
Since B <5lOAgp| and (Cl[lOAsy)<510AA then 01.03€ Tr(C|ji OA|[| OAL)
Therefore o3e Y1 and then Prg(o3)e Y
Then Trg((So) 5) N Y2
Il - Let o5=06.t2e Tre((SoB)) Such that
ose Pref(OCTsol((Sol 0As) 0)) @nd 05¢ OCTsol((Sol 0As) o)
There exists 07=01.08.t2€ Tr (|| 0Ay|||0As) SUCh that Prg(og.t2)=05
Since o7e Tr (|l 0A||0As) @Nd Prg(o7)e Trg then o7e Tr(c||g|jl0A)
Since (C||B)<pA then there exists o9=010.t3€ Tr(c||B)(So(C||B)) 57) SUCh that
Prioas(09)=tze OCTA((Soi0A) 5,)
Since B <5lOAgp| and (Cl[lOAsy)<510AA then 07.09¢ Tr(Cji OAs|[| OAL)
Therefore o10=08.t2.09¢ Y3 and then Prg(o10)e OCTs1((Sol0As,) 0)
We conclude B <pSol
Second part : B<confSol = (C||B)<confA
1 - The proof of (C||B)<z510AA

37

We have B <g|OAgy and |0Agy <5 S0lg, consider oe (IguOg)* and let |o]=n, we will
provethat : oe Trspl.(O U{e})A oeTrg .(IB L{e})= oe Tr(g||sol5)
If n>1, we show by induction that ojn-11€ Tri0Ag,
If o111€ Op, since B <glOAg then oj1j€ O A o111€ Trg = o111€ Tr10Ag,
If or1€ I8, since I0Asy <50l g then oyyje I A oj11€ Trsolg = 0[1)€ Tr0Agy
Assume that ofkje Trioag, for 1<k<n-1, we put ojk+1]=07k] .t
If te O, since B <5l OAg| then ojk+1)€ Tr10Ag,-OB A O[k+1]€ TrB = O[k+1]€ Tr10Ag
If te Ig, since IOAsy <50l then ojk+11€ Trioag, IB A Ofk+1]€ Trsolg =
O[k+1]€ Tr0OAgy
By the principle of induction we have ojn-1j€ Tri0Ag,
Casel: o€ Trgylg.Osolg A 0TI
Since B <glOAgy then oe Trioag,-OB A e Trg = o€ Tr|oAg
And since |OAgy <5 Solg then oe Trgy) .0 A 0 Trioag, = 0 Trolg
Therefore oe Tr(g||sol 5)
Case2: 0eTrgg A 0eTrp.lp
Since I0Agy| <5 Solg then oe TrgpizA 0 Trioag, 1B = o€ Trioag
And since B <g10Ag then oe Trioag, A 0 Trg .Ip = o€ Trg
Therefore oe Tr(g||sol 5)
Therefore B <g Solg, which is equivaent by Theorem 2 to (C||B)<g|OAA
2 - The proof of (C||B)<pA
suppose that MTa(Soi0A,)#D and consider an Ye MTa(Sol0AL)
By construction of Sol there exists Yo Tr(c|ji0As || 0AA) SUch that Y2z@, and for each
element Be Y2 Prioa.(B)e Y
a- YonOczd
There exists ye Y2nOc such that ye Tr (¢l Ayl OAw)
Since (C||B)<g|1OAa then
Prc(y)e Trc APrg(y)e Tre.Ig APrioa.(Y)e Trioa, = Ye Tr(c|B|ji0An)
Therefore Prioa(Tr(c|g))N Y20
b - YonOc=2
Y3=Prg(Y2)e MTsol (SolOAsy)
Since B<pS0l, there exists ose Y3 such that ose Trg
Therefore there exists oge Y2 such that Prg(os)=05
Since oge Tr(C|jl0Asy ||| 0As) then Prc(os)e Tre
Moreover Prg(og)=ose Trg , Then oge Tr(c|B)
Therefore Prioa,(Tr(c|g))NY2D
il - Suppose that there exists o' Tr(cg) such that Prjpa,(0™)=¢

38

Let [o"[=n, we show by induction that ¢"'e Tr|pag,
If 0"[17€ I, since (C|lOAsy))<510Ap then
Prc(o”[17)e Trc APrg(o”[1])€ Tri0Asy-IB APr10AL(0"'[1])€ Trioas = 0''[1]€ Tr0Ag,
If 0"[1)€ O, since B <glOAgy then
0'111€ TroAs-OB A 0'[11€ TrB = 0'[1€ Tr0OAgy
Assume that 6"'[kj€ Trioagy fOr 1<k<n, we put o"'[k+1]=0""[k].U
If uelg, since (C|[lOAs)<51OAA then
Prc(o”[k+1))€ Trc APrg(o”'[k+1])€ Tri0Ag,-IB APrioa(0"[k+1])€ Trioa, =
O’ '[k+1]€ TrOAs,
If ue Op, since B <glOAg, then
0"'[k+1]€ Tr0OAs-OB A O'[k+1]€ TrB = 0"'[k+1]€ Tr0OAg
By the principle of induction we have ¢"'e Trioag,
Therefore 6" Tr (||l OAs ||| OAL)
Since (C|[IOAsol)<PA, there exists Y4 Tr(cC||lOAs||l OAA) SUch that Ya=0,
Ys5=Prg(Y4)cOCTsol (Soi0As,) and for each element Be Y4, 6" is a prefix of B and
Prioas(B)e OCTA(Sol0An)
Since B <pSal, there exists oge Trg(Seg) such that oge Y5
Moreover there exists o1 Y4 such that o10e Tr (Cjl0Ag|[|0AA) @ Prg(o10)=09
Therefore o10e Tr(c||g|jl0AL) @ Prioaa(o10)€ OCTA(SoA)-
Consider o=01.te Tr(c||g) such that te (Ij0a,U010A,) and 62=Prioa.(0)e Tri0A
We put 6'=Prg(o) and let |o'|=n, we show by induction that ¢'e Tr|oag,
If o'[17€ I, then there exists a prefix o3 of o such that Prg(o3)=0'[1]
Since (C||lOAsy)<510AA Then
Prc(o3)e Trc APrg(o3)e Trioag,- 1B APrioas(03)€ Trioa, = o'[11€ TroAg
If o'[1]€ O, since B <510Ag then c’[1]€ O A 0'[11€ Trg = 0'[1]€ Tr0Ag
Assume that o'[k)€ Trioag, for 1<k<n, we put o’[k+1]=0"[k].U
If ue I, then there exists aprefix o4 of o such that Prg(o4)=0"[k+1]
Since (C||lOAsy)<510AA Then
Prc(oa)e Trc APrg(oa)e Trioag,- 1B APra(og)e Tra = o'[k+11€ TrioAgy
If ue O, since B <glOAg then o'[k+1]€ Tr0Ag,-OB A O'[k+11€ TrB =
O'[k+1]€ Tr10Agy
By the principle of induction we have o'e Tr|oag,
Therefore oe Tr(Cj| OAs || OAA)
iii - Now suppose that MTa((Soi0A.) 5,)%d and consider an Ye MTa((Sol0Ax) 5,)

By construction of Sol there exists Y2 Tr (cjj OAsy [l 0Ax) ((So(CJl OAsu [l OAR)) 5) Such that
Y2, and for each element Be Y2 Prioa.(B)e Y

39

a- YonOczd
There exists ye Y2Oc such that oye Tr (c||0Ag || 0As)
Since (C||B)<gIOAa then
Prc(oy)e Trc APrg(oy)e Tra.IB APrioaa(oy)e Trioa, = oye Tr(c|B|ll0As)
Therefore Prioas(Tr(cjig)((So(cB)) 0)) N Y#D
b - YonOc=2
Y3=Prp(Y2)e MTsol ((SoloAgy) o)
Since B<pS0l, there exists ose Y3 such that ose Tre((SoB) o)
Therefore there exists oge Y2 such that Prg(os)=05
Since o.06€e Tr(C|l0A|0A) then Prc(o.os)e Tre
Moreover Prg(o.0)=0".05¢ Trg , Then o.06€ Tr(c|B)
Therefore Prioas(Tr(c|ig)((So(clB)) 0)) N Y#D
Iv - Suppose that there exists "' Tr(c|B)((So(C||B)) o) SUch that Prioa,(0™)=¢
Let [o"[=n, we show by induction that ¢"'e Tr|pag,
If 0"[1)€ I, then there exists a prefix o7 of 0.0" such that Prg(o7)=0'.0"[1)
Since (C||IOAsy)<510AA then
Prc(o7)e Tre APrg(o7)e Trioas, 1B APrioas(07)e Trioa, = 0'.0"[1]€ Trioag,
If 0"[1)€ O, since B <glOAg then
0.0"[1]€ Tr10As,-OB A 0.0 [11€ TrB = 0'.0"[1]1€ Tr0Ag
Assume that 0’.0"'[kj€ Trioag, for 1<k<n, we put ¢'.0"[k+1]=0".0""[k].U
If ue Ig, then there exists a prefix og of 0.0" such that Prg(og)=0".0"[k+1]
Since (C||IOAsy)<510AA then
Prc(og)e Trc APrg(og)e Trioag,-|B APT10AL(08)€ Trioa, = 0.0"[k+1]€ Tr0OAg
If ue Op, since B <glOAg, then
0'.0"[k+1]€ Tr0Asy-OB A 0.0 " [k+1]€ TrB = 0'.0"[k+1]€ Tr0Ag
By the principle of induction we have ¢'.0"€ Tr|oag,
Therefore 0.0"'e Tr (C| OAsy || OAL)
Since (C||lOAsol)<pA, there exists Y4 Tr (]l OAsll 0A:) (So(Cll OAsa I OA)) o) SUch that
Y420, Y5=Prg(Y4)cOCTsol ((Soi0Ag,) o) and for each element e Y4, 0" is a prefix of
B and Prioax(B)e OCTA((So10AW) 0)
Since B <pSal, there exists oge Tre((SoB)) Such that oge Ys
Moreover there exists o10e Y4 such that 6.010€ Tr(C|ji0As || 0AA) @ Prg(o10)=09
Therefore o.010€ Tr(c|g|jl0As) @Nd Prioaa(c10)€ OCTA((Soa) 5y)-
We conclude that (C||B)<pA. O

40

