
A Petri Net Based Method for Deriving Distributed Specification
with Optimal Allocation of Resources

Hirozumi Yamaguchi
Graduate School of Eng. Sci.

Osaka University
Toyonaka, Osaka, 560-8531, Japan

h-yamagu@ics.es.osaka-u.ac.jp

Khaled El-Fakih
School of Info. Tech. and Eng.

University of Ottawa
Ottawa, Ontario, K1N 6N5, Canada

kelfakih@site.uottawa.ca

Gregor v. Bochmann
School of Info. Tech. and Eng.

University of Ottawa
Ottawa, Ontario, K1N 6N5, Canada

bochmann@site.uottawa.ca

Teruo Higashino
Graduate School of Eng. Sci.

Osaka University
Toyonaka, Osaka, 560-8531, Japan

higashino@ics.es.osaka-u.ac.jp

Abstract

In this paper, we present a method for the synthesis of ex-
tended Petri net based distributed specification. Although a
lot of synthesis methods have been proposed, only a few syn-
thesis methods have treated resources (computational data)
such as databases and files. In contrast to previous meth-
ods that assume some fixed resource allocation, our method
finds an optimal resource allocation that optimizes the de-
rived distributed specification, based on some reasonable
communication cost criteria. The method starts by identi-
fying the set of rules for deriving a protocol specification
from a given service specification. Based on these rules, an
optimal resource allocation problem is formulated using an
integer linear programming model. An example application
is discussed.

1. Introduction

Synthesis methods have been used (for surveys see [2])
to derive a specification of a distributed system (hereafter
called protocol specification) automatically from a given
specification of the service to be provided by the distributed
system to its users (called service specification). The ser-
vice specification is written like a program of a centralized
system, and does not contain any specification of the mes-
sage exchange between different physical locations. How-
ever, the protocol specification contains the specification of
communications between protocol entities (PE’s) at the dif-
ferent locations.

A number of existing protocol synthesis strategies have

been described in the literature. The first strategy, [3, 6],
aims at implementing complex control-flows using several
computational models such as LOTOS and Petri nets. The
second strategy, [7], aims at satisfying the timing con-
straints specified by a given service specification in the de-
rived protocol specification. This strategy deals with real-
time distributed systems. The last strategy, [8, 4, 5], deals
with the management of distributed resources such as files
and databases. The objective here, is to determine how
the values of these distributed resources are updated or ex-
changed between PE’s for a given fixed resource allocation
on different physical locations.

Some methods in the last strategy have tried to derive a
protocol specification with minimum communication costs.
Especially, the methods presented in our previous research
work [4, 8], minimize the number of messages exchanged
between PE’s for a given fixed resource allocation. How-
ever, in the context of distributed applications, one also has
to decide on an optimal allocation of these resources, since
this allocation significantly affects the communication costs
of the derived PE’s.

As an example, we consider a Computer Supported Co-
operative Work (CSCW) software development process.
This process is distributed among engineers (developers,
designers, managers and others). Each engineer has his
own machine (PE) and participates in the development pro-
cess using distributed resources (drafts, source codes, ob-
ject codes, multimedia video and audio files, and others)
placed on different machines. Considering the need for us-
ing these resources between different computers, we would
like to derive, using a protocol synthesis method, all en-
gineers’ sub-processes (protocol specification) knowing the
whole software development process (service specification)

i>R1

[R1<-R2+i,
 R2<-R1+R2+i]

G1 ? i

R1 R2

G1

i>R1

[R1<-R2+i,
 R2<-R1+R2+i]

G1 ? i

R1 R2

G1
3

1

fire

2 5 6
(a) (b)

transition t transition t

Figure 1. Register Values and Token Loca-
tions before and after Firing of Transition in
PNR

and decide on an allocation of the resources that would min-
imize the communications costs.

In this paper, we propose a new method to derive a pro-
tocol specification with an optimal allocation of resources
from a given service specification. Both service and proto-
col specifications are described using extended Petri nets.
The method starts by identifying a set of rules for deriving
a protocol specification. Based on these rules, an optimal
resource allocation problem is formulated using an integer
linear programming (ILP) model. This problem is about de-
termining an optimal allocation of resources that minimizes
the communication costs of the protocol specification. Our
ILP model can also treat several reasonable cost criteria that
could be used in various application areas for deriving pro-
tocol specifications. Particularly, we have considered the
following cost criteria: (a) communication channel costs,
(b) the size of messages to be exchanged between differ-
ent PE’s, (c) the number of messages based on frequency of
executions, and (d) resource placement costs.

2. Service Specification and Protocol Specifica-
tion

2.1. Petri Net Model with Registers

We use an extended Petri net model called a Petri Net
with Registers (PNR in short) to describe both service and
protocol specifications of a distributed system.

Each transition t in PNR has a label 〈C(t), E(t),S(t)〉,
where C(t) is a pre-condition statement (one of the firing
conditions of t), E(t) is an event expression (which repre-
sents I/O) and S(t) is a set of substitution statements (which
represents parallel updates of data values). Consider, for
example, transition t of Fig. 1 where C(t) =“i > R1”,
E(t) =“G1?i” and S(t) =“R1 ← R2 + i, R2 ← R1 +
R2 + i”. i is an input variable, which keeps an input value
and its value is referred by only the transition t. R1 and R2

are registers, which keep assigned values until new values
are assigned, and their values may be referred and updated
by all the transitions in PNR (that is, global variables). G1

is a gate, a service access point (interaction point) between

users and the system. Note that “?” in E(t) means that E(t)
is an input event.

A transition may fire if (a) each its input place has one
token, (b) the value of C(t) is true and (c) an input value is
given through the gate in E(t) (if E(t) is an input event). As-
sume that an integer of value three has been given through
gate G1, and the current values of registers R1 and R2 are
1 and 2, respectively. In this case the value of “i > R1” is
true and the transition may fire. If it fires, the event “G1?i”
is executed and the input value three is assigned to input
variable i. Then “R1 ← R2 + i” and “R2 ← R1 +R2 + i”
are executed in parallel. Therefore after the firing, the to-
kens are moved and the values of registers R1 and R2 are
changed to five (= 2+3) and six (= 1+2+3), respectively
(Fig. 1(b)).

Formally, E(t) is one of the following three events:
“Gs !exp”, “Gs ?iv”, or “τ”. “Gs !exp” is an output event
and it means that the value of expression “exp”, whose ar-
guments are registers, is output through gate Gs. “Gs ?iv”
is an input event and it means that the value given through
Gs is assigned to the input variable “iv”. “τ” is an internal
event, which is unobservable from the users. S(t) is a set
of substitution statements, each of the form “Rw ← expw”,
where Rw is a register and expw is an expression whose ar-
guments are from the input variable in E(t) and registers. If
t fires, E(t) is executed followed by the parallel execution
of statements in S(t).

2.2. Service Specification

At a highly abstracted level, a distributed system is re-
garded as a centralized system which works and provides
services as a single “virtual” machine. The number of ac-
tual PE’s and communication channels among them are hid-
den. The specification of the distributed system at this level
is called a service specification and denoted by Sspec.

Actual resources of a distributed system may be located
on some physical machines, called protocol entities. How-
ever, only one virtual machine is assumed at this level.

Fig. 2(a) shows Sspec of a simple database system
which has only three transitions. The system receives a
keyword (input variable i1) through gate G1, retrieves an
entry corresponding to the keyword from a database (reg-
ister R1), and stores the result to register R2. This is done
on transition t1. Then the system receives another keyword
(input variable i2) through gate G2, retrieves an entry cor-
responding to the keyword and the retrieved entry (register
R2) from another database (register R3), and stores the re-
sult to register R4. This is done on transition t2. Finally the
system outputs the second result (the value of register R4)
through G1 and returns to the initial state.

2.3. Protocol Specification

A distributed system is a communication system which
consists of p protocol entities PE1, PE2, ... and PEp. We

R3 R4 R1 R2

G1 G2

keyword(i1)

keyword(i2)

G1?i1

Rtmp1

ID(Mb2, w)

[Rtmp1.R2<-w]

ID(Mb2, w)

[Rtmp1.i1<-i1]

ID(Mb1, w)

[Rtmp3.i1<-w]
g31?w

[R2<-retrieve(R1, Rtmp3.i1)]
τ

g13?w

g13!Mb1[Rtmp1.i1]

g32!Mg1[]

g32?w

g31!Mb2[R2]

g23?w

[Rtmp1.i2<-w]
g12?w

true

[R4<-retrieve
 (R3, Rtmp1.R2, Rtmp1.i2)]

τ
true

G1!R4
true

true

true

ID(Ma2, w)

Rtmp2 Rtmp3

g12g13 g21 g31g32g23

[Rtmp2.i2<-i2]
G2?i2

true true
g21!Mb2[Rtmp2.i2] g23!Ma2[]

τ
true

τ
true

PE1 PE2 PE3

ID(Mg1, w)

true

G1?i1
[R2<-retrieve(R1,i1)]

keyword(i1)

keyword(i2)
G2?i2
[R4<-retrieve(R3,R2,i2)]

G1!R4
[]

true

R1 R2 R3 R4

G1 G2

(a) Service Specification (b) Protocol Specification

t1

t2

t3

Figure 2. Service Specification and Protocol Specification

assume a duplex and reliable communication channel with
infinite capacity buffers at both ends, between any pair of
PEi and PEj . The PEi (PEj) side of the communication
channel is represented as gate gij (gji). Moreover, we as-
sume that some resources (registers and gates) are allocated
to certain PE’s of the distributed system.

Two PE’s communicate with each other by exchanging
messages. If PEi executes an output event “gij !M [Rw]”,
the value of register Rw located on PEi is sent to PEj

through the communication channel between them and put
into the buffer at PEj’s end. M is an identifier to distin-
guish several values which may exist at the same time on
the same channel. PEj can take the value identified by M
from the buffer, by executing an input event “gji?w” with a
pre-condition ID(M,w). ID(M,w) is a predicate whose
value is true iff the identifier in input variable w is M . Note
that more than one register’s or input variable’s value can be
sent at a time. If a received data contains multiple values,
they are distinguished by suffix such as w.R1 and w.i. A
set of an identifier and register/input values is called a mes-
sage. A message may contain no value and sending such a
message is represented as an output event “gij !M []”.

In order to implement a distributed system which con-
sists of p PE’s, we must specify the behavior of these PE’s.
A specification of PEk is called a protocol entity specifi-
cation and denoted by Pspeck. A set of p protocol entity
specifications 〈 Pspec1, ..., Pspecp 〉 is called a protocol
specification and denoted by Pspec〈1,p〉. We need a proto-
col specification to implement the distributed system.

As an example, let us assume that there are three PE’s
PE1, PE2 and PE3 in order to implement the service spec-
ification of Fig. 2(a). We also assume that an allocation of
resources to these PE’s has been fixed as follows. PE1 has
the gate G1 and the registers R3 and R4, PE2 has the gate

G2, and PE3 has the registers R1 andR2. Note that in addi-
tion to these registers, we assume that eachPEi has another
register Rtmpi to keep received values given through gates
(inputs and message contents)1. Fig. 2(b) shows an exam-
ple of Pspec〈1,3〉, which provides the service of Fig. 2(a),
based on this allocation of resources.

According to the specification of Fig. 2(b), PE1 first
receives an input (input variable i1) through G1 and stores
it to Rtmp1.i1. Then it sends the value of Rtmp1.i1 to
PE3 as a message, since PE3 needs the value of i1 to
change the value of R2. PE3 receives and stores the value
to Rtmp3.i1. Then it changes the value of R2 using its own
value and the value of Rtmp3.i1, and sends a message to
PE2. When PE2 receives the message, PE2 knows that it
can now check the value of C(t2) and execute E(t2). PE2

receives an input (input variable i2), stores it to Rtmp2.i2,
and sends two messages. One is to send the value of i2
to PE1 and another is to incite PE3 to send the value of
R2 to PE1. PE1 receives these values and stores them to
Rtmp1.i2 andRtmp1.R2, respectively. Then it changes the
value of R4. Finally, PE1 outputs the value of R4 and PE1,
PE2 and PE3 return to their initial states.

3. Protocol Derivation

A method for deriving a protocol specification from
a given service specification is described in this section.
It is based on the simulation of each transition tx =
〈C(tx), E(tx),S(tx)〉 of the service specification by corre-

1Rtmpi can contain several values. The values can be distinguished
by adding the name of the value as suffix, such as Rtmp1.R3. Here, we
can realize such a register that contains several values, by using several
registers. However, for simplicity of discussion, we use these registers.

sponding PE’s in the protocol specification. The principle
of the method introduced in this paper is as follows.

• The PE that has gate Gs used in E(tx) (say
PEstart(tx)) checks the value of C(tx) (pre-condition
statement) and executes E(tx) (event expression).

• After that, the PE sends messages calledα-messages to
the PE’s which have the registers used in the arguments
of S(tx) (substitution statements).

• In response, these PE’s send the register values to the
PE’s which have the registers to be updated in S(tx)
(PEsubst(tx) denotes the set of those PE’s) as mes-
sages called β-messages.

• The substitution statements are executed and notifica-
tion messages called γ-messages are sent to those PE’s
which will start the execution of the next transitions.

In Fig. 3, we present the details of our derivation method
as a set of rules which specify how PE’s execute each tran-
sition tx of Sspec. These rules are further classified into
action and message rules. Action rules specify which PE
checks the pre-condition and executes the event and substi-
tution statements of tx. Message rules specify how the PE’s
exchange messages, and the contents and types of these
messages.

Three types of messages are exchanged for the execution
of tx. (1) α-messages are sent by the PE that starts the exe-
cution of tx (i.e. PEstart(tx)) to inform those PE’s who need
to send their registers’ values to other PE’s, that they can go
ahead and send these values. Thus, an α-message does not
contain values of registers. (2) β-messages are sent in order
to let each PE which executes some substitution statements
of tx (i.e. PEk∈PEsubst(tx)), know the timing and some
values of registers’ it needs for executing these statements.
(3) γ-messages are sent to each PEm∈PEstart(tx • •), note
that tx • • is the set of each next transition of tx, to let it
know the timing and some values of registers it needs to
start executing the next transitions (i.e. transitions in tx ••).

4. Optimal Resource Allocation

4.1. On Optimal Resource Allocation

In our previous work[8], we have shown that the num-
ber of messages exchanged between different PE’s for the
execution of a transition in Sspec may not be unique even
for a given fixed allocation of resources. This is due to the
fact that a resource may be allocated to more than one PE
and several resource values may be sent in one message.
However, due to the limitations of our assumption that the
resources are fixed, more messages have to be exchanged
between the derived PE’s, if these resources are not already
optimally allocated between different PE’s.

(a) Service Specification (b) Protocol Specification

PE1 PE2

G2?yG2?y

G2!Rz

G1?xG1?x
[Rx<-x]

[Rz<-merge(Rx, y)]

Rx

Rz

t1

t2

t3

G1!Rzt4 G1!Rz

PE1 PE2

G1?x

(notification)

(notification)

(value of y)

G2!Rz

(value of x)

[Rz<-merge(Rx, y)]
(value of Rz)

(c) Protocol Specification
 with Optimal Allocation
 of Resources

[Rx<-x]

G2!Rz

G1!Rz

[Rz<-merge
 (Rx, y)]

G2?y

[Rx<-x]

Rx

Rz

Rx

Rz

(value of Rz)

Figure 4. Optimal Allocation

For illustration, we give a simple example which de-
scribes a process of merging two codes (input variables x
and y) into one code (register Rz) developed by two en-
gineers (assigned to gates G1 and G2) on different sites,
PE1 and PE2. Fig. 4(a) shows the service specification,
and its corresponding protocol specifications with different
resource allocations are given in Fig. 4(b) and in Fig. 4(c).
The protocol specification of Fig. 4(b) needs four messages,
while that of Fig. 4(c) needs only two.

In most realistic applications, one may want to consider
some other communication cost criteria along with the num-
ber of messages exchanged during protocol derivation. If
we consider, for example, the different costs of placing re-
sources on different PE’s, then deciding on an optimal allo-
cation of these resources would significantly affect the com-
munication costs of a derived specification.

We consider communication costs as an important ele-
ment in the development of distributed applications. To
reduce these costs, an optimal allocation of resources that
minimizes them has to be determined. In the following sub-
section, we build a model that decides on an optimal allo-
cation that minimizes the number of messages exchanged
between different PE’s, then later in Section 5 we incorpo-
rate into this model some other cost criteria that we consider
important for deriving distributed specifications with mini-
mum communication costs.

4.2. Integer Linear Programming Model for Pro-
tocol Derivation with Minimum Communica-
tion Costs

We introduce the following 0-1 variables in order to
determine, using our derivation method, an optimal re-
source allocation that minimizes the number of messages
exchanged between different PE’s.

We let tx = 〈C(tx), E(tx),S(tx)〉 be a transition of Sspec.
[Action Rules]

(A1) The PE which has the gate appearing in E(tx) (denoted by Gs) checks that

(a) the value of C(tx) is true,

(b) the execution of the previous transitions of tx has been finished and

(c) an input has been given through Gs if E(tx) is an input event.

Then the PE executes E(tx). This PE is denoted by PEstart(tx).

(A2) After (A1), the PE’s which have at least one register whose value is changed in the substitution statements S(tx) execute the
corresponding statements in S(tx). The set of these PE’s is denoted by PEsubst(tx).

[Message Rules]

(Mβ1) Each PEk∈PEsubst(tx) must receive at least one β-message from some PE’s (each called PEj) in order to know the timing and
values of registers it needs for executing its substitution statements (see (Mβ2)), except where PEk=PEstart(tx), in this case PEk

already knows the timing to start executing its substitution statements of tx.

(Mβ2) If PEk∈PEsubst(tx) needs the value of some register (say Rz) in order to execute its substitution statements, then PEk must receive
Rz through a β-message if Rz is not in PEk.

(Mβ3) Each PEj that sends some values of registers to PEk∈PEsubst(tx) through a β-message, knows the timing to send these values
by receiving an α-message from PEstart(tx). Note, if PEj=PEstart(tx) then PEj knows the timing to send these values without
receiving an α-message.

(Mα) After (A1), the only PE that can send α-messages to the PE’s which need them is PEstart(tx).

(Mγ1) Each PEm∈PEstart(tx • •), where tx • • is the set of next transitions of tx, must receive a γ-message from each PEk∈PEsubst(tx)
after (A2), except where m = k. This allows PEm to know that the execution of the substitution statements of tx had been finished.

(Mγ2) Each PEm∈PEstart(tx • •) must receive at least one γ-message from some PEl (where m �= l) in order to know that the execution
of tx had been finished and/or to know some values of registers it needs to evaluate and execute its condition and event expression,
respectively.

(Mγ3) Each PEl that sends a γ-message to PEm∈PEstart(tx • •) :

(a) must be in PEsubst(tx) (see (Mγ1)), or

(b) must receive an α-message from PEstart(tx) to know the timing to send the γ-message to PEm, or

(c) it is itself PEstart(tx). In this case, PEl sends the γ-message to let PEm know the timing and/or some values of registers to
start evaluating and executing its condition and event expressions.

(Mγ4) If PEm∈PEstart(tx • •) needs the value of some register (say Rv) in order to evaluate and/or execute its substitution statements,
then PEm must receive Rv through a γ-message if Rz is not in PEm.

Figure 3. Derivation Method in Detail

• Each of the following variables represent the fact that
a message is sent from one PE to another.

– αx
p,q (βx

p,q, γx
p,q): its value is one iff an α-message

(β-, γ-) is sent from PEp to PEq in the execution
of transition tx; otherwise zero.

– βx
p,q [Rw] (γx

p,q [Rw]): its value is one iff the β-
(γ-) message sent from PEp to PEq contains the
value of register Rw; otherwise zero.

• ALCp[Gs] (ALCp[Rw]) : its value is one iff gate Gs

(register Rw) is allocated to PEp; otherwise zero.

• PEstartxp: its value is one iff PEp starts the execution
of tx; otherwise zero.

• PEsubstxp : its value is one iff PEp executes one or
more substitution statements of tx; otherwise zero.

Using the above variables, we determine an optimal re-
source allocation that minimizes the number of messages
exchanged between different PE’s by minimizing the fol-
lowing objective function, subject to constraints (1) to (16)
described below.
Objective Function:

Min :
∑

x

∑

p

∑

q

(
αx

p,q + βx
p,q + γx

p,q

)

The following constraints are derived from the defini-
tion of their variables. According to Constraint (1), if a
β-message is sent from PEj to PEk in the execution of tx
and it contains the value Rw, then this message should have
been sent through a β-message. Moreover, in order for PEj

to send Rw, Rw should be allocated to it. The same reason-
ing applies to Constraint (2).

βx
j,k + ALCj [Rw]− 2βx

j,k[Rw] ≥ 0 (1)

γx
l,m + ALCm[Rw]− 2γx

l,m[Rw] ≥ 0 (2)

According to rule (A1), the PE that has the gate Gs ap-
pearing in event expression E(tx) (say Gs) must be the one
that executes this expression (i.e. PEstart(tx)).

PEstartxi − ALCi[Gs] = 0 (3)

According to rule (A2), each PE that has a register Rw

whose value is changed in the set of substitution statements
S(tx), must be the one that executes this substitution state-
ment.

PEsubstxk − ALCk[Rw] ≥ 0 (4)
∑

w

ALCk[Rw]− PEsubstxk ≥ 0 (5)

Constraints (6) to (13) directly correspond to message
exchange rules (Mβ1) to (Mγ4) of Fig. 3.

The following Constraint corresponds to rule (Mβ1). It
means that at least one β-message should be sent to PEk

or PEk =PEstart(tx), if PEk ∈PEsubst(tx).
∑

j

βx
j,k + PEstartxk − PEsubstxk ≥ 0 (6)

Constraint (7) corresponds to rule (Mβ2).

∑

j

βx
j,k[Rz] + ALCk[Rz]− ALCk[Rw] ≥ 0 (7)

Constraint (8) corresponds to rule (Mβ3).

PEstartxj +
∑

i

αx
i,j − βx

j,k ≥ 0 (8)

Constraint (9) corresponds to rule (Mα).

PEstartxi − αx
i,j ≥ 0 (9)

Constraint (10) corresponds to rule (Mγ1).

γx
k,m − PEsubstxk − PEstartxm ≥ −1 (10)

Constraint (11) corresponds to rule (Mγ2).

∑

l

γx
l,m + PEstartxm + PEsubstxm − PEstartym ≥ 0

(11)
Constraint (12) corresponds to rule (Mγ3).

PEstartxl +
∑

i

αx
i,l + PEsubstxl − γx

l,m ≥ 0 (12)

Constraint (13) corresponds to rule (Mγ4).

∑

l

γx
l,m[Rv] +ALCm[Rv] ≥ 1 (13)

Constraints (14) and (15) restrict the possible number
of PE’s which have a gate Gs and a register Rw, respec-
tively. Note, as described in Constraint (16), we use a reg-
ister (called Rtmpi) in PEstartxi to save the input variable
used in the event expression of tx (say ix).

∑

i

ALCi[Gs] = 1 (14)

∑

i

ALCi[Rw] ≥ 1 (15)

ALCi[Rtmpi.i
x] = PEstartxi (16)

5. Other Cost Criteria

In this section, we present and incorporate into our ILP
model some cost criteria that could be used in minimizing
the communication costs of the derived protocol specifica-
tion. One may select or combine these criteria according to
the application area and its underlying network architecture.

Considering Communication Channels Costs For ap-
plication areas that use communication channels with dif-
ferent channel costs, we let ChannelCostp,q denote the
cost to send a message from PEp to PEq . Then we incor-
porate these costs into our ILP model as follows:

Min :
∑

x

∑

p

∑

q

ChannelCostp,q∗
(
αx

p,q + βx
p,q + γx

p,q

)

Considering Size of Messages In most application ar-
eas, the size of resources exchanged between different PE’s
plays an important factor in determining their communica-
tion costs. We let Size[Rw] denote the size of resource Rw,
and reformulate our ILP model objective function as shown
below.

Min :
∑

x

∑

p

∑

q

(
αx

p,q + βx
p,q + γx

p,q

+
∑

w

Size[Rw] ∗ (
βx

p,q [Rw] + γx
p,q [Rw]

)
)

Note that we consider the size of messages that do not
contain values of registers relatively small (i.e. equal to
one).

Considering Execution Frequencies of Transitions In
some application areas, the structure of the service speci-
fication includes many loops and each loop includes many
transitions. Consequently, in such areas, one might want
to consider the frequencies of transitions execution during
the protocol derivation. In general, this is a dynamic prop-
erty of the system, however, an approximation of the firing

[R2<-modify(R2,R1,i2)] [R4<- modify
(R4, R2,i5)]

[R8<- review(R2,i3)]

a?i1

b?i3

[R3<- modify(R3, R1,i4)]

Ac(R8)

Fb(x)

b?i2

c?i4
[R6<- modify

(R6, R2, R3, R4,i7)]

[R5<- compile(R4)]

[R7<- test(R6, R5)]
c!R7

c!R7

Ac(R7)b?i6b?i5

 d!R8

c!R6

d!R8

c!R3 c?i7

11t

10t

9t

6t

5t
3t2t

1t

4t

8t

7t

12t

13t

[R9<-update(R9, R8)]

Fb(R7)

b!R4

c!R6

14t

15t

16t
a! "end"

[R9<- update(R9, R7)]

gate b gate c

R2 :

R1 :

R3 :

Requirements Change

Software Design

Test Plan

R4 :

R5 :

R6 : Unit Test Package

Source Code Test ResultsR7 :

Object Code R8 :

R9 :

Review Results

Project Plans

gate a

[R1<-i1,
R9<plan(x)]

gate d

Project
Manager

Design
Engineer

QA
Engineer

Design
Reviewew

Figure 5. A Workflow of Software Develop-
ment

frequency may be derived by firing vector analysis or sim-
ulation of Petri nets [1], which has been investigated exten-
sively.

Let F x denote the (approximate) firing frequency of a
transition tx. We incorporate F x into our ILP model as
shown below.

Min :
∑

x

F x ∗
∑

p

∑

q

(
αx

p,q + βx
p,q + γx

p,q

)

Considering Resource Placement Costs In application
areas where there are major differences in the costs of plac-
ing resources on different physical locations (PE’s), one
might want to consider these differences during protocol
derivation. We let P laceCostp[Rw] denote the cost of plac-
ing resource Rw on PEp, and we formulate our ILP model
objective function as follows:

Min :
∑

x

∑

p

∑

q

(
αx

p,q + βx
p,q + γx

p,q

)

+
∑

p

∑

w

P laceCostp[Rw] ∗ALCp[Rw]

6. Application and Experimental Results

Protocol synthesis methods have been applied to many
applications such as communication protocols, factory
manufacturing systems , distributed cooperative work man-
agement and so on. In this section, we apply our deriva-
tion method to the distributed development of software
which involves four engineers (project manager, design en-
gineer, quality assurance engineer, and design reviewer), in
three different connected development sites (site1, site2, and
site3, respectively). The software development process in-
cludes modification and compilation of source code, test of

site1 site2 site3

site1 1 10
site2 1 5
site3 10 5

Table 2. Channel Costs

R1 R2 R3 R4 R5 R6 R7 R8 R9

10 50 20 100 200 30 10 5 5

Table 3. Sizes of Resources

F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8

1 4 4 3 1 1 1 10

F 9 F 10 F 11 F 12 F 13 F 14 F 15 F 16

10 10 10 9 1 1 1 1

Table 4. Firing Frequencies of Transitions

Resource / Engineer site1 site2 site3

R1 1 10 10
R2 1 1 3
R3 10 8 1
R4 7 1 1
R5 7 14 1
R6 15 10 2
R7 1 1 1
R8 1 20 20
R9 1 10 10
Ga 20 10 3
Gb 4 8 9
Gc 1 5 8
Gd 1 5 5

Table 5. Resource Placement Costs

the generated object code, and its review. The engineers co-
operate with each other to finish these sub-sequential tasks.

Fig. 5 shows a workflow model of the above develop-
ment process using PNR, where the engineers and the re-
sources needed to accomplish the tasks are indicated. The
reader may refer to [9] for a detailed description of the mod-
eling concept.

We regard this workflow as a service specification and
we derive the corresponding protocol specifications with
minimum communication costs using the different cost cri-
teria presented in the previous section. The specification
for each PE in the derived protocol specification will corre-
spond to the workflow in one site. Of course each engineer
could be assigned only to one site.

We have developed an automated system to generate the
ILP model and its constraints from the given specification in
order to decide on an optimal resource allocation that min-

site1 site2 site3 Time (second)

Gd Ga Gb, Gc(a)
R1 R2,R3,R4,R5,R6,R7,R8,R9

157

Gb, Gc Ga Gd(b)
R2,R3,R4,R5,R6,R7 R1,R8,R9

359

Ga Gd Gb,Gc(c)
R8 R1 R2,R3,R4,R5,R6,R7,R9

28

Gd Ga Gb,Gc(d)
R3 R1 R2,R4,R5,R6,R7,R8,R9

12

Gd Ga Gb,Gc(e)
R3 R1 R2,R4,R5,R6,R7,R8,R9

30

Table 1. Optimal Resource Allocation and Derivation Time Using (a) the Number of Messages Costs,
(b) the Channel Costs, (c) the Size of Message Costs, (d) the Execution Frequencies of Transitions
Costs and (e) the Resource Placement Costs

imizes the communication costs of the derived PE’s. Then
we have used the program ”lp solve” on a Compaq XP1000
with Alpha 21264, to solve the optimization problem for the
different cost criteria discussed above.

Table 1 contains the optimal resource allocation of the
given specification and the time to decide them. The op-
timized costs are (a) the number of messages as in our ILP
model of Section 4.2, (b) the channel costs depicted in Table
2, (c) the sizes of resources depicted in Table 3, (d) the exe-
cution frequencies of transitions depicted in Table 4 and (e)
the resource placement costs depicted in Table 5. These ex-
perimental results show that our method can decide optimal
resource allocations for various cost criteria in reasonable
time.

7. Conclusion

In this paper, we have proposed a Petri net based method
for deriving a protocol specification (distributed specifica-
tion) from a given service specification, with an optimal al-
location of resources that minimizes communication costs.
The resource allocation problem is formulated using an in-
teger linear programming model that can also use several
reasonable cost criteria for deriving protocol specifications.
We have also given an example application.

Our future work is to develop a distributed environment
supporting our derivation method.

References

[1] T. Murata, “Petri Nets: Properties, Analysis and Ap-
plications,” Proc. IEEE, Vol. 77, No. 4, pp. 541–580,
1989.

[2] K. Saleh, “Synthesis of Communication Protocols:
an Annotated Bibliography,” ACM SIGCOMM Comp.
Comm. Review, Vol. 26, No. 5, pp. 40–59, 1996.

[3] C. Kant, T. Higashino and G. v. Bochmann, “De-
riving Protocol Specifications from Service Specifi-
cations Written in LOTOS,” Distributed Computing,
Vol. 10, No. 1, pp. 29–47, 1996.

[4] H. Yamaguchi, K. Okano, T. Higashino and K.
Taniguchi, “Synthesis of Protocol Entities’ Specifica-
tions from Service Specifications in a Perti Net Model
with Registers,” Proc. ICDCS-15, pp. 510–517, 1995.

[5] H. Kahlouche and J. J. Girardot, “A Stepwise Require-
ment Based Approach for Synthesizing Protocol Spec-
ifications in an Interpreted Petri Net Model,” Proc. IN-
FOCOM ’96, pp. 1165–1173, 1996.

[6] A. Al-Dallal and K. Saleh, “Protocol Synthesis Using
the Petri Net Model,” Prof. PDCS’97, 1997.

[7] M. Kapus-Koler, “Deriving Protocol Specifications
from Service Specifications with Heterogeneous Tim-
ing Requirements,” Proc. 1991 Int. Conf. on Soft. Eng.
for Real Time Systems, pp. 266–270, 1991.

[8] K. El-Fakih, H. Yamaguchi and G.v. Bochmann, “A
Method and a Genetic Algorithm for Deriving Pro-
tocols for Distributed Applications with Minimum
Communication Cost,” Proc. PDCS’99, 1999.

[9] Kellner, M. et al. : “ISPW-6 Software Process Ex-
ample,” Proc. 1st Int. Conf. on Software Process, pp.
176–186, 1991.

