

ON THE-FLY RE-SYNTHESIS OF COMMUNICATIONS

PROTOCOLS

 KHALED EL-FAKIH+, KASSEM SALEH* AND GREGOR VON BOCHMANN+
+University of Ottawa, School of Information Technology and Engineering
{kelfakih,bochmann}@site.uottawa.ca, Ottawa, Ontario, Canada K1N 6N5

*American University of Sharjah, Dept. of Computer Science
ksaleh@aus.ac.ae, P.O.Box 26666, Sharjah, UAE

ABSTRACT. Communications protocols re-synthesis
involves the augmentation of existing synthesized
protocol entities given a modified formal service
definition. This process would reduce the time required
for deploying enhanced and frequently modified
services. In this paper, we introduce a re-synthesis
technique based on a service-oriented protocol synthesis
method introduced earlier [1]. Re-synthesis can be
applied in various distributed systems application areas,
such as discrete event distributed controllers,
communications protocol converters, and distributed
software agents.

KEYWORDS. Communications Protocols, Re-
synthesis, Service Specification, Synthesis.

1. INTRODUCTION

 Communications protocol synthesis involves the
automatic derivation of protocol entity specifications
starting from a formal communications service
specification [2]. This derivation process is normally
performed offline prior to the implementation and
deployment of the distributed protocol entities.

 At a high level of abstraction, a communication
system can be viewed as a black box offering some
specified communication services to a number of service
users accessing the system through many distributed
service access points (SAPs) using well defined Service
Primitives (SPs). However, At a more refined level of
abstraction, the communication services are provided
using a number of cooperating protocol entities
exchanging protocol messages using a reliable FIFO
(first-in, first-out) communication medium. A protocol
entity uses the lower (underlying) service functions to
relay protocol messages to other protocol entities. The
N-Layer protocol design process starts from a complete
service specification, and is formulated as "the design of
(N-)protocol specifications starting from both (N-) and

(N-1) Service Specifications".

 The service is described by a FSM which specifies
the legal sequences of SP occurrences that can be
observed at the distributed SAPs. A service
specification, S-SPEC, is formally defined by a tuple
(Ss, Σs, Ts, σ), where: Ss is a non-empty finite set of
service states, Σs is a finite set of service primitives, Ts
is a partial transition function between service states,
and σ ∈ Ss is the initial service state. A service
primitive SP ∈ Σs identifies the type of service event
and the SAP(s) at which it may occur.

 For every node representing a service state s ∈ Ss,
OUT(s) denotes the set of SAPs associated with the
SPs of its outgoing edges, and INS↓(s) denotes the set
of incoming edges to s, each of type ↓. Moreover, for
an edge E of an FSM, let s_source and s_dest be
source and destination states of E, respectively. For
each incoming edge E, PRE(E) denotes the source state
of E. For an edge E↓ (E↑) of S-SPEC, PEi(E) denotes
the protocol entity that receives (sends) the message
associated with E.

 A service primitive Si is of type ↑, written Si↑, if
the SP is directed upward from the protocol entity PE-
SPECi to SAPi. Similarly, Si is of type ↓, written Si↓,
if the SP is directed downward from the service user at
SAPi to the protocol entity PE-SPECi.

 The projection onto a set X of SAPs (Πx) is a unary
function which can be applied to a finite state machine
(FSM) (S, Σ, T, σ) yielding another FSM (S, Σ', T', σ)
in which Σ' is a subset of Σ U {ε} and T' = T with
relabeling to ε of events in Σ not contributing to the
SAPs onto which the FSM is projected.

 A projected S-SPECi (PS-SPECi) is the projection
of the (FSM) service specification S-SPEC onto SAPi
(PS-SPECi = ΠSAPi S-SPEC). PS-SPECi is

represented by (Ss, Σ's, T's, σ), where Σ's, is a subset of
Σs and T's is a subset of the cartesian product Ss × (Σ's
U {ε}) × Ss.

 A protocol specification (P-SPEC) consists of several
interacting protocol entities (PE-SPECs). A protocol
entity specification PE-SPEC is formally defined by a
tuple (Sp, Σp, Tp, σ), where: Sp is a non-empty finite set
of protocol states, Σp is a finite set of protocol events, Σp
= Σ's U IPE, where Σ's ⊆ Σs, and IPE is the set of
internal protocol events, Tp is a partial transition
function between protocol states, and σ ∈ Sp is the
initial protocol state.

 Our re-synthesis is service-based, that is, it considers
requirement changes at the service definition, in contrast
to the work by Bista et al. [4], which consider changes at
the protocol level, i.e., in one of the protocol entities.

 In this paper, we consider the re-synthesis problem as
the systematic modification of PE-SPECs after applying
a modification to S-SPEC to become S-SPEC’. The rest
of the paper is organized as follows. Section 2 provides
an overview of the basic protocol synthesis method.
Section 3 introduces our protocol re-synthesis method
and its rules along with some application examples.
Finally, in Section 4, we provide some concluding
remarks and future work.

2. PROTOCOL SYNTHESIS

 In this section, we provide a brief overview of the
protocol synthesis technique that we consider as the basis
for our re-synthesis approach. In a PS-SPECi, two types
of transitions exist: i) ε-transition which corresponds to
an SP-labelled transition in a PS-SPECj (j ≠ i), and ii)
transition labelled by an SP observable at SAPi.

 The core of the synthesis technique consists of the
“Transition Synthesis Rules (TSRs)”. These rules are
applied correspondingly to each of the transitions (ε- or
SP-labelled) in PS-SPECi. The intuitions for these rules
are given below.

a.Transition labelled by an SP E in PS-SPECi:

 Rule a.1: This rule implies that the flow of control
needs not be transferred to another protocol entity (or
service user), and therefore a synchronization message
should not be transmitted at this point.

 Rule a.2: Since the SP is originating from the service
user, and is taking the service back to its initial state,
synchronization messages must be sent to all other
protocol entities to synchronize at the initial state in each
of the respective protocol entities. This would
synchronize the protocol at the same initial global stable

state.

 Rule a.3: In this case, the SP is originating from the
protocol entity and is taking the service back to its
initial state. However this SP is most probably a result
of a reset protocol message, and therefore there is no
need to transmit any other protocol message.

 Rule a.4: In this case, the SP is originating from the
service user at SAPi. Following the occurrence of this
SP, other SPs can be observed at other SAPs, therefore
a synchronization message should transfer the flow of
control to other corresponding protocol entities.

 Rule a.5: The intuition for this rule is similar to Rule
a.3.

b. Transition labelled by ε in PE-SPECi:
 In Rules b.1, b.3 and b.5, PE-SPECi must not
expect any message at this point, since according to the
service specification, no service action is expected at
SAPi.

 Rules b.2 and b.4 complement Rules a.2 and a.4.
Reception transitions are synthesized and correspond to
the message transmissions synthesized in Rules a.2 and
a.4.

 The synthesis process starts from an FSM
specification of the service (S-SPEC), and
automatically derives the protocol entities that provide
the set of services given in S-SPEC.

Steps of the synthesis algorithm:

1. Project the service specification S-SPEC onto
each SAP to obtain the PS-SPECs.

2. Apply a TSR to each transition in the PS-SPECs
to obtain PE-SPECs.

3. Using the algorithms described in [3], remove ε-
cycles and ε-transitions to obtain the PE-SPECs
as reduced and equivalent finite state machines.

3. PROTOCOL RE-SYNTHESIS

 In our proposed re-synthesis technique, we are
assuming that modifications to the service specification
from S-SPEC to S-SPEC’ will not invalidate the basic
FSM model assumptions. We also assume that we
apply the re-synthesis to the derived PEs. In this case,
we might have to merge/split states during the re-
synthesis process, thus we have to know if there exists
more than one ε-path(s) between two states. This can
simply be achieved using a linear-time algorithm we
developed. The operations that we consider on S-SPEC
are: adding an edge, and removing an edge,
adding/Removing a state (or a node) with its incident
edges.

3.1. ADDING AN EDGE TO S-SPEC

I.1) Adding a new edge, s_source ⎯↓Ei→ s_dest.,
between states s_source and s_dest, where s_dest is not
the initial state of S-SPEC.

(i) For PEi(E):

-Add the edge labeled E/!(e, [OUT(s_dest) - SAPi])
between state(s) s_source and s_dest of E, where
SAPi = PEi of E. This corresponds to Synthesis
Rule a.4.

(ii) ∀PEj, j≠i and j ∈ OUT(s_dest):
-Do exactly the same as (i) above, but label the new
edge as ?e. This corresponds to Synthesis Rule b.4.

 (iii) For PEj, j≠i and j ∉ OUT(s_dest.):
-Add ε-edge between state(s) s_source and s_dest.
-Apply ε-removal algorithm.

(iv) If OUT’(s_source) – OUT(s_source) = PEi(E)
(a)- For each t ∈ INS↓ (s_source), where s_source is
not the initial state, and
If PEi(E) ≠ PEi(t):

-In PEi(t) Change the label of the transition:
PRE(t) ⎯ A/!a(OUT(s_source) - SAPi of t) →
s_source to PRE(t)⎯ A/!a(OUT’(s_source)-
SAPi of t)→ s_source

This corresponds to Synthesis Rule a.4.

 (b)- If PEi(E) ≠ PEi(t), for PEi(E) do: /*Note: PEi(E) =
OUT’(s_source) – OUT(s_source) */

1)- Remove an ε-edge between states PRE(t) and
s_source in PEi(E). This reverses the effects of
Synthesis Rule b.5.
2)- Add the edge ?a between the states PRE(t) and
s_source in PEi(E), where a is the label/msg of edge
t. This corresponds to Synthesis Rule b.4.

I.2) Adding a new edge, s_source ⎯↓Ei→ s_dest.,
between states s_source and s_dest, where s_dest is the
initial state of S-SPEC.

(i) For PEi(E):

- Add the edge labeled E/!(e, [All SAPs- SAPi])
between state(s) s_source and s_dest, where SAPi =
PEi of E. This corresponds to Synthesis Rule a.4.

 (ii) ∀PEj, j≠i:
- Add the label ?e type edge between state(s) s_source,

and s_dest. This corresponds to Synthesis Rule b.4.

I.3) Adding a new edge, s_source ⎯↑Ei→ s_dest,
between states s_source and s_dest. (Note here s_dest
could also be the initial state)
(i) For PEi(E).

-Add the edge labeled E between state(s) s_source
and s_dest. This corresponds to Synthesis Rule
a.3.

 (ii) ∀PEj, j≠i:
- Add an ε-edge between state(s) s_source, and
s_dest. This corresponds to Synthesis Rule b.3.

 - Apply the ε-removal algorithm.
(iii) If OUT’(s_source) – OUT(s_source) = PEi(E)
 - Do exactly as specified in I.1.iv.

3.1.1 ADDING EDGES TO S-SPEC

 In this section, we consider the service specification
FSM, S-SPEC in Figure 1, and its synthesized protocol
entities PE1, PE2 and PE3, in Figure 2. Then, we
consider the application of independent service
modifications. For each modification, we apply the
appropriate re-synthesis rules to modify the
synthesized protocol entities, hence obtaining, PE’1,
PE’2, and PE’3.

1

A1

H2

B2

D3
E3

G1

C3

F1

2

3

4 6

5

Figure 1. S-SPEC.

G/!g(2)

1

A/!a(2,3)

2,3,4

6

5

?c

F/!f(2)

?h

1

?a

2,5

3,4

6B/!b(3)

?f

?g

H/!h(1,3)

1

?a

2

3

4,5,6

C/!c(1)?b

?h

D

E

PE'1 PE'2 PE'3

Figure 2. Synthesized PE-SPECs of S-SPEC of

 Figure 1.
 Operations on S-SPEC of Fig.1 , are reflected as
necessary on the derived PE, yielding the re-
synthesized protocol entities PE’s, after applying
“Adding an Edge” re-synthesis rules and algorithms of
Section 3.1.I.1.

Example 1. Add [1] ⎯↓I1→ [2] (transition labeled ↓
I1 from service state 1 to 2), producing S-SPEC’1.

- PE(E = I1) is PE1,
- By (i): Add to PE1: [1] ⎯ I/!I(2,3)→ [2,3,4]

- By (ii): Add to PE2: [1] ⎯ ?i→ [2,5], and to PE3
Add : [1] ⎯ ?i → [2]

Example 2. Add [4] ⎯ ↓J2 → [6] (transition labeled ↓
J2 from service state 4 to 6), producing S-SPEC’2.

- PE(E = J2) is PE2,
- By (i): Add to PE2 : [3,4] ⎯ J→ [6]
- By (iii): Add to PE1: [2,3,4] ⎯ε→[6], and to PE3:

[4,5,6] ⎯ε→[4,5,6]. Applying the ε removal
algorithm to PE1 yields:

G/!g(2)

1

A/!a(2,3)

2,3,4

6

5

?c

F/!f(2)

?h

1

?a

2,5

3,4

6B/!b(3)

?f

?g

H/!h(1,3)

1

?a

2

3

4,5,6

C/!c(1)?b

?h

D

E

PE'1 PE'2 PE'3

Figure 3. Re-Synthesized PE-SPECs after adding
[4] ⎯ ↓J2 → [6] to S-SPEC

Example 3. Add [3] ⎯ ↓K2 → [4] (transition labeled ↓
K2 from service state 3 to 4), producing S-SPEC’3.

- PE(E = K2) is PE2,
- By (i): Add to PE2: [3,4] ⎯ K/!k(1) →[3,4]
- By (ii): Add to PE1: [2,3,4] ⎯ ?k →[2,3,4]
- By (iii): Add to PE3: [3] ⎯ ε → [4,5,6].
- Applying the ε removal algorithm to PE3 yields:

1

?a

2

3,4,5,6

C/!c(1)

?b

?h

D
E

Figure 4. Re-Synthesized PE-SPEC PE’3 after

adding [3] ⎯ ↓K2 → [4] to S-SPEC.

Example 4. Add [3] ⎯ ↓L1 → [4] (transition labeled ↓
L1 from service state 3 to 4), producing S-SPEC’4.

-PE(L1) = PE1,
By (i) : Add to PE1: [2,3,4] ⎯ L →[2,3,4]
By (iii): Add to PE2 : [3,4] ⎯ ε →[3,4] and

 Add toPE3: [3] ⎯ ε →[4,5,6]
By (iv-a) : t = ↓B2 and PE(t) = PE2,

In PE2 change the label of the edge [2,5] ⎯
B/!b(3) → [3,4] to [2,5] ⎯ B/!b(1,3) → [3,4]

By (iv-b): For PE(L1)=PE1, split the state [2,3,4],
and add the edge [2]⎯?b→ [3,4].

Figure 5 below, shows PE’1 after applying the

above corresponding rules.

1
A/!a(2,3)

3,4

6

5
F/!f(2)

?h

2

?b

G/!g(2)

?c

L

Figure 5. Re-Synthesized PE-SPEC PE’1 after

adding [3] ⎯ ↓L1→ [4] to S-SPEC

Example 5. Add [3] ⎯↑M3 → [4] (transition labeled
↓M3 from service state 3 to 4), producing S-SPEC’5.

- PE(E = M3) is PE3
- By (i): Add to PE3: [3] ⎯ M→ [4,5,6]
- By (ii): Add to PE1: [2,3,4]⎯ ε→ [2,3,4], and

toPE2 Add: [3,4] ⎯ ε → [3,4]

Example 6. Add [5] ⎯↑O2→ [6] (transition labeled ↑
O2 from service state 5 to 6), producing S-SPEC’6.

- PE(E=O2) is PE2
- By (i): Add to PE2: [2,5] ⎯ O→ [6]
- By (ii): Add to PE: [5] ⎯ ε→ [6], and to PE3:

[4,5,6] ⎯ ε→ [4,5,6]
- By (iv-a) PE(t=C3)=PE3. In PE3, change the

label of transition [2]⎯C/!c(1)→[4,5,6] to [2]⎯
C/!c(1,2)→ [4,5,6]

- By (iv-b): In PE2, Split the state [2,5], and Add
the edge [2] ⎯?c→ [5]

 Figure 6 shows the re-synthesized PE-SPEC’s
PE’1, PE’2, and PE’3 after applying the above
modifications.

1

A/!a(2,3)

2,3,4

5,6

?c

F/!f(2)

?h

G/!g(2)

1
?a

2

3,4

6
B/!b(3)

?f

?g

H/!h(1,3)

5?c
O

1

?a

2

3

4,5,6

C/!c(1,2)?b

?h

D

E
Figure 6. Re-Synthesized PE-SPECs after adding
[5] ⎯ ↑O2 → [6] to S-SPEC

3.2. RULES FOR REMOVING AN EDGE FROM S-
SPEC

II.1) Removing an edge, ↓E, between s_source and
s_dest, where s_dest is not the initial state of S-SPEC.

(i) For PEi(E):

-Remove the edge labeled E/!(e,OUT(s_dest.) -
SAPi of E). This reverses the effects of Synthesis
Rule a.4 applied to E in PEi(E).

 (ii) ∀PEj, j≠i and j ∈ OUT(s_dest.):
-Remove the edge labeled ?e. This reverses the
effectsof Synthesis Rule b.2.

(iii) ∀PEj, j≠i and j ∉ OUT(s_dest.) :
-Remove an ε-edge between states s_source and
s_dest in PEj. This reverses the effects of Synthesis
Rule b.1.

(iv) If OUT’(s_source) – OUT(s_source) = PEi(E)
(a) Do exactly as specified in I.1.iv.a,
(b) If PEi(E) ≠ PEi(t), To PEi(E) do: /* note:
PEi(E)=OUT’(s_source) – OUT(s_source)*/

(1) Re-label the transition labeled ?a between
states PRE(t) and s_source in PEi(E) by ε,
conforming to Synthesis Rule b.4.
(2) Apply the ε-removal algorithm to this
relabeled ε transition edge.

II.2) Removing an edge ↓E between s_source and
s_dest, where s_dest is the initial state of S-SPEC.

(i) Do exactly as specified in as II.1.i.
(ii) ∀PEj, j≠i: Remove the edge labeled ?e.
(iii) Do exactly as specified in II.1.iv.

II.3) Removing an edge, ↑E, between s_source and
s_dest, where s_dest may or may not be the initial state
of S-SPEC.

(i) For PEi(E), remove E.
(ii) ∀PEj, j≠i:

- Remove an ε-edge between states s_source and
s_dest in PEj. This reverses the effects of Synthesis
Rule b.5.

(iii) Do exactly as specified in II.1.iv.

3.2.1 EXAMPLES OF REMOVING EDGES

 Operations on S-SPECs, are reflected as necessary on
the derived PE, yielding the re-synthesized protocol
entities PE’s, after applying “Removing an Edge” re-
synthesis rules and algorithms of Section 3.2.II.1.

Example 7. Remove [1] ⎯↓I1→ [2] (transition labeled
↓I1 from service state 1 to 2) from S-SPEC’1 of
Example-1 of Section 3.1.1.

- PE(E = I1) is PE1,
- By (i): Remove from PE1: [1] ⎯ I/!I(2,3)→ [2,3,4]

- By (ii): Remove from PE2: [1]⎯?i→ [2,5], and
remove from PE3: [1] ⎯ ?i→ [2]

Example 8. Remove [4] ⎯ ↓J2 → [6] (transition
labeled ↓J2 from service state 4 to 6) from S-
SPEC’2 of Example 2 of Section 3.1.1.

- PE(E = J2) is PE2,
- By (i) : Remove From PE2 : [3,4] ⎯ J → [6]
- By (iii): Remove from PE1: [2,3,4] ⎯ ε →[6], and

from PE3: [4,5,6] ⎯ ε →[4,5,6].

PE-SPEC’s produced after applying the above rules are
shown in Figure 2.

Example 9. Remove [5] ⎯ ↑O2 → [6] (transition
labeled ↑O2 from service state 5 to 6) from S-
SPEC’6 of example-6 of Section 3.2.1.

- PE(E=O2) is PE2
- By (i) : Remove from PE2 : [5] ⎯ O → [6]
- By (ii): Remove from PE1: [5] ⎯ ε → [6], and

from PE3: [4,5,6] ⎯ ε→ [4,5,6]
- By (iv-a) PE(t=C3)=PE3. In PE3, change the label

of transition [2]⎯C/!c(1,2)→[4,5,6] to [2]⎯
C/!c(1)→ [4,5,6]

- By (iv-b): In PE2, change the label edge [2] ⎯?c
→ [5] to [2] ⎯ε→ [5], then apply ε removal
algorithm.

PE-SPEC’s produced after applying the above rules is
shown in Figure 2.

3.3 RULES FOR ADDING A STATE TO S-SPEC

 After adding a state s_new and its corresponding
incoming and outgoing edges to S-SPEC, producing S-
SPEC’ the new re-synthesized PE-SPEC’ are produced
as follows:

- Add a new state to each PE-SPEC
- For each outgoing edge of s_new of S-SPEC, apply

“Adding an edge” re-synthesis rules of Section
3.2.1

- For each incoming edge of s_new of S-SPEC, apply
“Adding an edge” re-synthesis rules of Section
3.2.1

3.3.1 EXAMPLE OF ADDING A STATE

 Let S-SPEC’ shown in Figure 7 below be that of
Fig. 1 after adding state [7] and its corresponding
edges. We note that the PE-SPECs that correspond to
S-SPEC of Fig.1, is shown in Fig. 2.

D3

1

A1

H2

B2

E3

G1

C3

F1

2

3

4 6

5

7

I3

J1
Figure 7. S-SPEC’

 First, for the outgoing edge [7] ⎯ ↓J1 → [6] of
S-PEC’, we apply “Adding an Edge” re-synthesis
rules of Section 3.1.I.1 to PE-SPECs of Figure 2, as
follows:
- PE(E=J1) is PE1
- By (i): Add to PE1 : [7] ⎯ J/!j(2) → [6]
- By (ii): Add to PE2 : [7] ⎯ ?j→ [6]
- By (iii): Add to PE3: [7] ⎯ ε → [4,5,6]

 Second, for the incoming edge [3] ⎯ ↓I3 → [7]
of S-SPEC’, we apply “Adding an Edge” re-
synthesis rules of Section 3.1.I.1 to PE-SPECs of
Figure 2, as follows:
- PE(E=I3) is PE3
- By (i): Add to PE3 : [3] ⎯ I/!i(1) → [7]
- By (ii): Add to PE1 : [2,3,4] ⎯ ?i → [7]
- By (iii): Add to PE2: [3] ⎯ ε → [7]

 After applying adding a state re-synthesis rules,
we get the following re-synthesized PE-SPECs.

1

A/!a(2,3)

2,3,
4

6

5

?c

F/!f(2)

?h

7

?i

J/!j(2)

G/!g(2)

1

?a

2,5

3,4,
7

6
B/!b(3)

?f

?g

H/!h(1,3)

?j

1

?a

2

4,5,6
,7

C/!c(1)
?b

?h

D
E

I/!i(1)

3

PE'1 PE'2 PE'3
Figure 8. Re-Synthesized PE-SPECs of S-SPEC’ of

Figure 7.

3.4 RULES FOR REMOVING A STATE

 After removing a state s_remove and its
corresponding incoming and outgoing edges from S-
SPEC, producing S-SPEC’ the new re-synthesized PE-
SPEC’ are produced as follows:

- For each outgoing edge of s_remove of S-SPEC,
apply “Remove an edge” re-synthesis rules of
Section 3.2.1

- For each incoming edge of s_remove of S-SPEC,
apply “Remove an edge” re-synthesis rules of

Section 3.2.1
- Remove the states that corresponds to s_remove

from each PE-SPEC

4. CONCLUSIONS

In this paper, we have introduced a protocol re-
synthesis method which modifies existing protocol
entities specifications after modifications to the service
specifications are made. This approach allows the
faster deployment of modified protocol entities instead
of applying an initial synthesis process to the service
specification. This re-synthesis technique can have
applications in many areas where small changes to the
provided service are introduced very frequently. As a
result, the modified service can be introduced more
efficiently and quickly. In the future, we intend to
prove the correctness of the re-synthesis rules, and
apply the method to specific application areas, such as
telephony, distributed supervisory control, and
distributed databases. Moreover, we have extended the
method to systems modeled as Extended Petri Nets.

ACKNOWLEDGEMENT

 The authors would like to acknowledge the support
of this work by Communications and Information
Technology Ontario (CITO) and by the American
University of Sharjah.

REFERENCES

[1] K. Saleh and R. Probert, "Automatic synthesis of

protocol specifications from service
specifications", Inter. Phoenix Conf. On
Computers and Communications (IPCCC'1991),
Phoenix, Arizona, USA, pp. 615-621.

[2] R. Probert and K. Saleh, "Synthesis of
communications protocols: Survey and
Assessment", IEEE Trans. on Computers, Vol. 40,
pp. 468-476, April 1991.

[3] A. Khoumsi and K. Saleh, "Two formal methods
for the synthesis of discrete event systems",
Computer Networks and ISDN Systems, Vol. 29,
No. 7, pp. 759-780, July 1997.

[4] B.B. Bista, K. Takahashi, H. Kaminaga, and N.
Shiratori, “A flexible protocol synthesis method
for adopting requirement changes”, Proc. of the
1996 Intern. Conf. On Parallel and Distributed
Systems, Tokyo, Japan, pp. 319-326 June 1996.

