
Protocol Re-synthesis

Based on Extended Petri Nets?

Khaled El-Fakih1, Hirozumi Yamaguchi2,

Gregor v. Bochmann1, and Teruo Higashino2

1 School of Information Technology and Engineering, University of Ottawa,

150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada

fkelfakih,bochmanng@site.uottawa.ca
2 Graduate School of Engineering Science, Osaka University,

1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan

fh-yamagu,higashinog@ics.es.osaka-u.ac.jp

Abstract. Protocol synthesis is used to derive a speci�cation of a dis-

tributed system from the speci�cation of the services to be provided by

the system to its users. Maintaining such a system involves applying fre-

quent minor modi�cations to the service speci�cation due to changes in

the user requirements. In order to reduce the maintenance costs of such a

system, we present an original method that consists of a set of rules that

avoid complete protocol synthesis after these modi�cations. These rules

are given for a system modeled as an extended Petri net. An application

example is given along with some experimental results.

1 Introduction

Synthesis methods have been used (for surveys see [5, 6]) to derive a speci�ca-

tion of a distributed system (hereafter called protocol speci�cation) automatically

from a given speci�cation of the service to be provided by the distributed system

to its users (called service speci�cation). The service speci�cation is written like

a program of a centralized system, and does not contain any speci�cation of

the message exchange between di�erent physical locations. However, the proto-

col speci�cation contains the speci�cation of communications between protocol

entities (PE's) at the di�erent locations.

A number of existing protocol synthesis strategies have been described in

the literature. The �rst strategy, [9, 3, 4, 8, 10, 12, 14, 17, 18], aims at implement-

ing complex control-
ows using several computational models such as LOTOS,

Petri nets, FSM/EFSM and temporal logic. The second strategy, [20, 23, 19, 24,

22], aims at satisfying the timing constraints speci�ed by a given service speci-

�cation in the derived protocol speci�cation. This strategy deals with real-time

distributed systems. The last strategy, [21, 25, 11, 15, 7, 16], deals with the man-

agement of distributed resources such as �les and databases. The objective here,

? This work was partially funded by Communications and Information Technology

Ontario (CITO).

is to determine how the values of these distributed resources are updated or ex-

changed between PE's for a given �xed resource allocation on di�erent physical

locations.

Some methods in the last strategy, especially these presented in our previous

research work[26], have tried to synthesize a service speci�cation by deriving its

corresponding protocol speci�cation with minimum communication costs and

optimal allocation of resources.

As an example, we consider a Computer Supported CooperativeWork (CSCW)

software development process. This process is distributed among engineers (de-

velopers, designers, managers and others). Each engineer has his own machine

(PE) and participates in the development process using distributed resources

(drafts, source codes, object codes, multimedia video and audio �les, and oth-

ers) placed on di�erent machines. Considering the need for using these resources

between di�erent computers, we derive, using our protocol synthesis method,

the engineer's sub-processes (protocol speci�cation) knowing the whole software

development cycle (service speci�cation) and we decide on an allocation of re-

sources that would minimize the communication costs. Both the service and

protocol speci�cations are described using extended Petri nets.

In realistic applications, maintaining a system modeled by a given extended

Petri net speci�cation, involves modifying its speci�cation as a result of changes

in the user requirements. Synthesizing the whole system after each modi�ca-

tion is considered expensive and time consuming. Therefore, it is important to

re-synthesize the modi�ed parts of service speci�cation in order to reduce the

maintenance cost, which was reported to account for as much as two-thirds of

the cost of software production [30].

In this paper, we present a new method for re-synthesizing the protocol

speci�cation from a modi�ed service speci�cation. The method consists of a

set of rules that would be applied to di�erent PE's after a modi�cation to the

service speci�cation, in order to produce new synthesized (henceforth called re-

synthesized) PE's. The parts of the protocol speci�cation that correspond to

the unmodi�ed parts of the service speci�cation are preserved intact. As shown

later, this method reduces the cost of synthesizing the whole system after each

modi�cation.

This paper is organized as follows. Section 2 gives examples of service and

protocol speci�cations, and Section 3 describes the protocol synthesis method.

Based on this method, we present in Section 4 protocol re-synthesis method along

with some application examples in Section 5. Section 6 concludes this paper and

includes our insights for future research.

2 Service Speci�cation and Protocol Speci�cation

2.1 Petri Net Model with Registers

We use an extended Petri net model called a Petri Net with Registers (PNR in

short) [15] to describe both service and protocol speci�cations of a distributed

i>R1

[R1<-R2+i,
 R2<-R1+R2+i]

G1 ? i

R1 R2

G1

i>R1

[R1<-R2+i,
 R2<-R1+R2+i]

G1 ? i

R1 R2

G1

3

1

fire

2 5 6

(a) (b)

transition t transition t

Fig. 1. Register Values and Token Locations before and after Firing of Transition in

PNR

system. In this model, an I/O event between users and the system followed by

the calculation of new values of variables inside the system is associated with

the �ring of a transition. Since distributed systems contain some variables (e.g.

databases and �les) and their values are updated according to inputs from users,

they can be modeled by PNR naturally.

Each transition t in PNR has a label hC(t); E(t);S(t)i, where C(t) is a pre-

condition statement (one of the �ring conditions of t), E(t) is an event expression
(which represents I/O) and S(t) is a set of substitution statements (which repre-

sents parallel updates of data values). Consider, for example, transition t of Fig. 1

where C(t) =\i > R1", E(t) =\G1?i" and S(t) =\R1 R2+i; R2 R1+R2+i".

i is an input variable, which keeps an input value and its value is referred by

only the transition t. R1 and R2 are registers, which keep assigned values until

new values are assigned, and their values may be referred and updated by all

the transitions in PNR (that is, global variables). G1 is a gate, a service access

point (interaction point) between users and the system. Note that \?" in E(t)
means that E(t) is an input event.

A transition may �re if (a) each of its input place has one token, (b) the value

of C(t) is true and (c) an input value is given through the gate in E(t) (if E(t) is
an input event). Assume that an integer of value 3 has been given through gate

G1, and the current values of registers R1 and R2 are 1 and 2, respectively. In

this case the value of \i > R1" is true and the transition may �re. If it �res, the

event \G1?i" is executed and the input value 3 is assigned to input variable i.

Then \R1 R2+ i" and \R2 R1+R2+ i" are executed in parallel. Therefore

after the �ring, the tokens are moved and the values of registers R1 and R2 are

changed to �ve (= 2 + 3) and six (= 1 + 2 + 3), respectively (Fig. 1(b)).

Formally, E(t) is one of the following three events: \Gs !exp", \Gs ?iv", or

\�". \Gs !exp" is an output event and it means that the value of expression

\exp", whose arguments are registers, is output through gate Gs. \Gs ?iv" is

G1?i1
[R2<-retrieve(R1,i1)]

keyword(i1)

keyword(i2)
G2?i2
[R4<-retrieve(R3,R2,i2)]

G1!R4
[]

true

R1 R2 R3 R4

G1 G2

T1

T2

T3

Fig. 2. Service Speci�cation

an input event and it means that the value given through Gs is assigned to the

input variable \iv". \�" is an internal event, which is unobservable from the

users. S(t) is a set of substitution statements, each of the form \Rw expw",

where Rw is a register and expw is an expression whose arguments are from the

input variable in E(t) and registers. If t �res, E(t) is executed followed by the

parallel execution of statements in S(t).

2.2 Service Speci�cation

At a highly abstracted level, a distributed system is regarded as a centralized

system which works and provides services as a single \virtual" machine. The

number of actual PE's and communication channels among them are hidden. The

speci�cation of the distributed system at this level is called a service speci�cation

and denoted by Sspec.

Actual resources of a distributed system may be located on some physical

machines, called protocol entities. However, only one virtual machine is assumed

at this level. Fig. 2 shows Sspec of a simple database system which has only three

transitions. The system receives a keyword (input variable i1) through gate G1,

retrieves an entry corresponding to the keyword from a database (register R1),

and stores the result to register R2. This is done on transition T1. Then the

system receives another keyword (input variable i2) through gate G2, retrieves

an entry corresponding to the keyword and the retrieved entry (register R2)

from another database (register R3), and stores the result to register R4. This

is done on transition T2. Finally the system outputs the second result (the value

of register R4) through G1 on transition T3 and returns to the initial state.

R3 R4 R1 R2

G1 G2

keyword(i1)

keyword(i2)

G1?i1

Rtmp1

ID(Mb2, w)

[Rtmp1.R2<-w]

ID(Mb2, w)

[Rtmp1.i1<-i1]

ID(Mb1, w)

[Rtmp3.i1<-w]
g31?w

[R2<-retrieve
 (R1, Rtmp3.i1)]

τ

g13?w

g13!Mb1[Rtmp1.i1]

g32!Mg1[]

g32?w

g31!Mb2[R2]

g23?w

[Rtmp1.i2<-w]
g12?w

true

[R4<-retrieve
 (R3, Rtmp1.R2,
 Rtmp1.i2)]

τ
true

G1!R4
true

true

true

ID(Ma2, w)

Rtmp2 Rtmp3

g12g13 g21 g31g32g23

[Rtmp2.i2<-i2]
G2?i2

true true
g21!Mb2[Rtmp2.i2] g23!Ma2[]

τ
true

τ
true

PE1 PE2 PE3

ID(Mg1, w)

true

t1.1

t1.2 t1.6

t2.1

t2.3 t2.2

t1.3

t1.4

t1.5

t2.4

t2.5

t2.7t2.6

t2.8

t3.1

Fig. 3. Protocol Speci�cation

2.3 Protocol Speci�cation

A distributed system is a communication system which consists of p protocol

entities PE1, PE2, ... and PEp. We assume a duplex and reliable communication

channel with in�nite capacity bu�ers at both ends, between any pair of PEi and

PEj . The PEi (PEj) side of the communication channel is represented as gate

gij (gji). Moreover, we assume that some resources (registers and gates) are

allocated to certain PE's of the distributed system.

Two PE's communicate with each other by exchanging messages. If PEi ex-

ecutes an output event \gij !M [Rw]", the value of register Rw located on PEi is

sent to PEj through the communication channel between them and put into the

bu�er at PEj 's end. M is an identi�er to distinguish several values which may

exist at the same time on the same channel. PEj can take the value identi�ed

by M from the bu�er, by executing an input event \gji?w" with a pre-condition

ID(M;w). ID(M;w) is a predicate whose value is true i� the identi�er in input

variable w isM . Note that more than one register's or input variable's value can

be sent at a time. If a received data contains multiple values, they are distin-

guished by suÆx such as w:R1 and w:i. A set of an identi�er and register/input

values is called a message. A message may contain no value and sending such a

message is represented as an output event \gij !M []".

In order to implement a distributed system which consists of p PE's, we

must specify the behavior of these PE's. A speci�cation of PEk is called a

protocol entity speci�cation and denoted by Pspeck. A set of p protocol entity

speci�cations h Pspec1, ..., Pspecp i is called a protocol speci�cation and denoted

by Pspech1;pi. We need a protocol speci�cation to implement the distributed

system.

As an example, let us assume that there are three PE's PE1, PE2 and PE3

in order to implement the service speci�cation of Fig. 2. We also assume that an

allocation of resources to these PE's has been �xed as follows. PE1 has the gate

G1 and the registers R3 and R4, PE2 has the gate G2, and PE3 has the registers

R1 and R2. Note that in addition to these registers, we assume that each PEi

has another register Rtmpi to keep received values given through gates (inputs

and message contents). Rtmpi can contain several values. The values can be

distinguished by adding the name of the value as suÆx, such as Rtmp1:R3
1. Fig.

3 shows an example of Pspech1;3i, which provides the service of Fig. 2, based on

this allocation of resources.

According to the speci�cation of Fig. 3, PE1 �rst receives an input (input

variable i1) through G1 and stores it to Rtmp1:i1 (on transition t1:1). Then it

sends the value of Rtmp1:i1 to PE3 as a message (on transition t1:2), since PE3

needs the value of i1 to change the value of R2. PE3 receives and stores the

value to Rtmp3:i1 on transition t1:3. Then it changes the value of R2 using its

own value and the value of Rtmp3:i1 on transition t1:4, and sends a message

to PE2 on transition t1:5. When PE2 receives the message on transition t1:6,

PE2 knows that it can now check the value of C(T2) and execute E(T2). PE2

receives an input (input variable i2) and stores it to Rtmp2:i2 on transition t2:1,

and sends two messages. One is to send the value of i2 to PE1 (on transition

t2:3) and another is to incite PE3 to send the value of R2 to PE1 (on transition

t2:2). PE1 receives these values and stores them to Rtmp1:i2 and Rtmp1:R2

on transitions t2:6 and t2:7, respectively. Then it changes the value of R4 on

transition t2:8. Finally, PE1 outputs the value of R4 on transition t3:1 and PE1,

PE2 and PE3 return to their initial states.

As exempli�ed in the above discussion, PE's cooperate with each other by

exchanging messages. The communication between di�erent PE's may be quite

complex and it is diÆcult to design protocols that behave correctly. Therefore we

would like to derive a protocol speci�cation automatically, such that it provides

the same service as a given service speci�cation.

3 Synthesis Overview

A method for deriving protocol speci�cation with an optimal allocation of re-

sources from a given service speci�cation is presented in this section. This method

is based on a set of rules (called henceforth synthesis rules) that specify how to

execute each transition Tx = hC(Tx); E(Tx);S(Tx)i of the service speci�cation

by the corresponding PE's in the protocol speci�cation. Furthermore, based on

1 We can realize such a register that contains several values by using several registers.

However, for simplicity of discussion, we use these registers.

these rules, it decides on an optimal allocation of resources (registers and gates)

amongst di�erent derived PE's.

3.1 Synthesis Rules

For executing a transition Tx = hC(Tx); E(Tx);S(Tx)i of the service speci�cation
by the corresponding set of transitions tx:1; tx:2; ::: of the PE's in the protocol

speci�cation, we proceed as follows.

{ The PE that has gate Gs used in E(Tx) (say PEstart(Tx)) checks the value

of C(Tx) (pre-condition statement) and executes E(Tx) (event expression).
{ After that, the PE sends messages called �-messages to the PE's which have

the registers used in the arguments of S(Tx) (substitution statements).

{ In response, these PE's send the register values to the PE's which have the

registers to be updated in S(Tx) (PEsubst(Tx) denotes the set of those PE's)
as messages called �-messages.

{ The substitution statements are executed and noti�cation messages called

-messages are sent to those PE's which will start the execution of the next

transitions.

For example, for transition T2 of the service speci�cation in Fig. 2, PEstart(T2)

is PE2 and PEsubst(T2) is fPE1g. PE2 checks the value of pre-condition state-

ment "keyword(i2)" and executes "G2?i2" on transition t2:1. Then PE2 sends

an �-message \Ma2" to PE3 on transition t2:2 since PE3 has register R2 which

is used to substitute the value of R4. PE2 also sends the input value to PE1

as a �-message \Mb2" on transition t2:3. PE3 receives the �-message \Ma2"

on transition t2:4 and sends the value of R2 to PE1 as a �-message \Mb2" on

transition t2:5. PE1 receives these two �-messages on transitions t2:6 and t2:7,

and then executes \R4 retrieve(R3; R2; i2)" on transition t2:8 using its own

register R3 and the received values of R2 and i2. The PE's which will start the

execution of next transition T3 is PE1 itself. Therefore, PE1 does not send any

-message. Then PE1 starts the execution of T3 on transition t3:1.

In Fig. 4, we present the details of the above rules [26], that are classi�ed into

action and message rules. Action rules specify which PE checks the pre-condition

and executes the event and substitution statements of Tx. Message rules specify

how the PE's exchange messages, and the contents and types of these messages.

Three types of messages are exchanged for the execution of Tx. (1) �-messages

are sent by the PE that starts the execution of Tx (i.e. PEstart(Tx)) to inform

those PE's who need to send their registers' values to other PE's, that they can

go ahead and send these values. Thus, an �-message does not contain values of

registers. (2) �-messages are sent in order to let each PE which executes some

substitution statements of Tx (i.e. PEk2PEsubst(Tx)) know the timing and some

values of registers' it needs for executing these statements. (3)
-messages are

sent to each PEm2PEstart(Tx � �), note that Tx � � is the set of each next

transition of Tx, to let it know the timing and some values of registers it needs

to start executing the next transitions (i.e. transitions in Tx � �).

We let Tx = hC(Tx); E(Tx);S(Tx)i be a transition of Sspec.

[Action Rules]

(A1) The PE which has the gate appearing in E(Tx) (denoted by Gs) checks that

(a) the value of C(Tx) is true,
(b) the execution of the previous transitions of Tx has been �nished and

(c) an input has been given through Gs if E(Tx) is an input event.

Then the PE executes E(Tx). This PE is denoted by PEstart(Tx).

(A2) After (A1), the PE's which have at least one register whose value is changed

in the substitution statements S(Tx) execute the corresponding statements in

S(Tx). The set of these PE's is denoted by PEsubst(Tx).

[Message Rules]

(M�1) Each PEk2PEsubst(Tx) must receive at least one �-message from some

PE's (each called PEj) in order to know the timing and values of registers

it needs for executing its substitution statements (see (M�2)), except where

PEk=PEstart(Tx), in this case PEk already knows the timing to start execut-

ing its substitution statements of Tx.

(M�2) If PEk2PEsubst(Tx) needs the value of some register (say Rz) in order

to execute its substitution statements, then PEk must receive Rz through a

�-message if Rz is not in PEk.

(M�3) Each PEj that sends some values of registers to PEk2PEsubst(Tx) through
a �-message, knows the timing to send these values by receiving an �-message

from PEstart(Tx). Note, if PEj=PEstart(Tx) then PEj knows the timing to

send these values without receiving an �-message.

(M�) After (A1), the only PE that can send �-messages to the PE's which need

them is PEstart(Tx).

(M
1) Each PEm2PEstart(Tx � �), where Tx � � is the set of next transitions of

Tx, must receive a
-message from each PEk2PEsubst(Tx) after (A2), except

where m = k. This allows PEm to know that the execution of the substitution

statements of Tx had been �nished.

(M
2) Each PEm2PEstart(Tx � �) must receive at least one
-message from some

PEl (where m 6= l) in order to know that the execution of Tx had been �nished

and/or to know some values of registers it needs to evaluate and execute its

condition and event expression, respectively.

(M
3) Each PEl that sends a
-message to PEm2PEstart(Tx � �) :
(a) must be in PEsubst(Tx) (see (M
1)), or

(b) must receive an �-message from PEstart(Tx) to know the timing to send

the
-message to PEm, or

(c) it is itself PEstart(Tx). In this case, PEl sends the
-message to let PEm

know the timing and/or some values of registers to start evaluating and

executing its condition and event expressions.

(M
4) If PEm2PEstart(Tx ��) needs the value of some register (say Rv) in order to

evaluate and/or execute its substitution statements, then PEm must receive

Rv through a
-message if Rz is not in PEm.

Fig. 4. Derivation Method in Detail

3.2 Integer Linear Programming Model for Protocol Derivation

Based on the above synthesis rules, we determine a behavior of the derived PE's

that would minimize their communication cost while optimally allocating their

resources, using an Integer Linear Programming (ILP) model. This cost could be

based on the number of messages to be exchanged between di�erent PE's [25].

Moreover, other cost criteria can also be considered such as the costs of resource

allocation, size of messages exchanged between di�erent PE's, and frequencies

of transition execution.

The ILP Model (for details see [26, 25]) consists of an objective function

that minimizes the communication cost and decides on an optimal allocation of

resources, based on a set of constraints. These constraints are based on the above

synthesis rules, and they consist of 0-1 integer variables indicating (a) whether

a PE should send a message or not, (b) whether a message contains a register

value or not, or (c) whether a register/gate is allocated to a PE or not.

4 Protocol Re-synthesis

In this section, we present our new method for re-synthesizing the protocol

speci�cation from a modi�ed service speci�cation. The method consists of a

set of rules that would be applied to di�erent PE's after a modi�cation to the

service speci�cation, in order to produce new synthesized (re-synthesized) PE's.

For each simple modi�cation (henceforth called atomic modi�cation) made on

the service speci�cation Sspec, we de�ne its corresponding atomic re-synthesis

rules. As shown later, these atomic re-synthesis rules can also be sequentially ap-

plied to deal with more than one modi�cation. Note that the atomic re-synthesis

rules are based on the synthesis rules described in Section 3. Consequently, we

show next to the description of each re-synthesis rule its corresponding synthesis

rule.

4.1 Atomic Modi�cations and Their Corresponding Re-synthesis

Rules

For each of the following possible atomic modi�cations to Sspec, we present its

corresponding atomic re-synthesis rules. Note that each modi�cation to Sspec

changes the label of a transition Tx in Sspec from hE(Tx); C(Tx);S(Tx)i to
hE 0(Tx); C

0(Tx);S
0(Tx)i. For convenience, we denote the following sets of regis-

ters:

{ Revx: the set of registers that PEstart(Tx) needs to evaluate C(Tx) or execute
E(Tx)

{ Rrsubx
i
: the set of registers that are used in PEi 2PEsubst(Tx) to execute

the statements in S(Tx)
{ Rcsubx

i
: the set of registers that are de�ned (i.e. referenced) by the left-

hand-sides of the substitution statements in S(Tx) in PEi 2PEsubst(Tx).

[Atomic Modi�cations]

1. Revx Revx n fRhg
2. Revx Revx [fRhg
3. Rrsubx

k
 Rrsubx

k
n fRhg

4. Rrsubx
k
 Rrsubx

k
[fRhg

5. Rcsubx
k
 Rcsubx

k
n fRhg

6. Rcsubx
k
 Rcsubx

k
[fRhg

[Atomic Re-synthesis Rules]

1. Revx Revx n fRhg:
The following rules take into account that the value of Rh which has been

sent to PEstart(Tx) is no longer necessary after the modi�cation. These rules

are applied to the part of the protocol speci�cation where each previous

transition (say Tw) of Tx is executed, if applicable.

(a) Each PE (say PEl) which sends a
-message including the value of Rh

to PEstart(Tx), should exclude the value of Rh from the
-message (c.f.

synthesis rule (M
4)).

(b) If (a) is done, then the
-message can be deleted only if

{ PEl 62PEsubst(Tw) (c.f. synthesis rule (M
1)),

{ there is still at least one
-message sent to PEstart(Tx) after deleting

it (c.f. synthesis rule (M
2)) and

{ it no longer has values (c.f. synthesis rule (M
4)).

(c) If (b) is done, then an �-message sent to PEl can be deleted only if PEl

no longer sends �- and
-messages (c.f. synthesis rule (M
3)(b)).

2. Revx Revx [fRhg:
The following rules take into account that the value of Rh must be sent to

PEstart(Tx) after the modi�cation. These rules are applied to the part of

the protocol speci�cation where each previous transition (say Tw) of Tx is

executed, if applicable.

(a) One of the PE's which have Rh and send
-messages to PEstart(Tx)

should include the value of Rh in its
-message to PEstart(Tx), if such

a PE exists (c.f. synthesis rule (M
4)).

(b) Otherwise, one of the PE's which have Rh should send a new
-message

which includes the value of Rh to PEstart(Tx). If the PE does not re-

ceive �-messages and is not PEstart(Tx), PEstart(Tw) should send an

�-message to the PE. (c.f. synthesis rule (M
3)).

3. Rrsubx
k
 Rrsubx

k
n fRhg:

The following rules take into account that the value of Rh sent to PEk is no

longer necessary after the modi�cation. These rules are applied to the part

of the protocol speci�cation where Tx is executed.

(a) Each PE (say PEj) which sends a �-message including the value of Rh to

PEk should exclude the value from the �-message (c.f. synthesis rule

(M�2)).

(b) If (a) is done, then the �-message can be deleted only if

{ there is still at least one �-message sent to PEk after deleting it (c.f.

synthesis rule (M�1)) and

{ it no longer has values (c.f. synthesis rule (M�2)).

(c) If (b) is done, the �-message sent to PEj can be deleted only if PEj no

longer sends �- and
-messages. (c.f. synthesis rule (M�3)).

4. Rrsubx
k
 Rrsubx

k
[fRhg:

The following rules take into account that the value of Rh must be sent

to PEk after the modi�cation. These rules are applied to the part of the

protocol speci�cation where Tx is executed.

(a) One of the PE's which have Rh and send �-messages to PEk should

include the value of Rh to its �-message to PEk, if such a PE exists. (c.f.

synthesis rule (M�2)).

(b) Otherwise, one of PE's which have Rh should send a new �-message

which includes Rh to PEk. If the PE does not receive �-messages and is

not PEstart(Tx), PEstart(Tx) should send an �-message to the PE.

5. Rcsubx
k
 Rcsubx

k
n fRhg:

Removing a substitution statement. Usually, this may cause an additional

modi�cation Rrsubx
k
 Rrsubx

k
nfRh1

; Rh2
; :::; Rhk

g, since the deleted state-

ment uses values of registers. In this case, we consider that the atomic mod-

i�cation (3) was made on Sspec k times and apply its corresponding atomic

re-synthesis rule (3) k times.

6. Rcsubx
k
 Rcsubx

k
[fRhg:

Adding a substitution statement. Usually, this may cause an additional mod-

i�cation Rrsubx
k
 Rrsubx

k
[fRh1

; Rh2
; :::; Rhk

g, since the added statement

uses values of registers. As the case of the re-synthesis rule (5), we apply the

atomic re-synthesis rule (4) k times.

4.2 Modi�cations to the Service Speci�cation

In this section, we describe how modi�cations to Sspec can be represented as the

set of atomic modi�cations presented in the previous subsection. We consider

modi�cations to the label of a transition Tx of Sspec.

{ If E(Tx) (or C(Tx)) is modi�ed to E 0(Tx) (or C
0(Tx)), then this modi�cation

can be represented as a set of the atomic modi�cations of type (1) and/or

(2) which involve adding and/or removing registers from the set of registers

Revx that PEstart(Tx) needs to execute E(Tx) (or evaluate C(Tx)).
{ If S(Tx) is modi�ed to S 0(Tx), then this modi�cation can be represented by

a sequence of atomic modi�cations of type (3), (4), (5) or (6), respectively.

4.3 Changing the Resource Allocation for the Protocol Speci�cation

In some application areas, the allocation of resources between di�erent PE's is

necessary. For example, in distributed databases, adding a copy of an existing

register to some PE's is necessary to increase the fault tolerance and balance the

load amongst these PE's. Here we consider the case where a copy of an existing

register Rh in PEj is added to another PE PEk. For each transition Tx where

the value of Rh is changed (de�ned) in the substitution statement S(Tx), PEk

must execute this substitution statement to update the value of register Rh.

Consequently, this modi�cation can be represented by the atomic modi�cation

(6).

5 Example and Experimental Results

5.1 Modeling the ISPW-6 Example

Protocol synthesis methods have been applied to many applications such as

communication protocols, factory manufacturing systems[14], distributed coop-

erative work management[13] and so on.

In this section, we apply our synthesis method [26] to the distributed devel-

opment of software that involves �ve engineers (project manager, quality assur-

ance, design, and two software engineers). Each engineer has his own machine

connected with the others, and participates in the development through a gate

(interfaces) of this machine, using distributed resources placed on this machine.

This distributed development process includes scheduling and assigning tasks,

design modi�cation, design review, code modi�cation, test plans modi�cation,

modi�cation of unit test packages, unit testing, and progress monitoring tasks.

The engineers cooperate with each other to �nish these sub-sequential tasks.

The reader may refer to ISPW-6 [28] for a complete description of this process,

which was provided as an example to help the understanding and comparison of

various approaches to process modeling.

Figure 5 shows a work
ow model of the above development process using

PNR, where the engineers and resources needed to accomplish the tasks are

indicated. We note that for convenience, we do not show the progress monitoring

process tasks in Fig. 5.

We regard this work
ow as the service speci�cation, and we derive its cor-

responding protocol speci�cation using the method and programs used in our

previous work[26], where we have developed two programs that generate for the

given speci�cation its corresponding ILP problem constraints, and derive the

protocol speci�cations using the synthesis rules. The tool lp solve[29] is used

to solve the ILP problem and obtain the minimal number of messages to be

exchanged between the derived protocol entities. It took 639 seconds on MMX-

Pentium 200MHz PC to synthesize the given speci�cation. The optimal alloca-

tion of the registers is shown in Table 1 and the minimum number of messages

to be exchanged between the di�erent PE's is 40.

5.2 Experimental Results

In this section, we show the e�ectiveness of our re-synthesis method by compar-

ing the time it takes to synthesize the given service speci�cation again after an

assumed modi�cation to the time it takes using our re-synthesis method.

We consider the following modi�cations to the given service speci�cation:

MNG?req,ntf

Rreq

DE!Rreq,Rdesign,
 Rdesign_rf

Schedule and
Assign Tasks Modify Design

Rdesign

Rdesign_fb

SE1!Rdesign

SE2!Rdesign

QA!Rdesign

DE!Rdesign DE?rvw,dcs

SE1?rvw,dcs

SE2?rvw,dcs

QA?rvw,dcs

[Rrvw_de <- rvw
 Rdcs_de <- dcs]

[Rrvw_se1 <- rvw
 Rdcs_se1 <- dcs]

[Rrvw_se2 <- rvw
 Rdcs_se2 <-dcs]

[Rrvw_qa <- rvw
 Rdcs_qa <- dcs]

QA!Rrvw_de,Rrvw_se1,Rrvw_se2,Rrvw_qa,
 Rdcs_de,Rdcs_se1,Rdcs_se2,Rdcs_qa

authorization(ntf)
=="yes"

MNG!Rdcs

dcs==
"Minor Changes
 Recommended"

Rcode

Rtest_fb

DE!Rcode,Rdesign,
 Rtest_fb DE?mcd

[Rtestplan <- tsp]

QA!Rreq,Rtestplan QA?tsp QA!Rtestplan,Runittest,
 Rdesign,Rtest_fb QA?utp

[Runittest <- utp]

QA!Rtestresult

QA

DE!Rtestresult
[Rtestresult <-
 Run(Runittest,Robject)]

QA?als

DE?als
[Rals_qa <- als]

[Rals_qa <- als]

MNG!"complete"

QA?dcs
dcs=="ModifyUnit Test Package"

dcs=="ModifyUnit Test Package and Source Code"

QA?dcs

QA?dcs
dcs=="Complete"

QA!Rals_qa,Rals_de

Review Design

dcs==
"Complete"

QA?dcs

[Rcode <-mcd
 Robject<-compiled(mcd)]

Modify Code

Modify Test Plans Modify Test Unit Package

Test Unit

Robject

Rtestplan

Rrvw_qa

Rrvw_se1

Rrvw_se2

Rrvw_de

Rdcs_qa

Rdcs_se1

Rdcs_se2

Rdcs_de

Runittest

Rtestresult Rals_de

Rals_qa

Develop Change and Test UnitMNG DE SE1 SE2 QA

[Rreq <- req]

DE?dsg

[Rdesign <- dsg]

MNG!Rdcs

MNG!Rdcs

[Rdesign_rf <- Rrvw_de+Rrvw_se1+Rrvw_se2+Rrvw_qa]

[Rdesign_rf <- Rrvw_de+Rrvw_se1+Rrvw_se2+Rrvw_qa]

dcs==
"Major Changes
 Recommended"

QA?dcs

QA?dcs

[Rtest_fb <- Rtestresult
 + Rals_qe + Rals_de]

[Rtest_fb <- Rtestresult
 + Rals_qe + Rals_de]

Rdcs

[Rdcs <- dcs]

[Rdcs <- dcs]

[Rdcs <- dcs]

T1
T3

T4

T6

T8

T10

T5

T7

T9

T11

T12
T13 T18

T14

T15

T16

T17

T19 T20

T21 T22 T23 T24

T25

T26 T27

T28 T29

T30

T31

T32

T33T34

T2

F
ig
.
5
.
M
o
d
elin

g
th
e
C
o
re

P
ro
b
lem

in
th
e
IS
P
W
-6

E
x
a
m
p
le

PEmng PEde PEse1 PEse2 PEqa

Gate MNG DE SE1 SE2 QA

Register Rreq

Rdesign

Rdesign fb

Rrvw de

Rdcs de

Rcode

Rtest fb

Rtestplan

Rrvw se1

Rdcs se1

Runittest

Rtestresult

Rrvw se2

Rdcs se2

Rrvw qa

Rdcs qa

Rdcs

Robject

Ralc qa

Rals de

Table 1. Optimal Allocation of Resources for Engineers' Machines

Synthesis Time (sec.) Number of Messages

Re-synthesis Complete Synthesis Re-synthesis Complete Synthesis

case1 1 958 44 44

case2 1 1021 46 46

case3 1 940 40 40

case4 1 1640 42 42

MMX-Pentium 200 MHz, 128MB Memory

Table 2. Experimental Results

1. An additional source code (register Rcode new) is placed on the machine of

the software engineer 1 (SE1), and the design engineer (DE) modi�es and

compiles it as well as Rcode, in \Modify Code" (transitions T19 and T20).

2. An additional new unit test (register Runittest new) is placed on the machine

of the software engineer 2 (SE2), and the QA engineer (QA) modi�es it as

well as Runittest, in \Modify Test Unit Package" (T23 and T24). Moreover,

an additional test is done using the unit test in \Test Unit" (T25).

3. DE analyzes the test feedback (register Rtest fb) and gives his comments to

QA. For this purpose, a new register Rreport is introduced on DE's machine

and his comments are stored on it in transition T20. Then it is shown to QA

on T25.

4. For fault tolerance, a new copy of the existing code Rcode (placed on PEde)

is placed on PEmng.

After each modi�cation, we have used the programs developed in [26] to

measure the time (in seconds) it takes to synthesize the given speci�cation.

Moreover, we have also measured the time it took to re-derive the protocol

speci�cations using the re-synthesis rules and a program that we have developed

for this purpose. Table 2 shows these times. The reader can clearly see that the

re-synthesize time is much less than the time for a complete synthesis. This is

mainly due to the fact that by using the re-synthesis rules, we do not have to

re-derive the whole protocol speci�cations after each modi�cation. Moreover, we

do not have to re-optimize the number of messages sent between di�erent PE's

because (as shown in Table 2) the re-derived protocol speci�cations still have

optimal (or near-optimal in general cases) solutions.

6 Conclusion and Further Research

Based on our previous work on protocol synthesis of systems modeled as ex-

tended Petri nets, we have developed a set of rules that avoid complete synthe-

sis after incremental modi�cations to such a system. These rules are applied to

the a�ected parts of derived protocol speci�cation. This would make protocol

synthesis and maintenance more practical for realistic applications.

Currently, we are developing a re-synthesis method to speci�cations modeled

as �nite state machines. Moreover, we are investigating the extension of our

re-synthesis method to speci�cations modeled as timed Petri nets.

References

1. T. Murata, \Petri Nets: Properties, Analysis and Applications," Proc. of the IEEE,

Vol. 77, No. 4, pp. 541{580, 1989.
2. R. Milner, \Communication and Concurrency," Prentice-Hall, 1989.
3. V. Carchiolo, A. Faro and D. Giordano, \Formal Description Techniques and Auto-

mated Protocol Synthesis," Journal of Information and Software Technology, Vol.

34, No. 8, pp. 513{421, 1992.
4. H. Erdogmus and R. Johnston, \On the Speci�cation and Synthesis of Commu-

nicating Processes," IEEE Trans. on Software Engineering, Vol. SE-16, No. 12,

1990.
5. R. Probert and K. Saleh, \Synthesis of Communication Protocols: Survey and

Assessment," IEEE Trans. on Computers, Vol. 40, No. 4, pp. 468{476, 1991.
6. K. Saleh, \Synthesis of Communication Protocols: an Annotated Bibliography,"

ACM SIGCOMM Computer Communication Review, Vol. 26, No. 5, pp. 40{59,

1996.
7. R. Gotzhein and G. v. Bochmann, \Deriving Protocol Speci�cations from Service

Speci�cations Including Parameters," ACM Trans. on Computer Systems, Vol. 8,

No. 4, pp. 255{283, 1990.
8. R. Langerak, \Decomposition of Functionality; a Correctness-Preserving LOTOS

Transformation," Proc. of 10th IFIP WG6.1 Symp. on Protocol Speci�cation, Test-

ing and Veri�cation (PSTV-10), pp. 229{242, 1990.
9. C. Kant, T. Higashino and G. v. Bochmann, \Deriving Protocol Speci�cations

from Service Speci�cations Written in LOTOS," Distributed Computing, Vol. 10,

No. 1, pp. 29{47, 1996.
10. P. -Y. M. Chu and M. T. Liu, \Protocol Synthesis in a State-transition Model,"

Proc. of COMPSAC '88, pp. 505{512, 1988.
11. T. Higashino, K. Okano, H. Imajo and K. Taniguchi, \Deriving Protocol Speci�-

cations from Service Speci�cations in Extended FSM Models," Proc. of 13th Int.

Conf. on Distributed Computing Systems (ICDCS-13), pp. 141{148, 1993.
12. M. Nakamura, Y. Kakuda and T. Kikuno, \Component-based Protocol Synthesis

from Service Speci�cations," Computer Communications Journal, Vol. 19, No. 14,

pp.1200-1215, Dec. 1996.

13. K. Yasumoto, T. Higashino and K. Taniguchi, \Software Process Description Using

LOTOS and its Enaction," Proc. of the 16th Int. Conf. on Software Engineering

(ICSE-16), pp. 169-179, 1994.
14. D. Y. Chao and D. T. Wang, \A Synthesis Technique of General Petri Nets,"

Journal of System Integration, Vol. 4, pp. 67{102, 1994.
15. H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, \Synthesis of Protocol

Entities' Speci�cations from Service Speci�cations in a Perti Net Model with Reg-

isters," Proc. of 15th Int. Conf. on Distributed Computing Systems (ICDCS-15),

pp. 510{517, 1995.
16. H. Kahlouche and J. J. Girardot, \A Stepwise Requirement Based Approach for

Synthesizing Protocol Speci�cations in an Interpreted Petri Net Model," Proc. of

INFOCOM '96, pp. 1165{1173, 1996.
17. A. Al-Dallal and K. Saleh, \Protocol Synthesis Using the Petri Net Model," Prof.

of 9th Int. Conf. on Parallel and Distributed Computing and Systems (PDCS'97),

1997.
18. A. Khoumsi and K. Saleh, "Two Formal Methods for the Synthesis of Discrete

Event Systems," Computer Networks and ISDN Systems, Vol. 29, No. 7, pp. 759{

780, 1997.
19. M. Kapus-Koler, \Deriving Protocol Speci�cations from Service Speci�cations with

Heterogeneous Timing Requirements," Proc. of 1991 Int. Conf. on Software Engi-

neering for Real Time Systems, pp. 266{270, 1991.
20. A. Khoumsi, G. v. Bochmann and R. Dssouli, \On Specifying Services and Syn-

thesizing Protocols for Real-time Applications," Proc. of 14th IFIP WG6.1 Symp.

on Protocol Speci�cation, Testing and Veri�cation (PSTV-14), pp. 185{200, 1994.
21. A. Khoumsi and G. v. Bochmann, \Protocol Synthesis Using Basic LOTOS and

Global Variables," Proc. of 1995 Int. Conf. on Network Protocols (ICNP'95), 1995.
22. A. Nakata, T. Higashino and K. Taniguchi, \Protocol Synthesis from Timed

and Structured Speci�cations," Proc. of 1995 Int. Conf. on Network Protocols

(ICNP'95), pp. 74{81, 1995.
23. H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, \Protocol Synthesis

from Time Petri Net Based Service Speci�cations," Proc. of 1997 Int. Conf. on

Parallel and Distributed Systems (ICPADS'97), pp. 236{243, 1997.
24. J. -C. Park and R. E. Miller, \Synthesizing Protocol Speci�cations from Service

Speci�cations in Timed Extended Finite State Machines," Proc. of 17th Int. Conf.

on Distributed Computing Systems (ICDCS-17), 1997.
25. K. El-Fakih, H. Yamaguchi and G.v. Bochmann, \A Method and a Genetic Algo-

rithm for Deriving Protocols for Distributed Applications with Minimum Commu-

nication Cost," Proc. of the 11th IASTED Int. Conf. on Parallel and Distributed

Computing and Systems (PDCS'99), 1999.
26. H. Yamaguchi, K. El-Fakih, G.v. Bochmann and T. Higashino, \A Petri Net Based

Method for Deriving Distributed Speci�cation with Optimal Allocation of Re-

sources," Proc. of the ASIC Int. Conf. on Software Engineering Applied to Net-

working and Parallel/ Distributed Computing (SNPD'00), pp. 19{26, 2000.
27. S.S. Skiena, \The ALGORITHMDesign Manual," TELOS - The Electronic Library

of Science (A Springer-Verlag Imprint), 1998.
28. Kellner, M. et al. : \ISPW-6 Software Process Example," Proc. of the 1st Int. Conf.

on the Software Process, pp. 176-186, 1991.
29. \lp solve," ftp://ftp.ics.ele.tue.nl/pub/lp solve/

30. G. Rothermel and M. J. Harrold, \Analyzing Regression Test Selection Tech-

niques," IEEE Trans. on Software Engineering, Vol. 22, No. 8, pp. 529{551, 1996.

