

Towards Database Scalability through Efficient Data Distribution
in E-commerce Environments*

Haiwei Ye Brigitte Kerhervé Gregor v. Bochmann Don Bourne

Université de

Montréal
Université du Québec

à Montréal
University of Ottawa IBM Canada Ltd

ye@iro.umontreal.ca Kerherve.Brigitte@uqam.ca bochmann@site.uottawa.ca dbourne@ca.ibm.com

Abstract

Increasing Web traffic in e-commerce applications poses
great challenges to database servers. On one hand,
database servers should be able to scale; on the other
hand, end users are becoming more and more sensitive to
the quality of the offered services. This requires
addressing issues such as pushing quality of service (QoS)
requirements into database processing and providing
database system scalability. In this paper, we discuss
scalability issues for back-end database servers used in e-
commerce applications. We argue that database
scalability cannot be achieved without considering
efficient data placement. That leads us to consider the
specifics of e-commerce applications as well as user QoS
requirements. We propose a generic data distribution
strategy integrating user class information and application
characteristics. We also present experiments we have
conducted to provide practical guidelines to our strategy
and to study the impact of data distribution on the
behavior of database system in e-commerce applications.

1. Introduction

Performance and scalability are great challenges to be
met for making e-commerce successful and largely
adopted by customers. Developing strategies and
approaches for better performance and scalability are
required to offer different QoS levels to the users. Such
strategies involve all the components of e-commerce
systems, which architecture typically consists of web
servers as the interface for clients, application servers

having the program logic needed for implementation and
database servers needed for storage of information. In this
paper we focus on database systems and we investigate
data distribution to provide scalability for e-commerce
applications.

Data distribution and query optimization are two key
techniques that have to be revisited in order to provide
QoS support in database systems. In our previous work,
we have focused on integrating information on network
and server performance for enhancing distributed query-
processing algorithms with adequate cost models
[1][2][3]. We are now interested in applying such
approaches on how to wisely layout the data across the
nodes in e-commerce systems since we believe the
performance and scalability of a database system are
contingent upon data distribution. In addition, a poor data
distribution strategy can result in a non-uniform
distribution of the load and the formation of bottlenecks.

In this paper, we concentrate on data distribution in
e-commerce applications. Such applications are specific
compared to those addressed in traditional data
distribution strategies since (i) they are less dynamic in
the sense that access patterns to the database are static and
can be obtained from the application source code; (ii) they
need more consideration of the user expectations in terms
of quality of the provided service; and (iii) their capability
to satisfy these expectations should adapt to the high
variations in the number of connected customer. In [4] we
defined the general principles of a data distribution
strategy that takes user class into account. In this paper,
we give a detailed presentation of our strategy and we
provide results of experimentation we have conducted to
examine the impact of data distribution on the behavior of
database system and the e-commerce application in terms
of scalability.

The remainder of the paper is organized as follows.
Section 2 briefly overviews the related work. Section 3
discusses the scalability issue of the database server.
Section 4 demonstrates our approach for the data
distribution and proposes a generic methodology for data

*This work was supported by a grant from the Canadian Institute for
Telecommunication Research (CITR), under the Network of Center for
Excellence Program of the Canadian Government, a collaborative
research and development grant from NSERC no CRD-226962-99 and
by a student fellowship from IBM.

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

distribution in e-commerce applications. In Section 5, we
provide our experiment and the implementation concerns.
Last, we summarize and point out some future work.

2. Related work

Traditional data placement strategies [5][6] are
derived based on application characteristics (including
data access pattern and data access frequency) and SQL
complexity (referring to the number of tables participating
in the query and number of joins involved). These factors
are not sufficient to propose an optimal partitioning
schema for the e-commerce application if user’s concerns
are ignored.

Various distribution strategies have been developed
for parallel database systems [7][8][9]. They can be
classified into three categories according to the criteria
used in reducing costs incurred in resource utilization. If
the objective is to reduce data transmission over the
network, then the policy could be based on network traffic
[8]. If the goal is to balance the amount of data, or disk
I/O access frequency, the strategies are based on size [7]
and disk access frequency [9]. The main idea behind these
approaches is either to achieve the minimal load (e.g.
network traffic) or a balance of load (e.g. size, I/O access)
through database partitioning. Our work differentiated
from the previous work in the following ways. First, it
considers user class information in the distribution
strategy. Second, both replication and partitioning are
integrated into the strategy. Last, the strategy is particular
tuned for the B2C e-commerce applications.

One way to maintain several copies of data at
different sites is replication. We address this issue in the
paper. It is also interesting to point out that another way to
establish copies of data at different sites of a distributed
system is caching. Several differences between data
replication and caching are identified in [10]. However, in
the rest of this paper, issues related to caching are not
addressed. For a detailed discussion between caching and
data replication, please refer to [10].

3. Providing scalability for the database

server

Scalability refers to the ability of a computer

application or product (hardware or software) to adapt to
increased demands, but we can find many interpretations
to scalability. For many, the top priority for scalability is
high-speed processing enabling great numbers of
transactions per second. For others, the primary need is a
system that can scale up to large user counts or
voluminous data storage. Another interpretation of
scalability that is being actively promoted in the context
of e-business is the capability of a server, application, or

Web site not only to function well in the rescaled
situation, but also to take full advantage of it.

For the purpose of our work, a system is scalable if
there is a "straightforward'' way to upgrade it to handle an
increase in traffic while maintaining adequate
performance. By straightforward we mean that no system
or software architectural changes should be required to
scale the system. Examples of straightforward changes
are: adding more servers to a system that already employs
multiple servers, adding more CPUs to a multiprocessor,
and replacing existing servers with faster servers that use
the same architecture.

The simplest and most intuitive way to provide a
scalable database service is to replicate the database
server to different locations, similarly to the way usually
proposed for Web and application server replication. This
implies that the database content is also replicated and
leads us to consider the complex issue of how to
efficiently maintain the consistency of several copies of
the database stored on different machines.

An alternative way is to deploy a parallel and/or
distributed architecture for the back-end database server.
Distributed database systems and shared-nothing parallel
database systems are increasingly being deployed to
support the scalability and performance demands of end-
users [11][12]. Since they provide the opportunity to
duplicate and/or partition data among multiple nodes, the
database system can utilize this data distribution schema
to query the database in parallel, and thus enhancing
performance. Therefore, two aspects have to be studied:
one is how to distribute the data (both duplication and
partitioning), which is concerned with data distribution
strategy; the other is how to use the existing distribution
schema to provide higher performance, which is dealt
with distributed query processing strategies. In our
previous work [1][13][3], we addressed the second issue.
More specifically, we proposed distributed query
processing strategies based on Quality of Service (QoS)
information describing performance and availability of
networks and servers. In this paper, we focus on the first
aspect. We examine the specificity of e-commerce
applications in order to come up with data distribution
strategies allowing better performance and scalability of
back-end database systems.

Efficient data distribution is usually closely related to
the performance and scalability of a database server.
Moreover, data distribution also serves as an important
load-balancing mechanism. A poor data distribution
strategy can result in a non-uniform distribution of the
load and bottlenecks. The initial data distribution should
be reorganized in response to skewed workloads and
changing access patterns. Therefore, data distribution
should be considered in two stages: initial data
distribution and data reorganization [5][6]. In our work,
attention is focused on the initial data distribution.

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

However, the approach discussed here is also applicable
to data reorganization.

4. Method overview

In this paper we extend traditional way of data

distribution by adding user class information. That is, our
data distribution strategies should integrate distribution
decisions based on user QoS expectations as well as on e-
commerce application characteristics. Defining classes of
users is a way to differentiate users according to their QoS
expectation in order to provide different levels of services
based on priorities. This is an important factor to take into
account to come up with an optimal data distribution
strategy. Under the assumption that a higher priority user
class should get better performance in terms of response
time, we want to allocate the required data, for example,
to more nodes, so that parallelism can be utilized for
query execution. This also requires that the DBMS
supports such priority awareness so that to route the query
from different classes of users to different node groups.

The general method in our study is to allocate
different database resources to different classes of users
first and then apply the distribution strategy to each user
class. Such a procedure is expressed in the following
steps:
1) Using resource allocation strategy to decide the

number of database nodes of each user class.
2) For each user class, executing the following steps:
�� Deriving database access pattern from the
characteristics of this user class.
�� Collecting and analyzing the related statistics
information.
�� Applying data distribution algorithm.

4.1. Resource allocation

The first step is a resource allocation issue, which is a
question of how to divide up the available resources
among available user classes. To simplify the discussion
in this paper, we consider one database node as one unit
of resource. In the implementation, this abstract resource
could be mapped to different hardware and software
resources, such as CPU, memory, disk and network
bandwidth.

Different QoS levels can be provided by either shared
resource or segregated resource. In the case of shared
resource, all the user classes access the same resource.
When there is plenty of resource, all the QoS
requirements can be satisfied. When the resource
utilization reaches to a point (or threshold, for example
80%) such that the system cannot guarantee all the QoS
requirements, some admission control policies may be
triggered to reject or delay the requests from low priority

user. In this method, an important step is how to decide
the reasonable threshold. A high threshold may lead to
service degradation for high priority user. In contrast, a
low threshold may reject too many low priority users and
lead to under utilization of system resources. This value
could be derived from the simulation and should be later
tuned for the purpose of changing policy or workload.

In the case of segregated resource, one feasible
solution is to keep several copies of an identical database,
with each copy for a particular user class, and then
allocate the resources to different user classes. If the
resource is the number of database nodes, then the
allocation is to decide how many disjoint sets of nodes are
needed for different classes. In this method, we have to
address the problem of how to decide how many nodes to
choose for each class. The decision is made depending on
several factors such as the workload type, the navigation
pattern for each class as well as the total available
resources. This is also a policy issue. To do this, we can
analyze the HTTP log and monitor resource utilization for
each node. For example, from the HTTP log and monitor
information, we observe that 80% of the total requests are
searching product and only 20% involve payment activity,
we could allocate 4/5 of the total data-base nodes to
browser class and 1/5 to buyer class.

No matter which resource allocation strategy is
applied, the data distribution strategy should allow for the
use of flexible mechanisms that can adapt to workload
change. For example, the resource allocation method
shown in the above example will not be suitable if the
observation of the workload shows that the payment
activity increases to 40%. Therefore, with the time goes
on, the number of users in each class will change and thus
the number of nodes reserved for each class should also
be adjusted to the new circumstances.

4.2. Distribution strategy

Ideally, we attempt to duplicate all the tables among
all the available nodes for one user class since this will
provide the maximum flexibility of utilizing the parallel
techniques and reducing data transmission. However, this
kind of replication strategy will greatly degrade the
system’s performance if the environment is updated
intensively (such as insert, update or delete SQL
commands), as required by the application. Therefore,
data partitioning is useful in scenarios where there are
frequent updates.

Accordingly, our heuristic is to pick up those tables
that can be replicated first and then, for the rest of the
tables, decide on the partitioning key. The data
distribution algorithm can be summarized in two steps:
1) Grouping tables into two sets for replication (denoted

as Srep) and partitioning (denoted as Spart),
respectively; and

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

2) Selecting the partitioning key for tables to be
partitioned.
The replication strategy can be chosen to duplicate all

the tables in Srep across all the available nodes for that
particular class in the database server. For selecting
partitioning key, we can use the frequency information
and the response time for each operation as our selection
criterion. The partitioning key selection not only depends
on the join operation, but also depends on other
operations like insert and update. The frequency
information refers to the number of an attribute
occurrence in the joins/update. For example, in order to
choose whether to partition table T on join attribute a or
join attribute b, we first need to know the number of
occurrences in joins on table T. Suppose attribute a is
more frequently invoked than attribute b, then the
partitioning key will be attribute a. If the frequencies are
the same, the response time is introduced into the
decision-making. The attribute that is included in a join
with higher response time will be the partitioning key.

In addition, the selection of the partitioning key
should also obey the constraints imposed by different
implementations of the DBMS. For example, in DB2 EEE
[14], there is the constraint that all the columns of the
partitioning key must be subsets of the primary key or
unique key, and the partitioning key cannot be updated.

4.3. Example for data distribution

We apply our data distribution strategy to a sample
database--Demomall. The example is taken from
Websphere Commerce Suite (WCS 5.1) [15]. The schema
of the Demomall can be found in [16]. We assume a
product browsing scenario. The event monitor [14] is
used to collected statistics. The result for tables to be
replicated and partitioned is shown in Table 1. Some
example partitioning keys are shown in Table 2.

5. Experiment and implementation

observations

In this section, we implement the strategy proposed
in Section 4 and conduct several experiments. The
implementation of the strategy is only used for our study
and is not integrated in any IBM product. The purpose of
the experiment and implementation is two-fold: (1) to test
the feasibility of our approach and (2) to provide some
practical guidelines to future prototype development.

Performance analysis is a key technique to
understand scalability problems in e-business. In our
experiment, we do not measure the database performance
directly. Rather, we measure the performance of the
whole system from a user’s perspective. The two metrics

we are concerned with are HTTP throughput (HTTP
hits/sec) and response time (sec) of each command.

Table 1. The selection of replicated and partitioned

tables

Table
category

Replicated tables Partitioning
tables

STORE STORE , MERCHANT,
MASSOCCECE

PRODUCT CATALOG,
CATENTRY,
CATGROUP, �
CATGRPATTR,
CATGRPDESC,
CATGRPREL,
CATTOGRP,
INVENTORY,
LISTPRICE

ORDER CALCODE,
CALMETHOD, �
CCCHECK,
CONTRACT,
OFFERPRICE,
SHPARRANGE
SUBORDERS

OFFER,
ORDERS,
ORDERITEMS,
ORDPAYMTHD,
TRADEPOS

USER MEMBER,
PERSPROF,
USER, USERDEMO

OTHER IITEM, IITEMLIST

Table 2. The selection of partitioning key

Table Partitioning Key SQL Statement
collected

ADDRBOOK ADDRBOOK_ID Join

ADDRESS ADDRESS_ID Update, Join, Insert

IITEM IITEMLIST_ID +
CATENTRY_ID

Update, Join

MEMBER MEMBER_ID Update, Join

ORDERS ORDERS_ID Update, Insert

USER USER_ID Update, Join

5.1. Experiment goal

In our initial performance study, we intend to
maintain the adequate performance of the Web server by
adding more system resources to database servers. That is,
with this increasing resources in database server, the Web
server can accept more user connections while remaining
the similar performance or not experiencing too much
performance punishment. For multiple database
machines, we adopt the DB2 UDB EEE (Extended
Enterprise Edition) as our database management system.

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

For the purpose of comparison, we have two sets of
configuration: the first one is a centralized database server
configuration using DB2 UDB Enterprise Edition (EE),
the second one is a parallel database server configuration
using DB2 UDB EEE. The DB2 EE setup can be regarded
as our baseline measurement. Therefore, we expect for the
result are:
(1) To create a scenario that the database is the

bottleneck of the whole system performance in a
DB2 UDB EE setup.

(2) To apply the same or more workload in the
bottleneck scenario to the DB2 UDB EEE setup and
we expect that the performance (in terms of http hits /
sec) remains the same.
These two points can be regarded as two goals that

we want to achieve for the experiment. A third expected
result would be that the http hits/sec across the entire site
increased in proportion to the number of database servers
employed. We did not verify this point (due to the time
limit) in our experiment. However, we could derive some
useful information by observing the database server
utilization as explained in Section 5.3.

5.2. Environment setup

The environment we set up is a 3-tier system. All the
machines are installed on Windows 2000 operating
system. The first tier is the web load simulation; we use
the SilkPerformer from Segue [17]. Then, we have the
web and application servers running WCS Pro 5.1.0.1 for
NT 2000 and WAS V3.5. Last, is the DB2 EEE V7.2.
Figure 1 depicts the configuration of the experiment.

We may notice that in Figure 1b, WCS A and WCS
B are connected to different EEE nodes separately for the
purpose of the load balance issue as discussed previously.
The size of the database is 650MB. The database contains
1,000 categories and 10,000 product items. The workload
simulates the browsing shopping scenario, which includes
user logon and browsing catalog.

Another important factor that will affect the database
performance is the caching mechanism used in the web
server. Since the study of cache is out of the scope of this
paper, we have to make sure the user’s HTTP command
will invoke a database call. This requires the cache is not
used during our experiment*. Therefore, for all the
experimental data collected, we are sure that the cache
mechanism provided by WCS was turned off. It is also
important to point out that a “user” has no think time in
our experiment.

* Please refer to the WCS installation guide to turn off the cache. In our
experiment, we also conduct the experiment with cache on. It turned out
that the throughput (Http hits/sec) with cache is more than triple of the
result without cache.

(a) DB2 EE configuration

(b) DB2 EEE configuration

Figure 1. Configuration of the experiment

To create the bottleneck scenario for database server,
we increase the load on front-end machine to a point that
the CPU utilization of the database server is almost 100
percent. At the same time, we should see the performance
degradation.

Figure 2 illustrates this scenario. For one Web and
application server (that is 30 users) driving the database
server, we can get 25 hits/sec for throughput and the CPU
utilization for Web and application server is 99%. Since
in our experiment the Web server and the application
server are sitting on one machine, in the following
discussion we just use WCS server to refer both of them.
For two WCS servers (a total of 60 users), the database
server is 90% used and the average CPU utilization for
two WCS servers is 92%. In the case of three WCS
servers, we see a bottleneck on database server because
the average CPU utilization for each of the three WCS
servers is only 88%, for database server is 97% and most
important, we only see an average throughput of 22
hits/sec.

SilkPerformer
1

SilkPerformer
2

SilkPerformer
 3

WCS
A

WCS
B

WCS
C

DB2 UDB
EE

SilkPerformer
1

WCS
A

DB2 UDB
EEE node0

SilkPerformer
2

WCS
B

DB2 UDB
EEE node1

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

Figure 2. Illustration of the bottleneck scenario

The experimental results indicate that the database
server will bottleneck the performance when 90 users (3
WCS machines) access the sample e-store
simultaneously. This is just what we expected for the goal
1) as stated in Section 5.1.

5.3. DB2 EEE result

This section gives the result of DB2 EEE deployment
(shown in Figure 1b) for the experiment. In the
experiment, the tables that are relevant to user
information are partitioned. Examples of partitioning
tables are USER, ADDRESS, and MEMBER. The
partitioning key is user_id or member_id. Tables related
to product information, such as CATALOG and
PRODUCT are duplicated among all the EEE nodes.

Because information related to user is partitioned,
entries with different user_id might locate on different
DB2 EEE nodes. Therefore, there will be the case that a
user is connected to the wrong database node for the first
time and then the database server re-routes him to the
correct node. If this is the case, our result could be
skewed and not comparable with the DB2 EE result. To
avoid this situation, the SilkPerformer script allows us to
control the user directing to the correct database node.

In addition, we use the result from 2 WCS servers in
bottleneck experiment as our reference for scalability
study, as shown in Figure 2. As can be seen from Figure
2, at the point of 2 WCS server, the CPU utilization for
the WCS server and database server are over 90%, and
the throughput (24 hits/sec) is close to the best case (25
hits/sec). Therefore this type of setup seems to be the
optimal point in the performance trend.

Figure 3 shows the DB2 EEE result. For the purpose
of comparison, we also plot the DB2 EE result in the
figure. From Figure 3, we can see that with the 2 database
nodes configured for two WCS servers, we can support
100 users and the throughput is improved to 29 http
hits/sec. By comparing this result with DB2 EE (60 users

with 24.5 http hits/sec), it is easy to see that using EEE
setup:

1) The number of users that the Web server can
support is increasing: from 60 users to 100 users.

2) Throughput (Http hits/sec) is also improved:
from 24.5 to 29 hits/sec.

0

5

10

15

20

25

30

av
er

ag
e

H
ttp

 h
its

(h

its
/s

ec
)

1 WCS Server 2 WCS Servers

EEE setup EE setup

0

0.5

1

1.5

2

2.5

3
av

er
ag

e
re

sp
on

se

tim
e

(s
ec

on
d)

1 WCS Server 2 WCS Servers

EEE setup EE setup

Figure 3. DB2 EEE result

Remember that in the goal defined in Section 5.1, the

second one is to study whether the scalability can be
achieved by deploying the parallel database server for the
E-commerce applications. From the definition of
scalability given previously, we can maintain (actually
improve) the throughput of the web server with the
increasing number of users. We can conclude that the
deployment of DB2 EEE for the database server for WCS
application will provide the scalability in terms of
throughput. Although response time is not the main
metric to be measured in this set of experiment, we
noticed that it is higher in the parallel database (EEE)
setup than in the centralized database (EE) setup. This
observation seems reasonable since the use of parallel
techniques will introduce some overheads. However, it
needs to be further investigated.

As pointed out earlier, another important goal
expected from the experiment is that the increasing of the
overall throughput of the entire system (across all web

99
88

25 24 22

92

50

97
90

0

20

40

60

80

100

1 2 3

Number of WCS servers

average CPU utilization for one WCS server

DB CPU utilizatoin percentage

average Http hits/sec per WCS server

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

servers) would be in proportion to the number of database
servers. For example, if we can get a maximum
throughput of 22 hits/sec/WCS * 3 WCS = 66 hits/sec by
using one database server, then using two database
servers, the optimal result would be that we could get 132
hits/sec using about 5.5 web/app servers (132 / 24 = 5.5).
This trend can not be directly observed from our
experiment. However, a look at the CPU utilization of the
database server in the EEE case will be helpful for our
analysis. In the EEE case, the CPU utilization of each of
the database servers is about 35%. This means about one-
third of the database server utilization can serve about 29
hits/sec. It seems that we have a good chance to get more
than 70 hits/sec if we add more web/application servers
(such as 6 as suggested in the example just mentioned).
This is a useful point that could be investigated in the
future experiment.

5.4 Implementation observations

The strategy we proposed in the previous section is
straightforward. However, implementing it in a real word
database system is not a trivial task. This section points
out some difficulties we encountered while implementing
our strategy. For some of them, we give our solutions and
others remain as open issues.

5.4.1. Constraints on replicated table. The replicated
table can be implemented by materialized view provided
in parallel database systems. A materialized view is
designed to improve performance of the database by
doing some intensive work in advance. Since our work is
based on the duplication of the whole table, we can define
the materialized view as a full projection of the whole
base table. If the materialized views are allowed for
duplication on various nodes in the database systems, we
can achieve the purpose of table duplication.

In DB2 EEE, we can use the concept of summary
table for the implementation of materialized view. If DB2
determines that a portion of a query could be resolved
using a summary table, the query may be rewritten by the
database manager to use the summary table. In a parallel
database environment such ad DB2 EEE, summary tables
can also be replicated. A replicated summary table is
based on a table that may be created in a single-partition
nodegroup, but replicated across all of the database
partitions in the nodegroup. The replicated summary
tables may improve query performance in the sense that
data shipment is avoided and collocated joins can be
formed. In other words, by using replicated summary
tables, it is possible that collocation between tables that
are not typically collocated can be obtained. Therefore,
the replicated summary table reduces the need to retrieve
tables that reside remotely.

As a result, the creation of a summary table with the
replication option can be used to replicate tables across all
nodes in a partitioned database. Some restrictions
regarding summary tables have to be aware while
designing the data distribution strategy. Some of them are
listed below. For a complete set, please refer to the DB2
UDB Administration Guide [14].
1) Summary table cannot be altered.

In our algorithm, the replicated tables are chosen
because they are “static” as regard to update.
However, if we do need to update the summary table,
such as modify the “product” information, the only
way is to first drop the replicated summary table and
update the base table, then re-generate the replicated
summary table. This might offset the gains brought
by the summary table.

2) Primary key cannot be generated for summary table.
One potential problem without primary key is the
primary index cannot be generated automatically
since a primary index is automatically created for the
primary key. Therefore, we have to manually
generate those indexes corresponding to the primary
keys for the replicated summary table. Neglect to this
point will lead the optimizer fail to use the replicated
summary table.

3) Unique index cannot be created.
In the case that the optimizer will favor a “unique
index” over an “index”, the chance for the optimizer
to choose the summary table is low. This also relates
the issue of optimizer tuning discussed below.

5.4.2. Load balance consideration. Ideally, if we
partition the data evenly (in terms of size) across the
nodes (assuming these nodes have the same hardware
configuration), we expect the load on each node to be
balanced. However, in the implementation, other factors
will contribute to the unbalanced workload. In DB2 UDB
EEE [11], for an application or user session that is
connected to a parallel database, the node (partition) at
which the CONECT command was processed is called the
coordinator node. Any database partition can be used as
a coordinator node. However, one concern for coordinator
node is that it will consume more resources than non-
coordinating node since it will interact with the
application or user concerning the SQL request and result,
it is also responsible for the inter-communication with
other EEE nodes.

We conduct another experiment to see this point. The
experiment is configured as a two-tier architecture: the
Web browser and e-commerce server are set in one NT
machine (4-way Pentium III processor), and the database
server is installed on 3 nodes (AIX machines) linked by
fast Ethernet. The database server and e-commerce
application server are connected by a fast Ethernet as
well. The workload used is product browsing. In the

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

experiment, we simulate 30 users who access the store
Web site to browse the product simultaneously. The load
we are concerned with in this setting is mainly the CPU
utilization of the database node. The performance data is
sampled every 5 seconds. The result is an average of 23
minutes observation. The CPU utilization on each node is
shown in Figure 4.

Figure 4. CPU utilization for each node

From Figure 4, we can see that node2 and node3 have
nearly identical load in terms of CPU utilization during
the whole observation period. There is, however, a
noticeable difference between node1 and the other two.
This means that the application does not exploit the
database system in a very balanced way. Therefore, if
multiple application servers connect to one database node,
that node will be the coordinator node for all the database
transactions. This will eventually lead to the situation that
the coordinator node is almost 100% used while other
nodes are seldom used. As a result, the coordinator node
will bottleneck the whole database performance.

This observation provides us a very important insight
into the data distribution issue: the database management
system should also take into account the underlying data
distribution while constructing the searching strategies.
That is, data distributed evenly across nodes cannot
guarantee balanced system utilization. For a real
application this means that without buying new resources,
load balancing can offer more resources and better
response times to all users and can effectively avoid the
situation where some nodes are idle while others are
overloaded. Load balancing becomes more complicated
when the system consists of heterogeneous nodes, i.e.
faster and slower processors, different amounts of main
memory and a different number of CPUs per node. This
means that load balancing has to cope with changing,
unpredictable load on each node. This also requires the
DBMS to be adaptive, that is, to identify the currently
important performance factors, to create estimations by
profiling the system behavior and to find the trade-off
between load balancing overhead and improvement.

 For the focus of this paper, we are not trying to
modify the DBMS. Instead, we attempt to control the
problem brought by coordinator node outside the DBMS,
that is the connection between the application server and
database server. Accordingly, the overhead of working as

a coordinator node can then be spread to more than one
node in an instance.

5.4.3. Workload type. Workload plays an important role
in collecting the statistics used for our distribution
strategy. Different types of workloads could lead to
different statistics for the same table. In e-commerce
applications, workload could be classified according to
different activities such as registration, product browsing,
ordering, and fulfillment. Therefore, the derived
distribution schema for one workload could unbalance
others. We could, accordingly, do the data distribution
according to a combined workload, defined as a weighted
sum of the different kinds of load. The weight given to
each load could be derived experimentally to achieve the
maximum optimization goal (e.g. maximum throughput or
minimum response time).

In this study, we focus on one type of workload:
product browsing. This usually comprises a mixture of
less frequent updates or no updates of the product catalog
stored in the database, accompanied by a few updates to
the order information associated with a given user. This
leads to the criterion used to select replicated tables from
those tables with read-only access. The tables to be
partitioned are those tables with read-write access. In
other kind of workload, it is possible that no table is read-
only. In such a situation, the ratio of read to write could
be used to determine the static aspect of a table. A
threshold is useful in this case: if the update frequency is
smaller than the pre-specified threshold, the table could
still be duplicated. For example, if during the observation
period, among all the accesses to table A, only 5%
transactions require a write operations, 95% are read
operations. If the threshold is set at 6%, then table A
could still be regarded as “static” and therefore could be
duplicated among database nodes. The best value for the
threshold is a trade-off between the performance gain
brought by the parallel table access and the update
overhead introduced to keep the consistency between base
table and replicated table. This value can be derived from
the result of the experiment.

6. Conclusions and future work

This paper has discussed issues related to the
scalability and performance of back-end database servers
used in e-commerce applications. We first argued that the
study of database server in e-commerce applications is not
isolated from other components: this is a system-wide
issue. Therefore, a proper configuration between database
servers and other application servers is necessary for the
study. We also pointed out that among techniques that
should be proposed, data distribution strategies are of

30.85

7.66 7.40

0

10

20

30

40

node1 node2 node3

pe
rc

en
ta

ge
 o

f C
P

U

ut
liz

at
io

n

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

prime importance since database scalability cannot be
achieved without considering efficient data placement. In
particular data distribution strategies should consider the
specific e-commerce applications and user expectations in
terms of quality of service.

We investigated issues and decision factors related to
data distribution strategies. We then proposed strategies
for data distribution considering both e-commerce
application characteristics as well as user classes. We
proposed to differentiate users according to their access
patterns to the database. Our strategies include decisions
on the configuration of the database in terms of the
number of nodes as well as distribution decisions
associated to each user class. Last, we conducted some
experiment to examine the behavior of the e-commerce
application and the database server. This experiment
shows that data distribution is valuable if and only if
better strategies are proposed for query execution
coordination.

Although some experimental results shown in this
paper deserve further investigation (remember that the
response time is higher when deploy parallel
architecture), we still demonstrate the scalability when the
throughput is the major performance concern. In addition,
these experiments provide a preliminary practical step to
study the data distribution strategies for providing
scalability. Through the experiment, we also discussed the
implementation difficulties in the real-life. In particular,
the experimental results are limited by the ability of the
optimizer. Lack of knowledge and “control” over the
optimizer will also, sometimes, prevent us from deploying
the distribution strategies as planned.

References

[1] H. Ye, B. Kerhervé and G. v. Bochmann, Quality of

service aware distributed query processing, 10th
DEXA Workshop on Query Processing in
Multimedia Information Systems (QPMIDS),
Florence, Italy, 1-3 Sept. 1999, Proc. published by
IEEE Computer Society, 1999.

[2] H. Ye, G. v. Bochmann and B. Kerhervé An adaptive
cost model for distributed query processing, UQAM
Technical Report 2000-06, May 2000.

[3] H. Ye, Integrating Quality of Service Information and
Requirements in a Distributed Query Processing
Environment, PhD thesis (preliminary draft),
University of Montreal, 2002.

[4] H. Ye, B. Kerhervé, G. v. Bochmann, Don Bourne,
Data Distribution Strategies for Providing Scalability
in E-Commerce Applications, Third International
Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems, MILPITAS, June
21-22, 2001.

[5] M.L. Lee, M. Kitsuregawa, B.C. Ooi, K. Tan. A.
Mondal, Towards Self-tuning data placement in
parallel database systems, SIGMOD 2000, 225-236.

[6] D. C. Zilio, A. Jhingran, S. Padmanabhan,
Partitioning Key Selection for a Shared-Nothing
Parallel Database System IBM Research Report RC
19820 (87739) 11/10/94, T. J. Watson Research
Center, Yorktown Heights, NY, October 1994.

[7] K. A. Hua, C. Lee: An Adaptive Data Placement
Scheme for Parallel Database Computer Systems,
VLDB Conference, Brisbane, Australia 1990: 493-
506.

[8] P. M. G. Apers, Data Allocation in Distributed
Database Systems TODS 13(3), 1988, pp. 263-304.

[9] G. P. Copeland, William Alexander, Ellen E.
Boughter, Tom W. Keller: Data Placement in Bubba,
SIGMOD Conference 1988: 99-108.

[10] D. Kossmann, The state of the art in distributed query
processing, ACM Computing Surveys (CSUR),
Volume 32, Issue 4, December 2000, pp 422 – 469.

[11] Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S.
Padmanbhan, G.P. Copeland and W.G. Wilson, DB2
Parallel Edition, IBM Systems journal, Vol. 34 No. 2,
1995.

[12] Don Chamberlin, A Complete Guide to DB2
Universal Database, Morgan Kaufmann Publishers,
1998.

[13] G.v. Bochmann, B. Kerhervé, H. Lutfiyya, M. M.
Salem, H. Ye, Introducing QoS to Electronic
Commerce Applications, Second International
Symposium, ISEC 2001 Hong Kong, China, April
26-28, 2001, pp 138-147.

[14] IBM Corporation: IBM DB2 Universal Database
Administrator Guide, Version 7.1, IBM Corporation
2000.

[15] http://www-3.ibm.com/software/webservers/
commerce/wc_pe/

[16] http://www-4.ibm.com/software/webservers/
commerce/wcs_pro/database_schema.pdf

[17] http://www.segue.com/html/s_solutions/s_performer/
s_performer.htm

Proceedings of the 3rd International Symposium on Electronic Commerce (ISEC�02)
0-7695-1861-3/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

