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Abstract 
 

In recent years, a lot of research effort has been 
dedicated to the management of Quality of Service (QoS), 
mainly in the fields of telecommunication networks and 
multimedia systems. Emerging applications such as 
electronic commerce, health-care applications, digital 
publishing or data mining also have requirements 
regarding the quality of the service, the cost of the 
service, the quality of data to be delivered, the accuracy, 
and the precision of the retrieved data. These examples 
show the need to consider the concept of QoS from a 
broader perspective, requiring the collaboration of all the 
distributed system components involved. In this paper, we 
propose an approach to integrate user-defined QoS 
requirements, together with the dynamic properties of the 
system components involved, into a distributed query 
processing environment. We then propose a query 
optimization strategy in which multiple goals may be 
considered with separate cost models. Furthermore, we 
discuss some experiment results confirming the 
effectiveness of our approach. 
 
1. Introduction 
 

Quality of Service (QoS) management has attracted a 
lot of research in the last decade, mainly in the fields of 
telecommunication networks and multimedia systems. To 
support QoS activities, mechanisms have been provided 
mainly for individual components such as operating 
systems, transport systems, or multimedia storage servers 
and integrated into QoS architectures for end-to-end QoS 
provisions[1]. None of these proposals take database 

systems into consideration although database systems are 
an important component of present distributed systems.  

Traditional database optimizers aim at minimizing the 
query response time and/or the number of disk I/O. 
Consideration of QoS within query processing means the 
inclusion of other dimensions such as the cost of the 
query, the data quality, or the throughput of the database 
systems. Single optimization goal strategies deployed in 
the traditional database optimizers cannot satisfy such 
QoS requirements. We argue that query optimization 
should take into account user-defined quality of service 
constraints[2]. In an electronic commerce application for 
example, a user could specify QoS requirements such as: 
"I want the most up-to-date information even if it takes 
time. However, if the response time is longer than 3 
minutes, I will accept less recent information, but only if 
it is less than 10 hours old". Based on the specified QoS 
requirements and using the QoS metadata, in this example 
the query optimizer has to choose the most up-to-date 
information from the catalogs.  

In our approach, the treatment of QoS requirements is 
reflected in the aspects of integrating multiple 
optimization goals and how to select a query access plan 
that is overall optimal. The related issues consist of 
identifying the possible optimization goal, the selection of 
cost models, the way to obtain the user’s priority between 
different optimization goals, and how to obtain an overall 
optimal goal according to the user’s preference.  

In this paper, we propose an approach to integrate 
user-defined QoS requirements, in addition to the 
dynamic properties of the system components involved, 
into a distributed query processing environment. We then 
propose a query optimization strategy in which multiple 
goals may be considered with several cost models. 
Furthermore, we discuss some experimental results 
confirming the effectiveness of our approach. 

The rest of the paper is organized as follows. The next 
section describes our QoS-based distributed query 
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processing. Section 3 presents the results of our 
experimentation. Section 4 discusses related work. 
Section 5 concludes and suggests future work. 

 
2. QoS-based query processing 
 

To support QoS in database systems, we propose to 
enrich query processing with some QoS features. We 
consider factors like user requirements, dynamic network 
performance, and dynamic server load in the procedure of 
global query processing. By global query processing, we 
mean that we position our work on top of existing 
database systems. The QoS features are plugged into the 
query processor that deals with inter-database operations.  
Therefore, our method does not require the modification 
of local database query processors. The main objective is 
to provide a flexible QoS model for multidatabase 
management systems and to offer differentiated services. 

We base our work on classes of users, cost models for 
distributed query processing, and utility functions to 
describe system or user satisfaction for different 
optimization goals. Usually the utility function maps the 
value of one QoS dimension to a real number, which 
corresponds to a satisfaction level. For example, the 
following formulas give the utility functions for the 
response time and the service charge: 

ut(t) = 1 / t 
u$ (x) = 1 / x 

where t is the response time for a query plan and x is 
the corresponding service charge for that plan. Utility 
functions are used in our cost model to achieve an overall 
optimization since it is used to compare the quality of the 
access plans. It also provides an important link between 
the quality of a query plan and the user satisfaction. A 
user class is a generalization of a number of users sharing 
common characteristics. Classification of the users may 
be based on different policies and criteria[3]. For 
example, different users may exhibit various patterns of 
navigation through an e-commerce site, therefore based 
on the user’s navigation behavior, we may segregate 
users into two classes: buyer and browser. We propose a 
new approach to the problem of evaluating the cost of a 
query plan in a multidatabase system. Our cost models are 
adaptive in the sense that first, they combine multiple 
optimization criteria (for example response time and 
money cost, into a simple cost model) and second they 
can give a more precise response time estimation based 
on the information captured by QoS monitoring of the 
network and the server. 

2.1. Query processing and optimization revisited 

When designing the QoS-based query processor we 
are guided by two main goals: 1) recognition of 
individual user requirements, and 2) consideration of the 

dynamic nature of the underlying system. A logical 
architecture is proposed in Figure 1 to show the 
relationships between QoS management and query 
processing.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A big picture for QoS-aware distributed 

query processor 
In this framework, we include the typical components 

introduced in [4]. The user’s query is sent to the Parser to 
be syntactically analyzed and validated against the 
database schema. The output of the parser is transformed 
by a set of rewriting rules in the rewriter. These rules 
correspond to heuristics that transform the query into a 
semantically equivalent form that may be processed more 
efficiently. 

The main tasks of the Global Optimizer are 1) choose 
an execution plan which satisfies the optimization 
objectives and 2) send it to the scheduler who coordinates 
the execution of the plan among the participating 
component DBMSs. We keep the traditional factors[4] 
considered in the query processor. These typical factors 
include table statistics, column statistics, and index 
statistics. In addition, we include the QoS factors, which 
are information from the QoS Information Base (QoSIB), 
the User Profile, and the System Policies.   

Adding QoS factors into a distributed query 
processing environment has several impacts and requires:   

• to provide new optimization goals; 
• to modify the corresponding cost models; and 
• to propose a new algorithm for query optimization. 

2.2. User profiles, QoS monitoring information 
and system policies 

Pushing QoS into a distributed query processing 
environment requires the description of the information 
related to the user’s requirements, the QoS level provided 
by the different system components and the objectives of 
the system in terms of resource allocation.  
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User profiles. A user profile is built to store the user’s 
QoS expectation for a particular service. The QoS 
expectation is expressed according to different QoS 
dimensions[5]. For example, a good quality of service 
level may be expressed by the dimensions of response 
time and dollar cost. The user profile allows users to 
specify their QoS requirements by defining utility 
functions for each dimension. As mentioned previously, a 
utility function translates the values of an attribute into 
“utility” units. We consider decreasing utility functions 
since this type of utility function is practical in the case 
that the utility decreases with the increasing of one QoS 
dimension. Examples of such dimensions are response 
time and service charge. 

The user profile is also useful to derive the trade-off 
between QoS dimensions, which is represented by the 
weight assigned to each dimension. In our approach, the 
Analytic Hierarchy Process (AHP) [6] is used to derive 
the weights from user’s preference. This method only 
requires the user to provide his or her judgments about 
the relative importance of each criterion over another one 
(pairwise comparison of goals) and then specify a 
preference index. Based on these preference indexes, the 
output of the AHP is a prioritized ranking indicating the 
overall weights for each of the alternative decisions. In 
short, the utility functions and weights are then used to 
guide the optimizer for selecting a query access plan.  

QoS information base. The QoS information base 
(QoSIB) stores some information about the service level 
offered by the different system components. Since we are 
working in the context of Internet-like networks, the 
performance of the TCP protocol is our key consideration 
when talking about network performance. Among all the 
performance factors, TCP throughput and TCP delay are 
two key parameters considered in our distributed query 
processor. 

For the server performance category, the parameters 
of interest include availability and server load (CPU 
usage, memory usage, and the frequency of disk I/O). The 
availability is the fundamental measurement of a server. It 
includes the availability of hardware as well as the 
software. In our research, we refer to the availability of 
the database services. In our prototype, QoS information 
is stored as XML files.  

System policies. We believe that many future 
applications, especially e-commerce systems, will be able 
to provide different levels of service to different classes 
of users[7]. In the simplest sense, the policy consists of 
one or more rules that describe the action(s) to occur 
when specific condition(s) exist[8]. In our study, the 
system policies determine the constraints under which the 
system resources can be used for providing services to the 
users. Usually, a policy is a formal set of statements that 
define the levels of services to be provided to particular 

classes of users. If written in a natural language, policy 
statements may take the following forms: 

“Give the VIP users the best service” 
“Give the normal users the resource-effective service” 
Different policies may be enforced to different classes 

of users. Policy statements are stored in System Policies. 
The parameters that make up a system policy include the 
optimization goals defined (as presented in Table 1), user 
class information, and the weighting factors associated 
with each goal.  

 
Table 1 Example of optimization goals 

 
Optimization category Optimization goal 

Performance oriented - Minimize response time 
- Maximize DB throughput 

Money oriented 
- Minimize the cost of a service 
- Maximize the benefit of the database 

system 

Data quality - Multimedia vs. Plain text 
- Recency of data 

System oriented - Minimize resource utilization 

 
When various optimization goals exist along multiple 

QoS dimensions, we should find an optimal solution that 
satisfies all of them, optimal either from the user 
perspective or the system perspective, or both. One way 
of combining various optimization objectives is to use 
weighted combination (for example, a weighted sum) of 
different goals. A weighted combination can express the 
overall satisfaction of all the optimization goals. The user 
must be presented with enough options that his or her 
desires can be adequately expressed and they can then be 
mapped to weighting factors associated with the different 
objectives. 

All this information is later integrated into the QoS-
aware distributed query processing for access plan 
selection. Different optimization goals may lead to 
different cost models or query processing strategies. In 
the performance category, the cost factors comprise the 
measures of local processing time, the communication 
time as well as some overhead due to parallelism. There 
are two types of query parallelism: inter-query parallelism 
(which enables the parallel execution of multiple queries) 
and intra-query optimization (which makes the parallel 
execution of multiple operations possible within the same 
query). For the optimization goals related to the 
monetary, the cost measures include information on the 
resource usage and the pricing scheme.  

2.3. Global Query Optimization 

Global query optimization is generally implemented in 
three steps[4]. After parsing, a global query is first 
decomposed into query units (subqueries) such that the 
data needed by each subquery is available from a single 



local database. Second, an optimized query plan is 
generated based on the decomposition results. Finally, 
each subquery of the query plan is dispatched to the 
related local database server to be executed and the result 
for each subquery is collected to compute the final 
answer.  

In our study, we focus on the first two steps and map 
them to the problems of global query decomposition, 
inter-site join ordering and join site selection[10]. Before 
describing these three steps, we give an explanation about 
the evaluation of the cost of query plans. 
2.3.1. Evaluating the cost of query plans. We propose a 
new approach to the problem of evaluating the cost of a 
query plan in a multidatabase system. Our approach relies 
on the information from QoS monitor user profiles. The 
novelty of our approach lies in the consideration of user 
requirements, user classes as well as the way to deal with 
dynamic network performance.  

In our work, three levels of cost models are used. The 
first level is the global cost model, which is used to 
calculate the overall utility of a query access plan. The 
second level is used to calculate the cost for each node in 
a query access plan. The last level is the local cost model, 
which is used to estimate the cost of an operator locally. 

Global cost model. As discussed earlier, multiple 
optimization goals over different QoS dimensions are 
considered in our query optimizer. Consequently, the 
global cost model should reflect them. For our cost 
model, we adopt the method proposed for multi-criteria 
optimization in Operations Research area. Accordingly, 
the general cost model for one user is  
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where ui is the utility function for cost component  Ci 

(based on one of the QoS dimensions i); ωi is the 
weighting factor assigned to the cost component Ci. Note 
that we want to maximize the utility for a given user; 
therefore this model could also be called a utility model. 
The range of ωi is [0,1] and Σωi = 1. 

Plan cost model. A query access plan is represented 
by a binary tree. Each internal node is an inter-site join 
operation and each leaf node is the subquery executed at 
one database server. Since we consider several cost 
components, the cost of each node is also expressed 
according to multiple dimensions. For example, if we 
select the response time, the service charge and the 
availability as our cost components, then the cost 
information recorded in each node will include three 
parts: time, dollar, and availability. The cost information 
for leaf nodes is based on the local cost model and the 
QoS Information Base (e.g. availability). The cost 
information for the internal node is calculated as a 
combination of the cost information of its left and right 
child nodes. The cost formula for each QoS dimension is 

different. Table 2 lists the cost functions for time, dollar, 
and availability. The join time for each node is 
determined by the load of the server and the current TCP 
performance. The formula for each join is: 

T join = local (site, query) + net (sitei, sitej) 
where local (site, query) represents the local execution 
time for the query at site, net (sitei, sitej) represents the 
data transfer time spent over the network. 
 

Table 2 Cost functions for each cost component 
 

Cost 
Component 

Cost function Brief Description 

Response 
time  

Join-time + max 
(left.respose_time, 
right.response_time) 

The join time is the 
response time to perform 
the join between the left 
and the right child. 

Service 
Charge 

Join-charge + 
left.charge  
+ right.charge 

The join charge is the 
money cost to perform 
the join between the left 
and the right child. 

Availability Left.availability * 
right.availability 

The probability that both 
servers are available. 

 
Figure 2 shows an example query plan marked with cost 
information for each node. We use a vector (time, money, 
availability) to record the cost information for each node 
in the plan tree. By using this representation, the cost 
information for the root node of the tree is the plan cost. 
Each item in the vector associated with that node is 
computed using the formula given in Table 2.  
 
 
 
 
 
 

Figure 2. Cost calculation for a join node 
 
Local cost model. As mentioned earlier, the local cost 

information relies on the estimation of the execution of a 
query at a local server, the pricing policy applied by the 
local server for a service charge and the server 
availability. Each local database server must report the 
price and the availability. However, the execution 
strategy, and therefore the execution time, of a query is 
hard to obtain since local database systems do not report 
the needed statistical information. To estimate the local 
database cost, we adopt the sampling method[9], where 
multiple regression models are used to guess the local 
cost structure (in terms of time). The idea of the query 
sampling method can be characterized by the following 
steps: 1) queries are classified according to a number of 
criteria; 2) sample queries from each class are selected 
and issued to run against the local database; and 3) the 
response time is then measured to derive the local cost 

(1.4s, $0.3, 98%) 

Site i 
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Site j 
(0.9s, $0.1, 99%) 



model by multiple regression analysis. Such a cost 
formula includes a set of variables that affect the costs of 
queries and a number of coefficients that reflect the 
performance behaviour of the underlying DBMS. Due to 
space limitation, we will not give detailed information 
here. A complete discussion can be found in[11]. 
2.3.2. Global query processing. In our work, global 
query processing is implemented by three steps: global 
query decomposition, join ordering, and join site 
selection. 

Global query decomposition. The main task of the 
global query decomposition is to break down a global 
query into several subqueries so that the tables involved 
in each subquery target one location. This is an NP-
Complete problem[12]. Therefore, this step is usually 
guided by heuristics. Two goals used in our algorithm are 
to simplify the optimization at the global level and to 
reduce the data transmission among different sites. 
Therefore, the heuristic used is to decompose a global 
query into the largest possible subqueries. 

The cost model used for this step mainly depends on 
the local information, based on the optimization goal 
selected. For example, if the optimization goal is the 
response time, the cost model could be the response time 
for each subqueries under various server loads. We do not 
consider data transfer in this step; therefore 
communication cost is not involved. The QoS factor 
considered is mainly the system performance information 
from QoS information base. 

Join ordering. The global query decomposition phase 
generates a set of subqueries with location information. In 
the following join ordering step, the optimizer tries to 
come up with a good ordering of how to combine these 
joins between subqueries. The join ordering can be 
represented as a binary tree, where leaf nodes are the sub-
queries and internal nodes are inter-site join operations. 
Because we want to utilize the distributed nature of the 
multidatabase system, we try to make this tree as low as 
possible, which means we hope the join can be done in 
parallel as much as possible. 

A typical way is to generate a linear tree first and then 
balance this linear tree to a bushy tree [10][12]. 
Following the same method, we first build a left-deep tree 
using dynamic programming. The next step in the join 
ordering is to transform the left deep join tree into a more 
balanced bushy join tree. A feasible approach is to apply 
a sequence of basic transformations that can be easily 
identified and performed[11]. 

The cost models used in this step consist of both 
global cost model and local cost model. In this step all the 
QoS factors introduced in Section 3.2 are included in the 
decision. 

Join site selection. In case of data duplication, one 
subquery might have several potential locations, thus the 
optimizer should decide at which location this subquery 

will be executed. Like the join ordering problem, all the 
QoS metrics are taken into account.  

The key issue in the site selection is to decide which 
site is the best (depending on how the user defines his or 
her optimization goal) for each binary operator. 
Traditionally, the possible site to perform the join or the 
union is chosen from one of the operand sites, i.e. the site 
where one of its operands is located. However, there may 
be circumstances when shipping the two operand tables to 
a third site is a better solution, in terms of response time. 
We call the join site to be a third site if the selected site is 
neither of the operand sites.  

For a binary operator node such as join or union, the 
selection process becomes complicated when several 
third sites are capable of handling the operator node.  

After we decide which candidate set to choose for the 
“third site”, the procedure of join site selection can be 
regarded as deciding (based on the cost model) the site 
for each internal node (which is usually the inter-site join 
operation) in the query access tree. This process may be 
done in a bottom-up fashion. In our algorithm, we use 
post order tree traversal to visit the internal nodes of the 
tree[11]. 

2.4. Prototype implementation 

In order to validate our approach, we implemented a 
prototype where we concentrated on those aspects that are 
representative for the QoS-based distributed query 
processing we propose. For simplicity, we only integrate 
two QoS dimensions in the prototype. However, the 
implementation is not limited to these two dimensions, 
the modules implementing other dimensions can be easily 
plugged into our prototype. Highlights of the 
implementations are given below. 
1) User classes: In order to show the differentiated 

services in our prototype, we have adopted the priority-
based user classification and considered two user 
classes, namely VIP user and normal user. 

2) QoS consideration. The dynamic characteristics of the 
underlying systems for our QoS consideration are 
network performance, server load, and availability. For 
the network performance, TCP performance is our 
main concern. Accordingly the QoS dimensions we 
considered are available bandwidth and delay. For the 
consideration of server load, we categorize the load into 
four levels: no load, low, medium, and high. They are 
used to show different levels of resource contention. In 
addition, a server is also characterized by its 
availability (yes or no).  

3) Optimization goal. For our prototype implementation, 
we focus on two optimization goals: minimize the 
response time and/or the service charge. Basically, we 
want to demonstrate the integration of the criteria of 
time and money into our prototype. Accordingly the 



overall optimization goal is calculated by the following 
formula: 

Min { ωt ut (response_time)  +  ω$ u$ (service_charge) } 

where ωt and ω$ are the weights specified by the users 
for the response time and service charge, respectively; 
ut and u$ are utility functions used for the response time 
and service charge respectively. For the purpose of 
simplicity, we assume the utility function for the 
response time and the service charge are the utility 
functions given at the beginning of Section 2. 

4)  Global cost models. The global cost model (as 
explained in Section 2.3.1) contains two cost 
components: response time and service charge. 
Depending on the optimization goals, three cost models 
can be selected:  

i.   Ctime = response_time; 
ii.   Cdollar = service_charge; 
iii. Coverall = Wtime * ut(response_time) + 

Wdollar * u$(service_charge) 
The detailed cost model information can be found in 

[13]. The calculation of the response time is 
straightforward. The total response time of a query plan 
(represented as a tree structure) is the sum of the 
response time on each node along the critical path in 
the query access tree.  

For the service charge, we are dealing with a pricing 
issue. Typically, two types of charging schemes are 
popular today. They are flat-rate and usage-based [14]. 
We adopt the usage-based pricing policy for our 
prototype implementation. We concentrate on network 
bandwidth utilization. A complete pricing schema, 
however, should consider all the resources including 
both the network and the server. The reason for only 
considering the network resource is not only because 
we want to simplify the implementation, but also 
because there have already been many studies for the 
pricing for the Internet. We assume the service charge 
of a query plan is proportional to the network resource 
consumed. Accordingly, this second optimization goal 
is eventually simplified as the problem of minimizing 
the network bandwidth utilization. 

Prototype architecture. The functional modules of 
the prototype include the user interface part for SQL 
input and QoS schema selection, the optimization part 
based on the algorithms proposed, the visualization part 
for the query plan and QoS information and the result 
display part. Our prototype offers a simplified GUI for 
SQL input. This component allows a user to specify a 
query by selecting the desired attributes and tables as well 
as join and restriction predicates.   

The user can also choose to view the XML 
representation of the specified query that will be 
forwarded to the optimizer by clicking the “show query 
(XML)” button. The other component integrated with the 

SQL Input GUI is the User Preference manager, shown in 
the lower part in Figure 4. In this part, the user can select 
his trade-off between the response time and the service 
charge. The sliding bars are used for this purpose and this 
ratio is further integrated in the optimizer to derive the 
overall optimization goal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 An example of SQL input interface and 

selection of query preference 
 
When an SQL query and the QoS preferences are 

specified by the user, he/she can see the generated query 
access plan. For the query specified as in Figure 4, the 
query plan shown to the user will look like the one shown 
in Figure 5. 

In short, through the implementation of the prototype, 
we have demonstrated the following points: 
• Different user classes are provided in the prototype. 

Users are classified based on priority and a system 
policy is made for each user class; 

• Two optimization goals are supported in the current 
prototype, according to two QoS dimensions: response 
time and service charge. The overall optimization goal 
is achieved by using the weighted sum of the resulting 
utility functions applied for different goals; 

• Different query access plans can be generated for 
different user classes; 

• Dynamic QoS conditions for systems may affect the 
decision. The system parameters include both the 
network information and server characteristics. 
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Figure 5 An example of generated query access plan 

3. Experimentation 
In this section, we evaluate the performance of our 

QoS-based query processing strategy according to the 
framework proposed in the previous sections. The 
objective of our experiment is to show that our query 
optimizer can adapt itself to workload changes (both 
server load and network load) and always chooses the 
best plan for different user classes. In the experiment we 
simulate two classes of users: VIP user and normal user.  

The specific goals of the experimentation are two-
fold: (i) how our estimated plan cost (in terms of response 
time) is close to the real execution cost; and (ii) what are 
the quality of service for VIP user and normal user under 
different workloads (we focus on response time in the 
experiment). Corresponding to these goals, two sets of 
experiments were set up. Two types of system loads are 
used for our measurement, one for network and the other 
for server load. For network load, we mainly focus on the 
available bandwidth as the indication of network 
congestion level. For server load, we concentrate on the 
CPU utilization as the indication of server load. 

In the first experiment, named estimated vs. executed, 
we take the query plan generated by the prototype and 
execute under different server loads. The network 
bandwidth used for the plan estimation is 5Mbps since 
this is the most representative maximum bandwidth 
during the daytime according to our observation between 
University of Montreal and University of Ottawa. 

The second experiment, named VIP vs. normal is 
designed to measure the response times for VIP users and 
normal users under different server loads and network 
congestion levels. The 3-way join with different resulting 
cardinalities is used for the second experiment. 

3.1. Experimental setup and assumptions 

All tests were performed under Windows NT 4.0 (SP 6) 
on a single Pentium III CPU and 192MB RAM. The 
tables used in this experiment are based on the SAMPLE 
database provided by the DB2 Universal Database [15]. 
The size of the database is about 7.5KB.  

All the reported execution times of our experiments 
represent the average of executing the query 20 times. 
The purpose of this averaging is to avoid the influence of 
disk I/O to our result. In the measurement of the data 
transfer times, we have not included the disk I/O time for 
retrieving a table into memory in order to send it over the 

network. To simplify the discussion and highlight the 
points of interest, we disregard the disk I/O.  

We mentioned in the previous section that the network 
congestion level and various server loads are two major 
system dynamics for our experiment. To study their 
influence in our prototype, we usually fix one and change 
the other to collect the performance numbers. It should be 
noted that as an experimental prototype, our execution 
engine was designed for ease of implementation and has 
not been tuned for performance. The main purpose is to 
demonstrate the feasibility of our ideas in practice.  

3.2. Workload classification 

The workload in the experiment includes both server 
load and network load. Concerning the server load, in our 
experiments we degrade the performance of one server by 
loading it with additional processes. Each process simply 
eats up CPU and competes with the database system for 
CPU utilization. Additional load is quantified by the 
number of these processes spawned on a server. The 
reason we concentrate on the CPU is that the buffer pool 
size for the SAMPLE database is about 1MB (250 pages, 
with size of 4KB for each page), which is more than 
enough to hold the whole database. Therefore, the 
number of disk I/Os does not affect our experiment result 
very much. As discussed before, we categorized the 
server load into 4 levels: no load, low load, medium load, 
and high load. 

As for the network load, we consider the TCP 
congestion level. In our global database schema, we 
assume the data are distributed among different cities in 
Canada. Because performing experiments directly on the 
Internet would not provide repeatable results, we instead 
modeled the behavior of the network using trace data that 
could be easily relayed. Therefore we need to have 
knowledge about the available TCP throughput between 
two cities. We choose Montreal and Ottawa as our 
experimental base. For this purpose, we observed the 
TCP traffic using IPERF[16] between UdeM (University 
of Montreal) and UO (University of Ottawa).  

The measurements were made in the morning, in the 
afternoon and at night each day, and statistics were 
collected. Based on the observation, we find the 
maximum bandwidth ranging from 0.2Mbps to 10 Mbps 
depending on the time of the day. Within this range, 
5Mbps is the normal throughput during daytime and 
8Mbps is the normal throughput at night. When the 
network is congested, 2Mbps is the throughput we saw 
around 4pm to 6pm. Very occasionally, we got 0.1 to 0.2 
Mbps. These data are used to define our congestion level. 
The corresponding congestion level is defined in Table 3. 
A throughput of 8Mbps is regarded as no congestion.  

 
Table 3 Measured network congestion levels 



Network  
bandwidth  

0.1Mbp
s 0.2Mbps 1Mbps 2Mbps 5Mbps 8Mbps

Congestion 
level  5 4 3 2 1 0 

3.3. Result 

We conducted a number of experiments and 
performance data are collected for the two sets of 
experiments identified previously. 

Estimated versus execution time. In the first set of 
experiments, estimated vs. executed, we first varied the 
workload of the server. Then under different loads, a plan 
is generated with an estimated time. This plan is then 
executed and the observed execution time is recorded for 
the purpose of comparison. The network congestion level 
for all links is 1, that is 5Mbps. Figure 6 gives the plots 
for the comparison of two times under different server 
loads. 

In Figure 6, the estimated times are given in dotted 
line and the collected times are given in solid line. As it 
can been seen from the figure, the two curves for each 
load are very close. We also analyze the result statistically 
by constructing a linear regression model of these two 
times. The regression results (detailed in [11]) indicate 
that the estimated times can explain about 95% of the real 
execution times. 

We compare the execution times for VIP users and 
normal users under different server loads in Figure 7. The 
curves marked with square and triangle signs represent 
the performance for normal users and VIP users, 
respectively. As we can see from the figure, under no 
load, all the users will get the same performance (the 
lowest curve in Figure 6). With the increasing load, the 
VIP user always stays at the same curve (the same 
performance), while the normal user will get higher 
response time (the curves marked with square sign). And 
the advantage of performance for VIP users increases 
with increasing server load. In short, Figure 7 shows that 
the VIP users always get best performance while the 
normal user will suffer the slow response when the load 
increases. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 6. Estimated versus execution time, with 

various server loads 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. VIP vs. normal user with various server loads 

Figure 8 depicts the effect of network congestion on 
the performance. In this set of tests, we assume that the 
links among the nodes involved in the join are congested 
while other links have the normal throughput (5Mbps). In 
addition, there is no load of the server during the 
experimental periods. Again, estimated times are used for 
the comparison of this experiment. Each of the curves in 
Figure 8 has six data points, which correspond to the six 
congestion levels. The curves marked with a triangle sign 
represent the VIP user. The curves marked with a square 
sign represent the normal user. We observe the same 
trend as in the load test, whenever the links are congested 
to a certain level (usually at level 3), the plan for the VIP 
user can choose another smooth route for data 
transformation and maintain the fast response time. Since 
doing so may incur extra data transmission, and this is 
regarded as “expensive” for normal users, the normal user 
will experience a slower query response in these cases. 
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Figure 8. VIP vs. normal user, with various network 

congestion levels  

3.4. Experiment summary 

In the experiment discussed in this section, we first 
evaluated how close the estimated query execution time 
comes to the real execution time. The results shown in 
Figure 6 illustrates that under various server loads, the 
observed response time is very close to the estimated 
time. We then demonstrate, through the second set of 
experiments, that under all the circumstance the VIP user 
will get fast response time, or in general the better 
service. 

Using the same experimental setup, we can also 
compare our algorithm for join site selection (which 
considers a third candidate site) with the traditional one 
(which always ships the small table to the large table 
site). The results in [11] also show the superiority of our 
algorithm over the traditional algorithm under different 
system loads. The experiment described in this section 
attempts to demonstrate the feasibility of the integration 
of QoS into distributed query processing, which means 
different treatments for different classes of users. 
Although our initial experimental result is a very first 
attempt and is subject to future refinement, this first 
attempt gives a fairly clear picture showing the capability 
of delivering QoS differentiation in query processing. 

4. Related work 
In the last decade, several approaches have been 

proposed for decomposition and optimization of queries 
across different data sources. They can be classified into 
two categories: 1) strategies for providing universal 
access over multiple information sources and 2) dynamic 
and adaptive query optimization strategies. Proposals for 
the first category are based on mediator architectures, 
where different data sources are described and integrated. 

Different query capabilities are taken into account during 
the query optimization. Such approaches include 
Garlic[17], IRO-DB[18] and Mariposa [19]. The query 
optimizer implemented in Garlic uses enumeration rules 
for describing query capabilities and uses dynamic 
programming to find a good plan. IRO-DB provides 
federation of object-oriented and relational database 
systems through the ODMG model and the OQL query 
language. The global query processor uses services of 
local cost tuners and their corresponding calibrating 
procedure to derive the local cost parameters. The 
originality of the approach proposed in Mariposa is its 
economic model in the query optimization phase. The 
bidding mechanism allows sites to observe their 
environment from query to query, and autonomously 
restate their costs of operation for subsequent queries.  

The approaches proposed in the second category 
generally provide techniques for dealing with delays in 
data processing and transfer at remote sites [20][21] and 
dynamic query processing [22][23]. Our approach falls 
into the second category and we propose to use QoS 
monitoring tools to push dynamic properties of the 
systems into global query optimization. The novelty of 
our approach lies in the fact that we take the user QoS 
requirements and the system policies into consideration to 
support several optimization goals. 

5. Conclusion and future work 
In this paper, we have proposed a general framework 

for integrating QoS requirements in a distributed query 
processing environment. This framework is based on user 
classes, cost models, utility functions, and policy-based 
management. Our approach allows to offer differentiated 
services to different classes of users according to their 
expectations in terms of QoS. We have presented our 
QoS-based distributed query processing strategy where 
we push QoS requirements and information into the 
different steps of global query optimization: global query 
decomposition, join ordering and join site selection. We 
presented the prototype we have developed as well as 
experimentation we have conducted to validate our 
approach. The current prototype considers two classes of 
users as well as two different optimization goals. In the 
future, we will consider other QoS dimensions to be 
specified by the user, such as data quality or freshness 
and will work on rewriting rules to transform 
specifications on these dimensions into optimization goals 
and corresponding cost models. To test the feasibility of 
our method, we designed a very simple scenario. To test 
our algorithm in a more general case, further experiments 
should be conducted on a larger and real database system. 
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