
Dealing with Recommendations in a Statistical Trust Model

Jianqiang Shi1, Gregor v. Bochmann2, and Carlisle Adams2

1Systems Science
2School of Information Technology and Engineering (SITE)

University of Ottawa

Ottawa, Ontario, Canada K1N 6N5

{jianqshi, bochmann, cadams}@site.uottawa.ca

Abstract. We previously developed a trust model in which an entity makes decisions in online

interactions by using past behavior as a predictor of likely future behavior. However, that approach

does not combine recommendations from different entities. This paper focuses on the problem of

recommendation combination and detection of unfair recommendations. Our approach involves

data analysis methods (Bayesian estimation, Dirichlet distribution), and machine learning methods

(Weighted Majority Algorithm). We describe simulation experiments to illustrate the effectiveness

and robustness of the methods and the resulting evolution of trust*.

1 Introduction

Trust models have emerged as an important risk management mechanism in online environments. The
basic idea is to let entities rate each other's performance during transactions. The aggregated ratings
about a given entity are used to derive trust, which can assist an entity in deciding whether or not to
transact with the given entity in the future. Furthermore, entities can exchange information regarding
the aggregated ratings of a given entity via recommendations [8]. In such trust referral systems, it is
then the summation of recommendations that plays an important role in decision making.

In trust referral systems, a fundamental problem is that the quality of recommendations is not
guaranteed, in the sense that malicious entities could give unfair recommendations and/or the
subjective evaluation criteria may be different. Because entities are distributed and autonomous, it is
generally unreasonable to assume that there are universally accepted trustworthy authorities who can
declare the trustworthiness of different entities [9]. Consequently, the requesting entities must rely on
themselves for discerning the trustworthiness of recommenders and the quality of recommendations.

We developed a model of trust management based on Bayesian estimation and the Weighted
Majority Algorithm (WMA). In WMA, the weight given to each recommender depends on the history
and quality of the recommendations given by the recommender. The assumption is that recommenders
with low weights are likely to give unfair recommendations and recommenders with high weights are
likely to give fair recommendations. The weights are updated after each transaction. By assigning
different weights, our proposal detects and protects against unfair recommendations. By using
Bayesian estimation, our proposal integrates the subjective prior knowledge and the actual experience
into the estimation of trust.

* This work was supported in part by a grant from the Ontario Research Network for Electronic Commerce

(ORNEC).

The scheme that most closely resembles ours is the one by Yu and Singh [9] which is targeted at
detecting and protecting against spurious ratings. Their approach involves an application of the WMA
to the Dempster-Shafer belief function and aggregation. Agents in their approach can adaptively
choose their neighbors through which agents can find witnesses (recommenders). The testimonies of
these witnesses are collected and combined to improve prediction accuracy. Some simple models of
deception are studied to show the prediction accuracy and the evolution of trust networks.

Whitby et al. [8] propose a statistical filtering technique for excluding unfair ratings in Bayesian
Reputation Systems. The assumption in their approach is that unfair ratings can be recognized by their
statistical properties only. They design an iterated filtering algorithm based on the Beta distribution for
binary ratings systems to exclude the presumed unfair ratings. The simulation results demonstrated the
filtering algorithm is most effective when a moderate (less than 30%) number of raters behave
consistently unfairly.

Our proposal is different from the above two proposals. Unlike Yu and Singh's proposal [9], our
proposal uses Bayesian estimation and integrates the subjective prior knowledge into the estimation of
trust. Our proposal also extends univariate trust ratings to multivariate ratings [6]. Furthermore, we
focus on recommendation combination, and deliberately ignore the problem of finding witnesses. With
respect to Whitby et al.'s proposal [8], our proposal extends binary ratings systems to multinomial
outcome systems using the Dirichlet distribution. Whitby et al. [8] propose to calculate the combined
rating based on current recommendations only, while entities in our trust model maintain a set of
weights correlated with past recommendations, and past experience. Our proposal also takes
self-experiences into account to calculate the combined rating.

The rest of this paper is organized as follows. Section 2 summarizes the background information on
Bayesian estimation, Dirichlet distribution, and the Weighted Majority Algorithm. Section 3 introduces
our approach. Section 4 presents simulations and their results. Section 5 concludes the paper.

2 Background Information

2.1 Bayesian Estimation and Dirichlet Distribution

Bayesian statistics provide a conceptually simple process for updating uncertainty in the light of
evidence. Initial beliefs about some unknown quantity are represented by a prior distribution. The prior
distribution and information in the data are then combined to obtain the posterior distribution for the
quantity of interest. The posterior distribution expresses the revised uncertainty in light of the data; in
other words, an organized appraisal after consideration of previous experience [5]. The mathematical
analysis leading to the expression for posterior distribution can be found in many text books and
reports on probability theory, such as Heckerman [1], and we only present the results here.

In multinomial sampling, the observed variable X is discrete; having r (r≥2) possible states x1,…, xr.
The simple conjugate prior p(θ|ξ) used with multinomial sampling is the Dirichlet distribution [1]:

∏∏ =

−

= Γ

Γ
≡=

r

k
k

k
r
k

r
kDirp

1

1

1
1

)(
)(),...,|()|(αθ
α

αααξ θθ
(1)

where α = ∑αk and αk>0, k=1,…, r and Γ(.) is the Gamma function1. The quantities α1,…, αr are
often referred to as hyperparameters to distinguish them from the parameter θ={θ1, θ2,…, θr} (the
parameter θ1 can be given by 1 -θ2…-θr), which correspond to physical probabilities of x1,…, xr. The
sufficient statistics for observation data set D={X1=x1,…,Xn=xn} are N={n1,…,nr}, where nk is the
number of times X=xk in D which consists of n independent identically distributed random outcomes.
Here ξ is the background knowledge. The posterior distribution is

p(θ|D, ξ)=Dir(θ|α1+n1,…, αr+nr). (2)

Given this posterior distribution, the probability of xk for the next observation is given by

p(Xn+1=xk|D, ξ) = Ep(θ|D, ξ)(θk) = ∫θk Dir(θ|α1+n1,…, αr+nr)dθ = (αk+nk)/(α+n). (3)

We note that the explicit mention of the state of knowledge ξ is useful, because it reinforces the
notion that probabilities are subjective. When set r=2, the results are suitable for binomial sampling.

2.2 Weighted Majority Algorithm

The Weighted Majority Algorithm (WMA) [4] deals with on-line prediction algorithms that learn
according to the following protocol. Learning proceeds in a sequence of trials. In each trial, each
algorithm of the pool makes a prediction and these predictions are fed to the master algorithm. The
master algorithm then makes its prediction and receives a correct label, which it passes to the whole
pool. In the update step, each algorithm's weight is multiplied by some factor that depends on its
prediction in this trial.

If predictions are continuous then a variant WMC of WMA is used, which allows the predictions as
well as the labels to be in [0, 1]. The term update-trial j refers to the jth trial in which an update step
occurs. The master algorithm is applied to a pool of n algorithms, letting xi

(j) denote the prediction of
the ith algorithm of the pool in update-trial j. Let λ(j) denote the prediction of the master algorithm in
update-trial j, ρ(j) denote the label of update-trial j, and w1

(j),,, wn
(j) denote the weights at the beginning

of update-trial j. All initial weights wi
(1),,, wn

(1) are positive. The prediction of the master algorithm is

λ(j) = ∑n
i=1 xi

(j)×wi
(j)/s(j) where s(j)=∑n

i=1wi
(j). (4)

The prediction xi
(j) is discounted by its relative weight wi

(j)/s(j), which represents the "belief" of the
master algorithm in the prediction.

In an update step of WMC each weight wi
(j) is multiplied by some factor F that depends on γ, xi

(j),
and ρ(j): wi

(j+1)=F×wi
(j), where F can be any factor that satisfies

||)1(1)()(||)()(jj
i

x xF
jj

i ργγ ρ −−−≤≤− .
(5)

The parameter γ is the factor by which weights are multiplied and is always in the range [0,1). The
parameter γ measures how drastic the update is (the smaller γ, the more drastic the update). For
simplicity, we keep γ constant for all trials [4].

1 . If x is an integer n=1,2,3,…, then Γ(n)=(n-1)!. ∫
∞ −−=Γ

0

1)(dtetx tx

In WMC, the absolute loss is used as a quantity that measures how far the prediction is from the
correct label. If an algorithm predicts x in a trial with label ρ, then its loss in that trial is |x-ρ|; this
definition applies both to algorithms in the pool and to the master algorithm.

WMA aims to design a master algorithm that uses the predictions of the pool to make its own
prediction. Ideally the master algorithm should make not many more mistakes than the best algorithm
of the pool, even though it does not have any a priori knowledge as to which of the algorithms of the
pool make few mistakes for a given sequence of trials.

2.3 Similarity and Distance

For the binomial case, the prediction and label are scalars. The absolute loss in WMC is |x-ρ|. For the
multinomial case, the prediction and label are multi-dimensional vectors. Intuitively, we use
normalized Euclidean distance in multi-dimensional space to represent the absolute loss. Suppose
prediction x and label ρ are r-dimensional vectors. The normalized Euclidean distance between x and ρ
is

2

)(

2
|| distanceEuclidean normalized

2
1∑ −

=
−

=
= ii

r
i x ρρx .

(6)

Therefore the absolute loss is in the range [0, 1], whatever the dimension of predictions and labels is.

3 Our Trust Model Integrated with Bayesian Estimation and WMA

In this section, we explain how to apply Bayesian estimation and WMA to our trust model. Our
approach involves three major steps: 1) setting initial situational trust and prior hyperparameters; 2)
building trust from self experience; 3) dealing with recommendations.

3.1 Setting Initial Situational Trust and Prior Hyperparameters

The basic idea in this section is to let the conjugate prior match the initial situational trust, which can
be set from basic trust. In our previous paper [6], we model trust T (β)(x) as the distribution D (xα β) over
the space of possible outcomes X. We also propose a mapping function S(x) to set initial situational
trust Tα(β,δ)(S(x)) from basic trust Tα(x) with initial observation number Ninit. For simplicity without
loss of generality, we suppose there are r (r≥2) different outcomes x1,…, xr in this situation δ. In the
Bayesian technique, the likelihood function is given by

p(X=xk|θ, ξ) = θk, k=1,…,r (7)

where θ={θ1, θ2,…, θr} are the parameters (the parameter θ1 can be given by 1 -θ2…-θr) which
correspond to physical probabilities of x1,…, xr. The simple conjugate prior used with multinomial
sampling is the Dirichlet distribution in Equation 1, where α = ∑αk = Ninit and αk>0, k=1,…,r. The
hyperparameters α1,…, αr can be assessed as follows.

Initial situational trust Tα(β,δ)(xk) = p(X=xk|θ, ξ) = θk= αk/α k=1,…,r. (8)

Given these r equations, we can solve for α1,…, αr. The size of Ninit determines the strength of the
prior beliefs. If this Ninit is small, such as 2, just a few observations will be enough to take over prior

beliefs. On the other hand, if the Ninit is large, such as 1000, then on the order of 1000 observations will
be needed to significantly make the posterior distribution differ from the prior beliefs [3]. When Ninit
approaches 0, the prior distribution becomes noninformative (theoretically Ninit can be any positive real
number).

3.2 Building Trust from Self Experience

The basic idea in this section is to predict the distribution of the next observation based on self
experience using Bayesian estimation. Suppose the requesting entity has experience denoted by an
observation data set D={X1=x1,…,Xn=xn} for which the sufficient statistics are N={n1,…,nr}, where nk
is the number of times X=xk in D. Given conjugate prior p(θ|ξ) and data set D, the posterior
distribution p(θ|D, ξ) and the probability distribution for the next observation p(Xn+1=xk|D, ξ) are given
by

p(θ|D, ξ)=Dir(θ|α1+n1,…, αr+nr) (9)

Tα(β,δ)(xk) = p(Xn+1=xk|D, ξ) = Ep(θ|D, ξ)(θk)=∫θk Dir(θ|α1+n1,…, αr+nr)dθ = (αk+nk)/(α+n) (10)

For simplicity, we now use Ep(θ|D, ξ)(θ) to denote situational trust Tα(β,δ)(x). Note that Ep(θ|D, ξ)(θ) is
an r-dimensional vector. For each xk, θk, we have Tα(β,δ)(xk) = E(θk).

3.3 Dealing with Recommendations

When taking recommendations into account, the requesting entity uses the Weighted Majority
Algorithm. The basic idea in this section is to discount each recommendation according to its relative
weight, which will increase if the recommendation is fair and will decrease if the recommendation is
unfair. Suppose there are f recommenders from which to query recommendations. Each recommender
gives a recommendation Ri={αi,1+ni,1,…, αi,r+ni,r} (i=1,…,f) which are hyperparameters of the
posterior distribution p(θi|Di,ξi)=Dir(θi|αi,1+ni,1,…, αi,r+ni,r) based on the recommender's past
experience. Note that it is impossible for the requesting entity to distinguish the subjective
hyperparameters αi,1,…,αi,r from the sufficient statistics Ni={ni,1,…, ni,r}. Since these recommenders are
not 100% trustworthy, their recommendations are discounted according to their relative weights. We
refer to these discounted recommendations as equivalent samples, which are treated as if they are the
requesting entity's own experience. For the requesting entity, the sufficient statistics for the equivalent
sample of recommendation Ri are Ni'= Ri×wi/s where s=∑f

i=1wi. The final sufficient statistics are
Nm=N+∑Ni' and the final posterior distribution of the requesting entity is:

p(θm|Dm, ξ)=Dir(θm|α1+n1+ ∑(αi,1+ni,1)×wi/s,…, αr+nr+ ∑ (αi,r+ni,r)×wi/s). (11)

In the terminology of WMA, we say that E(θi) is the recommender's algorithm (the expectation of θi
with respect to the distribution p(θi|Di, ξi) in Recommendation Ri), and E(θm) is the master algorithm
(the expectation of θm with respect to the distribution p(θm|Dm, ξ)).

In the update step of WMA, the requesting entity estimates the correct label ρ using E(θ) (the
expectation of θ with respect to the distribution p(θ|D, ξ) from the requesting entity’s past experience).
The requesting entity now can update each recommender's weight using the factor
F=1-(1-γ)|E(θi)-E(θ)|/√2, note that E(θm), E(θi) and E(θ) are r-dimensional vectors, and |E(θi) - E(θ)| is
the Euclidean distance. The requesting entity uses E(θ) as the correct label ρ, because there does not

exist a service that can provide a correct label ρ. Therefore, for the requesting entity, the only
trustworthy way to get this label is to predict ρ purely based on its own past experience.

3.4 Example

We take a car wash example to illustrate the previous three steps. To simplify our analysis, we assume
that the outcome space is a 1-dimensional space, and the outcome (binomial) is either "good"(1) or
"bad"(0). We can use a scalar quantity, the probability of outcome "good", p(x=1), to represent trust.
We assume the hyperparameters αg, αb of the prior distribution for every entity are 1 and 1,
respectively, which implies that Ninit=2 and the basic trust value is 1/2. This corresponds to two initial
experiences with outcomes one "good" and one "bad". Car wash β is the service provider, and entity α
is the service requestor.

Now entity α can calculate its initial situational trust as follows:
Initial situational trust Tα(β,”car wash”)(“good”)= p(x=1) = 1/2
Initial situational trust Tα(β,”car wash”)(“bad”)= p(x=0) = 1/2

(12)

Suppose entity α has seven experiences (n=7) denoted by an observation data set
D={X1=x1,…,X7=x7}. The sufficient statistics for the data set D are N={2,5}, which means that two
“good” outcomes and five “bad” outcomes have been actually observed. Now entity α can estimate its
situational trust as follows:

Tα(β,”car wash”)(“good”)= p(1) = (2+1)/(7+2)=1/3
Tα(β,”car wash”)(“bad”)= p(0)=(5+1)/(7+2)=2/3

(13)

Suppose entity α has two friends with weights w1=0.2 and w2=0.8. Friends give recommendations
R1={6,2} (p(1)=0.75) and R2={3,7} (p(1)=0.3) respectively. Entity α can get the equivalent samples as
follows:

N1’ = {6,2}*0.2/(0.2+0.8) = {1.2, 0.4}
N2’ = {3,7}*0.8/(0.2+0.8) = {2.4,5.6}

(14)

With the equivalent samples, entity α can calculate the final posterior distribution as follows:
p(θm|Dm, ξ)=Dir(θm|1+2+1.2+2.4,1+5+0.4+5.6)=Dir(θm|6.6,12) (15)

The situational trust can be estimated as follows:
Tα(β,”car wash”)(“good”)= p(1) =6.6/(6.6+12)=0.355
Tα(β,”car wash”)(“bad”)= p(0)=12/(6.6+12)=0.645

(16)

Suppose after the transaction, the actual outcome is “bad”, then entity α can update its sufficient
statistics N={2,6}. Entity α estimates the correct label ρ=2/(2+6)=0.25. The updating factor F for
friend 1 is F=1-0.5*|0.75-0.25|=0.75. The new weight w1 is equal to 0.2*0.75 = 0.15. Similarly entity α
can get the updating factor F for friend 2: F=1-0.5*|0.3-0.25|=0.975. The new weight w2 is
0.8*0.975=0.78.

4 Simulations

4.1 Description of Simulation

We continue the previous car wash example. The purpose of the simulation is to illustrate the accuracy
of the proposed recommendation system when the performance of the service provider may vary over

time. Our simulations also provide a comparison of our recommendation system with the Iterated
Filtering Algorithm (IFA) proposed by Whitby et al. [8]. The simulation includes one car wash, which
is the service provider, and 50 car owners, which are the service requestors. The simulation is divided
into sessions, and each session is divided into transactions. After each session, the service provider
adapts its performance Perf, which is the probability of outcome "good".

4.2 Forgetting Factor

Since the performance of the car wash changes over time, the basic assumption about a given outcome
distribution for the actions of the entity, valid over all time, is not true any more. In this case, we must
give different weights to the different experiences. It is desirable to give greater weight to more recent
experiences. This can be achieved by introducing a forgetting factor τ where 0≤τ≤1. When a new
experience yielding outcome xk is observed, the sufficient statistics N will be updated as follows:

N := N×τ
nk := nk+1

(17)

where the value of τ determines the weight of the past experience compared with the most recent
experience. In our simulation, we set the forgetting factor τ=0.7.

4.3 Service Provider Behavior

Once the car wash has committed to a transaction, it will either provide a “good” service (with a
probability equal to its performance) or a “bad” service (with a probability equal to 1 – performance).
At the end of each session t, the performance for the next session (t+1) is chosen randomly as follows:

⎪
⎩

⎪
⎨

⎧
−
+

=+

31
31
31

1

/qual to bability ewith a proPerf
/qual to bability ewith a prodeltaPerf
/qual to bability ewith a prodeltaPerf

Perf

t

t

t

t
(18)

In the simulation, delta = 0.1. In addition, the performance Perft+1 is restricted to the range [0,1]. We
note that this kind of service provider behavior is a Markovian random walk.

4.4 Service Requestor Behavior

Car owners are divided into three groups: (1) In the fair group, the car owners always give fair
recommendations. (2) In the unfairly high group, each car owner selects one favorite car wash, and
gives unfairly high recommendations with a probability equal to Punfair. (3) In the unfairly low group,
each car owner selects one target car wash, and gives unfairly low recommendations with a probability
equal to Punfair. In this paper, we only represent one car wash scenario. For multiple car wash
scenarios, please refer to the thesis [7]. We note that there is no decision making process involved in
one car wash scenario, while for multiple car wash scenarios, the decision making process is crucial
[7].

4.5 Recommendation Model

We define three recommendation models in the simulation: (1) Fair recommendation, for each trust
value x, the recommendation given is y=x. (2) Unfairly high recommendation, for each trust value x,

the recommendation is y=x+a*(1-x). (3) Unfairly low recommendation, for each trust value x, the
recommendation is y=(1-a)*x. Here the const a is an exaggeration coefficient (0≤a≤1), which
represents the degree of unfairness. Variable x is the estimation of the performance of the car wash. In
this paper, we only represent simulation results of fair and unfairly low recommendations. For the
results of combination of the above three recommendation models, please refer to the thesis [7].

4.6 Simulation Results

The simulations are conducted to assess the effectiveness of our proposal in several scenarios. For the
purpose of comparison, all scenarios are conducted in three different modes: WMA, IFA, and SIMPLE.
In the WMA mode, the entities use our proposal to combine recommendations. In the IFA mode, the
entities use IFA (Iterated Filtering Algorithm by Whitby et al. [8]) to filter out unfair
recommendations. In the SIMPLE mode, which is the reference mode, the entities simply average all
the recommendations.

All simulations are conducted over 2000 transactions (20 sessions of 100 transactions each). The
simulation is based on a Java simulation package - javaSimulation [2]. Several initial parameters are
defined as follows:

1. Each car owner has exactly 6 randomly selected recommenders.
2. For each car owner, we set the initial weights wi=1 and γ=0.5 for WMA, and quantile=0.01 for

IFA.
3. Initial performance of car wash 1 is 0.6.
The following figures show the average trust value and the average estimation error for car wash 1

in the first 2000 transactions. The number on the x-axis is the transaction number of the car wash. The
number on the y-axis represents average trust value, performance, and average estimation error, which
is defined as average trust value minus performance.

Trust Value & Error

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 201 401 601 801 1001 1201 1401 1601 1801

Transactions

Performance

TrustValue(SIMPLE)

Trust Value & Error

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 201 401 601 801 1001 1201 1401 1601 1801

Transactions

Performance

TrustValue(SIMPLE)

Fig. 1. Trust value, performance and error Fig. 2. Trust value, performance and error for car wash
for car wash 1 with 0% unfair recommenders 1 with 20% unfair recommenders

The first simulation (Figure 1) is the basic scenario, in which there are no unfair recommenders. The
second simulation (Figure 2) consists of 20% unfairly low recommenders with Punfair=100% and
exaggeration coefficient a=0.875. The third simulation (Figure 3) consists of 40% unfairly low
recommenders with Punfair=100% and exaggeration coefficient a =0.875.

TrustValue(IFA)

Error(SIMPLE)

Error(IFA)

Error(WMA)

TrustValue(WMA)

TrustValue(IFA)

Error(SIMPLE)

Error(IFA)

Error(WMA)

TrustValue(WMA)

Trust Value & Error

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 201 401 601 801 1001 1201 1401 1601 1801

Transactions

Performance

TrustValue(SIMPLE) TrustValue(IFA)

Error(SIMPLE)

Error(IFA)Error(WMA)

TrustValue(WMA)

Fig. 3. Trust value, performance and error for car wash 1 with 40% unfair recommenders

Figure 1 shows that in the ideal scenario, the WMA and IFA algorithms are not helpful, since there
are no unfair recommendations. Actually in transactions 1700-2000, the average estimation error in the
IFA mode is worse than that in the SIMPLE mode, which implies that the IFA mistakenly filters out
fair recommendations. Figure 2 and 3 show that both the WMA and the IFA can detect and avoid
unfair recommendations to some degree. These figures directly illustrate how the trust value follows
the changing performance in different modes.

4.7 Algorithm Effectiveness

The effectiveness of each algorithm is examined by simulating scenarios with three parameters:
1. The proportion of unfair recommenders
2. The probability that unfair recommenders give unfair recommendation (Punfair)
3. The degree of unfairness of unfair recommendations (exaggeration coefficient a)

For ease of comparison, we summarize the mean and standard deviation of average estimation error
of WMA, IFA, and SIMPLE algorithms in different scenarios.

Table 1. Statistical information about average error (exaggeration coefficient a= 0.875, Punfair=1)
Unfairly low rate 0 0.2 0.4 0.6 0.8 1.0

WMA -0.0267 -0.0264 -0.0323 -0.0497 -0.1123 -0.3943

IFA -0.0546 -0.0610 -0.0987 -0.2624 -0.5854 -0.7203

mean

SIMPLE -0.0310 -0.0661 -0.1412 -0.2394 -0.4475 -0.6415

WMA 0.0607 0.0629 0.0686 0.0734 0.0789 0.0772

IFA 0.0558 0.0550 0.0592 0.0674 0.1509 0.1567

std

dev

SIMPLE 0.0611 0.0629 0.0639 0.0715 0.0950 0.1270

The following figure shows the mean and standard deviation of average estimation error of WMA,
IFA, and SIMPLE algorithms during the first 2000 transactions in different scenarios described in
Table 1. The number on the x-axis is the unfairly low rate (proportion of unfair recommenders). The
number on the y-axis represents the mean and standard deviation of average estimation error. We note
that the negative mean value of the average estimation error is due to the fact that the performance
increases for most of the sessions.

Mean & Std Deviation

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Unfair low rate

Mean (WMA)
Std Dev (WMA)
Mean (IFA)
Std Dev (IFA)
Mean (SIMPLE)
Std Dev (SIMPLE)

0.2 0.4 0.6 0.8 1.0

Fig. 4. Mean and standard deviation of average error of WMA, IFA and SIMPLE algorithm

It is clear in Figure 4 that the standard deviation of average estimation error of the three algorithms
is not significantly different. However the standard deviation of the IFA algorithm increases faster than
the others when unfairly low rate > 60%. Our proposal (WMA) has the least mean average estimation
error.

Table 2 and Figure 5 show the effectiveness of the three algorithms in scenarios with exaggeration
coefficient a= 0.875 and Punfair=0.25. Not surprisingly, all the algorithms increase their effectiveness
compared with those in Table 1 and Figure 4. It is shown that IFA algorithm is the worst when unfairly
low rate < 40%. WMA is the most effective algorithm in these scenarios.

Table 2. Statistical information about average error (exaggeration coefficient a= 0.875, Punfair=0.25)

Unfairly low rate 0 0.2 0.4 0.6 0.8 1.0

WMA -0.0267 -0.0256 -0.0302 -0.0430 -0.0630 -0.1187

IFA -0.0546 -0.0531 -0.0542 -0.0660 -0.1117 -0.1782

mean

SIMPLE -0.0310 -0.0335 -0.0550 -0.0847 -0.1285 -0.1866

WMA 0.0607 0.0626 0.0672 0.0676 0.0668 0.0598

IFA 0.0558 0.0562 0.0609 0.0605 0.0582 0.0601

std

dev

SIMPLE 0.0611 0.0635 0.0657 0.0655 0.0657 0.0623

Mean & Std Deviation

-0.2

-0.2

-0.1

-0.1

0.0

0.1

0.1

Unfair low rate

Mean (WMA) Std Dev (WMA)
Mean (IFA) Std Dev (IFA)
Mean (SIMPLE) Std Dev (SIMPLE)

0.2 0.4 0.6 0.8 1.0

Fig. 5. Mean and standard deviation of average error of WMA, IFA and SIMPLE algorithm

The following two figures shows the effectiveness in scenarios with exaggeration coefficient a= 0.2,
Punfair=0.25, and exaggeration coefficient a= 0.99, Punfair=1, respectively.

Mean & Std Deviation

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

Unfair low rate

Mean (WMA) Std Dev (WMA)
Mean (IFA) Std Dev (IFA)
Mean (SIMPLE) Std Dev (SIMPLE)

0.2 0.4 0.6 0.8 1.0

Mean & Std Deviation

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

Unfair low rate

Mean (WMA) Std Dev (WMA)
Mean (IFA) Std Dev (IFA)
Mean (SIMPLE) Std Dev (SIMPLE)

0.2 0.4 0.6 0.8 1.0

Fig. 6. Mean and standard deviation of average error Fig. 7. Mean and standard deviation of average error

(exaggeration coefficient a= 0.2 and Punfair=0.25) (exaggeration coefficient a= 0.99 and Punfair=1)

Table 1 and Figure 4 show that the IFA algorithm is not effective compared with the SIMPLE
algorithm in the scenario with exaggeration coefficient a= 0.875. In the scenario with low exaggeration
coefficient and low Punfair, the IFA is particularly ineffective, even worse than the SIMPLE
algorithm, which is illustrated by Figure 6. Figure 7 shows that the IFA algorithm is most effective in
the scenario with very high exaggeration coefficient a= 0.99. To summarize, the IFA algorithm is very
sensitive to the exaggeration coefficient. The higher the exaggeration coefficient, the more effective the
IFA algorithm is. Regarding the average estimation error, our proposal (WMA) is better than IFA in all
the above scenarios. More interestingly, our proposal is also much faster than IFA, since IFA consists
of complex lower and upper quantile calculations. In our simulations, we also changed the parameter
quantile of the IFA algorithm several times and found that the IFA algorithm produces the best results
in most situations when the parameter quantile has the value 0.01.

5 Conclusion

This paper studies the problem of unfair recommendations. For simplicity, this work assumes that
each entity has a fixed number of recommenders. Our approach integrates Bayesian estimation with a
Weighted Majority Algorithm approach. We show that it is flexible and effective through simulations
and comparisons with other algorithms. Our proposal shows great promise as a technique for
improving the accuracy of trust estimation, and hence the fairness and robustness of trust models. In
particular, our proposal is computationally efficient compared with the IFA algorithm.

Due to the intrinsic limitations of WMA, our trust model will become ineffective when either of the
following conditions is satisfied: (1) The requesting entity has only one recommender, which makes the
relative weight always equal to one, no matter what the recommendations are. (2) Among the
requesting entity's recommenders, no one gives fair recommendations. These limitations can be solved
by treating the requesting entity itself as a recommender. Therefore, the requesting entity at least has
one recommender (itself) who always gives fair recommendations.

In our trust model, we studied 3 recommendation models. However, there may be another kind of
unfair recommendation: flooded recommendation, in which the experience number is enlarged
deliberately by the recommender in order to circumvent the Weighted Majority Algorithm. The flooded
recommendation can be avoided by imposing an upper bound on experience number in
recommendations. Any recommendation whose experience number exceeds the upper bound should be
scaled to the upper bound.

6 References

1. David Heckerman: A Tutorial on Learning With Bayesian Networks. Technical Report, March 1995,

http://research.microsoft.com/research/pubs/view.aspx?msr_tr_id=MSR-TR-95-06

2. Keld Helsgaun: Discrete Event Simulation in Java. Technical Report, Roskilde University, Denmark

http://www.akira.ruc.dk/~keld/research/ JAVASIMULATION/JAVASIMULATION-1.1/docs/Report.pdf

3. Richard Hughey, Anders Krogh: Hidden Markov models for sequence analysis: extension and analysis of the

basic method. Computer Applications in the Biosciences (CABIOS), 12(2), 1996, pp. 95-107

4. Nick Littlestone, Manfred K. Warnuth: The Weighted Majority Algorithm. Information and Computation,

108(2), 1994, pp. 212-261

5. Stephane Pauquet: Bayesian Estimation. Course Notes, San Francisco State University,

 http://userwww.sfsu.edu/~efc/classes/biol710/bayes/a)-Bayesian-Estimation-web.html

6. Jianqiang Shi, Gregor v. Bochmann, Carlisle Adams: A Trust Model with Statistical Foundation. In proceedings

of 2nd International workshop on Formal Aspects in Security and Trust, Toulouse, France, August 2004,

pp.169-181

7. Jianqiang Shi: A Trust Model with Statistical Foundation. Master’s Thesis, University of Ottawa, 2005

8. Andrew Whitby, Audun Jøsang, Jadwiga Indulska: Filtering Out Unfair Ratings in Bayesian Reputation

Systems. In proceedings of the Workshop on Trust in Agent Societies, at the Autonomous Agents and Multi

Agent Systems Conference (AAMAS2004), New York, July 2004

9. Bin Yu, Munindar P. Singh: Detecting Deception in Reputation Management. In proceedings of AAMAS2003,

Melbourne, Australia, July 2003, pp. 73-80

