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Abstract 

 
A semi-analytical method based on alternate 

projections on a linear vector space is used to 
construct a service matrix from a traffic matrix, where 
the traffic matrix represents the bandwidth requested 
by the edge nodes and the service matrix represents 
how the bandwidth will be distributed by the core of an 
optical star network that operates in a Time Division 
Multiplexing mode. The algorithm iterates over a 
mathematical expression of complexity O(N2), where N 
denotes the number of edge nodes. The complexity of 
the method is therefore O(kN2) where k denotes the 
number of iterations needed to converge. With N large 
enough one observes that k<<N and hence this 
expression tends to O(N2). Results show that the 
service matrices obtained with this projection method 
have very high measures of similarity to the original 
traffic matrix, with an average similarity greater than 
95% for 32≥N . The method is robust to 
inadmissible/bursty traffic and yields equal or 
improved delay performance in the optical network 
compared to other allocation methods.  
 
 
1. Introduction 
 

The term “agility” in optical networks has been 
described as the ability to deploy bandwidth on 
demand at fine granularities [1], which radically 
increases network efficiency and brings to the user 
much higher performance at reduced cost. One 
possible scheme to provide such agility in WDM 
networks is time division multiplexing (TDM) in the 
optical domain. In such a context, the optical switches 
along lightpaths must be scheduled to reconfigure 
every timeslot, or every few timeslots, to adapt to 
dynamic traffic demands. This paper focuses on the 
centrally-controlled Agile All-Photonic Network 
(AAPN) architecture [2] which has the virtue of 

avoiding some of the complexity associated with 
synchronization of more general optical networks. In 
contrast to current backbone networks, all-photonic 
networks have the property that both transmission and 
switching are performed in the optical domain. The 
absence of optical-electrical-optical (OEO) conversion 
leads to two important advantages: greatly increased 
capacity and transparency to data format and bit rate. 
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Figure 1. The overlaid star architecture that 

characterises the AAPN. 
 
As shown in Figure 1, the AAPN consists of a 

number of hybrid photonic/electronic edge nodes 
connected together via a wavelength stack of buffer-
less transparent photonic switches placed at the core 
nodes (a set of space switches, one switch for each 
wavelength), of which there is a small number. Each 
edge node contains a separate buffer for the traffic 
destined to each of the other edge nodes. Traffic 
aggregation is performed in these buffers, where 
packets are collected together in fixed-size slots (or, 
alternatively, bursts) that are then transmitted as single 
units across the network via optical links. The optical 
core network does not provide wavelength conversion 
or buffering. At the destination edge node, the slots are 
partitioned, with reassembly as necessary, into the 
original packets.  



The overlay of several stars provides robustness in 
the case of link or core node failure, and also helps 
mitigate the potential for back-hauling. Each edge node 
is connected to every other edge node via a number of 
routes and data traversing the network only passes 
through one photonic switch, which results in a major 
simplification of the resolution of contention. From a 
control perspective, each star can be managed 
independently of the others because there is no data 
interaction. 
 
2. Scheduling in a TDM-AAPN 
 

When the AAPN operates in TDM mode, each edge 
node signals traffic demand information (e.g. from 
queue state information) to the core node along control 
channels before sending the slots of data. Once at the 
core, the global traffic demand is arranged in the form 
of a traffic matrix, with each element corresponding to 
a source-destination traffic flow. The controller uses 
this information to compute the service matrix, which 
defines the bandwidth allocated to each flow in units of 
slots within a frame; i.e., the larger the number of slots, 
the larger the bandwidth granted to that flow. The 
service matrix is then decomposed into its constituent 
permutations, each of which corresponds to a switch 
configuration for the duration of a timeslot. This 
schedule is signalled back to inform each edge node of 
the timeslots that it may use to transmit its traffic for 
each destination. The core wavelength switches are 
configured in coordination with the edge nodes 
according to the bandwidth allocated. 

The slot allocation scheme to be used should 
possess two properties: the time complexity of the 
algorithm should be low enough to permit a practical 
implementation in the context of high-speed optical 
switching (the AAPN research network has specified a 
timeslot duration of 10 microseconds with a switch 
configuration overhead of less than 1 microsecond) and 
the scheme should handle non-uniform, bursty and, in 
general, dynamic traffic demands. 

In the literature, many slot allocation methods such 
as Parallel Iterative Matching (PIM) [3], Iterative 
Round-Robin Matching (iRRM) [4], Iterative Round-
Robin with SLIP (iSLIP) [5] and Dual Round-Robin 
Matching (DRRM) [6] have been proposed in the 
context of input-queued switches, which consist of a 
switching fabric equipped with buffers at its input 
ports. This work is relevant to AAPN since the star 
network formed by every wavelength space switch and 
the edge nodes attached to it can be viewed as a 
distributed Input Queued (IQ) switch (Figure 2) when 
there is no internal speed-up in the network (the use of 
speed-up requires buffers at the outputs). The general 

practice in these works is to find a switch configuration 
every timeslot such that it maximizes the volume of 
traffic that can be served by the switching fabric. The 
limitation of these schemes is that, for switches 
without internal speed-up, the input queues may 
become unstable under non-uniform and/or bursty 
traffic distributions since they result in inadmissible 
traffic matrices. Admissibility implies that the traffic 
does not oversubscribe the source or destination ports. 
Unfortunately, inadmissibility is prevalent in current 
networks. 
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Figure 2. AAPN with the edge node’s (EN) modules 
logically split and the core node's wavelength space 

switches explicitly drawn. 
 
To handle non-uniform traffic, the Birkhoff-von 

Neumann (BvN) decomposition method to compute 
the scheduling in input-queued switches was 
introduced in [7] and [8]. This method produces ~N2 
permutations with real valued expansion coefficients. 
If these coefficients are appropriately quantized as 
rational numbers then a periodic schedule may be used 
– the rational numbers being equated to the relative 
number of slots within a fixed length frame.  

Whilst admission and congestion control 
mechanisms may be expected to enforce admissibility 
at the source and, in the long-term, at the destination; 
short term oversubscription of a destination can occur 
especially in the context of bursty traffic. It is therefore 
necessary to construct an admissible matrix, herein 
called a η -server service matrix, from potentially 
inadmissible estimates of the demand. A 
real/integerη -server service matrix ( )ijs=s  is defined 

as a real/integer matrix such that 0ijs ≥  and 
, , 0ij ij

i j
s sη η η= = >∑ ∑ , where η  may be 

identified with the “frame size” in the integer case. The 
frame size determines the number of timeslots in a 
frame and therefore the maximum total number of slots 
that will be served from the set of queues in the edge 
node.  



A simple rescaling method followed by quantization 
and an integer rate filling method is described in [9] to 
construct a service matrix in a Clos packet switch. 
Since the service matrix represents a regular bipartite 
graph, it is suitable for decomposition by an edge 
coloring algorithm. The limitation of the method is that 
some accuracy may be lost when the maximum 
row/column sum in a traffic matrix is very large in 
comparison to the others. 

A weighted rate filling method is proposed in [10] 
to construct a 1-server service matrix from a real γ -
server traffic matrix (normalized on a per slot basis 
such that 0 1γ< ≤ ). This ad hoc method is not robust 
against inadmissible traffic demand. A max-min 
fairness method is presented in [11] to construct the 
service matrix by extending the notion of max-min 
fairness to take into account the traffic demand from 
each stream and giving priority to those streams that 
have the highest demand. This method can be modified 
to be robust to inadmissible traffic by permitting the 
first rescaling to reduce the value of the matrix 
elements (c.f. re-scaling as in [9]). The complexity of 
this method is O(N3), which is too complex to be 
practical. The maximum weight matching method 
proposed in [12] guarantees 100% throughput whilst 
minimizing delay, but is not practical to implement 
either since its complexity is 3( log )O N N . 

Quality of Service in the context of this paper is an 
open question. The most important issue in this work is 
to construct a service matrix with the highest possible 
similarity to the corresponding traffic matrix, e.g. in 
terms of the coefficient of correlation, so that the 
bandwidth allocated by the core node reflects the 
traffic demand as closely as possible. The similarity 
measure does capture a notion of fairness. 

 
3. Constructing a Service Matrix 

 
A. The Overview 
 

The traffic matrix t  may be defined as an element 
in the Hilbert space N NM R ×≡  of all N N×   real-
valued matrices equipped with the standard matrix 
inner product. The set of all matrices with all row and 
column sums equal ( ij ij

i j
s s=∑ ∑ ) forms a 

subspace S M⊂ . The set of all matrices with non-
negative entries forms a subset P M⊂  that is a 
convex cone. The intersection P S M∩ ∈  is therefore 
the convex cone of all possible service matrices. This 
motivates the application of Dykstra’s [13] variant of 
the method of alternating projections on the convex 
sets ,S P , to produce a sequence of matrices that 

converge to the projection of M⊂t  onto the nearest 
service matrix P S∈ ∩s . An η -server service matrix 
may be found by suitably scaling any element of 
P S∩  so that ij ij

i j
s s η= =∑ ∑ . 

 
B. Preliminary Concepts 
 

Definition 1: The set of real valued N N× matrices 

{ }, , 1,N N
ij ijR a a R i j N× = ∈ = equipped with the 

standard inner product ( )
,

, ij ij
i j

a b= ∑a b  is complete in 

the topology induced by the associated norm: 

( )
1
2,=a a a  and is therefore a Hillbert space M . This 

fact provides meaning to the concepts of the distance 
between two matrices and their similarity. 

Definition 2: The distance δ  between two matrices 
, M∈a b  is defined by: ( )δ , = −a b a b  

Definition 3: The similarity ρ , 0 ρ 1≤ ≤ , of two 
matrices , M∈a b  is defined by: 

( ) ( )
( ) ( )1 2 1 2

,
ρ ,

, ,
=

a b
a b

a a b b
 

Note that the similarity is invariant to re-scaling of 
the matrices. 

Definition 4: A closed convex set K M⊆  is 
characterized by the property that convex linear 
combinations of its elements are also members of the 
set: ( ) [ ]1 0,1 ,K Kλ λ λ+ − ∈ ∀ ∈ ∈a b a b  

Given a closed convex subset of the Hillbert space 
K M⊆ and M∈a , the projection :K →Ρ a b  onto K 
with K∈b  is constructed by minimizing the distance 

( ),δ b a ; equivalently, the distance squared. The 
convexity of K guarantees the existence and 
uniqueness of the minimum. 

Fact 1: Given a closed convex subset S of a Hilbert 
space M  

, ,

1 1, , ,ij ij ij ij
j i j i i j

S M i a a j a a
N N

  = ∈ ∀ = ∀ = 
  

∑ ∑ ∑ ∑a , 

the projection :S →Ρ a b  of M∈a  onto S  is given 

by 2
,

1 1 1
2ij ij ij ij ij

j i i j
b a a a a

N N N
= − − +∑ ∑ ∑ . Proof of 

this statement is found in Appendix 1. 
Fact 2: Given the closed convex subset of non-

negative matrices { }0ijP M a= ∈ ≥a , the projection 

:P →Ρ a b  of M∈a onto P is given by  



, 0

0 , 0
ij ij ij

ij ij

b a a
b a

= ≥
 = <

 

 
C. Alternating Projections Method to 

Construct a Service Matrix 
 

Fact 1 implies that a traffic matrix may be mapped 
to the nearest matrix whose row and column sums are 
all equal by the projection operator SΡ . The “nearest” 
means that the distance between the two matrices is a 
minimum. However, Fact 1 does not guarantee that the 
entries of the resultant matrix are all non-negative and 
therefore it is not necessarily a valid service matrix. 
Fact 2 implies that the operator PΡ  projects a matrix to 
the nearest non-negative matrix but it does not 
guarantee that the resulting matrix possess equal row 
and column sums. In order to find a service matrix 
with both qualities, the method of alternating 
projections onto convex sets may be applied; that is, 
the two projections SΡ and PΡ  are applied alternately. 
Applying Dykstra’s variant of the alternating 
projections algorithm ensures that the limit of the 
resulting sequence is also the valid service matrix 
nearest to the initial matrix t . 
Algorithm: 
Input: A traffic matrix M∈t , the residual error ε  and 
η  
1. 0;prev

− ←t   + ←t t   

2. :S
+ →Ρ t t ; 

3. prev
−← +t t t  

4. :P
+→Ρ t t  

5. prev
− +← −t t t  

6. If  ( )
,

1 1ij iji i j
i t N t ε+  ∃ ≥ +∑ ∑  

  or 

( )
,

1 1ij ijj i j
j t N t ε+  ∃ ≥ +∑ ∑  

 go to step 2 

7. Output ( )
,

1
iji j

N tη +  ← ×∑    
s t  

Concretely, a traffic matrix t  can be decomposed 
into two matrices, its positive part +t  and its negative 
part −t  such that + −= +t t t . For +t , the projection SΡ  
can be applied to obtain a matrix t  with row sums 
equal to column sums. The new traffic matrix t  for the 
next iteration can be obtained then by applying PΡ  to 

−+t t , where −t  is the accumulation of negative 
entries obtained from projections in previous iterations. 

Note that the +t obtained is a ( )
,

1 ij
i j

N t ∑  
-server 

service matrix with certain precision error: that is the 
row sums and column sums of the +t  are not exactly 

the same as ( )
,

1 ij
i j

N t ∑  
. The residual error therefore 

measures how far away the projection +t  is from being 
a valid service matrix (i.e. positive entries with equal 
row and column sums). The procedure may be repeated 
until the residual error is less than ε . Convergence is 
proven by the general result found in reference [13]. A 
η -server service matrix s  with the same relative 
precision may be formed by scaling each entry of the 

+t  by ( )
,

1 ij
i j

N tη  ∑  
. 

 
4. Results and Discussion 
 

In this section, two key issues are discussed. The 
first issue is the time complexity of the method and the 
second is how close the constructed service matrix is to 
the initial traffic matrix.  

To obtain the results shown in sections 4.A and 4.B, 
the traffic used is an aggregation of Pareto-distributed 
ON-OFF processes for each source as described in [9]. 
The generated traffic matrices are the accumulation of 
traffic over η  timeslots and they may be inadmissible. 
The offered load is 80%. Yim’s max-min fairness 
method [11] is adopted as a comparison in this paper 
because it also targets similarity and fairness and a 
simple modification makes it robust to inadmissible 
traffic. Yim’s min-max fairness method has a time 
complexity of ( )3O N . 

 
A. Time Complexity 
 

Since both transformations SΡ and PΡ  have a 

complexity of ( )2O N , the overall time complexity of 

our projection method is ( )2O kN , where k denotes the 
number of iterations required to achieve a target 
residual error. It is therefore important to ensure that k 
is smaller than N and make k as small as possible.  

Figure 3 shows the similarity of the projection 
versus iterations. The similarity decreases because, as 
the algorithm converges, +t  is moving away from the 
most similar matrix without restriction to the most 
similar matrix that is also a valid service matrix (i.e. 
positive entries with equal row and column sums). 
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Figure 3. Similarity of real valued projection versus 

number of iterations 
 

Figure 4 shows the number of iterations required for 
the algorithm to converge. Two different convergence 
tests have been used and the residual error ε  has a 
different meaning for each test. For the similarity test, 
we use Definition 3 as a test of convergence (in place 
of step 6) and ε  indicates the difference in similarity 
with respect to the previous iteration. Since the 
projection will be quantized to obtain an integer 
service matrix, for the valid service test (step 6) the 
value of ε  may be as high as 0.5 which guarantees that 
the quantized bandwidth demand never exceeds the 
maximum link bandwidth.  
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Figure 4. Average number of iterations required for 

convergence versus switch dimension N 
 
When N is large, k is much smaller than N in both 

test cases and therefore we can say that it only 
contributes ( )1O  to the overall asymptotic complexity 
of the method. The time complexity of the projection 
method therefore tends to ( )2O N . The method was 

also tested for uniform traffic, resulting in 1k →  as N 
increases. 
 
B. Similarity Issue 
 

The similarity issue can be formulated as follows. 
Given η  servers, how does the number of ports N 
affect the similarity (definition 3) between the η -
server service matrices and the original traffic 
matrices? If the two matrices were exactly the same, 
the similarity between them would be 1.  
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Figure 5. Similarity versus switch dimension for 
η =2N, a) real valued projection , b) final service 

matrix 
 
Figure 5a shows the similarity of the real valued 

projection scaled to η  (η =2N) versus N obtained with 
the max-min fairness and the projection methods. 
Figure 5b shows the similarity of the final η -server 
integer service matrix. 

To obtain the final service matrix, the first step is 
quantization to integer numbers. Some slots will 
remain unassigned as a result of the fractions discarded 
with quantization. These slots will be distributed using 
a simple “rate-filling” algorithm that will assign the 
available slots to those flows with the largest discarded 
fractions (by incrementing the corresponding entry in 
S), provided that the associated row sum and column 
sum do not thereby exceed the maximum number of 
servers η . 



The similarity obtained with the projection method 
after quantization and rate-filling (Figure 5b) is higher 
than that obtained with the max-min fairness method. 
 
C. Network Performance 
 

Figure 6 shows the delay performance of an AAPN 
for the two service matrix construction methods with a 
frame size η =2N.  
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Figure 6. Mean queuing delay in an AAPN versus the 

offered load for the projection and the max-min 
fairness methods. a) Metro-access scenario, b) 

Long-haul scenario 
 
The network simulated is one AAPN star (one 

wavelength) with 10Gbps links and 16 edge nodes. 
The traffic is generated with a composite Markov 
Poisson Process model [14] that simulates statistics of 
the following types of traffic: continuous bit rate (e.g. 
voice), variable bit rate (e.g. video) and variable bursty 
traffic (data). The method used to decompose the 
integer service matrix into η  permutations is the 
“EXACT” method described in [15]. 

Figure 6a corresponds to the metro-access scenario 
(edge-core distances are 20 km) and Figure 6b 
corresponds to a long-haul scenario (edge-core 
distances are 2000 km). This figure shows that the 
projection method performs slightly better than the 

max-min fairness method in addition to having the 
advantage of being faster to compute. 
 
5. Conclusions and Remarks 
 

The bandwidth distribution in an AAPN is 
calculated in the form of a service matrix by an 
alternating projections method with complexity 
O(kN2), where N denotes the number of edge nodes 
and k denotes the number of iterations needed to 
converge. As N increases it is observed that k<<N and 
therefore the complexity tends to O(N2). The service 
matrix exhibits high measures of similarity (in terms of 
correlation) to the original traffic matrix even after 
quantization and therefore the bandwidth allocated in 
the optical network successfully adapts dynamically to 
the traffic demands. 

The method is robust to inadmissible/bursty traffic 
and results show that it yields improved delay 
performance compared to the max-min fairness method 
while the complexity is lower.  

Figure 4 and Figure 5 imply that the projection 
method can generate η -server service matrices with 
high similarity after only a few iterations. With this in 
mind, it may be possible to simplify the projection 
method to only a few iterations ( 10k ≈ ) without 
performing the test for convergence, which would 
improve the total computation time in practice. 

It is important to note that this method can also be 
used with the schedule applied along wavelengths, in 
which case the frame size would be equal to the 
number of wavelengths available in the core node and 
a new frame schedule would be applied every timeslot 
(or every few timeslots as in [9]). This variation would 
be more suitable in the presence of persistent high-rate 
flows that would make efficient use of the high 
bandwidth provided by a whole wavelength. 
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Appendix 1 
Proof: By the method of Lagrange multipliers, the 
computation proceeds by first minimising the cost: 

( ) ( )2

, , ,

,

1
2

1

ij ij ij i ij j ij
i j i j i j

ij i j
i j i j

C b b a b b

b
N

α β

α β

= − + + −

  
+  

  

∑ ∑ ∑

∑ ∑ ∑
 

where ,i jα β  are Lagrange multipliers that are 
subsequently found from the constraint S∈b .  
Now:   

1 10 ij ij i i j j
i jij

C b a
b N N

α α β β
 ∂  = ⇒ = − − − −  ∂    

∑ ∑  

equivalently:  

0, 0
ij ij i j

i j
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