
PDist-RIA Crawler: A Peer-to-Peer Distributed

Crawler for Rich Internet Applications

Seyed M. Mirtaheri1, Gregor V. Bochmann1, Guy-Vincent Jourdan1,
and Iosif Viorel Onut2

1 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Ontario, Canada

staheri@uottawa.ca, {gvj,bochmann}@eecs.uottawa.ca
2 Security AppScanR© Enterprise, IBM

770 Palladium Dr, Ottawa, Ontario, Canada
vioonut@ca.ibm.com

Abstract. Crawling Rich Internet Applications (RIAs) is important to
ensure their security, accessibility and to index them for searching. To
crawl a RIA, the crawler has to reach every application state and execute
every application event. On a large RIA, this operation takes a long time.
Previously published GDist-RIA Crawler proposes a distributed archi-
tecture to parallelize the task of crawling RIAs, and run the crawl over
multiple computers to reduce time. In GDist-RIA Crawler, a centralized
unit calculates the next task to execute, and tasks are dispatched to
worker nodes for execution. This architecture is not scalable due to the
centralized unit which is bound to become a bottleneck as the number of
nodes increases. This paper extends GDist-RIA Crawler and proposes a
fully peer-to-peer and scalable architecture to crawl RIAs, called PDist-
RIA Crawler. PDist-RIA doesn’t have the same limitations in terms
scalability while matching the performance of GDist-RIA. We describe
a prototype showing the scalability and performance of the proposed
solution.

Keywords: Web Crawling, Rich Internet Application, Peer-to-Peer
Algorithm, Crawling Strategies.

1 Introduction

Crawling a web application refers to the process of discovering and retrieving
client-side application states. Traditionally, a web crawler finds the initial state of
the application through its URL, referred to as seed URL. The crawler parses this
page, finds new URLs that belong to the application, and retrieves them. This
process continues recursively until all states of the application are discovered.

Unlike traditional web applications, in modern web applications (referred to
as Rich Internet Applications or RIAs), different states of the application are not
always reachable through URLs. When the user interacts with the application
locally, the client-side of the application may or may not interact with the server,
and different states of the application are constructed on the client. In this realm,

B. Benatallah et al. (Eds.): WISE 2014, Part II, LNCS 8787, pp. 365–380, 2014.
c© Springer International Publishing Switzerland 2014



366 S.M. Mirtaheri et al.

it is no longer sufficient to discover every application URL. To crawl a RIA, the
crawler has to execute all events in all states of the application.

In effect, to crawl a RIA, the crawler emulates a user session. It loads the
RIA in a virtual web browser, interacts with the application by triggering user
interface events such as clicking on buttons or submitting forms [2, 7, 11, 20].
Occasionally, the crawler cannot reach a target state from its current state merely
by interacting with the website. When this is the case, the crawler has to reload
the seed URL. Through interaction with the application, the crawler discovers
all application states.

For a large RIA, executing all events is a very time-consuming task. One way
to reduce the time it takes to crawl RIAs is to parallelize the crawl and run it on
multiple computers (henceforth referred to as nodes). Parallel crawling of RIAs
was first explored by Dist-RIA Crawler [24]. It was proposd to run the crawl in
parallel on multiple nodes with a centralized unit called coordinator. Dist-RIA
Crawler partitions the task of crawling a RIA by assigning different events to
different nodes. In this algorithm, all nodes visit all application states, however,
each node is only responsible for the execution of a subset of the events in each
state. Together the nodes execute all events on all states. When a node discovers
a new state, it informs the coordinator, and the coordinator informs other nodes
about the new state. The coordinator is also the one detecting termination.

In the context of crawling RIAs, the crawling strategy refers to the strat-
egy that the crawler uses to choose the next event to execute [7]. Efficiency of
crawling is effected by the crawling strategy. Two of the most efficient crawling
strategies are the greedy [26] and the probabilistic [10] strategies. The greedy
strategy finds the un-executed event which is the closest to the current state
of the crawler. The probabilistic strategy, uses the history of event executions
and chooses an event that maximized the likelihood of finding a new state. Run-
ning simple strategies such as breath-first and depth-first search does not require
knowledge of all application graph transitions. To run efficient strategies, how-
ever, it is crucial to have access to all known application graph transitions.

In Dist-RIA Crawler only the application states are sent to the other nodes.
This limits the ability of the nodes to run efficient crawling strategies. To address
this shortcoming, GDist-RIA Crawler [22] offers a coordinator-based approach
to run the crawling strategy. It calculates the tasks to be done, and then dis-
patches the tasks to the nodes. Individual nodes execute the task and update the
coordinator about their findings. Although this approach can apply any crawl-
ing strategy, it is not scalable, since the coordinator will eventually become a
bottleneck as number of nodes increases.

In this paper, we propose PDist-RIA Crawler, a peer-to-peer and scalable ar-
chitecture to crawl RIAs. Unlike Dist-RIA and GDist-RIA crawlers, all nodes are
peer and homogeneous in the PDist-RIA Crawler. Nodes broadcast transitions
information to the other nodes, therefore efficient crawling strategies can be im-
plemented in this architecture. Termination is handled through a peer-to-peer
ring-based protocol.



PDist-RIA Crawler 367

This paper contributes to the literature of web crawling by enhancing previ-
ously published works: Dist-RIA and GDist-RIA Crawlers. Additionally, perfor-
mance of different operations during the crawling of RIAs are measured. These
measurements are used to justify some of the decisions made in designing PDist-
RIA Crawler. Finally, an implementation was used to get performance measure-
ments.

We assume that nodes are independent from each other and there is no shared
memory. Nodes can communicate between each other through message passing.
Both the nodes and the communication medium are reliable. We assume that
the target RIA is deterministic, that is: execution of an event from a state always
leads to the same target state. We assume that the number of events and the
number of states in the web application are finite. Finally, we assume that on
average, there are more events per state than there are nodes in the system, i.e.
the application graph is dense.

The rest of this paper is organized as follow: In Section 2 we describe some
of the related works. In Section 3 we describe PDist-RIA Crawler. In Section 4
we describe some experimental results on the time it takes to perform different
operations. In Section 5 we evaluate the performance of PDist-RIA Crawler
against GDist-RIA Crawler. Finally, this paper is concluded in Section 6.

2 Related Works

Web crawling has a long and interesting history [23,25]. Parallel crawling of the
web is the topic of extensive research in the literature [3, 4, 12, 16, 18]. Parallel
crawling of RIAs, on the other hand, is a new field. Dist-RIA crawler [24] studies
running breath-first search in parallel. GDis-RIA crawler [22] uses a centralized
architecture to run the greedy strategy and to dispatch jobs to other nodes.
Hafaiedh et al. [15] propose a fault tolerant ring-based architecture to crawl
RIAs concurrently using the greedy strategy with multiple coordinators. To the
best of our knowledge, the PDist-RIA Crawler is the first work that does not
have coordinators and where nodes are homogeneous.

Using efficient crawling strategies is another way to reduce the time it takes
to crawl RIAs. Duda et al. studied the breath-first search strategy [11, 13, 19],
and Mesbah et al. studied the depth-first search strategy [20, 21]. Model Based
Crawling (MBC) increases the efficiency of the crawler by using a model of the
application to choose the next task to execute. Examples of MBC are Hypercube
model [2, 9], Menu model and Probabilistic model [6, 8, 10].

Identification of client-side states is an important aspect of crawling RIAs.
Strict equivalence of DOMs is determined through hashing the serialized DOM
[11, 13, 19]. Less strict approaches use an edit distance [20, 21] and elements on
the page [1]. In this paper we use strict equivalence of DOMs and use hash of
serialized DOM to identify the state.

Ranking states and pages is an approach to better utilize limited resources
available in crawling a website [25]. In the context of traditional web applications,
the PageRank [5] algorithm emulates a user session, calculates the probability



368 S.M. Mirtaheri et al.

of a hypothetical user reaching a page, and uses this probability to rank a page.
The AjaxRank [13] algorithm applies the same technique to RIA crawling. In
this paper we assume that all states have the same rank.

3 Overview of the PDist-RIA Crawler

Nodes of the PDist-RIA Crawler partition the search space through events in
the page (the same way as in Dist-RIA Crawler). Nodes divide the events in each
state deterministically and autonomously, such that every event belongs to one
node. Nodes are responsible to go to all states and execute their events. New
states and transitions, discovered through executing events, are shared with all
other nodes through broadcasting.

3.1 Algorithm

As depicted in Figure 1, nodes in the PDist-RIA Crawler can be in one of the fol-
lowing states: Initial, Awake, Working, Idle, and Terminated. Nodes start in the
Initial state. In this state, nodes start up a headless browser process. The crawl-
ing starts when the node with node identifier 0 broadcasts a message that moves
all nodes to the Working state. In this state nodes start running the crawling
algorithm. Nodes find the next event to execute locally and deterministically.

If a node has nothing to do it goes to the Idle state. In this state the node
waits for the termination state token or a new state. If a new state becomes
available, it goes back to the Working state. If the termination token arrives,
the node runs the termination algorithm to determine the termination status.
The termination algorithm is described in detail in the next section.

3.2 Termination

A peer-to-peer protocol is run to determine termination. The protocol runs along
with the crawling algorithm throughout the crawling phase. This protocol works
by passing a token called termination state token around a ring overlay net-
work that goes through all nodes. The termination token contains the following
objects:

– List of state IDs for discovered application states: This list has an element
per discovered state. As the token goes around the ring, more state IDs are
added to this list.

– The number of known application states for each node: When the token
visits a node, the node counts the number of application states it knows and
stores this number in this list.

Using the information stored in the token, the termination algorithm described
below decides whether to pass the token to the next node, or initiate termination.



PDist-RIA Crawler 369

Init.start

Active Idle T erm.

L
o
a
d
S
eed

U
R
L

Work Arrives

R
esta

rt

No Unassigned Work

Stay Idle order arrives

R
es
ta
rt

Work Arrives

Terminate order arrives

Fig. 1. The Node Status state diagram

Termination Algorithm. When the token arrives at a node, the node is either
in Working state or in Idle state. If it is in Working state it will continue executing
tasks and hold on to the token until it goes into the Idle state. In the Idle state
the node performs the following steps:

1. The node updates the token with the new application states it knows about
that do not yet exist in the token.

2. The node updates the number of the states it knows about.
3. If the status of the node is not indicated to be Idle in the token, the node

updates its status to Idle in the token. This situation happens if this is the
very first time the node takes the token. Initially, the status of all nodes is
set to Active in the token. As the token goes around the ring, it can only
pass a node if the node is in the idle state. Thus after one round of going
around the ring, all node statuses will be Idle.

4. The node loops through the list of node states in the token and if it finds
at least one node that is in Working state, the node passes the token to the
next node in the ring.

5. If all nodes are in the Idle state in the token, the node loops through the
list of number of known states for all nodes in the token and compares the
number of known states for all nodes against the number of application state
IDs in the token. If there is at least one node that does not know about all
states discovered, the node passes the token to the next node.

6. If the last two steps do not pass the token to the next node, the node con-
cludes that crawling is over and it initiates a termination by broadcasting a
termination order to all the nodes.

Proof of Correctness: Let us assume that the algorithm is not correct and
the termination is initiated while there are still events to be executed. Without



370 S.M. Mirtaheri et al.

loss of generality, let us assume that node A initiated the termination order.
The termination can only start if the token goes around the ring at least once
and finds out that all nodes are idle and all nodes know about all states. For
the termination to be wrong, let us assume that there is at least one event to
be executed by a node, say node B. The termination order cannot be initiated
if the token indicates that node B is not in the idle state. Thus, node B was in
idle state when the token visited it after node B passed the token to the next
node, a message was sent to it with a new state. Let us call the sender of the
message node C. Node C can either be one of the nodes that the token visited
on its way from node B to node A, or one of the nodes outside this path.

Node C cannot be one of the nodes that the termination token visited on
its way from node B to node A. If that was the case, on its visit to node C
the new state would be added to the list of application states in the token, the
termination order would not be initiated by node A since at least the number of
states known by node B is lower than the number of application states known
in the token. So node C is not visited by the token on its way from node B to
node A.

For the same reason that was stated for node B, node C was idle at the time
when the token visited it and another node sent it a message with a new state.
The sender, henceforth referred to as node D cannot be on the way from node
C to node A, for the same reason that node C cannot be on the way from node
B to node A.

This reasoning does not stop at node D and it continues indefinitely. Since
the number of nodes that are not on the way of the token from the sender node
to node A is finite eventually we run out of nodes to be potential senders, and
thus the initial message telling node B about a new state could have never been
initiated. Thus the termination algorithm is proven to be correct by contradic-
tion.

4 Performance Measurements

In this section we measure the performance of certain operations used by the
crawling algorithm. These measurements are used to justify some of the design
decisions made in Section 3.2.

4.1 Time to Transmit Messages

In PDist-RIA Crawler, communication happens through message passing. In this
section we measure the efficiency of message passing. Figure 2 shows stack-bars
of the time it takes to send a message from one node to another as a function
of message size, in logarithmic scale. Each message was sent 100 times and the
distribution of the time is demonstrated by the corresponding stack-bar.



PDist-RIA Crawler 371

1
B
y
te

2
B
y
te
s

4
B
y
te
s

8
B
y
te
s

1
6
B
y
te
s

3
2
B
y
te
s

6
4
B
y
te
s

1
2
8
B
y
te
s

2
5
6
B
y
te
s

5
1
2
B
y
te
s

1
K
B

2
K
B
s

4
K
B
s

8
K
B
s

1
6
K
B
s

3
2
K
B
s

6
4
K
B
s

1
2
8
K
B
s

103

104

T
im

e
in

m
ic
ro

se
c
o
n
d
s

Fig. 2. Cost of sending messages between nodes

Given the measured network delays, we can calculate the overhead of sending
different messages during the crawling process:

– Overhead of sending state information: A message to inform another
node about a new state discovery contains state identifiers, number of events,
a parent state identifier, and an event identifier in the parent state that leads
to the discovered state. These items, along with the message header take
between 128 to 256 bytes. Thus on average, the network delay to inform
another node about a state is from 324 to 369 microseconds.

– Overhead of sending transition information: A message to inform an-
other node about a transition contains source identifiers, target state identi-
fiers, and event identifier. Similar to the State message, a transition message
takes between 128 to 256 bytes. Thus on average network delay to inform
another node about a transition is expected to be from 324 to 369 microsec-
onds.

– Termination Token: The size of termination token varies depending on the
number of crawler nodes, the number of discovered states, and the number
of visited states by crawler nodes. In the worst case, the token contains state
identifiers for all application states, and all nodes have visited all states. As
explained in Section 3.2, among the test applications used in this paper,
Dyna-Table with 448 states has the largest number of application states.
Assuming we are crawling this application with 20 nodes, the termination
token can get as large as 8 kilobytes. Thus in the worst case scenario where
the token is at its largest size, the average time it takes to send the token
from a node to another is less than 3 milliseconds.



372 S.M. Mirtaheri et al.

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

Global time since beginning of the Crawl in Minutes

T
im

e
to

ca
lc
u
la
te

ta
sk

in
M
il
li
-S
ec
o
n
d
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

30

40

Global time since beginning of the Crawl in Minutes

T
im

e
to

ca
lc
u
la
te

ta
sk

in
M
il
li
-S
ec
o
n
d
s

Fig. 3. Time to calculate next to execute as crawling proceeds using Breath-First (top)
and Greedy (bottom) strategies for Dyna-Table application

4.2 Time to Calculate the Task to Execute

When the crawling strategy specifies a target event to execute, the crawlers
often have to execute additional events to reach to the application state where
the target event resides. We call this path of events and the target event a task.
After execution of an event, the crawler has to calculate the next task to execute.
Different crawling strategies run different algorithms to calculate the next task
to execute. In this section we measure the time it takes to calculate the next
task to execute for different crawling strategies.

Figure 3 shows the time it takes to calculate the next task using breath-first
search and greedy strategies. In this figure, the y-axis shows the time to calculate



PDist-RIA Crawler 373

the next event, and the x-axis represents the clock since the beginning of the
crawl. As the figure shows:

– The time to calculate the next task to execute, tends to rise steadily in the
case of the breath-first search strategy. In this algorithm, after finishing each
task, the crawler looks for the next task to execute by looking into the seed
URL and then the most immediate children for a task to perform. As the
crawl proceeds the algorithm should go deeper in the graph before it can
find a new task. Thus the cost of running the algorithm tends to increase as
the crawl proceeds.

– The time it takes to calculate the next task to execute is generally lower in
the greedy algorithm. In this algorithm, the crawler does not have to start
from the seed URL and check all immediate children before going to further
children for a task. Thus the greedy algorithm has a higher chance of finding
tasks earlier.

As Figure 3 shows, in the majority of the cases it takes a few milliseconds to
calculate the next task to execute.

4.3 Number of Events in Tasks

Executing the task which often involves executing several client-side events, pos-
sibly interacting with the server, and possibly performing a reset, often takes
much longer than calculating the next task to execute. In this section we mea-
sure the number of events in the tasks calculated by different crawling strategy.

Different crawling strategies create tasks with different number of events. Ex-
ecution of an event can start an interaction with the application server. This
interaction (often in form of an asynchronous request to the server) is often the
most time consuming aspect of executing the task. Therefore, the number of
events in each task is a good indicator of the time it takes to execute the task.
By measuring the number of events in the tasks, in effect we forecast the time
it takes to execute the tasks.

Figure 4 shows the number of events in tasks created using breath-first search
and greedy strategies. In these figures, the y-axis shows the number of events,
and the x-axis represents the clock since the beginning of the crawl. As the
figures show:

– As the crawling proceeds the length of events in tasks increases using the
breath-first search strategy. In Dyna-Table application this number can be
as high as 14 events.

– The greedy strategy represent a very efficient strategy, where often very few
events exist in each task. The rare worst case scenario happens with 7 events
in a task.

The time it takes to execute individual events depends highly on the target
application and the server hosting it. Execution of JavaScript events, that do not
trigger an asynchronous call to the server, is substantially faster than the events
that interact with the server. For example, in the Dyna-Table web application,



374 S.M. Mirtaheri et al.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

Global time since beginning of the Crawl in Minutes

N
u
m
b
er

o
f
E
ve
n
ts

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Global time since beginning of the Crawl in Minutes

N
u
m
b
er

o
f
E
ve
n
ts

Fig. 4. Number of events to execute before executing a new event as crawling proceeds
using Breath-First (top) and Greedy (bottom) strategies, for Dyna-Table application

execution of events that do not interact with the server always take less than
20 milliseconds. In the same application, events that do interact with the server
often take more than 85 milliseconds to execute, and can take up to 1.3 seconds.

As the experimental results in the section show:

– The time required for communicating a state or transition between two nodes
is less than a millisecond.

– The time required for calculating the next event to execute is often less than
100 milliseconds.

– The time required for executing a JavaScript event is often between 10 to
1000 milliseconds. A task is often composed of several JavaScript events, as
the result executing a task can take up to several seconds.



PDist-RIA Crawler 375

The time it takes to broadcast a message is orders of magnitude smaller than
the time it takes to calculate a task or execute it. It is thus reasonable to expect a
good performance from a peer-to-peer architecture where nodes broadcast states
and, when necessary, transitions. As the number of nodes increases, the number
of messages per second increases too, and the network is bound to become a
bottleneck. For example, based on the experimental measurements presented,
we expect that when both states and transitions are broadcasted, by crawling
the Dyna-Table application with 434 nodes or more, the network becomes a
bottleneck. Before reaching this point, however, a good performance speedup is
expected with this architecture.

Based on this observation, we devise a peer-to-peer architecture. This archi-
tecture takes advantage of low network delay and relies on broadcasting the
information needed. Assuming that the number of events per state is larger than
the number of nodes, through elimination of any centralized unit, this architec-
ture does achieve a better scalability.

5 Evaluation

5.1 Test-Bed

For the experimental results discussed in this chapter, the nodes and the co-
ordinator are implemented as follow: The JavaScript engine in the nodes is
implemented using PhantomJS 1.9.2. Strategies are implemented in the C pro-
gramming language and GCC version 4.4.7 is used to compile them. All crawlers
use the Message Passing Interface (MPI) [27] as the communication mechanism.
MPI is an open standard communication middleware developed by a group of
researchers with background both in Academia and industry. MPI aims at cre-
ating a communication system that is interoperable and portable across a wide
variety of hardware and software platforms. Efficient, scalable, and open source
implementations of MPI are available such as OpenMPI [14] and MPICH [17].
MPICH version 3.0.4 is used to implement the communication channel in our
experiments. All nodes, as well as the coordinator in case of GDist-RIA crawlers,
run on Linux kernel 2.6.

The nodes are hosted on Intel R© Core(TM)2 Duo CPU E8400 @ 3.00GHz
and 3GB of RAM. The coordinator is hosted on Intel R© Xeon R© CPU X5675 @
3.07GHz and 24GB of RAM. The communication happens over a 10 Gbps local
area network. We ran each experiment three times and the presented numbers
are the average of those runs.

To compare the relative performance of the crawlers, we implemented GDist-
RIA and PDist-RIA crawlers using the same programming language and used
MPI as communication channel. In all cases the C programming language is used
to calculate the next task to do. In order to compare the performance of crawlers
we crawled two different target web applications using the two architectures. In
both cases we used the breath-first search and the greedy strategies.



376 S.M. Mirtaheri et al.

5.2 Target Applications

Two real world target applications (Figure 5) are chosen to measure the perfor-
mance of the crawlers. The target web applications are chosen based on their
size, complexity and client side features they use.

Dyna-Table is a real world example of a JavaScript widget, with asyn-
chronous call ability, that is incorporated into larger RIAs. This widget helps
developers to handle large interactive tables. It allows to show a fixed number
of rows per page, to navigate through different pages, to filter content of a table
based on given criteria, and to sort the rows based on different fields. This ap-
plication was developed using the Google Web Toolkit and has 448 states and a
total of 5, 380 events.

Periodic-Table is an educational open source application that simulates an
interactive periodic table. This application allows the user to click on each ele-
ment and show the user information about the element in a pop-up window. The
application can display the periodic table in two modes: the small mode, and the
large mode. The two modes are identical in terms of functionality, however, they
offer two very different interfaces. Once an element is clicked and the pop-up
window shows up for the element, other elements can be clicked or the pop-up
window can be closed. This application is developed in PHP and JavaScript, and
it has 240 states and 29, 040 events.

Table 1 shows some information about the graph of the target web applica-
tions. As the table shows: Dyna-Table is a large size RIA with a small number
of events per page, and Periodic-Table is a large size RIA with a large number
of events per page. In Periodic-Table, all states have more events per page than
the number of web crawlers and the application graph is dense.

Table 1. Target Applications graph summary

Application Name Number of States Number of Transitions Average Events per Page

Dyna-Table 448 5,380 12.01
Periodic-Table 240 29,040 121.00

5.3 Results

Figure 6 shows the time it takes to crawl the Dyna-Table and Periodic-Table
applications with different number of nodes using different crawlers. As the figure
shows the overhead of the peer-to-peer architecture is not tangible. In fact, even
with 20 nodes, the GDist-RIA Crawler does not scale as well as PDist-RIA
Crawler. This is particularly noticeable for the greedy strategy. In this strategy,
tasks take less time to execute, and therefore nodes ask the coordinator for
new tasks to execute more frequently, making the coordinator a bottleneck.
Therefore, the new method is not less efficient than the best known method to
date, when that best known method to date is not overloaded. In additionally, the
new method beats the old method squarely when the other becomes overloaded.



PDist-RIA Crawler 377

Fig. 5. Target Application: Dyna-Table (up) and Periodic-Table (down)



378 S.M. Mirtaheri et al.

0 2 4 6 8 10 12 14 16 18 20

101

103

105

107
T
im

e
in

m
il
li
se
co
n
d
s

GDist-RIA Crawler: BFS strategy

PDist-RIA Crawler: BFS strategy

GDist-RIA Crawler: Greedy strategy

PDist-RIA Crawler: Greedy strategy

0 2 4 6 8 10 12 14 16 18 20

101

103

105

107

Number of Crawler Nodes

T
im

e
in

m
il
li
se
co
n
d
s

GDist-RIA Crawler: BFS strategy

PDist-RIA Crawler: BFS strategy

GDist-RIA Crawler: Greedy strategy

PDist-RIA Crawler: Greedy strategy

Fig. 6. The total time to Crawl Dyna-Table (top) and Periodic-Table (bottom) in
parallel using using different architectures

6 Conclusion and Future Improvements

In this paper we introduced PDist-RIA Crawler, a peer-to-peer crawler to crawl
RIAs. To design this crawler, we measured the time it takes to execute dif-
ferent operations, and based on the measured values we engineered the PDist-
RIA Crawler. This crawler was implemented and its performance was compared
against the GDist-RIA crawler.

In this paper, we assumed that new transitions are broadcasted as soon as they
become available. A study of the impact of this assumption is missing from this
paper. More formally, the impact of the following two assumptions is missing:
Firstly, to utilize the network better, it may be more efficient not to broadcast
the new transitions as they become available, but to broadcast them in batches,
or broadcast them at given time intervals. Secondly, not all transitions have a
major impact on reducing the time it takes to crawl the RIA. Sharing only a
sub-set of transitions, instead of all transitions, may not increase the time it
takes to crawl the RIA, while it reduces network traffic.



PDist-RIA Crawler 379

Acknowledgements. This work is largely supported by the IBM R© Center for
Advanced Studies, the IBM Ottawa Lab and the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). A special thank to Sara Baghban-
zadeh.

References

1. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Experimenting a reverse engi-
neering technique for modelling the behaviour of rich internet applications. In:
IEEE International Conference on Software Maintenance, ICSM 2009, pp. 571–574
(September 2009)

2. Benjamin, K., von Bochmann, G., Dincturk, M.E., Jourdan, G.-V., Onut, I.V.:
A strategy for efficient crawling of rich internet applications. In: Auer, S., Dı́az,
O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 74–89. Springer,
Heidelberg (2011)

3. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-
tributed web crawler. In: Proc. Australian World Wide Web Conference, vol. 34(8),
pp. 711–726 (2002)

4. Boldi, P., Marino, A., Santini, M., Vigna, S.: Bubing: Massive crawling for the
masses

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proceedings of the Seventh International Conference on World Wide Web 7,
WWW7, pp. 107–117. Elsevier Science Publishers B. V, Amsterdam (1998)

6. Choudhary, S., Dincturk, E., Mirtaheri, S., Bochmann, G.V., Jourdan, G.-V., Onut,
V.: Model-based rich internet applications crawling: Menu and probability models

7. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Jourdan, G.-V., Bochmann, G.v.,
Onut, I.V.: Building rich internet applications models: Example of a better strategy.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 291–305.
Springer, Heidelberg (2013)

8. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Jourdan, G.-V., Bochmann, G.v.,
Onut, I.V.: Building rich internet applications models: Example of a better strategy.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 291–305.
Springer, Heidelberg (2013)

9. Dincturk, E., Jourdan, G.-V., Bochmann, G.V., Onut, V.: A model-based approach
for crawling rich internet applications. ACM Transactions on the Web (2014)

10. Dincturk, M.E., Choudhary, S., von Bochmann, G., Jourdan, G.-V., Onut, I.V.:
A statistical approach for efficient crawling of rich internet applications. In:
Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp.
362–369. Springer, Heidelberg (2012)

11. Duda, C., Frey, G., Kossmann, D., Matter, R., Zhou, C.: Ajax crawl: Making ajax
applications searchable. In: Proceedings of the 2009 IEEE International Conference
on Data Engineering, ICDE 2009, pp. 78–89. IEEE Computer Society, Washington,
DC (2009)

12. Edwards, J., McCurley, K., Tomlin, J.: An adaptive model for optimizing perfor-
mance of an incremental web crawler (2001)

13. Frey, G.: Indexing ajax web applications. Master’s thesis, ETH Zurich (2007),
http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf

14. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004)

http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf


380 S.M. Mirtaheri et al.

15. Hafaiedh, K., Bochmann, G., Jourdan, G.-V., Onut, I.: A scalable p2p ria crawling
system with partial knowledge (2014)

16. Heydon, A., Najork, M.: Mercator: A scalable, extensible web crawler. World Wide
Web 2, 219–229 (1999)

17. Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: A grid-enabled implementation
of the message passing interface. Journal of Parallel and Distributed Comput-
ing 63(5), 551–563 (2003)

18. Li, J., Loo, B., Hellerstein, J., Kaashoek, M., Karger, D., Morris, R.: On the feasi-
bility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica, I. (eds.)
IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

19. Matter, R.: Ajax crawl: Making ajax applications searchable. Master’s thesis, ETH
Zurich (2008),
http://e-collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf

20. Mesbah, A., Bozdag, E., Deursen, A.V.: Crawling ajax by inferring user interface
state changes. In: Proceedings of the 2008 Eighth International Conference on Web
Engineering, ICWE 2008, pp. 122–134. IEEE Computer Society Press, Washington,
DC (2008)

21. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. TWEB 6(1), 3 (2012)

22. Mirtaheri, S.M., Bochmann, G.V., Jourdan, G.-V., Onut, I.V.: Gdist-ria crawler:
A greedy distributed crawler for rich internet applications

23. Mirtaheri, S.M., Dinçtürk, M.E., Hooshmand, S., Bochmann, G.V., Jourdan,
G.-V., Onut, I.V.: A brief history of web crawlers. In: Proceedings of the 2013
Conference of the Center for Advanced Studies on Collaborative Research, pp.
40–54. IBM Corp. (2013)

24. Mirtaheri, S.M., Zou, D., Bochmann, G.V., Jourdan, G.-V.,, I.V.: Dist-ria crawler:
A distributed crawler for rich internet applications. In: 2013 Eighth International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp.
105–112. IEEE (2013)

25. Olston, C., Najork, M.: Web crawling. Foundations and Trends in Information
Retrieval 4(3), 175–246 (2010)

26. Peng, Z., He, N., Jiang, C., Li, Z., Xu, L., Li, Y., Ren, Y.: Graph-based ajax crawl:
Mining data from rich internet applications. In: 2012 International Conference
on Computer Science and Electronics Engineering (ICCSEE), vol. 3, pp. 590–594
(March 2012)

27. Snir, M., Otto, S.W., Walker, D.W., Dongarra, J., Huss-Lederman, S.: MPI: the
complete reference. MIT Press (1995)

http://e-collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf

	PDist-RIA Crawler: A Peer-to-Peer Distributed
Crawler for Rich Internet Applications

	1 Introduction
	2 Related Works
	3 Overview of the PDist-RIA Crawler
	3.1 Algorithm
	3.2 Termination

	4 Performance Measurements
	4.1 Time to Transmit Messages
	4.2 Time to Calculate the Task to Execute
	4.3 Number of Events in Tasks

	5 Evaluation
	5.1 Test-Bed
	5.2 Target Applications
	5.3 Results

	6 Conclusion and Future Improvements
	References




