A Strategy for Efficient Crawling of
Rich Internet Applications

Kamara Benjamin

Thesissubmitted to the
Faculty of Graduatand Postdoctoral Studies
In partial fulfillment of the requirements

For the degree of

Master of Computer Science

Schoolof Information Technology and Engineering
Faculty of Engineering

University of Ottawa

O Kamara BenjaminOttawa, Canad&010



Abstract

This thesis studies the problem of crawling rich internet applicatidreseapplications are built
usingadvancedveb technologiesvhich allow them to be more dynamic and enable better user
experiencesin recent years, the popularity and importance of web applications has continually
increased and they are now very commonly used to comgésentiakasks such asrfancial
transactions. As a result, the need to crawl these applications goes beyond the desire to index
content for search. For example, applications also need to be analyzed in order to detect security
vulnerabiliiesand assess accessibility. this thesis, the challenges involved with crawling rich
internet applications are discussed and an efficient strategy for crawling these applications is
presented. We also use this strategy to develop a prototype tool for crawling-brab&x

applications.



Table of Contents

N | 1 (0 To 1§ Tox 1o IO TR 1
1.1 Traditional Web APPIICALIONS.........cooiiiiiiiiiieeee e 2
N T\ - T ox o) SRR 3
1.3 Advanced Web TeChNOIOGIES.........ccooiiiiiiiiiiieeee e 3
1.4 Crawling Modern APPlICALIONS.............uuuuiiiiiiiiiieeeiiiiiiiiiieiieeee e eeereeeeeeeeeae e B
(ST Y/ (0] 1)Y= 11 o o 1RO 5
1.6 LiSt Of CONIIDULIONS. ...ttt mnne s 6
1.7 Organization Of the TNESIS. ..o 7

2 RElAtEd WOTK .. ..ottt e e e e e e e e e e e s st e e e e e e e e e e e e e e 8
2.1 Crawling AJAX APPHCALIONS. . ...ttt ieeei e eeeee e e e e e aaeeeas 8
222 Y (o o (=T I = T 1= To I = 1] o o SRR 12

G T O o -1 1= o =SSR 15
3.1 Fine-Grained Control over JavaScript EVENIS............ooooiiiiicemn e 15
3.2 Control overApplication FIOW..........oouuiiiiiii e e 20
3.3 State EQUIVAIENCE........ceeeiiieei e e et eeeer e e e e e e e e e e e e nnne e eaees 21
3.4 INFINITE RUNS...oeiiiiiiitiie e e e e e ettt e ree e e e e e e e e eeeeeeeeeeness s mmmreeeeeeesnnnnns 22
3.5 SIOW EXECULIONS. ...t seeena s 23
3.6 State SPaACE EXPIOSIONL.....uuuiriiiiiiiiiiiiii ettt e e e 23
3.7 Data INPUE VAIUBS. ...t e et nnne e e e e 24
3.8 SEIVEI STALES ...t ee et 24
3.9 Crawling StralEY......coccueiiiiiiiiee et ieeeiit bbbt e e e e e e e eree e e et e e e e e e e e e e e e e e e e as 25
3.10 Incomplete MOAEL.........o oo en e 26

4 State EQUIVAIENCE........uviiiiiiiis ettt e e e et e et eees e e e e e e e e e e eeeeeeeeeesassmnmeeeeeeeennnnes 27
4.1 Different Types of EQUIVAIENCE..........cooi oo 28
42 ALoad, .Rel.0.a 0.0 e 30

5 Crawling Strat@OY......cciiiiiiiiiiiie et ieeer bbbt e e eret bbb e e e e e et e e e e e e e e e e s aat e e e e e e e e e s 32



LS R O 1= AV, (<) VTR 32

5.2 Minimum Chain DeCOMPOSILION..........cceiviiiiiiiiiieeme e 40
5.3  Minimum TranSition COVEIAGE .......ccouiiiiiiiieiieeeee e e e e e 42
5.4  Adapting the Strategyi.....cccooeiiiieeiiiiiieeeeee e 51
5.4.1 Identifying DeVIAtIONS...........covviiiiiiiiiiimmre e e e errrr e e e e e e e e e e 51
5.4.2 ReVISING the Strat@gy... ... cooeiiaeeee et ceeeee et eeee e e 57

6 Prototype Tool for Crawling AJAXased Web Applications.........cccccceeeeeeeiivieeeeceeenn. 65
6.1 Design and IMpPlementation..............uueeieiiiiiieeeiiieiiiieie e 65
6.2 Limitations of the Prototype Crawling TOOL.........ccooviiiiiiiiiiiierece e 72
6.3 Integration With APPSCaAI.........cooiiiiiiiiiieece e e e e e e e 73

7 Experiments and Evaluation of RESULLS..............coooiiimmr e 75
71 ALoad, .Rel.0.ad.0 e eeesssseseeeeee d D
A 2 O - 1] 1] g To ] = 1 (=T Y 2 77
7.2.1  Strategy GENEIATION.......eeeiiiiiiiiie ettt ee e 77
22 (o o [= 1 I = T 1] o [ o PSSR 79
7.2.3  Crawling EffiCIENCY . ..uuuiiiiiiiiiiiiiiee e 87

S T Y = 18- 4 o] o P PPPURPPPRRR 103
8  Conclusion and FULUIE WOIK ............euiiiiiiiiiiieeeiiiiiieeec et 106
8.1 Summary of CONtHDULIONS .......ccoiiiiiiiiiiii e 106
8.2 FULUIE WOIK ..ttt e e e e e e e ettt bbb e eeabnnees 108
RETEIBINCE. ...ttt e eeeean 112

Appendi x A: Web Applicati.ons..f.or..Tes.t.1167
Appendix B: Crawling Strategy COMPAriSONS...........ccovvvvuuiurimmmeeeeeeeeeeesiineese e s emessennnns 118

ALoa



List of Figures

Figure 1: The initial state of the application (before the "Buddy View" button is clicked).............. 16
Figw e 2: Susands d.et.ali.l.s..ar.e..di.s.pl.ay.ed........17

Figure 3 : The application shows..t.he..us.e.r.0l§

Figure 4: The result of the injection attack is seen in this intermediate State.............cccooveeeeennnn.. 18
Figure 5: A model of the example website highlighting the intermediate.state..................ccceee..... 20
Figure 6: Example of a page with irrelevant data which changes over.time..............cccceeeeeeene. 31
Figure 7: Procedure for CraWIiNG..........iiiii et eeee e ennaa e e e e e e 36
Figure 8: Procedure for traditional Crawling..............oooi oo 37
Figure 9: A hypercube of Size 4 diMENSIONS..........ooiiiiiiii e 39
Figure 10: Minimum @ain Decomposition of a hypercube of size.4...........ccccccceevviveciiiiinnnnnnnn. 42
Figure 11: Minimum Transition Coverage (MTC) algorithim...............ooooiii e 44
Figure 12: Procedure gerateUPCREAINS..........cooiiieree e e e 46
Figure 13: Procedure COMDINECRNAINS .........uuiiiiiiiiiiiiiieeee e e e e e 48
Figure 14: Procedure MatChCRaINS..........cooiiiiiiii e ee e e 48
Figure 15: Rate of increase in the number of paths, states, MTC chains, and MCD.chains....... 50
FIgure 16: APPEAIiNG EVENTS......c.uuii e i e e e ieeer e ter e e e e et e e e e e et rrear e e e e e et e e e eetaaeeeeseenmnenneeeeernnnss 52
Figure 17: DiSapPeaAring EVENTS ... ..uu it e e eieeieeee e e e ettt e e e e e e e aaeeeeeeeeeeeeaaeean e e e e e aaaaaaaaeaeeeees 53
Figure 18: Appearing and diSappearing EVEILS...........iieiieuuuieeereeeeeitineeeeesinseeeesrmmmren e eeeaenaeeeees 54
10 UL =T RS N VT o = 55
1o [T R A=Y o] | S PSP 56
Figure 21: Procedure reViSESatEgY.........cuviiuuriiiii it iceeiieee e e e e e e e eeeeeatat st s e e e e eaaeeeeesssessannnsenes 57
Figure 22: The prefix and suffix of @ Chain..............oooo e 59

full



Figure 23: Procedure eventBasedCraMil..........coooivvuiiiieeer et s e e e e e e eees 64
Figure 24 : The modules and selected eass the prototype crawling tool..............ooooiiiiiiiieenninnnld 67

Figure 25: Sequence diagram showing the communication between the classes of the.crawler.71

Figure 26: Time taken to generate MTC Chains..........ooviiiiiiiiiceciiiie et 8
Figure 27: 4 dimensional hypercube web applicatiactual model vs. created model.................... 80
Figure 28: 4 Norhypercube web application #hctual model vs. created model........................... 81
Figure 29: Norhypercube web application #2ctual model vs. created model..................eevveveenn. 82
Figure 30: Norhypercube web application #&ctual model vs. created model................cevvvvvieenn. 84

Figure 31: Norhypercube web application #4: Previous, Nexttualmodel vs. created model........ 85

Figure 32: Model of noimypercube web application #5: AJAX NEWS..........uuuiimiiiimiiimennnniinanananans 86
Figure 33:Transitions vs. statetiscovered (4 dimensional hypercube web application)................ 89
Figure 34:Resets vs. states discovered (4 dimensional hypercube web applicatian)................... 89

Figure 35:Transitions vs. transitions discovered (4 dimensional hypercube web application)......90

Figure 36:Resets vs. transitions discovered (4 dimensional hypercube web appjicatio............... 90
Figure 37 Transitions vs. states discovered (Nompercube Web application #1)..............cccevvenn..n. 91
Figure 38 Resets vs. states discove(Blbn-hypercube Web application #1)............cccccoeveivvvieecnnnnn. 92
Figure 39: Transitions vs. transitions discovered (Noypercube web application #£1).................... 92
Figure 40 Resets vs. transitions discovered (Noypercube web application #1)...............cceevennn.ee. 93
Figure 41 Transitions vs. states discovered (Noypercube web application #2).........cccceeeeeeeeennn. 94
Figure 42 Resets vs. states discovered (Ngpercube web application #2)..........cccceeeeiiiiieeeeeennnn. 94
Figure 43 Transitions vs. transitions discovered (Noypercube web applitan #2)........................ 95
Figure 44 Resets vs. transitions discovered (NMypercube web application #2).........ccccceeeeeeeeenn. 96
Figure 45 Transitions vs. stateliscovered (Nothypercube web application #3).........ccccceeeveeeeenn. 97
Figure 46 Resets vs. states discovered (Ngpercube web application #3)...........cceeeeiiiiieeeeeennnnn. 97
Figure 47 Transitions vs. transitions discovered (Noypercube web application #3)..................... 98
Figure 48 Resets vs. transitions discovered (Mypercube web application #3)...........ccccceeeeenne. 99

iv



Figure 49 Transitions vs. transitions discovered (Noypercube web application #4: Previous, N&xap
Figure 50: Resets vs. states discovered ((Nypercube web application #4: Previous, Next)....... 100
Figure 51 Transitions vs. transitions discovered (Noypercube web application #4: Previous, Néxtl
Figure 52: Resets vs. transitions discovered (Nopercube web application #4: Previous, Next) 101
Figure 53:Transitions vs. states discovered (Nopercube wie application #5: AJAX News)......... 102

Figure 54: Resets vs. states discovered (Mypercube web application #5: AJAX News)............ 103



List of Tables

Table 1: Time taken to generate MTC ChainS.........cooiiiiiiii e e e 78
Table 2: Transitions vs. states discovered (4 dimensional hypercube web applicatian)............ 118
Table 3: Resets vs. states discovered (4 dimensional hypercube web applicatian)................... 118
Table 4: Transitions vs. transitions discovered (4 dimenshyErcube web application).............. 119
Table 5: Resets vs. transitions discovered (4 dimensional hypercube web application)............ 119
Table 6:Transitions vs. states discovered (Noypercube web application #1)..........c.cccceeeeeiienee 120
Table 7: Resets vs. states discovered (4 dimensional hypercube web applicatian)................... 120

Table 8: Transitions vs. transitions discovered (4 dimensional hypercube web application)......120

Table 9: Resets vs. transitions discovered (4 dimensional hypeselbapplication)...................... 120
Table 10: Transitions vs. states discovered (Ngpercube web application #2).............cccceeenee 121
Table 11: Resets vs. &a discovered (Nehypercube web application #2)............ccccccvvvvivieeenennn. 121
Table 12: Transitions vs. transitions discovered {@Ngpercube web application #2)..................... 122
Table 13: Resets vs. transitions discovered (Ngpercube web application #2)........................... 122
Table 14: Transitions vs. states discovered (Ngpercube web application #3)............cccceeeeee 123
Table 15: Resets vs. states discovered {Nygercube web application #3)...........cccccccvvvirieeenennn. 123
Table 16: Transitions vs. transitions discovered @Ngpercule web application #3)............c......... 124
Table 17: Resets vs. transitions discovered (Ngpercube web application #3)............ccceoeeieenie 124

Table 18: Transitins vs. states discovered (Nbypercube web application #4: Previous, Next)...125
Table 19: Resets vs. states discovered {Ngpercube web application #4: Previous, Next)......... 125
Table 20: Transitions vs. transitions discovered @Ngpercube web application #4: Previous, NexB5
Table 21: Resets vs. transitions discodgfdonhypercube web application #4: Previous, Next)...125

Table 22: Transitions vs. states discovered @Ngpmercube web application #5: AJAX News)........ 126

vi



Table 23: Resets vs. states discovered {Ngpercube web application #5: AJAX News)

Vi



Acknowledgements

First, | would like to thank my supervisors, Dr. Gregor v. Bochmann and Dr-Vgent
Joudan. This thesis would not be possible without their knowledge, encouragement, and
guidance.They have always been receptive to my ideas, and thestroative criticisms have
facilitated this work. | would also like to thank the other members of the \&afé Security
Research group at the University of Ottawa, including Dr. Vio Qi&NM) and my colleague,
EmreDingtirk The exchange of ideas between members of this group has been essential to this

research.

In addition, this project would not be possébwithout the support ofBM and the National
Science and Engineering Research Council (NSEBCLanada. | am also grateful to the
AppScan team at IBM. Dr. Onut and his colleagues have provided a wealth of information which

is importantto this research.

| would also liketo express gratitude tamy loving parents, Peter and Tecla BenjanTihey have
been the greatest influences in my life ang itmpossibleto capture theitove and supporin

only a few words. In additign would like to thank a fewfomy othermajor supporterd. am
grateful to ny brother and sister, Kayode and Kaisha Benjamin, and my girlfriend, Edith

Brumant,for the encouragement that they have given me.

viii



1 Introduction

Over the last three decades, the internet has become anagsmtof everyday lifeUsersrely

on the internet for tasks related to communication, information, and commerce among others. In
addition, thepopularity of webbased applicatiahas explodd over the last several years with
hundreds of millions of pge hawng access to and making use of the interhgith such
popularity, the importance of web applications has been magnified as they store itmbatidan

have become sources of valuable information, and provide important services for many users. As
aresult, there is a need to be able to craab applicationgautomatically discover all states of

applications)and process them in various ways.

This work aims to advance the ability to crawl web applications, particulgly internet
applications which are built using technologies such as AJAX Flash[2], Silverlight[3], and
Flex [4]. These technologies cause modern web applications to be djtfieent from
traditional web applications and render existing crawling techniques ineffediefare
attempting tocrawl such applicationghe challenges whictill be facedneed to badentified
There is also a nedd produce a strategy which allewfficient crawling of such applications.
Thegoal is to build a initial prototypecrawlingtool (using this strategwvhich is able to crawl
AJAX-based applicationgroducinga modelwhich captures the different states of an application

as well as the actior{gransitionswhich cause the application to move from one state to another.



A paper p] hasbeen published which covers a portion of this research. In additierpatents
stemming from this work are in the filing process at IBM. Two of these cover the work presented

in Chapter 4. The othéinreecover the work presented in Chapter 5.

1.1 Traditio nal Web Applications

Web applications have trainally consisted ofa collectionof static documentsencoded as
HTML. Each of these documents has a URI (Universal Resource ldentifier). This identifier
includesinformation about the host of the documehg name of the document, and ghetocol

used to access the documef}. [HTML (HyperText Markup Language)7] is a markup
language which allows developers to produce documépages)which are consistently
viewablein various sizesvithin web browses across various platform#. provides semantics

which allow developers to define the structure of a web document and denote components such

as headings, text, tables, and pictures

Traditionalweb applicationsitilized different documents to provide f@ifent sets of information

or functionality to the user. In order to move from one document to another, there is a need for a
synchronous HTTP request (which could be triggered by some action performed in the existing
page) to be made to the server whitbres this next document. There is then a response from
the server which contains this document. The document is then loaded, providing the user with
access to the next page in the application. One drawback of this technique for updating the page

is that noving from one document to another, the entire page has to be reloaded. This results in



user activity being suspended until the new page is loaded. Depending on the size of the
document and the speed of the internet connection being used, this perisgesfdad activity

could be anywhere from a fraction of a second to a few seconds.

1.2 JavaScript

More recently, he documentsvhich comprise web applicatiomsve included clierside scripts.
JavaScript is one of the languages in which scripts may be mrieripts contain functions

which perform some programming logic. When a user interacts with a web application, certain
actions may trigger events (for example,@rclick event) which call these functions, causing
clientside updatesThis is made possié by the DOM (Document Object Model) which defines

the structure and content of a document [9] and allows access and updates to it. The inclusion of
JavaScript means that web applications should be considered differently since for a given URL,

they can eist at different states.

1.3 AdvancedWeb Technologies

Oneadvancement of web application technologJAX (Asynchronous JavaScript and XML)

which allows additional content to be retrieved from the sew#hout requiring the page to be
completely reloadd. This results in applicatiotisatare much more responsive and dynamic as
they continuously change and feature updated

experienceThis is all accomplished through the ability to send asynchronougseqto the



server, and process the responses in the backgrdbeduse ofAJAX means thathere is the
potential for a given page to have even more states betl@s® asynchronous updates allow
the document to be modified to include both additional HT&hd JavaScript code which is

retrieved from the web server.

AJAX is one example of a technology which utilizes asynchronous communication with the
server. There are additional technologies such as Adobe Flash, Microsoft Silverlight, and Adobe

Flex which also do the same.

1.4 Crawling Modern Applications

Web application technology has seesignificant advancement, giving browsbased
applications ever more capabilities and allowing them to approach the functionality and user
experience of desktop applicats. Technologies such a&JAX, Flash, Silverlight and Flex

along with the current browsers which support thenablethese improvements in the capability

and functionality of web application8s a resuliof these improvementsasks which were once
limited to desktopapplications, such as word processing and image editing, are now being

completed via web applications.

Also, with the rise in the popularity of clodmhsed servicepeoplenow make use of the internet
to store larger amounts of sengttidata. It is now common to have pictures, business documents,
and even health records stored on servers which are under the control of other @/ities.

4



applicationsare then usetb access and modify this data. In addition, it is now very common to
complete many taskghat usually require a high level of confidentiality via web applications.

Passport applications, financial transactions, and school assignanerglicompleted online.

Giventhe ubiquity ofthe internet andhe vastness othe datathat is stored and exchanged via

web applications, there is a need to be ablautomaticallyuncover all states of an application

in order to index information (for example, for search) or to analyze an application for a variety
of reasonsincludingthe detection ofsecurity vulnerabilies andthe assessmertf accessibility

Most current crawlerarere developed fdraditionalwelbsitesand are very limited in their ability

to explore applications whicimay be updated clierside via scriptsTherefore they are unable

to uncover all states of such applications, compromising the ability to analyze and index these

applications.

1.5 Motivation

This research aims to make advancements in the crawling of web applictiaingature
advancedveb technologiesThere is a need fdyetter crawlershat areable to discover all states
of an application which features asynchronous updates to the Plagéongterm goal is to
produce a crawlethatis capableof crawlingrich internetapplications efficientlyHowewer, the

initial prototype crawling tool will focus oAJAX-based web applications.



This research is funded in gaoy IBM [10]. IBM produces a line of productsalled Rational

AppScan[11], thatarecapable ottrawling applicationgand performing testsnothem including
automatedevaluatiors for security vulnerabilities and accessibility issu@fiese products
typically perform thousands of different tests on each page of an applicitienRational

AppScanproducs will directly benefit from the resulisf thisresearch.

1.6 List of Contributions

The following list describes the contributions of this work:

1. A compiledlist of challenges which will need to be addressed over time in order to
produce a crawling todhatis able to crawtich internetapplicatons.

2. Aninitial strategy for crawlingich internetapplications that conform to the structure of a
hypercube in a minimum number of paths, transitions, and resets.

3. A technique for modifying the initial strategy when, inevitabbpere areweb
applicatiors which do not follow a hypercube structure.

4. A method of deermining whéeherto execute events or follow URLs when crawling web
applicationsA method of determiningthichevent to executis also provided

5. A complete strategy for crawling web applicatiomsich consist of both asynchronous
and synchronous requests to the server.

6. The identification of alass of statin rich internetapplicationghatwe callintermediate

states.



7. A description ofsome factors which should be taken into account when deiegstate
equivalence

8. A technique for automatically excluding the irrelevant portionsthef DOM when
determiningstate equivalence

9. An initial prototype tool which is used to crawl test AJAX applications and allows for

some comparison between diffeterawling strategies.

1.7 Organization of the Thesis

This document is organized as follows: Chapter 2 provides an overview of work which is related
to this research. Chapter 3 discusses the challenges whidbe faced in workingtowards a
solution for mproved crawling. Chapter 4 discusses some ideas about state equivalence and
describesomefactors which should be taken into account whetermining state equivalence.
Here, we also discuss how some irrelevant portions of the page may cause comghehéon
determining state equivalence and provide a method for automatically excluding these portions
from the equivalence calculations. In ChapteaBpmplete strategy for crawling modern web
applicationgs presentedin Chapter 6, the implementationtbe prototype crawling todlvhich

is based on theventbasedstrategy described in Chaptey &8 describedIn Chapter 7, the
results obtained from some initial testing conducted with the prototype crawlingateol
presented and discussddnally, thedocument ends with a conclusion and dsston of future

work in Chapter 8



2 Related Work

2.1 Crawling AJAX Applications

Significant progress has been madethe area of web crawlingNotably, this includes1?2],

which is anintroduction to Googl¢13]. There are also many other examples of crawlers, some

of which drive other leading search engines such as Ygdhdphand Bing[15]. Others enable

page discovery for processing (security scanning for example) in products like Agdstan
However these cravlers were designed to work with traditional web applicatidine authors of

[16] describe the general process of crawling such applications. First, a URL is used to load the
first page. The page is then parsed to harvest all URLs. Then, the first pgasterepeated for

any URLs that have not been previously encountered. Crawling ends when there are no URLSs for

which these steps have not been completed.

There are a limited number p&perspublishedwhich specifically deal with the task of crawling
AJAX applications.This is not particularly surprising given the relatively short historpdiX

and AJAXbased applicationswith the term AJAX being less than a decade old].[
Additionally, most research in the area of crawling aims to improve theyabildrawl websites

for the purpose of search and indexing. Research to improve the crawling of applications which
provide taskbased functionality (such as financial transactions) is very limated ®arch

engines do not have much motivation to discos#the states of an application which lets users



transfer funds from one back account to anot@arly recently have search engines, such as
Google, shown an interest in crawling applications of this nature, such as social networking
applications. Howevereven in this case, the goal is to index the content which is produced by

these applications.

The major publications related to AJAX crawlingme fromthe work done at ETH ZuricHL7]

(in [18], [19], and RQ]) as well as fromresearch done in connectiaith the CrawlJax 1] tool.

In [18], [19], and RQ] the research is focused on crawling for the purpose of indexing and search.
They are primarily concerned with their ability to crawl AJAX applications, index content, and
process queries. In the case @fawlJax, the tool is positioned to allow crawling of AJAX
applications and the conversion of such applicationsrieswhich simply consist of static
HTML pageswith hyperlinks linking them. If22], the aim is to make those applications fully
accessibleto search engines which are not AJ#endly. Additionally, the authors of23]

focus on regression testing of AJAX applications whie authors of24] look at security

testing andhe authors of25] look at user interface testing.

In both [18] and[25], AJAX applications are modeled using transition graphs. Logically, nodes
representhe client-side state of the application, hich isdetermined by thetructure and content

of the pageat a given time Additionally, edges idicate transitions, whicloccur due tothe
execution of some event (which is enabled in the current state) and may capsgédte be
altered and result in the arrival at another st#te[26], grapts are also usetb represenAJAX

applicatiors. However model creations accanplishedusing both dynamic analysis asthtic



analysis of code. In addition, the states of the grapllastactedForexample, in a site such as

an ecommerce website, a state could be determined by values such as the current number of
items in the sbpping basket and the current total cost of those items. Transitions would then
occur when items are added or removed from the shopping basket causing a change to those

values.

A few papersrecognize the importae of being able to differentiate betwestates given that

multiple stats can exists with the same URTheissue of identifying duplicates is not limited to

rich internet applications. Traditional applicatioofen have duplicate URLs2[7/] in which

different URLs correspond teeparatepages vich are almost identical. In terms of modern
applicationsMatter[18] identifiesthat in AJAX web applications, there is usually a portion of the
pagethati s A s foranbtdneepontéins menu items which do not change much from state to

state) and portionthatis more dynamicDuda et al[19] determinewhether or not states aitee

sameby Acomparing theskashalvalue DOMOt héedofvelv T ,
this means that only in the case of identical states will duplicates bifiederThis method of

identifying duplicates is too strict and may leaddifficulties as we will seein Chapter 3.

Similarly, Mesbah and van Deurs¢2?] computea fAihashcodeodo which i s use
They also mention another technique for conmgastates, which makes use of the Levenshtein

[56] method (hich determines the minimum number of operations necessargniert one
stringtoanothr t o cal cul ate an Aedit distanceo0o bet we
within a particuar threshold (0.0 1.0is useq, the two states are considered the sarhe.use of

such an approach allows for some differences/mstateshatare consideredquivalentin [26],

arnother technique is usedalled simhash, which utilizes hashed value to determine whether or

10



not two documents/states are equival@his is accomplished by dividing document into a set
of weightedi f e ad Tihis @aka is used with simhash to produce a fingerpfitite d@wument
Fingerprints can be compared to identify duplicate documents based on the similarity in hash

values.

These approaches do not evaluate state equivajeaaiiscussed in Section 3.3hey evaluate
the distance between states or the differenedsden states. However, these relations are not
transitive. In addition, these approactespear to be specific torawling for the purpose of
indexing and searglor more specifically, for identifying when the content of the page differs
They do not takénto consideratiomow the purpose of the crawl affects state equivalenceserh

considerationsire discussed i@hapter 4.

In terms of crawling strateg\latter [18] makes use of a breadtinst crawl. In addition to this,

an effort is made to reducee amount of AJAX calls which are made during the crawl. To
accomplish this, wheneverspecificAJAX call is madefor the first time the response from the

server is cached. In the future, if there is an event which uses the same function and parameter(s)
for the execution of an eventather than actuallgnaking an AJAX callthe resulting conteris

retrieved from the cach&his approach does not seem to take into account the fact that calling
the same method, with the same parameters while in a diffstate could lead to different
results. This could be due to factors such as a change in the servdnsiadéferent approach

the authors of22] use a depth first crawT his is combined witl variable which is used to limit

the maximum deptexdored

11



Looking at existing researclit is found that there are various tools which chae used to
simulae theactions of ebrowserthusenablingcrawling Matter[18] and Frey[19] makeuse of

the Corba Toolkit 29], which is able to load HTML pageand provides DOM retrievalThe
Rhino [30] frameworkis also usedn order to process JavaScript (which is necessary for event
execution).In [22] , Crawl Jaxb6s br ows possibld thraugh theousea ofi t vy
Mozilla XUL Runner [3l]. This is combinedvith the use ofWebclient[32] for access to the
DOM. In [33], Watir [34] is usedto perform the role of the bowsqit is used to
programmatically manipulate Internet Explor85]) and interacts with JavaScript using

rbNarcissu$369].

2.2 Model Based Tesing

Given thatthe problem involves the generation of a model which represents a speetfic
application, and that the model produced could potentially be used for various purposes,
including testing scenarios such as security testing, and accesgs#slityg, it is practicato

review some of the existing research on mdmbeded testing.

Model based testing3[] is atesting technique in which a model is created to reprebent
systemunder testThat model is then utilized in the testing of the eysit can be used to create

test cases to ensure that the system operates as expected.

12



Fantinato and Jing88] point out thatthe activities made possible by a model depbadvily on

the quality ofthat model This reinforces the need to construct adedthataccuratelyrepresents

the applicationHierons[39] also mentions a few modeling techniques which are suitable for
modelbased testing includingiriite State Machines (FSMs), Statecharts, and Petri [M8{s

The authors 0f38] reinforcethe poplarity of FSMs and their suitabilitior modeling systems
that includevarious statesThe authors of41] give some examples of the different ways in
which FSMs have been used, including the modeling of systems in the aréseqoéntial

circuits, softvare development and communications protarols

Lee and Yannakakig2] discuss testing problems in whititve have a machine about which we

lack some informatioi . I n order to get this information,
the outputs are aerved.They also describe two types testing problems. One consists of
determining the current state withinfaite state machine.The other involves conformance

testing, where armplementations checked to see whether or not it is consistent with angiv
specification in the form of a finite state machilteh ey al so di scuss adapti
next I nput symbol depends on the previously
similarities with the problem of crawling web applications sinaertaxt input (event executed)

is dependent on the previously observed ouputs (the set of enabled events on the page).

Lee and Yannakakis also describe five types of testing problems. In the first there is a need to
identify the final state of the machirfeloming). In the second, state identification, the problem

involves identifying an unknown state. Third, there is state verification where there is a need to

13



verify that the machine is in a given state. The forth problem is machine verification in which
there is a need to check whether two machines are equivalent. Finally, titeeemschine
identification In this problem, the actual implementation (black box) is tested in order to build a
transition graph which models it. This aligns witthat this resarch aims to do. Given a web
application, crawling has to be performed so that a model of the application can be deated.

[43] provides a solution to the problem thmexponentiain terms of the number of states in the
machine Lee and Sabnani4fl] show a practical use of machine identificatiorevérse
engineeing communication protoco)s The authors of [42] make thassumption that the
machine to be identified is strongly conneci{edery state is reachable from a given state)
Otherwise, some ates may be unreachable depending on the state in which the experiment is
started. In the case of a web application, if all states are to be reached, then every state of the
application should be reachable from the initial state of the application. Tité Btate is
considered to be the state visited when the page correspondirgivienURL of the application

is loaded.

As mentionedbove existingpapersjncluding [18] and 5], usefinite state machines to model
AJAX applications.Basedon the vaious ways in which FSMs have been previously used
their suitability for capturingstates, events, and the transitioasultingfrom event executiom
AJAX applications (as found in 8l and [%]), we consider FSMs as an appropriate technique

for modding AJAX applicationsandwe will use this technique in this wark

14



3 Challenges

There arevarious challengewhen attempting to crawAJAX-based web applicatisnSome of
them are relevant to the crawling of web applications in general while otheroerepecific to
applicationsthat update thepagethrough asynchronous reques@ith the aim to produce a
strategy for crawling modern web applications, includ®iAX-basedapplications, we have

identified some issues which will need to be addressed.

3.1 Fine-Grained Control over JavaScript Events

In AJAX-based applications, when an asynchronous request takes quase,amount of time
passes before the response is recearatithepageupdated accordinglyHowever, between the
time that the codés executd resultingin the sending of aasynchronous requestnd the time
when the callback method is callethen theresponse is receivdtbm the serverthe application
may exist in some intermediate state which is neither equiveddhe prerequest stateor the

postrequest state.

As an example, a scenario where a user is logged into a social netwapptigationis
consideredIn the initial state, shown irFigure 1 the user sees a list of contaeis well asa

welcome messagé&very user enters his or her full namefore usinghe application but each

15



entry in thecontactl i st si mply displays the ubdoredhe

first space).

@ simplelisting.html - Mozilla Firefox
File Edit | View | History Bookmarks Tools Help

@ - c ey | | file//C/Users/Kamara/Desktop/TestSite2/simplelisting_v2.html

|| simpleListing.html|

® Keith
® Mary
® Susan
# Micheal

Welcome to buddy world!

Figure 1: The intial state of the application (before the "Buddy View" button is clicked)

The user also has access to a few buttons, one of whidimedBuddy View Clicking on this

button causes an asynchronous request to be made to the server. The fespotise grver

wi || include a document <containing

response has been received, the usemuwauseoverny of his or her friends the contact list

causingt h a't pfdl detadsntd ke displayed, asi®vn in Figure 2. This represents a new

state in the application.

16

f

r

S |

person



@ simpleListing.html - Mozilla Firefox
File Edit View History Boockmarks Tools Help

@ A c ey | | filey//C/Users/Kamara/Desktop/TestSite2/simpleListing_vZ.html

| | simpleListing.html

Name: Susan o Keith
Age: 20 ¢ Mary
Email susan@test com
Status: available ¢ Micheal
Figure22 Susands details are displayed

In the event that there is some delay in receiving a response from the server, the deviiaper of
application implemented a feature to allow some information todisplayed even if a
mouseovels done before the response is receifredn the serveland has been processdd

this case, the developer decided to simply dispteycomplete full nme which the user had

enteredThisintermediate state of the application is showFigure3.

@ simpleLlisting.html - Mezilla Firefox
File Edit View History Bookmarks Tools Help

@ - c £t ||| file///C/Users/Kamara/Desktop/TestSite2 /simplelisting_v2.html

| | simplelisting.html

Keith
* Mary
® Sysan

* Micheal

Keith Andrew Miller 111

Figure 3: The application shost h e u s e r & ghisfnternddiate statee |1 n

17



Now let us say that thiapplicationalsoincludes a function for sanitizing dath is used to
sanitize a u(afterrthie seception df thedrespoase tosthe asynchronous request)
before they ardlisplayed. It is also used to sanitize ttmst portion of the full mme (all

characters before the first space) before it is displayed in the buddy list. However, the developer
has forgotten to use this function to sanitiz
the previously mentionethtermediate state thave have described. As a resultthe event that

auser performed some sart injection when entering his or hiedl name, this could potentially

go unnoticed ashend up being displayed in the intermediate state, as shofigune4. In this

case,Mary has injected a login form when entering lielt name.There are actually two
intermediate states in this example. The application enters the first of thes@wdnViews

clicked and theonclick event has been executdefom this state, the application enters the
second i ntermedi at e state (the one whi ch W
vulnerability can affect a user) if the user does@iseoveon a contact before the callback has

been executed.

@ simpleListing.html - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ - c ey | || file/y/CfUsers/Kamara/Desktop,/TestSite2 /simplelisting_v2.htrnl

__| simplelisting.html

Mary -) ® Keith

Username: Mary

Password: . Susa-n
Login * Micheal

Figure 4: The result of the injection attack is seen in this intermediate state

18



This example is summarized IFgure 5. In the stateBuddyClickedthe onContactMouseOver

eventis executed resulting istate MousedOverwhich exists until the callback method is
executedcausing a transition to tretateContactDetailsDisplayedAs the example illustrates, it

is important that these intermediate states are reached and processed, particularly in tasks such as
crawling for security scanning. As a resuih, AJAX applications,it is necessaryo be able to

have complete control over tipgocessing of Java8pt events at the clierdide.In general (for

all rich internet application technologied)js meanghatit is necesaryto have the knowledge

of which events are available and their typBEsere isalsoa need to have the ability to control

the execution of any sequence of these events. Also, wheauetArTP requests madeto the
server,there is aneed to be able toontrol when the resulting callback is executed. This will

allow capturing ofthese intermediate states.

19



i » BuddyClicked

onContactMouseOver
Callback method

Intermediate
States

ContactDetails
Loaded

MousedOver

Callback method onContactMouseOver

ContactDetails
Displayed

Figure 5: A model of the example website highlighting the intermediate state

3.2 Control over Appli cation Flow

In order to complete the crawl of a given applicatibis also necessaty revisit states in order
to follow a different path compared to the ones that were previously followaaylbe possible
to complete this tas&f undoing the affes ofthe previous actiondy resetting the application to
its initial state, then traversing the application again until the desiredistatachedHowever,

this approach may prove to be extremiglgfficient if the steps that are required to reset the

20



application and return to the desired state are too numerous. It is therefore a challenge to find

ways to reduce the number of such steps.

3.3 State Equivalence

Mathematically, an equivalence relation is one which divides the elements of a set into subsets
where each element is in exactly one subBeése subsets form a partition of the state space
crawling there is aneed to determine state equivalence in order to divide the states of the
application into subset3his is important because it reduthe potentialsize of the model of the
application since o element from each subsgincluded in the modelThis element represest

all other members of that subset.

The ideas brought forward fdifferentiating between stategich we have seen [18], [19] and

[22] all focus on being efficient. Whilé is also importanto work towards a state equivalence
functionwhich is efficientthe initialfocusneeds to ben ensuring thathe solution is based oa

valid equivalence relatiomnd one thais meaningful for the application being crawlddis
necessaryo think about how the equivalence of state is affected by factors such as the structure of
the page, the enabled events on the page, and the text on the page. We also need to consider how
the use of the model will beaffected bystateequivalenceExisting research has not accounted for

many of these considerations.

21



34 Infinite Runs

When crawling applicationst would be logical to follow a path to its end in order to minimize
the number ofimes thata stateis revisited(or the applicatiorrese}. As a resultthere is always

the dangeof endingup in an infiniteloop [18]. That is, we enter some portion of an application
which results in a loop because executing a certain event or cevisits continually leads to

new states. In addition to possibly never finishing the crawl of an application, this problem also
means that if givemm specificperiod of time to crawl, the model thigtproducel at the end of

that period will only have coved a very smalpart of the application, perhaps a particular

branch whichwill continue tdbetraverse while following theloop.

There are some factors which could help preweich situationsFirst, an equivalence function
can help identifythe arrival at a statavhich belongs to the same subset as a previously visited
state.In addition,the crawling strategghouldhelp tomitigate the effect of an infinite loop even
when the equivalence function is unable to identify such a taseder for thisto be possible,
there is a need for a stratethat providesa compromisebetweenthe desire to minimize the
number of times that state needs to be revisitad theaim tomaximize the breadth of the part

of the model thais built, particularly when tne is limited.

22



3.5 Slow Executions

There are various factotbat may lead t@low execution times for a crawler. Lack of efficient
control over flowis one of these, since it manecessitatdavingto repeat a series of actions
multiple times in order taeturn to a desired state. This means more potential page loads and
event executions, increasing the duration of the crawl. The need to keep track of intermediate
states could also increase the overall number of states that need to be ,cthereddre

increasing the length diie execution time.

3.6 State Space Explosion

Identified in [L8], statespaceexplosion isalso a challengeMany web applications consistf
thousands of states which will needi®identified compare, storel, and modedd There isa
need tocrawl web applications with a focus on finding as many-equivalentstates as possible

in a given amount of timeThis is especially important because it may not be feasible to crawl
the entire applicatiolVe also need to ensure tlla¢ equivalence function does not contribute to
this challenge by being tagirict, and thus evaluating two stats different when theshould be

equivalent

23



3.7 Data Input Values

In crawling data input values are extremely importAstausdéhey may determinavhat states
are reachd.Given that in many cases, the number of possible input valypeaascallyinfinite,

it is a challenge to determine how to choagealistic set of input values in order to be able to
reach all possible statel.is also a cha¢nge to automatically infer ¢éhformat and types fo

values which willlet the application function correctly.

3.8 Server States

While the clientside state is largely determined by the current DOM, sesider state may be
determined by the values of variab which are stored in the server or by entries in a database.
The issue of serveside stategalso discussed in [18i3 very importanfor buildingan accurate

model of an application. When there is a change in the server state, it could resusiaiméhset

of actions being executed theclient side but resulting in differertient statesOf course, there
maybesome set of actions that can be taken to
initial serverside state. However, if thesgeps require too much work, it would have an
extremely negative impact on the efficiency of crawli@ge idea to evaluate is the possibibty
makinga distinction between events that do generate requests to the server (and thus may change
the server gate) and the events that dot Events that do not go back to the server can be

crawled and reset entirefif theclient side.

24



3.9 Crawling Strategy

In trying to crawl applicationsncluding asynchronous eventg, is an especially important
requirement tat an efficient strategy is developed which will result in the abilitymiore quickly

crawl the entire website, visiting all statéss determined by the equivalence functjamd
executing all eventén thesestates) Since, agnentioned in Section 3.6here may be thousands

of states within an application, complete crawling may require a very long time and may not
always be feasibleTherefore,a strategy which will capture as many states and transitions as

possible in a given timis needed

Conseqently, it isimportant thatthe strategy aimsat discoveing as many states as possible
using a minimum number of event executions and palpads. If there isenough time to
discover all states of an application, the craah then continudy confirmingthat various
combinations of actions indeed lead to the samesstateereis a needio determine which
sequences of event executions and pagesivadld best serve these goals. In previous work in
[18] and R5)], the topic of a crawling strategy has netlly been addressed detail. hstead
simplified crawing strategies based on breafltht searchand deptHirst search have been

used

25



3.10 Incomplete Model

It is necessaryo ensure that the model which results from ugimgcrawling strategy thais
develomd includes all states and events which exist in the applicatiorthéf modelends up

missing one or more of these states and events, we comsalbe incomplete.

When several events can be executed from a given state, it is possi@adtating them in
different orders will lead to different results (i.e., different states). Trying all the combinations is
obviously very timeconsuming, but running a single one of the possible sequences is not an

acceptable tradeff.

Another potentibpitfall that may lead to an incomplete model is a failure to capture intermediate
stateslt is necessaryo account for the state of tipagebefore an event is executed, before the
associated callback is executed, and after the callback has beereéxétwddition, an event
which causes multiple asynchronous events may result in multiple callback methods being

executed and so there may be multiple intermediates in such a case

The ability to correctly determine state equivalence will alsoofaut the ability to avoid
constructing an incomplete mod#&hile it is important toavoid unnecessargtate explosion as
much as possible, an equivalence function wieickureghat states which are distinct will not be

considered equivalerg needed

26



4 State Equivalence

The ability to distinguish one state from anothecriical to being able to successfully crawl a
web application. This is particularly true in the case of AJAX applications vdmereamot rely

on information such as the current URLhelp identify statesince multiple states may shdhe
sameURL. In Section 3.3 state equivalence is definéallowing from that definition, there is a
need to determine whether or not two states are members of the same Rubseethod of
evaluaing whether or not two states are equival@he equivalence function, referred to in this
thesisas ) impacts the ability to ensure that one can crawl an application entirely as well as do

so efficiently.

The equivalence function determines the number of subsets (of states) which are (erehted
therefore the number of states in the madgthe function usedor state equivalencereates too

few subsetsthis results in states being classified as equivalent even when they should not be.
This could producea model whichis missing states(Section 3.1Q) In a scenario in which
crawling is used to uneer states for the purpose of security analysis, missing states would mean

that some statesill not beanalyzed. This could result in undetected vulnerabilities.

If the state equivalence functiggroduces too many subsgtscould mean that states thsttould

be considered equivalent end up being interpreted alsemogequivalent. This could cause the

27



model to have more statédsan necessayyaffecting efficiency and leading tmnecessargtate

explosion(Section 3.6)causingonger runsor infinite runs(Section 3.4)

The ideas presented in this chapter help to address these challenges by improving on existing
methods of identifying duplicate states. However, additional work will need to be done to ensure

that these problems are fully solved.

4.1 Different Types of Equivalence

As mentioned in Section 1.4he purposes for crawling web application are vari&tth each
purpose, there are also aspectel@ments of the page that are more important than others. For
instance, when crawling an applicatifor the purpose of indexing (for example, for use by a
search engine), the text found in each statesgentialand must be captured. Therefore, two
stateghatare identical in structure bwutith different textshould not be judged equivalent since
uses of a search engine may want to searchofog or the otherOn the other handyhen
looking for security vulnerabilities in an applicatiathe elements of the page which allow the
user to interact with the page amthtedinput dataare more relevantherefore if the previously
mentionedstatescontain differentnews articles, but the exd same elements and logic for
allowing users to enter comments abouts#harticles then these states should be judged
equivalent. This is because a security testldmot be concerned with a differeein text on the

pageand only seeks to evaluate the security vulnerabilities that exist on the page

28



Whil e the purpose of the crawl i's important,
possible. In othewords, two states can only have the possibility of being considered equivalent

if the set of states that can be reached from tlaeen equivalentsThis is where events,
hyperlinks, user input controls such as formslmpdowns, or anything else that abimfluence

the set of states that are reachable from the cubrembecome extremely important. Therefore,

two states with identical text may leguivalen if the purpose of the crawl is to index content.
However, if these two pages have a differentodetnabled events, then these two states cannot

be equivalent in any crawl, since they may have different sets of states which are reachable from

them.

In order to discover all the uniqetates (in terms of the purpose diie crawl) of an application,
bath crawling equivalence (based on the set of states which is reachable fivenatate)and
equivalence based on the purpose of the crawl must be taken into considéral®m means
that depending on the purpose of the crawl the model of a givesiterelould vary. Failing to

take either type of equivalen@ato account could result in states being missed, an incomplete
model, and the inability to fulfill the purpose of the crawl. Therefore, any function which
determines whether or not two statesaisd g, are equivalenf(s; ;) should evaluate to true

only if the following condition holds:

ECcrawiing(S1, %) 0 0 ‘CepurposdSt, )

In this condition etrawing IS @an equivalence function based @awling equivalence an@tyurose

is an equvalence function basedn the purpose of the crawl. Therefoetp,mose Should be

29



substitutedaccording tothe purpose of the crawl. Fanstance,it would be eGecuriyy if the
applicationis beingevaluated for security vulnerabilities @dccessiviiiylf the applicationis being

assessed for accessibility.

Logically, if two states are identical then they are also members of the same subset. Therefore

statess; and s are alsqudgedequivalent if the following condition holds:

areldentica(s;, 9)

Therdore, the previous condition only needs to be evaluated if the two states are not identical.

Otherwise, it is automatically known that they are identical.

4.2 fLoad, Reload®

Web pages often contain bits of content that change very often but are not imporgaums of
making two states neequivalent These could include, but are not limited to, advertisements,

counters, and time stampsgure6 showsa pagewhich highlights this type of content.

30



<html>
<body>

<div class = “advertisement”>

[<img src=http://testsite.com/img/ad1.gif height="5" width:“3">} advertisement image
</div>
<p>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed
viverra interdum risus, quis congue mi pretium a. Ut quis nulla
erat.

</p>
<div>
Current Time: [11:59:59pm| time stamp
</div>
</body>

</html>

Figure 6: Example of a page with irrelevant data which changes over time

Whendetermining whether or noivo states are equivaleniere is a desire be able to ignore
these constantly changing but irrelevant portions of the pHge. is especially importd in
AJAX-based applications since failing to identify data that should be ignored could cause an

equivalence function tevaluate to falsethen it otherwise would not.

We have developedtachnique for automatically inferring the portions of the pdugg should

be ignorediIt requiredoadinga given page twice. The DOM of the page at each load can then be
compared and the differences indicate data that can be ighanedxamplea pagex is loaded

at a time t and then again at.tThe DOM of x at {is then compared to the DOM of x attd
produce DeltéX), in the form of a list of differences between the DOMghen usng an
equivalence function to compare this state with another, the data in thisirlidte excluded
Therefore, two statecan beconsidered identical if they are identical aftee irrelevant data is

excludedfrom both.

31



5 Crawling Strategy

51 Overview

When developing thstrategy for crawlingich internetapplications, it isagoalto be ableo find

any given state in a finite asant of time This would make all content available for analysis or
indexing. In addition to being able to uncover the complete model of an application, the process
must take place in a deterministic fashidherefore, if the crawler is givexminutes tocrawl

an application and all other factors are also equal (for example, the server response time for each
requestcrawling should be completed such a way thahe model constructed (partial model if

X minutes is not sufficient for completing the craws the same on subsequent crawlsxof
minutesas long as the application remains unchanged. product which completes tasks such

as security scanninthisis important because fiheans thatoughlythe samesetstates would be
uncovered and availabfer analysis each time, providing a more predictable experience for the

user.

It is also very important to recognize that given a large web application, it may not be feasible to
crawl the entire application. Thereforeis apriority to find as mantates as possible within a
given time. Additionally, even in circumstances where there is enough time for the crawler to

uncover every state of the application, there may still not be enough time to execute every

32



transition. With this in mindthere isanadditional priority. Once all states have been discovered,

thereisadesiftoc over i ne wonedwhiehrwsre roti peeviosighglersedl quickly.

To aid the development dhe strategy it is necessary to make some assumptions about the
applicdion which is being crawled. These assumptions ease or facili@#bility to produce a
strategy for modeling applicationthat use asynchronous requests to the server in order to
retrieve data and updaterpons of the page using cliestde JavaScrip The following arethe

assumptions about the application being modeled:

9 Itispossiblet o return to a previously visited s
repeating some set of actioridhat is, if we start from a given URL and execute a series
of actions, itispossb | e t o fir e s suthdhattbégmning fsomlthie same URG n
and executig the same segsof actions again, will produce the same resuttss not,
however, assuntethat we can simglii st ep backwardso tthem t he
previous one

1 The only source of nedeterminism is concurrency. What we want to avoid is an
application that will react differently, starting from the same global state, when the same
input is given at two different times.

1 Everyinteraction betwen the application and the user can be modeled as a choice among
a known finite set of possibilities. This fits well with input such as buttons, cheasb
and downdown menus. This means that for now, applicatibasallow the user to enter

A f r edareina comsidered his would allow for an infinite set of possibilities.

33



It is also important to point out whether or not the crawling strategy addresses the challenges
described in Chapter 3. In this regard, the strategy does not consider interrstatstéSection

3.1). Instead, events which lead to an AJAX call are treated as synchronous events. This means
that the state following such an event is considered to berthehich exists after a response

has been received from the server and the aeilmethod executed@he issue of control over
application flow (Section 3.2) is currently handled by using the URL to reload the page in order
to reset the application. However, this will not be sufficient for all applications so this challenge
will needto be further addressed in the future. The strategy also addresses the danger of infinite
runs (Section 3.4) by limiting the traversal depth (described later in this sedticagdition,

given the means by which control over application flow is curremtlyieved as well as the
current exclusion of intermediate states, slow executions (Section 3.5) are not an issue at this
time. At present, the strategy also does not address the challenges relddéal itgout values
(Section 3.8)or server states (Sectidh9). Finally, the strategy dictates that all events in each
state are executed. This would help to avoid an incomplete model (Section 3.10). However, by
the given definition of an incomplete model, the lack of inexlrate states means that this issue

is also not fully addressed by the current strategy.

It should also be mentioned that the crawling strategy issediependenof the purpose of the
crawl. Therefore this strategy would be suitable for a variety opqa@s provided that the

equivalence function used is based on the purpose of the crawl.

34



Overall Crawling Strategy

In AJAX applicationsthe current state of the application may chaimgievo ways The first is
through synchronous HTTP requests to theese for examplevhen the user clicken a URL

which is part of the DOM of the current state. The other way to change state is through the use of
asynchronous HTTP requests and local JavaScript executs.may either be initiated by

userinput or somdime-out mechanism.

With this in mind,the overallcrawling strategy needs to take both of theags of state changes
into account Therefore, both traditional crawling and evbased crawlingare taken into
account In traditional crawling, new URLsre followed (through, for example hyperlinks, to
discover new pages). Bventbased crawling, eventge executedn the pagepossiblycausing
asynchronous requests) to moxenh state to state in order to discouwerv statesThere is als@
parameterk for alternating between the two approaches. To do so, we fal@RLs in the
traditional crawl then traverse chains (we discusshainslater in this chapter) inhe event
based crawlThis process oélternationbetweerthe different methods of crawlgis continued
until the crawl is completedr the crawler is stoppeth addition, dlist of links (L) and dist of
states (B) are kept L represents URLs which have not been visitethieycrawler. B represents a
set of statewhich have some enabledests and which have not been completely explored by
thecrawler.L is updated by removing a URkhenit has been visitedral adding any new URL

that isdiscoveed during thecrawl. Whereverthe crawler arrivesit a new state (with enabled

35



events) via synalenous communication, this state addedio B. These states are called base

statesWhentheeventdriven crawling of a state in B completedthe state is removed from B

The algorithmcrawlRIA(l,k) (Figure 7) is used for awling applications. The inputis the start
URL of the application to be crawletl becomes the first URL added to tiet of links (L). The

crawl is fully completed when both L and B are empty.

ProcedureONJ ¢ th@ L !
Input & the URL of the initial state of the applicati(®tring
Input ‘Qlimit of explorationusing either methodlftegen)

begin
0 an
6 n;

while@© " hwé »r){
for (Q pi X){
if(0 1)
traditionalCrawl(L,B,);

}
elsg break; }
}
for (Q pl X){
if(6 n)
eventBasedCrawl (L,B);
}
elsg break; }
}
}
end

Figure 7: Procedure for cawling

Below, the algorithm used to completieditional crawlings discussed quicklyFollowing this,

there isa detailed account dlfie strategy foreventbased crawling

36



Tradition al Crawling

Traditional crawling is accomplished using the proceduaglitionalCrawl(,B,k), shavn in
Figure8. It begins by removinghe next URL from thdist L. A synchronous HTTPequestis
then made using the URL and after receiving a response, the reqdtiegs loaded. If this
results in the arrival at a previously unvisited state, this new istgtecessedProcessing the
state entails two stepbirst, any new URLsvithin the current statare addedo L. Second, if the
statehas any enabled evenit,(the state)is addedto thelist B, which means that it will be

explored at some point durinige eventbased crawl.

Procedure i NI RA o 2qF 10t / NI & €
Input 0 : set of URLSs that are to visit
Input 6 : Set of discovered states with enabled events (base states)
begin
pick and remove a URifrom 0;
Leti be the state retrieved by requestirgfrom the server;
if ( mi An Bsuchthati i J{
foreach(URLEFIN { ){

O 0" &,
}
if (i has some set of enabled even{s)
6 6° O
}
}
end;

Figure 8: Procedure fortraditional crawling

37




Event-Based Crawling

The proceduref event based crawling wilbe very impaotant in determinng how efficientthe
overall crawling strategy performs. Algmg a simple breadtfirst or depthfirst type strategy is

one way tocomplete the crawlThis is more or less the approach taker{1f] and [25].
However we must remembédiea s sumpt i on t hat i n order to fAgo
need toat leastoad the URL of that base state again and retitaesteps to that state. Therefore,

in addition to a desire to limit the amountrefjuiredtransitions (events that are exeaml), it is

also importanto limit the number of resets that are required. To accomplish this goal, a more
complex strategy foeventbased crawlingneeds to be developeior this purposea hypothesis

is madeabout the applicatiomwhich, if true, allowsthe generation of an optimal strate@yhe
efficiency of the strategy would therefore be affected by the accuracy ohypmthesis
However, the strategy do@st rely onit in order to be able to complete ewdatsed crawling.
Since thehypothesismay be invalidated, there is also a technique for adapting the strategy so

that it is consistent with what has already been discovered about the application.

The hypothesis is as follow&ivena statesthat has enabled events;ee,, € ,,, it ie assumd
thatthesen events are independefithen evene in states is executed a stats reachedvhere
all events that were enabledsmexcepte are still enabledThis means that ibnestars at s and
executs a given subset dheseevents in any ordethiswill lead to the same statAccording to
this, there are 2 possible subsets of events, which, when ordered by inclusion, define a

hypercube of siz@e, consisting ofn! different paths from the bottom to the tdhe bottom of

38



the hypercubes definedas the initial states. The top of the hypercube refers to the state in
which there are no enabled events. This state can be reached by starting at the bottom of the
hypercube and executing allevents in any ordeFigure9 is anexampleshowinga hypercube

of dimension four. There are 4!=24 different paths in this hypercube, (vtt6aifferent states.

An efficient strategy for crawlinghis hypercubes developed Following the goals that we
previously outlinedijt is impor&antto discover all stateof the hypercube firsand therensure

that all transitionsre executedin the following sections, wexplain how these two objectives

are reached and then gi@esummary othe complete procedure feventbased crawling.

{el,e2,e3,e4}

AN

{e1,e2,e3}“»»»__/»»""“"’"’/

Figure 9: A hypercube of size 4 dimensions

39



5.2 Minimum Chain Decomposition

A hypercube is a partially ordered set (a lattice in this case), and each path of the hypercube is
actually a chain of the ordehat is, a set of pairwise comparable elemef goal of visiting

each state of the hypercube using a minimum numbesetss achievable using what is known

as a minimal chain decomposition of the or(jd5] presents an overview of these concepits)

has been proven 7] that the minimal number of chains necessary to decompose an order is
equal to the width of this order, that is, the maximum number of pairwisecaroparable

elements. Therefore, since the width of a hyperafbedimensionds equal tor ¢, this value

6
St
also represents the number of pditisains)necessary to visit every state of the hypercube. As
an examplegivena hypercube of size 4, the number of chains required toallisitates is equal

to éAg = 6. Given that there are 24 (4!) paths in this hypercube, only 6 of those 24gvaths
e

requiredto discover all the states.

In 1952, de Bruijn, Tengbergen, and Kruyswi7] provided an algorithm for decomposing
certain orders, including hypercube In [48], Hsu, Logan, Shahriari, and Towsgpose the

methods as follows (adaptedttee hypercube definition):

Definition (adapted from48]): The canonical symmetric chain decompositian CSCD, of a

hypercube of dimensiamis given by thdollowing recursive definition:

1. The CSCD of a hypercube of size 0 contains the single chain (Q).

40



2. FornO 1, the CSCD of andonfamepreciselythe faldwingichaime:n s i o n
1) For everychain A< € i tha CSCD of a hypercube of dimensio- 1 with k >
0, the CSCD of a hypercube of dimensiocontains the chains:

Ap<Ar<é  <¢<AU{n}
and
AcU{nt<AU{n}<é <A, U{n} <AU{n}

2) For every chain Aof size 1 in the CSCD of a hypercube of dimensionl, the

CSCD of a hyprcube of dimension contains the chain:

Ao < Ao U {n}

Applying this method to the hypercube of dimension 4 leads to the following 6 minimal chains

decomposition:

1 Hel{e, e<{e, & ef<{ey, & &, e}
2. {eg<{e, e<{ey, & &}

3. {eg<{e, es<{ey, &, &4}

4. {e e}

5 {ed<{ e e<{e, & e

6. {e e}

41



This is illustrated inFigure 10 (states are identified by the events which were executed in order

to arrive therewith chains emphasized in boldote that two of the clias consist of just one

state.
{el,e2,e3,e4}
N
\\
el
AN
AN
‘ AN
e2
/93
e4
Figure 10: Minimum Chain Decomposition oftgpercube ofize 4
5.3 Minimum Transition Coverage

Given thatto the goal isiot onlyvisiting every state as quickly as podsitbut also cravihg the
entire application (execute every transition) as quickly as postigle is a need fanore than
just the MCD algorithm. In order to accomplish this we hdseelopeda Minimum Transition
CoveraggMTC) algorithm. This algoritin focuses on executing every possible event in as few

paths as possibl@gequiring the minimum number of resetslowever, in keeping \th the goal

42



of first visiting every state as quickly as possiliee MTC algorithm accepts as input, a set of
disjoint chainscalled constraint€Each of these chains becomes a-slin of oneof thechairs
produed using the MTC algorithm (aBscusedlater in this section)Furthermore, the final set
of MTC chains are ordered such that constraoritaining chains combefore norconstraint
containing chains.Therefore, if the chains produced by the MCD algoritane usedas

constraing for the MTC algorithmthefirst goal can be achieved as well

The MTC algorithm is shown iRigurell. It consists ofour stepsFirst,the middle level of the
hypercubes found Then, a set of upper chaitchains which begimt the middle level of the
hypercube and go upwar®d generatedollowed by a set of lower chaingor each constraint
chain, the pdion which exists above the middle level (or the full chain if it exists entirely above
the middle level) becomes a sabain in one upper chain. The same is true for the portion which
exists below the middle level (or the full chain if it exists entitedyow the middle level). It
becomes a subthain in one lower chairkollowing thisthe algorithmentes a phase where
chains covering the upper portion of the hypercaitgecombinedvith chains covering the lower
portion of the hyperube.The combinedchans are then extendedbwnwardto the bottom of the

hypercube

43



Algorithm MinimalTransitionCoverage

Input H: a hypercube of dimension n

Input Gz Cconstraint sef chaing(list of chain¥

Output G,: MTC of H constrained by(Ist of chains)

begin
G =@;//chains from the middle level to the top of the hypercube
G =@;/Ichains from the middle level to the bottom of the hypercube
Gu=0,

G = GenerateUpChains(Hy)C
G = GenerateDownChains(H) C

Gu = CombineChains(0G);
G = Exten€hainsDown(@);

return Gy;

end

Figure 11: Minimum Transition Coverage (MT@)gorithm

The tasks are accomplished as follows

Upper Chains Stage :In this stage(performed bythe proceduregenerateUpChains
which is shownn Figure12), a set of chains (§ covering all the transitions above the
middle level of the hypercube igenerated.In doing this we must also take into
consideration the existing chains that are presetiteset of constraints (§ This stage
begirs by starting & a state in the middle level of the hypercube and Imgich dhain
upwards.A chainis built upward by first selecting a transitigtx(s-e-s 9 which has not
been previously useih the MTC chains We then need to chedk see whether or not

this tranisition is used in one tifeconstraint chains.

44



If it is in fact usedn a constraint chaiand either we are still at the middle level state or
the transition represents the fingt a constraint chain, thethe upper clain can be
extendedwith the entire portion of the constraint chain whiochows from the current
state.This is calledthe suffix of the chainlf the trarsition is used in a constraint chain
but we are not at a middle level state and this is not teetfansition of the constraint
chain, then this transitionannot be usednd mustbe marked as unavailable. This is
because we do not want to split the upper level portion of any comstf@m into

multiple parts.

If the transition is not used in argpnstraint chairthen it can be usetb extendthe

current upper level chaiffhis process of extendirtge chainis continueduntil we reach

a state in which we caot find anyunused and available transition. We then go back to

the original middle stateand repeat the processr feachunusedtransitionin that state

These actions are repeated at each middle level state until we have covered all upper level

transitions while incorporatintihhe constraints.

45



ProceduregenerateUpChains

Input H a hypercube fodimension n

Input Cz a constraint set for MT(ist of chain}

Output Gy: chains from the middle level to the top of the hypercybst of chain}

begin

end

Q=09
Uc=6; //current upChain
foreach(state s in the middle level of Kl)
/*use eacheent available in s as the first transition in one chain (build one chai
each of these transitioris
foreachlevent e in s whergransition t=(se-4 QU0 A a dzy @A AA G SR
sv = S; /lcurrent middle level state
Uc=s;
/ add a transition to gtend the chain
dof
/lcheck to see whether this transition exists in a constraint chain
if(MCN Ccand C contains §)
if(first(C) = s or s is at middle level){
Uc= (¢ s) Usuffix Co(s)
Mark each transition in Lhs visited;

S = last(C);
}
elsg
Mark t as unavailable;
}
}
elsg
Uc=UcU eda QT
{ ' aQrT
Mark t as visited;
}

/*at every iterationt is the candidate transitions for extenditige chain
Jwhile(me in s where transitiont=¢-a Q0 A & dzy A aAiAidSR
/ladd chain to set dupward chains
if(length(l) > 1){

Q=GwU W
}

S=g
}
}

return G;;

n for

Figure 12: ProceduregenerateUpChains

46



Lower Chains Stage :In this stage, a set of chainspjCcovering all the transitions
below the madle level of the hypercube is calculated. This is symmébd the upper

chains stage and thus is completed in the same manner.

Chain Combination Stage :The procedures associated with this stage are shown in
Figure 13 and Figure 14. In chain combination(performed by the procedure
combineChaink the chains in Gand G are joined into larger chainspanning both the
lower and upper portions of the hypercubg&st uppeichains which contain a porticf

a constraint chain (chains @yc) are matchedavith lower chains which contain a portion
of the same contraint chain (chains@gc), thus keepinghe constraint chains intact.
When using MCD chains dke constraintsthere is always aneto-one matchbetween
constraintcontaining upper chains and constrainhtaining lower chains starting from
each statesothis part is simpleUsing a different set of constraints, there may not be a
oneto-one match so there may be a greater number of chalbgicompared taCpc. In

this case, lower chairee matcheavith upper chains untthere are nanmatched lower
chainsremaining At this point we iterate over the lower chainsatching them with
upper chains to create complete chains uhéte areno unnmatched upper chains either.
This is performed by the proceduneatchChains The next step is to combin®on
constraim containingupperchains (chains il€yy) with nonrconstraint constaining lower

chains (chains i€py). This is al® completed using the@cedurematchChains

47



ProcedurecombineChains
Input Gy: List ofchains from the middle level to the top of the hypercube
Input G List ofchains from the middle level to the bottom of the hypercube
Output Gy: MTC of H constrained by(Iist of chain®
begin

Guc=chains inG, with constraints;

Goc=chains inG, with constraints;

Gun=chains inG, without constraints;

Gon=chains inG without constraints;

Gu=0,

//Combine constrained upper chains with constrained lower chains
Gu =MatchChaingGy, Gyc,Goo); //fix

//Combine nonconstrained upper chains with n@onstrained lower chains
Gu =MatchChaingGy, CGon Gon);
return Gy;

end

Figure 13: ProcedurecombineChains

ProcedurematchChains
Input G4: MTC of H constrained by @sf of chains added to this pojnt
Input Gyn: hon-constrainedchains from the middle level to the top of the hypercube

Input G honrconstrained chains from the middle level to the bottom of the hypercube

Output Gy: MTC of H costrained by C
begin
complete = false;
while('complete){
if(m # GunA T A v nG#and Gyand Gyare unmatched and start(G)

start( Cy){
combine GGand G, andadd toGy;
}
else if{m # GnA T A o Gf#andGisunmatched and start(G)
start( Cu) {
combine Goand G, and add to Gy;
}
elsg

complete = true;

}

end

Figure 14: ProcedurematchChains

48




Chain Extensions StageThe chainextensiorstage ensures thaachMTC chain begins

at the base athe hypercube. To do this, we take eaclaiohthat does not adhere to this
rule and continually add down transitions until we arrive at the base of the hypercube.
This needs to be dorsince we always need to start at the base state ledosrsingto

any specific state.

Given a hypercube of ¢ 4,the MTC algorithm produces 12 chains. This is half of the 24 paths
present in a hypercube of that siZbe 6 MCD chainsare also covered within the first 6 chains

producedThe chains produced are as follows:

1. {}<{ed<{ey, el}<{en, e, eg}<{ €y, &, €5, &4}
2. {}<{es}<{ey, es}<{ey, &3, eg}<{ey, &, &3, €4}
3. {}<{egd<{ev, ed<{ e, &, &4}

4. {}<{ed<{ex es}<{ex, &5, eg}<{ey, &, &5, &4}
5. {}<{ed<{e es}<{e}, &, &4}

6. {}<{ed<{es es}<{ey, &, &4}

7. (e e, ef<{ ey, & e<{ ey, &, &, e
8. {}<{ el}<{ e, eg}<{ &1, &, &3}

9. {}<{ed<{es, es}<{ &1, &, €4}

10. {<{ eg}<{ &, eg}<{ &1, &, &3}

11. §<{ e}<{ &, e<{ &, &3, &4}

12. {<{es}<{ &, es}<{ &, €3, €4}

49



In general, the number glaths required to complete crawling of a hypercuba dimensions

using an MTGbased strategy is equal 1) 8*@/22 . This is equal to the states at the middle
B 0
an/ 2p
(; 0

level of a hypercube afi dimensions multiplied byénIZg, the number of transitions leaving

every middle level statefigure 15 shows how the number of patligossible paths in the
hypercube) states, MCD chains, and MTC chains compare as the number of dimensions
increass. The rate of increasef MCD and MTC chains is about tlsameas the rate of increase

of the number of states. The number of paths, however, insraéesenuch greater rate.

1E+150 ~
1E+135-
1E+120
1E+105+
1E+90 - ——# of paths
1E+75
1E+60 -
1E+45 - == MTC chains

-1t Of States

1E+30 1 s® e NICD chains
1E+15
1 ,

Dimensions

Figure 15: Rate of increase in thaumber ofpaths, dates, MTC chains, and MCD chains

50



54 Adapting the Strategy

It is inevitable thatwhile in the process of crawling a web applicatitmere will bea state

which contradicts expectations based on the strategy generated by the MTC algorithm. This is
because real wedpplicationswill not come in the form of a perfeblypercube. As a result,is
necessaryo have the ability to adjushe crawling process in order to account for these instances
where the actual website deviates from the hypercube structure. In order to dbetigiss a

need to have a means of itining these deviations when thegcur.

5.4.1 Identifying Deviations

We introducethefour possiblescenarios in which the actual websieviatesfrom the projected
model. These cases appearing eventsdisappearing eventsmerges andsplits. We explain
these caseand give criteria for identifying theitmelow. Following this,a method of dealing with

themis discussed

Appearing Events

As aweb application is traverseatcording to the chains produced by the MTC algoritihicgan
be determinedn advance whether or ntite arrival at a new state is expect#dt is the case

that we expect to arrive at a new state and indeed do arrive at a new state but fome tnat

51



more events which are available in this state are not included in thef lesteats that we
expected to find, then we classify this case as one vthere areappearing eventssigure 16

illustrates how appearing eventan be identified Beginning at state I, we execute event
(from the set of enableevents &,e,,...,6}) and arrive at stat& @vhich has previously been
unvisited. Wefind that there is a set a@jppearing eventsay,a,... 2} which were not anticipated

to be available in this state based on the MTC chtaetshave been produced

v
' R 4
&
L&
..... NS
Co " Sbis astate that
: has not been
em\ previously visited

Figure 16. Appearing events

52



Disappearing Events

Disappearing events are very similar to appearing events in that they occur under the exact same
scenario. We expect to arrive at a new state andro@ at a new state. However, in the case of

disappearing events we find tleateor more of the events that we expected to find in this state

{ di,0,...dg} are not available.This occurrencés shownin Figure 17. Arriving at stateS pwe
find that some events, such asahich we expected woulde enabled after a transitiom state

Sy, are not present.

.. )
Cdh,
<
e dy

SHis state that has
not been

Cn—0 previously visited

Figure 17: Disappearing events

53



It is very important to nie thatthese cases (appearing events and disappearing eventg)tare
exclusive. It is certainly possible to encounter a state which exhibits both appearing and
disappearing events if theriteria for each case asatisfied when we arrive at a given state.

Figurel18illustrates this scenario

9. . )
Cdh,
.
4 -, d:‘n

Co,—* Sbis state that has
: not been
em\ previoudly visited

Figure 18: Appearing and disappearing events

54



Merge

As statedoreviously,at any given timethe current set of MTC chainsan be usetb ddgermine

what the next state that we encouexpegtohawhoul d
previously visited that state. In the case of a merge, it does not mattethekapectations are

with regard to whether the next state that we encowfteuld be one that we have previously

visited or not. However, if the state that we arrive at is one that we have indeed been to before
but not the one that we expected to arrive at (this means, that we either expected to arrive at a
previously unvisitedtate or a state that has been visited but which is not equivalent to this state),
then we say thaa merge has occurreBigure 19 illustrates a mergalVe expect that executing

evente at state | will result in an arrival at &aS but this transition instead leads us to state S

Sbisaknown
S can be expected _
to be e||'other a state (previously
previously visited visited state) but

not equivalent to

C

state or anew one

Figure 19: A rerge

55



Split

Identifying the case of a split is very simple. It occurs when we arrive at a newbstdtad
expected to arrive abme known staterigure20 depicts this case. Taking transitiefrom state

[, we arrive at a new staté@8though we had expected to arrive at some known state S.

Sbis state that has
Sisexpected to

not been
evio l:s)|e eit_f;ir egl previously visited
iously vi
state

Figure 20: A 9lit

It is also important to point out that while appearing and disappearing events may occur at the

same time, merges and splits occur exclusively.

56



5.4.2 Revising the Strategy

An algorithm whichunifies the way in which these casase handled &s been createdn
simplified terms, we refer to any occurrence of one or more of the cases predessijpedas
a deviation from theprojected modeWwhich is then fixedby making the appropriate charsge
the crawling strategy.Deviation detectionand strategy revision is accomplished using

algorithmreviseStrategyshown inFigure21.

an

ProcedurereviseStrateqyd{'@ Q& i hHOH &
Input 6”@ Q& i : strategy for the expected model based ion
lnputé i Q i E i Q i E i :the currentchain
Input 'Q: The event that has just been executad
Input i e The state reached by executing evéhat i
begin
/*A deviation has occurred if we expected to arrive at some known state but arrive at a different st
OR if we expected to arrive at a new state with a specific evenusetrtive at either a known state or
new state withan event set which is different from expectatityns
if (e i )OR(QUL Q&di QL Q& 6N Q)
//We attempt to replace each chain which contains the same pefithe current chain

foreach(6a® 6@ "Q& i suchthat)i Q"Q ni QQ )
for(Q "Q pto D
ifM6 NO@Q&E T suchthati ¥ 6 0 0 Oi Q i ° 0)e
add chaim i 'Q"Q i 6 QQ tod@QE I ;

if (0 G idadeei )
removeOafeam 0@ Q& | ;
break;
}
}

removeoafrom 0" Q& | ;
if (i is unknown)
Generated (@ "Qéi @ for the new hypercube based dre

add0"@ Qédeto 6@ Q& i using”Yio /i QQ i Q iee;
}
} o o ]
elseifm™@nN Qi Wid O'@orn Qi wio wsuchthatid i ){
removeall chairs 6such that) i Q"0 ni QQ from& @ Q& i ;
end;

ate

Figure 21: Procedure reviseStrategy

57



For aset of MTC chaingwritten as6™@ "Qé&i i , which are generated based on the events
enabled ini ), we denote the chain that we are cuisestawling asdé i Q i E

i Qi E { . Within this chain)Q represents the event that has just been executed.
The taskis to determine whether avot a deviationhas occurred based drethe state which
resulted fromexecutingQ. This determination depends on whether has already been visited
or not. If it is the case that represents a statlat has previously been visiteddaviationhas
occurred ifi a#s not equivalent t6 ~ OEA 1 A BEa®E | 1has failed. If i is supposed

to represent state that has not yet been visited, then basdtedmypothesisof evens being
independent, we expetttati  will contain all of the events that were available in the previous
state { minusQ. Therefore, ifi agloes not match this expectatiaeviationhas occurredthe
conditionQ U Q& ® i ‘QUEDI » Q has failed whereQU Qéi 0 idenotes the set of

events enabled at state.

If we find thati sgepresents @eviation we must updatéhe chains in order to ensure thie
strategy is consistent with the modbhat has beeruncovered thus far. To illustrate what this
means, it is important to discuss howeviationimpactsthe strategy. Wher agloes not match
expectations, it means that executing transifdost statd results in thaliscoveryof somestate
thatis not equivalent td . Theinterpretation of this is not that it indicatdsti  does not
exist or that it is not possible to reaich . Instead, itmay just meanthat we cannot readh

by usingnn i ‘Qi'Q , which is the suipath that we took attempting to reach (shown in

58



Figure22). This also means that any other chain that contains this same prefix will also not be

able to use that prefix to reach .

prefe(sis1) suffe(Sir1)
O A OO O
\\// \_//
Chain C

Figure 22: Theprefix andsuffix of achain

In order to repair these chains so that they may be completed, we must first find some chain
which includes staté  but not the problematic sequente Q i . In other words, we
must find an alternate route to state . If we do findsuch a chaind ), we must then replace
every chain (0 ) which containsthe prefix i Qi'Q with a chain consisting of
ni Q@ i 6'QQ . This wouldpotentiallyallow us to reach state in each case

and would also allow us to completetother transitions in the chain.

Another issue thahay arisas that there may be no other chain which contamalternate route

to statel . In that case, for every chain that needs to be repaired we instead try to find an
alternate route to the next state (). We do this until we come to a state for which we can find

an alternate route amtil we come to the end of the chain. If we come to the end of the chain
without having successfully found an alternate route, then we are unable to repair the chain and

simply remove it.

59



Responding to deviationis not simply a case of repairing chailiée may find that gethe state

in which we discovered deviation includes events which were retailablein i , the base of

the hypercube. This could be found both wheere areappearing events and in the case of a
split. It also means thatés outside the sq@® oftheinitial hypercube. We therefore consider this

to be an indication that we have a new hypercube athis its baseWe also create a new
hypercube whenever we arrive in a previously unvisited state which does not have the set of
events which wexpect. A newhypercubeneedso have its own strategy generated and also be
explored.It alsoextends fronthe initial hypercube and is not reachable by URL. We can reach

the base of this hypercube using Qi'ge

In the case thataaloes notrepresent aleviation there may still be som
needs to be done.iléeloes match  within the current chaind) of this hypercube strategy but

is also equivalent to a state which exists in a separate hypercube, then werasimawel all of

the chains fronthe current hypercube strategy that share this same prgfix,Qi'@ . This is

because this state would have already been accounted for in the strategy of another hypercube so

we do not want taluplicatethe exploréion of the states and transitions that follthe state

60



Choosing the NextChain

If the application turns out to be a perfect hypercube then we will only need to getierate
initial set of MTC chains in order to successfully uncover all statdsiae all transitions. In that
case,during the course of a crawl, when we exealteevents in a given chaitme next chain
thatis selectedwill simple bethe next chain in the sequen&nce the MTC chains aadready
organized to satisfy the priakisof first reaching all new states then using all unused transitions,

no additional logids neededor this selection

However, thiswill likely not be the caselnsteadwhile crawlinga given hypercubeve will find
thatdeviatiors occurandresult inthe need fochains to be repaireth this caseit is necessary

to havea technige for selecting the next chain since after revisiregstrategy the order of the
chains may no longer refletihe establishegriorities. We select the next chatoe crawlin a

given hypercubdased on whether or not all of the states in the current hypercube have already

been visited. Here is the criteria based this factor:

1. If there are still unvisited states in the expeatsatle! (for a given hypercubeye select
the chainfor which the valueainvisited(C) the numbepf unvisited states in that chaiis
greatestTherefore, lhe chain thais chesen is simply chain Cthat satisfieghe following
condition:

00 "OOOYWYIESD 6 @ £ 0 Qi 600 QML L Qi 6Q0 Q'Q

This chain may or may not be a constraint containing chain.

61



2. If all states in the expected modgbr a given hypercubedre alreadyvisited then we
select thechain Cfor which untraversed(C)the number of untraversed transitions in that
chain is greatestThe chain thais chosen is thereforethe onethat satisfieshe following
condition:

00 "OOOYWYES @@L 01 GLULAI § Q@01 GO BL I QQ

Choosing the Next Hypercube

Oncemultiple URLs (with enabled eventsaive been visitedhere will be multiple base states in
thelist B. One option could be to crawl the hypercsibéthese base states in order. Tisatve

could crawl allhypercubesssociated with a stasan B before removing it and crawling all the
hypercubeassociated with the next state in B. Another option is to make the choice of which
base statewill be explorad (which group of hypercubes sxciated with a base state) before
making a choice about which particutaypercube andhainwill be exploral. Thesechoices can

be made before every decision to choose a chain. That is, fokeaehwould first choose the

group of hypercub® exploreand then choose the hypercube to explore.

Again, a prioritybased system)(i Q¢ i YOemployedor this purpose. One possible formula
thatcan be usetb calculate the priority of hypercube groufs essentially the same as the one

whichis usedto select the next chain to crawl. That is, we select the hypercube (@dumich

62



contains the hypercube having the chain (C) with the most unvisited states. We select the

hypercube group (G) for which the following condition is true:

U0 "OOOYW € ®©ip OO0 YD QEOO U G QEOWE Q

6 € 0 Qi 6Q0 Q&E L Qi 6Q0 QQ

We have the optiolf usng many different priority functions but we believe tifa¢seresonate
with thegoal of exploringhew states first, followed by new transitions. We believe that this
would be the case when we selegpercube groups which contain the chains with the most

unvisited states.

Summary of Event Based Crawling

Having discussed the componentsh# eventbased crawling strategy as well as how they work

in collaborationthe strategy can be summarizedtheprocedureeventBasedCrawl(L,Byhown

in Figure23. Whenever this procedure is called, we fgsheratehainsfor any base stesin B

for which chans have not yet been generated (using the algorithm
minimumTransitionCoverage We thenchoose a base state with the Hgh priority and
determine which chain associated with that base state will be explored next. Once we have
chosen a state, we explore it until we arrive at the end or encourdewiation (which is
identified by and handlelly the procedureeviseStrategy If we have arrivedtthe end of the

chain, we remove it from Chains(s).

63



ProcedureA OAT OAAOBRA# OA x |

Input O : set of URLSs that are to hésited

Input 6: base states

begin

foreach(statei ¥ & and Chains(s) has not yet been generated)

{

}
choose astaté M 6 suchthat i M 61 QE T QaYd Q¢ 1| dstates

determine the next chaih ¥ # E A Bitalexecute;
executeChain(@, I

remove0 from Chains(s);

end;

generate Chains(s);

Figure 23: Procedure eventBasedCrawl

64




6 Prototype Tool for Crawling AJAX -based Web

Applications

6.1 Design and Implementdion

We have developed a prototype crawling tool whioiplements the evetitased crawling
strategy The prototype tool is capable of crawling test AJAX applications and is able to collect

statistics related to the crawl.

The prototypecrawling toolis implemented in Javand deeloped using the Eclipse IDE [B#9
Javawas selected mainly becaube frameworks which were selected to aid in development are

implemented irthis languageThese frameworks are:

HtmlUnit : HtmlUnit [50] is an open sourcBamework which can be summarized as a
web browser for Java programs. It can interact with web pages and simulate the actions
that would normally be completed by a person using a web browser. It also has fairly
good JavaScript support, which is important in orfde most web applications to work
correctly(also required for AJAX requests to be possibi&yen that it is open source, it

can be extended to support future developments in this research.

XmlUnit: XmlUnit [51] is a framework which makes it possible wnit test XML

documents. It prades an API which allows Javaqgrams to quickly compare XML

65



documentsFor example, it can determine if two documents are identical or similar (have
small differences such as the ordering of nodésjlso allows sucltomparisongo be

made forHTML documents.

Jung: Jung p2] is an open source graphing framework which provides a library that
allows easy visualization of data. It contains bunlsupport forproducinga graph which
illustrates the data It also allows gaphs to be animated as changes are made to the

elements of the graph or its layout.

Another reason for selection Java is because usingbpgatt oriented programming language

makes it easier to integraiee researcwi t h | BM6s existing product.

In the pototype crawling togltheoverall crawling process is handled by ttiassAjaxCrawler
which is located in theCrawl module This class contains the procedwreentBasedCrawl
(detailed inFigure23). In addition AJAXCrawlercommunicates with classes froftve modules
which enablethe ability to perform the crawl, and track and displajated resultsThese
modulesare WebBrowser Strategy Modeling, Equivalence and Statistics The architectureof

the tool, includinghese modies andhe mosimportantclasses, are shown kigure24.

66



Prototype Crawling Tool

WebBrowser Modeling
5 | Hypercube |
\ HypercubeGroup \
HTMLParser Crawl [ Stae |
D " | Transiton |
|G|
Strategy | GraphVisualizer |
| StrategyGenerator| AJAXCrawler 1
. McD € ‘ “—>Equivalence
| MTC | y |StateEquivalence|
Statistics

Figure 24 : Themodulesand selected classes of the prototype crawlka t

WebBrowser

The WebBrowsemoduleis responsible forall actions that would normally be completed by the
browser. It is implemented in part usitige APl provided by HtmIUnitThe classBrowser
within this module provideshe ability tosendan HTTP requestto the servergiven a URL
Once theresponse iseceival from the servernt loads the correspondingage This classalso
handles event executiorror the handling of AJAX calls, HTMLUnit provides an AJAX
controller (NicelysynchronizingAjaxControlleclass which ensures that the next lafecodein
the prograndoes not get executed until a response has been receivdtedd®M updatedThe

classHTMLParser parsesthe DOM to identifyvarious elementbased on attributes, such as

67



their id, or the values of those attributéBhis allows easyidentification of elementswhich

triggerevents of interest.

Strategy

The Strategymodulecontainsthe MCD andMTC classes. These contaafl the algorithmaused

to generateghe MCD and MTCchains associatkewith the evertbasedcrawling strategyThe
classStrategyGeneratouses these classes to produce chains based on a hypercube. It also uses
the procedureeviseStrategy(described in Section 5.4.20 replace chainsvhen deviations

occur. The StrategyGeneratois also responsible for determinimgnich events are executed and

in what order.

State Equivalence

The Equivalencemodule provides all functionality related to determining whether or not two

DOMs are equivalent. Using the DOMs provided by Brewser the class StateEquivalence
determines whéer or not the current stateaguivalent(based orthe equivalence functionto

one which has previously been visited | t al so uses t he(discussecire pt of
Section 4.2)to identify the portions of the DOMhat can be ignoredThis modile is

implemented with the aidf ¢he API provided by XMLUnit

68



Modeling

This modulekeepstrack of the model thatas leen discovered. It maintains information about
the states and transitions that have been discovered, and the various hypercuisase thaen
generatedInformation stored includethe number of states that have been discovered in a
particular hypercube versus the number of statesatieaturrently expected to be foumdthat
hypercubeThis type of informatiorcan be useshen compting the next chain to crawl based

on some priories

The Modeling module also leverageHJNG in the classGraphVisualizer This class produces
graphsthat allow manual positioning oftates and transitions (resulting from a cjawhis

means that gragghcan be arrangad a way which makes it easy to visually compare the results

of the crawl with theknown modelof the testweb applicatiorbeing crawled. Of course, this
feature is only useful for comparing the output of crawling web applications sittelnumber

of statesGraphs elements are also labeled. States are labeled with a unique ID which is given to

each state. Transitions are labelgth the element on which the event was executed.

Statistics

The Statisticsmoduleconsistsof one clasgCrawlStat$ that recordsstatisticsduring thecrawil.

The class keeps track of data such astote@ number oftransitionsand thetotal number of

69



resets performed. It also recetttie number of transitions and resets theate been completed at
the arrial of each new state and is able to display a summary of these statistics at various points

during the crawl and after completion.

Communication

The sequence diagram showrFigure 25 representan example ofommunication between the
differentclassesn the prototypecrawlingtool and gives a simplified view of how thmototype
crawling toolworks. Execution beginsn AJAXCraw| which initializesthe AJAXCrawlerfor a
given start URL, and calls tieérawl metlod to begin the crawlThe AJAXCrawlerthen calls the
method LoadPageon the classHTMLParser Once the page is loaded, the DOM and all
available events are returned. THheenerateStrategymethod is then called on the
StrategyGeneratorand the initialsetof MTC chainsis produced. The events which need to be

executed are then return to Beawler.

At this point the program enters a loop in which &IAXCrawler first calls theExecuteEvents
method on theBrowser The events are executed by tBeowserard the resultingDOM is
returned. Then there is a check for duplicate states @&atgEquivalencdf the transition that

was just executed is a new transition (this was the first time that it had been executed) it is added
to the graph using thmethodAddTransition The methodCheckForDeviationss thencalled

and the strategy revised. TBérategyGeneratothen returns the next events to be executed and

70



the next iteration of the loop begins wilxecuteEventbeing called again. If the end of the
current chain has been reached meaning a new chain will be crawled, a URL is provided as a
parameter for this method, and tBeowserreloads the specified page before executing the

event(s).

AJAXCrawl AJAXCrawler Browser StrategyGenerator StateEquivalence Graph

i i
Crawl(urh LoadPage(url) |
1

.
I
|
|
|

dom, events i

I

I

|

|

GenerateStrategy(events)

|
| ) .
eventsToExecute [I> GenerateStrategy(dimensions)
S ————— A
LOOP [eventsToExecute.Count > 0] |
|
|
|
|
|

ExecuteEvents(url, events)

dom, events
e ,,,,,,,,,,,,,,,,,,,,,,,

|
checkForDuplicateState(dom)

state
Ko
T
OPT [transitionNew = true] |
|
AddTransition(previousState, currentState)
i
|
Koo Ao
CheckForViolations()
|
|
|
|
|
eventsToExecute
e,,,,,,,,,,,,,,,,,,,,,,,J ,,,,,,,,,,,,,,,,,,,
e ,,,,,,,,,,,

Figure 25: Sequence diagram showing the communication betleeiclassesf the crawler

71



6.2 Limitations of the Prototype Crawling Tool

The prototype crawling tool has the following limitations:

Inconsistentresynchronization of AJAX calls:

Ht ml U NicelysyreehronizigAjaxControllerclass (discussed in Section 6.1) enables
resynchronization of AJAX calls but it has been observed that there are instances when
the next line of code gets executed before the response from the server has been received
and/or before callb&ecmethod execution is complete. As a result, there are cases in which
events are executed but the DOM is not updated asexpActed a wor k around,
delay of 6 seconds usedin these cased his causeprogramexecution to pause until

the DOM ha been updated. However, this is an awkward and unreliable solution since a
delay of 6 seconds is more than required in some tagéisere can be no guarantee that

it will be a sufficient delay in every case. Also, this work around is only feasible when
crawling smaller applications since it causes a significant increase in the duration of the
crawl. Therefore, th@roblem will need to be addressed in order to enable support for a

larger set of web applications going forward.

No support for intermediate states:

In the current implementation of the prototype crawling tool, there is no support for

capturing intermediate states (described in Section 3.1).

72



Strategy generation limited toa maximum of 16 events:

The prototype crawling tool is able to genensfiTC chainsgiven a base state with up to

16 enabled events. If a base state has more tBandbled events, the prototype crawling

tool is unable to successfullyenerateMTC chainsdue to insufficient memoryThis

problem is due to the event basedtstagy 6 s current reqguirement
given hypercubde generated up fronkor a base state having 18 enalbdednts, this

would require 43B80chainsto begenerated.
Only onclick events are supported:

The initial version of theprototypecrawling tool does not suppouther typesof events
such asnouseoveevents and events which are triggered when a specific amount of time

passes.

In spite of the current limitations, the prototype crawl! tool is still very useful since it allows
initial testing of the evenbased crawling strategy. This means thatrédaworld consequences
of thedrawbacks of the strategyrche observedt also allows the strategy to be compared with

other strategies.

6.3 Integration with AppScan

Following the developmeruf the initial prototype, Emr®ingtiirk’ and |worked to implement

components of the MT-®Based crawling algorithm with the current AppScan product. In order to

! EmreDinctiirkis a PhD candidate at the University of Ottawa.

73



accomplish this assignment, there was a needitapkement the core algorithms since AppScan

is developed using C#. In addition, the logic of the crawler needed to be updated to fit the work
flow of that product.Integrating the tool with AppScan also allows for the possibility of using an
equivalence function which also takes the purpose of theldnto account since AppScan

contains such functions (for example for accessibility and security testing).

Following 2 months of work at IBM, components of the Mb&sed crawling algorithm were
successfully added to the current AppScan product. Thduped a prototype AppScan which is
capable of utilizing portions of the evelmhsed strategy for state discovery. When crawling
AJAX applications, AppScan is now able to discover a significantly larger number of states than
before. An initial demonstrativof these increased capabilities has already been conducted for

members of the AppScan team

74



7 Experiments and Evaluation of Results

This chapter is divided 1 nt oseaSectonf.srtastedln | n Se
Section 7.2, expenents are conducted to evaluate the performance and potential of the crawling
strategy.Particularly, it is important to seeow quicklytheinitial set of chainsNITC chaing is
generatedthe maximum number of events (dimensions) thatprototypecrawling tool can

handle, and the ability of the tool to model applications. We are also interested in the
performance of the strategy basedtbe number of transitions and resets requtcediscover

each state or transition in an applicatidn experimentsthe performance ofhe prototype

crawling tool (which utilizes MTébased strategy generation) is also comparedthe
performance of a crawler whidias beenmplemented using a breadihst crawl strategy and

one which uses a depfinst crawl strategy

7.1 fLoad, Reload®

The fALoad, R eis$ tested usingt 36 poputai veebisies (listed in Appendix A: Test
Websites forfiLoad, Reload). First, theURL of each websités loaded twice and the pages
compared after the second load to determine whethabtothe pagetave some differences.

Foll owing this, t h & usid oo eadh, website toaletatndine hosvaenany ofq u e

the web pages which had been different after consecutive loads, would now be considered

75



identical. When loading pages, 1@®&ondsare allowed to pass before the pageloaded an

additional time.

After loading each URL twice and comparing the pages, only 4 of 30 websites (13.33%) produce

an i dentical page when the URL is | oadeasd t he
used, 22 of the 30 websites (73.33%) produce a page which is identical when then URL is loaded

the second time and irrelevant portions of the page ignored. This additional 18 pagearghich

i denti cal after usi ng Al a 4580%. HoweMerpthededare stdl Br e s e r
pages which are not identical even after the use of this techigeepotential reason for this is

the duration between reloads. For example, an application may have a page which displays a new
advertisement every 2&econds. Therefore, if a page is loaded at time) seconds, and then

reloaded again dt = 10 seconds, the advertisement may still be the same and therefore not
automatically considereidrelevant content. If the page is then loaded agatr=a35 secads, a

new advertisement may <cause this page to be
reloado is wused. This technique therefore dc¢
However, as the statistic regarding the increase in identical pagee nt i fi ed shows
reloado is still wvery wuseful in Iimiting the

for equivalence.

76



7.2 Crawling Strategy

7.2.1 Strategy Generation

This test determines the maximum number aoincurrentevents enabledin a given state
(dimensions) that the prototype crawlibgol can handle. That is, the largest hypercube for

which it can create a set of MTC chaif®esults show that thprototype crawling tool is

currently able to generate MTC chains for a maximurb6xvents. This requires the production

of 102,960MTC chains.At 16 dimensions, afiout of memor yo eDhesepti on
results are based on testing using a machine running Windows Vista with 2GB RAM and a 2.10

GHz Intel Core 2 Duo CPU.

An experment isalso conducted to find the length of time taken to generate MTC chains for a
hypercube ofn dimensions. For dimensions -116, the prototype crawling tool is used to
generée MTC chains at each dimensiand the time taken to generate those chigingcorded.

Tablel shows this data arfelgure26 shows a graphof these values.

77



Dimensions

2

3

4

5

6

Chains

2

6

12

30

60

Time(Seconds0.00

0.004000187

1.00E03

0.002000093

0.006999969

0.005000114

Tablel: Time taken to generate MTC chains

for dimensions 1 16

Time (Seconds)

25.00

20.00

15.00

10.00

5.00

/

0.00

/

1234567 8 910111213141516

Dimensions

Figure 26: Timetaken to generate MTC chains

for dimensions 1 16

78

Dimensions (7 8 9 10 11 12

Chains 140 280 630 1260 2772 5544
Time(Seconds0.010999918 [0.023000002 (0.059999943 [0.13499999 (0.347000122(0.81099987
Dimensions (13 14 15 16

Chains 12012 24024 51480 102960

Time(Seconds2.177999973 4.305999994 9.376999855 [20.48900008




7.2.2 Model Building

Before determining the efficiency of éhcrawling strategy, it is necessary to verify that the
prototype crawling tool is able to use this strategy to craw some test-Badsed applications

and produce the correct model. This is done by testing the prototype crawling toclowiéh
applicationsand comparing the resulting model (the model created using the prototype crawling
tool) with the known model of the applicatiohhese applications as well as the results of the

crawls aradetailedbelow:

79



4 Dimensional HypercubéWeb Application

The prototype crawling tool is used ¢cawl aweb application which follows the structure of a
hypercube of 4 dimensions. The application therefore has 16 states and 32 trafsiioe7
displaysthe actual model of thepalication (on the left) and the model producey the
prototype crawling tool (on the right). ®isual comparison confirms that the model produced

matches the actual model of the application.

{el,e2,e3, e4}

Actual Model Model Produced By Prototype Crawling Tool

Figure 27: 4 dimensional hypercube wapplication- actualmodel vscreated model

80



Non-hypercube Web Application #1

This application does not follow the structure of a hypercube. It has 8 states and 12 transitions.
Figure 28 showsthat the crawling tool is able to crawl the application and produce the correct

model.

o
L

Actual Model Model Produced By Crawling Tool

Figure 28: 4 Non-hypercubeneb application #1- actual model vscreated model

81



Non-hypercube Web Application#2

This applicatiorhas 13 states and 15 transitiofRigiure29 shows that the crawling tool &gain

able to crawl the application and produce the correct model.

{a,b,c}

Actual Model Model Produced By Crawling Tool

Figure 29: Non-hypercubewneb application #2- actualmodel vscreated model

82



Non-hypercube Web Application #3

This applicationconsists of 24 states and 32 transitiofise prototype crawling tool produces
the correct modelFigure 30 shows that the model produced by the prototype crawling tool is

accurate.

83



{1.2,3,4,5,6}

Actual Model

Model Produced By Crawling Tool

Figure 30: Non-hypercubeneb application #3- actualmodel vscreated model

84




Non-hypercube Web Application#4: Previous, Next

Thi

Figure 31: Non-hypercube webpplication #4: Previous, Nextactualmodel vscreated model

S

consi

sts

of

a

ser

application
previous next
previous next
previous next
previous next
previous next
previous next
previous next
previous next
Actual Model

TR —— [ snomeid
N PN !

N

]\v,.'iimd
eN

[

snomald

paN

[ snomeid | [Tsnowerd |
t.s‘___ —

d
™aN

( waN |
.

Model Produced By Crawling Tool

85

€es

of

stat



Non-hypercube Web Application #5: AJAX News

The finalapplicationtested is a publicly available test AJAX applicat[68] developed by19].

It consists of 8 states, each displaying a different news article. The application consists of
Aproeuvsio and Anexto buttons which allow the wus
the title of each article is listed in every state. Therefore, the user can access any article (state)

from any state. The model of this application would therefera kully connected grapFkigure

32illustrates this with the model produced by the prototype crawling tool.

Ross Perot ware vid sm‘_grig prachtiger
igrg

Als die Pasdaran, dj ¢
n in Indien wieder

ulg

ara
tr
Ll
o
@
=
o
Q‘G’ﬁ
o
=
=
@
=
=
@
=
@
E]

68 Verwaltungsg 1
)

die P
1
S aham
e
A

&
- >y Gy
° 5
i e§rufgabe, da

Ein kleines privates
a‘De‘w
79e? ¢
3
ia Stra T
in

'Nng
verg
ehan
da;

Figure 322 Model ofnon-hypercubeneb application #5: AJAX News

86



7.2.3 Crawling Efficiency

Comparisortesing is performed otthe applications presented $®ction 7.2.2The everdbased

crawling strategy presented in this thesis (which tise$/TC algorithmto generate the initial

set of chains for each hypercube) is compared teeadtifirst crawling strategy and a depth

first crawling strategy. In an effotd ensure that results are not influenced by a specific ordering

of the events in each stathe eventsn each state are randomly ordefedeach crawl andach

web applicabn is crawled 10 times with each stratedyhe results presented for a given
strategybés performance for a Sthesalld drawls.Tha pp |l i c @
results are summarized in this section whaélés showing théull results can befound in

Appendix B: Crawling Strategy Comparisons.

The results of these tests present the following statistics:

1 How quickly new states are discovered (visited). This is tracked by:
0 Thetotalnumber of transitions requirdmbfore discoveringach state.
o0 Thetotalnumber of resets requirdefore discoveringach state.
1 How quickly new transitions are discovered (executed). This is tracked by:
0 Thetotal number of transitions requirdskfore discoveringach transition.

0 Thetotalnumber of resets requirdgfore discoveringach transition.

In testing, a reset is performed by reloading the page at the URL of the baskl®stateer, as
discussed in Sectiod.2, this method may not be sufficient for many web applications.

Therefore, the number of steps reqdito reset an application may vary.

87



Given thatthe strategy is expected to perfomamhits besin the case of a hypercube application (a
web application which follows the structure of a hypercube), the strategies are first compared by

crawlinghypercubeaveb applications

4 Dimensional Hypercube Web Application

In Figure33 andFigure34 the MTCbased strategy is shown to outperform headthfirst and
depthfirst strategies both for transitions rerpd to visit eacltstateof the application and for
total transitions required to execute each transition of the application. TheblslJed! strategy is
able to find all states in an average26ftransitions whereas this is done in 68 transitigsisg
brealth-first and 47 transitionsising depthfirst. The MTCbased strategy also requires less

resets to find all states (5), compared to bredidih(28) and deptfiirst (15).

88



Transitions == MTC

== BreadthFirst

=== Depth-First

1 2 3 456 7 8 9101112131415 16
States Discovered

Figure 33: Transitionsvs. states discovered @imensionalhypercubeweb application)

30
25
20
Resets 15 —=MTC
10 - BreadthFirst
> —4—DepthFirst

1 2 3 45 6 7 8 9101112131415 16
States Discovered

Figure 34: Resetws. states discovered @mensionahypercubewnebapplication)

Figure 35 andFigure 36 show that the MT&based strateggllows visitingall transitions before
the breadtHirst and deptHirst strategies. It takes 4@ansitionsand 11resetswhile using

breadthfirst takes 8@ransitionsand 31resetsand deptHirst takes 52ransitionsard 17resets

89



100

. == MTC
Transitions

== BreadthFirst

== DepthFirst

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Transitions Discovered

Figure 35: Transitionsvs.transitions discovered (dimensionahypercubeneb application)

35
30
25

20
Resets

+—MTC

== BreadthFirst

= Depth-First

0 rr oo o1 1111 1. 111 11111 1.1 T T 1T T 11

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Transitions Discovered

Figure 36. Resetws.transitions discovered (dimensionahypercubeweb application)

Also, the MTCGbased strategy makes it possible to complete the crawl in 40 transitions and 11
resets whereasistakes 80 transitions and 31 resestngbreadthfirst and 52 transitions and 17

resetausingdepthirst.

90



Testing is also completezh hypercule applications of 3, 5 and 6 dimensiolmseach case, the
results mirror those for the 4 dimensional hypercube web applicatten.MTCbased crawl
outperforms the deptfirst and breatHirst crawls by a significant margin with the disparity in

performarte increasing as the number of states increase.

Non-hypercube Web Application #1

The strategy is tested using a Aoypercube web applicatioms Figure37 andFigure 38 show
the MTGbased strategy allewfinding all states in fewer transitions and resets (9.8 and 2.4
respectively) than breadfirst (20.1transitions an®.7 resets) and depffirst (12 transitions and

3.7resetscrawls.

25
20 f

15

Transitions / =—=MTC

w0 / yd =—BreadthFirst
5 e Depth-First

OA'—'-“T"T T T T T T 1

States Discovered

Figure 37: Transitionsvs. states discovered (NemypercubéNeb applicatior#1)

91



Resets 6 == MTC
4 == BreadthFirst
2 —#— DepthFirst
O = T T T T 1
1 2 8

3 4 b5
States Dlscovereé5

Figure 38 Resetys.states discovered (NemypercubéNeb applicatior#1)

The MTGhbased strategy is also able to discover more transitions in lesg-tgure39 and

Figure40 show this faster rate of transition discovery.

30
25
2 pal
Transitions 15 +—MTC

10 =—BreadthFirst
5 == DepthFirst
o+

1 2 3 4 5 6 7 8 9 10 11 12

Transitions Discoverec

Figure 39: Transitionsvs.transitions discovere(Non-hypercubeneb applicatior#1)

92



12

10

—MTC

== BreadthFirst

DepthFirst

0 - o P
i T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12
Transitions Discoverec

T T 1

Figure 40: Resetws.transitions discovere(Non-hypercubewneb applicatior#1)

Non-hypercube Web Application #2

In this case,the breadtHirst crawl againexhibits the worst performance, requiring 35.2
transitions and 13 resets to discar all 13 states of the application. It takes the M¥aSed

crawl 24 transitions and 7.1 resets to accomplish the same task. Thdidettawl! is dle to
discover all states in roughly the sam#mberof states and transitiontaking 24.6 transitions

and 6.7 reset$lowever, ag-igure41l andFigure42 show, the MTGbased crawl discovers states

at a faster rate for a signification portion of the crawl (this can be aabéyvlooking athe data

for states 8 through 12) before slowing down to find the last state in about the same number of

transitions as the depfhst crawl.

93



Transitions —MTC

== BreadthFirst

== DepthFirst

1 2 3 4 5 6 7 8 9 10 11 12 13

States Discovered

Figure 41: Transitionsvs.states discovered (Ndmypercubewneb apfication #2)

14
12
10
8
Resets A7‘ ==MTC
—i—BreadthFirst
== DepthFirst

1 2 3 4 5 6 7 8 9 10 11 12 13
States Discovered

Figure 42: Resetwys. states discovered (Nemnypercubeveb applicatior#2)

Figure 43 and Figure 44 show that the discovery ofamsitions follows the same trend seen in
Figure 41 and Figure 42. The breadtHirst crawl requiresthe most transitions (38) and resets

(14). The MTGbased crawl and the pig-first crawl have a similar rate of transition discovery

94



in terms of resets. However, in terms of transitions, the Md&€ed crawl once again discovers
many at a faster rate than tllepthfirst crawl before that rate decreases resulting in both
discoveing the 1%’ (final) transition in a similar number of transitions (26.4 for the M¥a3ed

crawl and 25.4 for thdepthfirst crawl).

40
35
30
25
Transitions 20
15
10

—MTC

== BreadthFirst

Depth-First

5 —

OA_E el

T T T T T T T T T T T T T T 1

1 2 3 45 6 7 8 9 101112 1314 15
Transitions Discoverec

Figure 43: Transitionsvs.transitions discovere(Non-hypercubewneb applicatior#2)

95



16
14
12
10

Resets 8

T T T T T T T T T T T T T 1

1 2 3 45 6 7 8 9 101112131415
Transitions Discovered

*=—MTC
== BreadthFirst

DepthFirst

Figure 44: Resetws.transitions discovere(Non-hypercubewneb applicatior#2)

Non-hypercube Web Application #3

The results from testing this applicatiGhown inFigure 45) revealthatthe MTGbased crawl
discovers states at a slightly faster rate (in terms of transitions required) than thdirdepth
crawl. The depthirst crawl and breadtfirst crawl discover states at the same rate (in terms of

transitions required) for most of tleeawl before the rate of discovery by the breddtt state

increases.

96




70

60

50

40
Transitions
30

==—=MTC

20

== BreadthFirst

= DepthFirst

10

1234567 8 9101112131415161718192021222324
States Discovered

Figure 46 shows that the numbef resets required to discover all states is greatest for the
breadthfirst crawl 27.9 whereas the MT®ased crawl and the depibst crawl require a

similar number of resets for each state discovered. The total number of resetsdréguire

Figure 45: Transitionsvs. states discovered (Nemypercubeveb applicatior#3)

discover allstates is 15.8r the MTGbased crawl anil3.8for the deptHirst crawl.

30

25

20

P

MTC

Resets 15

v

== BreadthFirst

10

== DepthFirst

123456 7 8 9101112131415161718192021222324
States Discovered

Figure 46. Resetwys. states discovered (Nemnypercubeveb applicatior#3)

97




Figure 47 shows similar results téigure 46. The number of transitions and resets required to
discover each transition is almost the same for defghand MTCbased crawling. Again, the
breadthfirst crawl requiressignificantly more transitiongor almost each transition discovered.

In total it takes 79 transitions for the breadltt crawl compared to 52.2 and 48 transitions for

the MTC and deptirst crawl respectively. The results shown kigure 48 indicate that the
number of resets required to discover each transition are similar to the number of transitions

required.

90
80
70
60

50
Transitions

/}—O—MTC
>

== BreadthFirst

30
20
10 - -

A
0 A"‘T’ VT_T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Transitions Discovered

DepthFirst

Figure 47: Transitionsvs.transitions discovere(Non-hypercubeneb applicatior#3)

98























































































