
A Strategy for Efficient Crawling of

Rich Internet Applications

Kamara Benjamin

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the degree of

Master of Computer Science

School of Information Technology and Engineering

Faculty of Engineering

University of Ottawa

Ò Kamara Benjamin, Ottawa, Canada, 2010

Abstract

This thesis studies the problem of crawling rich internet applications. These applications are built

using advanced web technologies which allow them to be more dynamic and enable better user

experiences. In recent years, the popularity and importance of web applications has continually

increased and they are now very commonly used to complete essential tasks such as financial

transactions. As a result, the need to crawl these applications goes beyond the desire to index

content for search. For example, applications also need to be analyzed in order to detect security

vulnerabilities and assess accessibility. In this thesis, the challenges involved with crawling rich

internet applications are discussed and an efficient strategy for crawling these applications is

presented. We also use this strategy to develop a prototype tool for crawling AJAX-based

applications.

i

Table of Contents

1 Introduction ... 1

1.1 Traditional Web Applications .. 2

1.2 JavaScript ... 3

1.3 Advanced Web Technologies... 3

1.4 Crawling Modern Applications .. 4

1.5 Motivation .. 5

1.6 List of Contributions .. 6

1.7 Organization of the Thesis ... 7

2 Related Work ... 8

2.1 Crawling AJAX Applications .. 8

2.2 Model Based Testing .. 12

3 Challenges ... 15

3.1 Fine-Grained Control over JavaScript Events .. 15

3.2 Control over Application Flow .. 20

3.3 State Equivalence ... 21

3.4 Infinite Runs ... 22

3.5 Slow Executions ... 23

3.6 State Space Explosion .. 23

3.7 Data Input Values ... 24

3.8 Server States ... 24

3.9 Crawling Strategy ... 25

3.10 Incomplete Model .. 26

4 State Equivalence .. 27

4.1 Different Types of Equivalence ... 28

4.2 ñLoad, Reloadò ... 30

5 Crawling Strategy .. 32

ii

5.1 Overview .. 32

5.2 Minimum Chain Decomposition .. 40

5.3 Minimum Transition Coverage .. 42

5.4 Adapting the Strategy ... 51

5.4.1 Identifying Deviations .. 51

5.4.2 Revising the Strategy .. 57

6 Prototype Tool for Crawling AJAX-based Web Applications .. 65

6.1 Design and Implementation ... 65

6.2 Limitations of the Prototype Crawling Tool .. 72

6.3 Integration with AppScan... 73

7 Experiments and Evaluation of Results ... 75

7.1 ñLoad, Reloadò ... 75

7.2 Crawling Strategy ... 77

7.2.1 Strategy Generation .. 77

7.2.2 Model Building ... 79

7.2.3 Crawling Efficiency .. 87

7.3 Evaluation... 103

8 Conclusion and Future Work ... 106

8.1 Summary of Contributions ... 106

8.2 Future Work ... 108

References ... 112

Appendix A: Web Applications for Testing ñLoad, Reloadò ... 117

Appendix B: Crawling Strategy Comparisons .. 118

iii

List of Figures

Figure 1: The initial state of the application (before the "Buddy View" button is clicked) 16

Figure 2: Susanôs details are displayed ... 17

Figure 3 : The application shows the userôs full name in this intermediate state 17

Figure 4: The result of the injection attack is seen in this intermediate state... 18

Figure 5: A model of the example website highlighting the intermediate state ... 20

Figure 6: Example of a page with irrelevant data which changes over time.. 31

Figure 7: Procedure for crawling .. 36

Figure 8: Procedure for traditional crawling ... 37

Figure 9: A hypercube of size 4 dimensions ... 39

Figure 10: Minimum Chain Decomposition of a hypercube of size 4 ... 42

Figure 11: Minimum Transition Coverage (MTC) algorithm ... 44

Figure 12: Procedure generateUpChains ... 46

Figure 13: Procedure combineChains .. 48

Figure 14: Procedure matchChains .. 48

Figure 15: Rate of increase in the number of paths, states, MTC chains, and MCD chains 50

Figure 16: Appearing events .. 52

Figure 17: Disappearing events ... 53

Figure 18: Appearing and disappearing events ... 54

Figure 19: A merge ... 55

Figure 20: A split ... 56

Figure 21: Procedure reviseStrategy .. 57

Figure 22: The prefix and suffix of a chain ... 59

iv

Figure 23: Procedure eventBasedCrawl .. 64

Figure 24 : The modules and selected classes of the prototype crawling tool ... 67

Figure 25: Sequence diagram showing the communication between the classes of the crawler 71

Figure 26: Time taken to generate MTC chains .. 78

Figure 27: 4 dimensional hypercube web application - actual model vs. created model 80

Figure 28: 4 Non-hypercube web application #1 - actual model vs. created model 81

Figure 29: Non-hypercube web application #2 - actual model vs. created model 82

Figure 30: Non-hypercube web application #3 - actual model vs. created model 84

Figure 31: Non-hypercube web application #4: Previous, Next - actual model vs. created model 85

Figure 32: Model of non-hypercube web application #5: AJAX News ... 86

Figure 33: Transitions vs. states discovered (4 dimensional hypercube web application) 89

Figure 34: Resets vs. states discovered (4 dimensional hypercube web application) 89

Figure 35: Transitions vs. transitions discovered (4 dimensional hypercube web application) 90

Figure 36: Resets vs. transitions discovered (4 dimensional hypercube web application) 90

Figure 37: Transitions vs. states discovered (Non-hypercube Web application #1) 91

Figure 38: Resets vs. states discovered (Non-hypercube Web application #1) ... 92

Figure 39: Transitions vs. transitions discovered (Non-hypercube web application #1) 92

Figure 40: Resets vs. transitions discovered (Non-hypercube web application #1) 93

Figure 41: Transitions vs. states discovered (Non-hypercube web application #2) 94

Figure 42: Resets vs. states discovered (Non-hypercube web application #2) .. 94

Figure 43: Transitions vs. transitions discovered (Non-hypercube web application #2) 95

Figure 44: Resets vs. transitions discovered (Non-hypercube web application #2) 96

Figure 45: Transitions vs. states discovered (Non-hypercube web application #3) 97

Figure 46: Resets vs. states discovered (Non-hypercube web application #3) .. 97

Figure 47: Transitions vs. transitions discovered (Non-hypercube web application #3) 98

Figure 48: Resets vs. transitions discovered (Non-hypercube web application #3) 99

v

Figure 49: Transitions vs. transitions discovered (Non-hypercube web application #4: Previous, Next) 100

Figure 50: Resets vs. states discovered (Non-hypercube web application #4: Previous, Next) 100

Figure 51: Transitions vs. transitions discovered (Non-hypercube web application #4: Previous, Next) 101

Figure 52: Resets vs. transitions discovered (Non-hypercube web application #4: Previous, Next) 101

Figure 53: Transitions vs. states discovered (Non-hypercube web application #5: AJAX News) 102

Figure 54: Resets vs. states discovered (Non-hypercube web application #5: AJAX News) 103

vi

List of Tables

Table 1: Time taken to generate MTC chains ... 78

Table 2: Transitions vs. states discovered (4 dimensional hypercube web application) 118

Table 3: Resets vs. states discovered (4 dimensional hypercube web application) 118

Table 4: Transitions vs. transitions discovered (4 dimensional hypercube web application) 119

Table 5: Resets vs. transitions discovered (4 dimensional hypercube web application) 119

Table 6: Transitions vs. states discovered (Non-hypercube web application #1) 120

Table 7: Resets vs. states discovered (4 dimensional hypercube web application) 120

Table 8: Transitions vs. transitions discovered (4 dimensional hypercube web application) 120

Table 9: Resets vs. transitions discovered (4 dimensional hypercube web application) 120

Table 10: Transitions vs. states discovered (Non-hypercube web application #2) 121

Table 11: Resets vs. states discovered (Non-hypercube web application #2).. 121

Table 12: Transitions vs. transitions discovered (Non-hypercube web application #2)........................... 122

Table 13: Resets vs. transitions discovered (Non-hypercube web application #2) 122

Table 14: Transitions vs. states discovered (Non-hypercube web application #3) 123

Table 15: Resets vs. states discovered (Non-hypercube web application #3).. 123

Table 16: Transitions vs. transitions discovered (Non-hypercube web application #3)........................... 124

Table 17: Resets vs. transitions discovered (Non-hypercube web application #3) 124

Table 18: Transitions vs. states discovered (Non-hypercube web application #4: Previous, Next) 125

Table 19: Resets vs. states discovered (Non-hypercube web application #4: Previous, Next) 125

Table 20: Transitions vs. transitions discovered (Non-hypercube web application #4: Previous, Next) . 125

Table 21: Resets vs. transitions discovered (Non-hypercube web application #4: Previous, Next) 125

Table 22: Transitions vs. states discovered (Non-hypercube web application #5: AJAX News) 126

vii

Table 23: Resets vs. states discovered (Non-hypercube web application #5: AJAX News) 126

viii

Acknowledgements

First, I would like to thank my supervisors, Dr. Gregor v. Bochmann and Dr. Guy-Vincent

Jourdan. This thesis would not be possible without their knowledge, encouragement, and

guidance. They have always been receptive to my ideas, and their constructive criticisms have

facilitated this work. I would also like to thank the other members of the Software Security

Research group at the University of Ottawa, including Dr. Vio Onut (IBM) and my colleague,

Emre Dinçtürk. The exchange of ideas between members of this group has been essential to this

research.

In addition, this project would not be possible without the support of IBM and the National

Science and Engineering Research Council (NSERC) of Canada. I am also grateful to the

AppScan team at IBM. Dr. Onut and his colleagues have provided a wealth of information which

is important to this research.

I would also like to express gratitude to my loving parents, Peter and Tecla Benjamin. They have

been the greatest influences in my life and it is impossible to capture their love and support in

only a few words. In addition, I would like to thank a few of my other major supporters. I am

grateful to my brother and sister, Kayode and Kaisha Benjamin, and my girlfriend, Edith

Brumant, for the encouragement that they have given me.

1

1 Introduction

Over the last three decades, the internet has become an essential part of everyday life. Users rely

on the internet for tasks related to communication, information, and commerce among others. In

addition, the popularity of web-based applications has exploded over the last several years with

hundreds of millions of people having access to and making use of the internet. With such

popularity, the importance of web applications has been magnified as they store important data,

have become sources of valuable information, and provide important services for many users. As

a result, there is a need to be able to crawl web applications (automatically discover all states of

applications) and process them in various ways.

This work aims to advance the ability to crawl web applications, particularly rich internet

applications, which are built using technologies such as AJAX [1], Flash [2], Silverlight [3], and

Flex [4]. These technologies cause modern web applications to be quite different from

traditional web applications and render existing crawling techniques ineffective. Before

attempting to crawl such applications, the challenges which will be faced need to be identified.

There is also a need to produce a strategy which allows efficient crawling of such applications.

The goal is to build an initial prototype crawling tool (using this strategy) which is able to crawl

AJAX-based applications producing a model which captures the different states of an application

as well as the actions (transitions) which cause the application to move from one state to another.

2

A paper [5] has been published which covers a portion of this research. In addition, five patents

stemming from this work are in the filing process at IBM. Two of these cover the work presented

in Chapter 4. The other three cover the work presented in Chapter 5.

1.1 Traditio nal Web Applications

Web applications have traditionally consisted of a collection of static documents encoded as

HTML. Each of these documents has a URI (Universal Resource Identifier). This identifier

includes information about the host of the document, the name of the document, and the protocol

used to access the document [6]. HTML (HyperText Markup Language) [7] is a markup

language which allows developers to produce documents (pages) which are consistently

viewable in various sizes within web browsers across various platforms. It provides semantics

which allow developers to define the structure of a web document and denote components such

as headings, text, tables, and pictures.

Traditional web applications utilized different documents to provide different sets of information

or functionality to the user. In order to move from one document to another, there is a need for a

synchronous HTTP request (which could be triggered by some action performed in the existing

page) to be made to the server which stores this next document. There is then a response from

the server which contains this document. The document is then loaded, providing the user with

access to the next page in the application. One drawback of this technique for updating the page

is that moving from one document to another, the entire page has to be reloaded. This results in

3

user activity being suspended until the new page is loaded. Depending on the size of the

document and the speed of the internet connection being used, this period of suspended activity

could be anywhere from a fraction of a second to a few seconds.

1.2 JavaScript

More recently, the documents which comprise web applications have included client-side scripts.

JavaScript is one of the languages in which scripts may be written. Scripts contain functions

which perform some programming logic. When a user interacts with a web application, certain

actions may trigger events (for example, an onclick event) which call these functions, causing

client-side updates. This is made possible by the DOM (Document Object Model) which defines

the structure and content of a document [9] and allows access and updates to it. The inclusion of

JavaScript means that web applications should be considered differently since for a given URL,

they can exist at different states.

1.3 Advanced Web Technologies

One advancement of web application technology is AJAX (Asynchronous JavaScript and XML),

which allows additional content to be retrieved from the server without requiring the page to be

completely reloaded. This results in applications that are much more responsive and dynamic as

they continuously change and feature updated information without having to interrupt the userôs

experience. This is all accomplished through the ability to send asynchronous requests to the

4

server, and process the responses in the background. The use of AJAX means that there is the

potential for a given page to have even more states because these asynchronous updates allow

the document to be modified to include both additional HTML and JavaScript code which is

retrieved from the web server.

AJAX is one example of a technology which utilizes asynchronous communication with the

server. There are additional technologies such as Adobe Flash, Microsoft Silverlight, and Adobe

Flex which also do the same.

1.4 Crawling Modern Applications

Web application technology has seen significant advancement, giving browser-based

applications ever more capabilities and allowing them to approach the functionality and user

experience of desktop applications. Technologies such as AJAX, Flash, Silverlight, and Flex,

along with the current browsers which support them, enable these improvements in the capability

and functionality of web applications. As a result of these improvements, tasks which were once

limited to desktop applications, such as word processing and image editing, are now being

completed via web applications.

Also, with the rise in the popularity of cloud-based services, people now make use of the internet

to store larger amounts of sensitive data. It is now common to have pictures, business documents,

and even health records stored on servers which are under the control of other entities. Web

5

applications are then used to access and modify this data. In addition, it is now very common to

complete many tasks that usually require a high level of confidentiality via web applications.

Passport applications, financial transactions, and school assignments are all completed online.

Given the ubiquity of the internet and the vastness of the data that is stored and exchanged via

web applications, there is a need to be able to automatically uncover all states of an application

in order to index information (for example, for search) or to analyze an application for a variety

of reasons, including the detection of security vulnerabilities, and the assessment of accessibility.

Most current crawlers were developed for traditional websites and are very limited in their ability

to explore applications which may be updated client-side via scripts. Therefore, they are unable

to uncover all states of such applications, compromising the ability to analyze and index these

applications.

1.5 Motivation

This research aims to make advancements in the crawling of web applications that feature

advanced web technologies. There is a need for better crawlers that are able to discover all states

of an application which features asynchronous updates to the page. The long-term goal is to

produce a crawler that is capable of crawling rich internet applications efficiently. However, the

initial prototype crawling tool will focus on AJAX-based web applications.

6

This research is funded in part by IBM [10]. IBM produces a line of products, called Rational

AppScan [11], that are capable of crawling applications and performing tests on them including

automated evaluations for security vulnerabilities and accessibility issues. These products

typically perform thousands of different tests on each page of an application. The Rational

AppScan products will directly benefit from the results of this research.

1.6 List of Contributions

The following list describes the contributions of this work:

1. A compiled list of challenges which will need to be addressed over time in order to

produce a crawling tool that is able to crawl rich internet applications.

2. An initial strategy for crawling rich internet applications that conform to the structure of a

hypercube in a minimum number of paths, transitions, and resets.

3. A technique for modifying the initial strategy when, inevitably, there are web

applications which do not follow a hypercube structure.

4. A method of determining whether to execute events or follow URLs when crawling web

applications. A method of determining which event to execute is also provided.

5. A complete strategy for crawling web applications which consist of both asynchronous

and synchronous requests to the server.

6. The identification of a class of states in rich internet applications that we call intermediate

states.

7

7. A description of some factors which should be taken into account when determining state

equivalence.

8. A technique for automatically excluding the irrelevant portions of the DOM when

determining state equivalence.

9. An initial prototype tool which is used to crawl test AJAX applications and allows for

some comparison between different crawling strategies.

1.7 Organization of the Thesis

This document is organized as follows: Chapter 2 provides an overview of work which is related

to this research. Chapter 3 discusses the challenges which will be faced in working towards a

solution for improved crawling. Chapter 4 discusses some ideas about state equivalence and

describes some factors which should be taken into account when determining state equivalence.

Here, we also discuss how some irrelevant portions of the page may cause complications when

determining state equivalence and provide a method for automatically excluding these portions

from the equivalence calculations. In Chapter 5, a complete strategy for crawling modern web

applications is presented. In Chapter 6, the implementation of the prototype crawling tool (which

is based on the event-based strategy described in Chapter 5) is described. In Chapter 7, the

results obtained from some initial testing conducted with the prototype crawling tool are

presented and discussed. Finally, the document ends with a conclusion and discussion of future

work in Chapter 8.

8

2 Related Work

2.1 Crawling AJAX Applications

Significant progress has been made in the area of web crawling. Notably, this includes [12],

which is an introduction to Google [13]. There are also many other examples of crawlers, some

of which drive other leading search engines such as Yahoo! [14] and Bing [15]. Others enable

page discovery for processing (security scanning for example) in products like AppScan [11].

However, these crawlers were designed to work with traditional web applications. The authors of

[16] describe the general process of crawling such applications. First, a URL is used to load the

first page. The page is then parsed to harvest all URLs. Then, the first two steps are repeated for

any URLs that have not been previously encountered. Crawling ends when there are no URLs for

which these steps have not been completed.

There are a limited number of papers published which specifically deal with the task of crawling

AJAX applications. This is not particularly surprising given the relatively short history of AJAX

and AJAX-based applications, with the term AJAX being less than a decade old [1].

Additionally, most research in the area of crawling aims to improve the ability to crawl websites

for the purpose of search and indexing. Research to improve the crawling of applications which

provide task-based functionality (such as financial transactions) is very limited and search

engines do not have much motivation to discover all the states of an application which lets users

9

transfer funds from one back account to another. Only recently have search engines, such as

Google, shown an interest in crawling applications of this nature, such as social networking

applications. However, even in this case, the goal is to index the content which is produced by

these applications.

The major publications related to AJAX crawling come from the work done at ETH Zurich [17]

(in [18], [19], and [20]) as well as from research done in connection with the CrawlJax [21] tool.

In [18], [19], and [20] the research is focused on crawling for the purpose of indexing and search.

They are primarily concerned with their ability to crawl AJAX applications, index content, and

process queries. In the case of CrawlJax, the tool is positioned to allow crawling of AJAX

applications and the conversion of such applications to ones which simply consist of static

HTML pages with hyperlinks linking them. In [22], the aim is to make those applications fully

accessible to search engines which are not AJAX-friendly. Additionally, the authors of [23]

focus on regression testing of AJAX applications while the authors of [24] look at security

testing and the authors of [25] look at user interface testing.

In both [18] and [25], AJAX applications are modeled using transition graphs. Logically, nodes

represent the client-side state of the application, which is determined by the structure and content

of the page at a given time. Additionally, edges indicate transitions, which occur due to the

execution of some event (which is enabled in the current state) and may cause the page to be

altered and result in the arrival at another state. In [26], graphs are also used to represent AJAX

applications. However, model creation is accomplished using both dynamic analysis and static

10

analysis of code. In addition, the states of the graph are abstracted. For example, in a site such as

an e-commerce website, a state could be determined by values such as the current number of

items in the shopping basket and the current total cost of those items. Transitions would then

occur when items are added or removed from the shopping basket causing a change to those

values.

A few papers recognize the importance of being able to differentiate between states given that

multiple states can exists with the same URL. The issue of identifying duplicates is not limited to

rich internet applications. Traditional applications often have duplicate URLs [27] in which

different URLs correspond to separate pages which are almost identical. In terms of modern

applications, Matter [18] identifies that in AJAX web applications, there is usually a portion of the

page that is ñstableò (for instance, contains menu items which do not change much from state to

state) and a portion that is more dynamic. Duda et al. [19] determine whether or not states are the

same by ñcomparing the hash value of the fully serialized DOMò. However, they do admit that

this means that only in the case of identical states will duplicates be identified. This method of

identifying duplicates is too strict and may lead to difficulties as we will see in Chapter 3.

Similarly, Mesbah and van Deursen [22] compute a ñhashcodeò which is used to compare states.

They also mention another technique for comparing states, which makes use of the Levenshtein

[56] method (which determines the minimum number of operations necessary to convert one

string to another) to calculate an ñedit distanceò between two states. If this distance is found to be

within a particular threshold (0.0 - 1.0 is used), the two states are considered the same. The use of

such an approach allows for some differences in two states that are considered equivalent. In [26],

another technique is used, called simhash, which utilizes a hashed value to determine whether or

11

not two documents/states are equivalent. This is accomplished by dividing a document into a set

of weighted ñfeaturesò. This data is used with simhash to produce a fingerprint of the document.

Fingerprints can be compared to identify duplicate documents based on the similarity in hash

values.

These approaches do not evaluate state equivalence (as discussed in Section 3.3). They evaluate

the distance between states or the differences between states. However, these relations are not

transitive. In addition, these approaches appear to be specific to crawling for the purpose of

indexing and search, or more specifically, for identifying when the content of the page differs.

They do not take into consideration how the purpose of the crawl affects state equivalence. These

considerations are discussed in Chapter 4.

In terms of crawling strategy, Matter [18] makes use of a breadth-first crawl. In addition to this,

an effort is made to reduce the amount of AJAX calls which are made during the crawl. To

accomplish this, whenever a specific AJAX call is made for the first time, the response from the

server is cached. In the future, if there is an event which uses the same function and parameter(s)

for the execution of an event, rather than actually making an AJAX call, the resulting content is

retrieved from the cache. This approach does not seem to take into account the fact that calling

the same method, with the same parameters while in a different state could lead to different

results. This could be due to factors such as a change in the server state. In a different approach,

the authors of [22] use a depth first crawl. This is combined with a variable which is used to limit

the maximum depth explored.

12

Looking at existing research, it is found that there are various tools which can be used to

simulate the actions of a browser thus enabling crawling. Matter [18] and Frey [19] make use of

the Corba Toolkit [29], which is able to load HTML pages and provides DOM retrieval. The

Rhino [30] framework is also used in order to process JavaScript (which is necessary for event

execution). In [22], CrawlJaxôs browser functionality is made possible through the use of

Mozilla XUL Runner [31]. This is combined with the use of Webclient [32] for access to the

DOM. In [33], Watir [34] is used to perform the role of the bowser (it is used to

programmatically manipulate Internet Explorer [35]) and interacts with JavaScript using

rbNarcissus [36].

2.2 Model Based Testing

Given that the problem involves the generation of a model which represents a specific web

application, and that the model produced could potentially be used for various purposes,

including testing scenarios such as security testing, and accessibility testing, it is practical to

review some of the existing research on model-based testing.

Model based testing [37] is a testing technique in which a model is created to represent the

system under test. That model is then utilized in the testing of the system. It can be used to create

test cases to ensure that the system operates as expected.

13

Fantinato and Jingo [38] point out that the activities made possible by a model depend heavily on

the quality of that model. This reinforces the need to construct a model that accurately represents

the application. Hierons [39] also mentions a few modeling techniques which are suitable for

model-based testing including Finite State Machines (FSMs), Statecharts, and Petri Nets [40].

The authors of [38] reinforce the popularity of FSMs and their suitability for modeling systems

that include various states. The authors of [41] give some examples of the different ways in

which FSMs have been used, including the modeling of systems in the areas of ñsequential

circuits, software development and communications protocolsò.

Lee and Yannakakis [42] discuss testing problems in which ñwe have a machine about which we

lack some informationò. In order to get this information, the machine is provided with inputs and

the outputs are observed. They also describe two types testing problems. One consists of

determining the current state within a finite state machine. The other involves conformance

testing, where an implementation is checked to see whether or not it is consistent with a given

specification in the form of a finite state machine. They also discuss adaptive testing where ñthe

next input symbol depends on the previously observed ouputsò. This type of test shares

similarities with the problem of crawling web applications since the next input (event executed)

is dependent on the previously observed ouputs (the set of enabled events on the page).

Lee and Yannakakis also describe five types of testing problems. In the first there is a need to

identify the final state of the machine (Homing). In the second, state identification, the problem

involves identifying an unknown state. Third, there is state verification where there is a need to

14

verify that the machine is in a given state. The forth problem is machine verification in which

there is a need to check whether two machines are equivalent. Finally, there is the machine

identification. In this problem, the actual implementation (black box) is tested in order to build a

transition graph which models it. This aligns with what this research aims to do. Given a web

application, crawling has to be performed so that a model of the application can be created. More

[43] provides a solution to the problem that is exponential in terms of the number of states in the

machine. Lee and Sabnani [44] show a practical use of machine identification (reverse

engineering communication protocols). The authors of [42] make the assumption that the

machine to be identified is strongly connected (every state is reachable from a given state).

Otherwise, some states may be unreachable depending on the state in which the experiment is

started. In the case of a web application, if all states are to be reached, then every state of the

application should be reachable from the initial state of the application. This initial state is

considered to be the state visited when the page corresponding to a given URL of the application

is loaded.

As mentioned above, existing papers, including [18] and [25], use finite state machines to model

AJAX applications. Based on the various ways in which FSMs have been previously used and

their suitability for capturing states, events, and the transitions resulting from event execution in

AJAX applications (as found in [18] and [25]), we consider FSMs as an appropriate technique

for modeling AJAX applications and we will use this technique in this work.

15

3 Challenges

There are various challenges when attempting to crawl AJAX-based web applications. Some of

them are relevant to the crawling of web applications in general while others are more specific to

applications that update the page through asynchronous requests. With the aim to produce a

strategy for crawling modern web applications, including AJAX-based applications, we have

identified some issues which will need to be addressed.

3.1 Fine-Grained Control over JavaScript Events

In AJAX-based applications, when an asynchronous request takes place, some amount of time

passes before the response is received and the page updated accordingly. However, between the

time that the code is executed resulting in the sending of an asynchronous request, and the time

when the callback method is called when the response is received from the server, the application

may exist in some intermediate state which is neither equivalent to the pre-request state nor the

post-request state.

As an example, a scenario where a user is logged into a social networking application is

considered. In the initial state, shown in Figure 1 the user sees a list of contacts as well as a

welcome message. Every user enters his or her full name before using the application but each

16

entry in the contact list simply displays the userôs first name (all characters entered before the

first space).

Figure 1: The initial state of the application (before the "Buddy View" button is clicked)

The user also has access to a few buttons, one of which is named Buddy View. Clicking on this

button causes an asynchronous request to be made to the server. The response from the server

will include a document containing the personal details of each of the userôs buddies. Once this

response has been received, the user can mouseover any of his or her friends in the contact list

causing that personôs full details to be displayed, as shown in Figure 2. This represents a new

state in the application.

17

Figure 2: Susanôs details are displayed

In the event that there is some delay in receiving a response from the server, the developer of this

application implemented a feature to allow some information to be displayed even if a

mouseover is done before the response is received from the server and has been processed. In

this case, the developer decided to simply display the complete full name which the user had

entered. This intermediate state of the application is shown in Figure 3.

Figure 3 : The application shows the userôs full name in this intermediate state

18

Now let us say that this application also includes a function for sanitizing data. It is used to

sanitize a userôs full details (after the reception of the response to the asynchronous request)

before they are displayed. It is also used to sanitize the first portion of the full name (all

characters before the first space) before it is displayed in the buddy list. However, the developer

has forgotten to use this function to sanitize the userôs full name before it is displayed while in

the previously mentioned intermediate state that we have described. As a result, in the event that

a user performed some sort of injection when entering his or her full name, this could potentially

go unnoticed and end up being displayed in the intermediate state, as shown in Figure 4. In this

case, Mary has injected a login form when entering her full name. There are actually two

intermediate states in this example. The application enters the first of these when Buddy View is

clicked and the onclick event has been executed. From this state, the application enters the

second intermediate state (the one which we have described, where the applicationôs

vulnerability can affect a user) if the user does a mouseover on a contact before the callback has

been executed.

Figure 4: The result of the injection attack is seen in this intermediate state

19

This example is summarized in Figure 5. In the state BuddyClicked, the onContactMouseOver

event is executed resulting in state MousedOver which exists until the callback method is

executed causing a transition to the state ContactDetailsDisplayed. As the example illustrates, it

is important that these intermediate states are reached and processed, particularly in tasks such as

crawling for security scanning. As a result, in AJAX applications, it is necessary to be able to

have complete control over the processing of JavaScript events at the client-side. In general (for

all rich internet application technologies), this means that it is necessary to have the knowledge

of which events are available and their types. There is also a need to have the ability to control

the execution of any sequence of these events. Also, whenever an HTTP request is made to the

server, there is a need to be able to control when the resulting callback is executed. This will

allow capturing of these intermediate states.

20

Welcome BuddyClicked

MousedOver

ContactDetails

Displayed

Intermediate

States

Callback method

onContactMouseOver

onBuddyViewClick

ContactDetails

Loaded

Callback method

onContactMouseOver

Figure 5: A model of the example website highlighting the intermediate state

3.2 Control over Appli cation Flow

In order to complete the crawl of a given application, it is also necessary to revisit states in order

to follow a different path compared to the ones that were previously followed. It may be possible

to complete this task of undoing the affects of the previous actions by resetting the application to

its initial state, then traversing the application again until the desired state is reached. However,

this approach may prove to be extremely inefficient if the steps that are required to reset the

21

application and return to the desired state are too numerous. It is therefore a challenge to find

ways to reduce the number of such steps.

3.3 State Equivalence

Mathematically, an equivalence relation is one which divides the elements of a set into subsets

where each element is in exactly one subset. These subsets form a partition of the state space. In

crawling, there is a need to determine state equivalence in order to divide the states of the

application into subsets. This is important because it reduces the potential size of the model of the

application, since one element from each subset is included in the model. This element represents

all other members of that subset.

The ideas brought forward for differentiating between states which we have seen in [18], [19] and

[22] all focus on being efficient. While it is also important to work towards a state equivalence

function which is efficient, the initial focus needs to be on ensuring that the solution is based on a

valid equivalence relation and one that is meaningful for the application being crawled. It is

necessary to think about how the equivalence of state is affected by factors such as the structure of

the page, the enabled events on the page, and the text on the page. We also need to consider how

the use of the model will be affected by state equivalence. Existing research has not accounted for

many of these considerations.

22

3.4 Infinite Runs

When crawling applications, it would be logical to follow a path to its end in order to minimize

the number of times that a state is revisited (or the application reset). As a result, there is always

the danger of ending up in an infinite loop [18]. That is, we enter some portion of an application

which results in a loop because executing a certain event or certain events continually leads to

new states. In addition to possibly never finishing the crawl of an application, this problem also

means that if given a specific period of time to crawl, the model that is produced at the end of

that period will only have covered a very small part of the application, perhaps a particular

branch which will continue to be traversed while following the loop.

There are some factors which could help prevent such situations. First, an equivalence function

can help identify the arrival at a state which belongs to the same subset as a previously visited

state. In addition, the crawling strategy should help to mitigate the effect of an infinite loop even

when the equivalence function is unable to identify such a case. In order for this to be possible,

there is a need for a strategy that provides a compromise between the desire to minimize the

number of times that a state needs to be revisited and the aim to maximize the breadth of the part

of the model that is built, particularly when time is limited.

23

3.5 Slow Executions

There are various factors that may lead to slow execution times for a crawler. Lack of efficient

control over flow is one of these, since it may necessitate having to repeat a series of actions

multiple times in order to return to a desired state. This means more potential page loads and

event executions, increasing the duration of the crawl. The need to keep track of intermediate

states could also increase the overall number of states that need to be covered, therefore

increasing the length of the execution time.

3.6 State Space Explosion

Identified in [18], state space explosion is also a challenge. Many web applications consist of

thousands of states which will need to be identified, compared, stored, and modeled. There is a

need to crawl web applications with a focus on finding as many non-equivalent states as possible

in a given amount of time. This is especially important because it may not be feasible to crawl

the entire application. We also need to ensure that the equivalence function does not contribute to

this challenge by being too strict, and thus evaluating two states as different when they should be

equivalent.

24

3.7 Data Input Values

In crawling, data input values are extremely important because they may determine what states

are reached. Given that in many cases, the number of possible input values is practically infinite,

it is a challenge to determine how to choose a realistic set of input values in order to be able to

reach all possible states. It is also a challenge to automatically infer the format and types of

values which will let the application function correctly.

3.8 Server States

While the client-side state is largely determined by the current DOM, server-side state may be

determined by the values of variables which are stored in the server or by entries in a database.

The issue of server-side states (also discussed in [18]) is very important for building an accurate

model of an application. When there is a change in the server state, it could result in the same set

of actions being executed at the client side but resulting in different client states. Of course, there

may be some set of actions that can be taken to ñresetò the application, in order to return to the

initial server-side state. However, if these steps require too much work, it would have an

extremely negative impact on the efficiency of crawling. One idea to evaluate is the possibility of

making a distinction between events that do generate requests to the server (and thus may change

the server state) and the events that do not. Events that do not go back to the server can be

crawled and reset entirely at the client side.

25

3.9 Crawling Strategy

In trying to crawl applications including asynchronous events, it is an especially important

requirement that an efficient strategy is developed which will result in the ability to more quickly

crawl the entire website, visiting all states (as determined by the equivalence function), and

executing all events (in these states). Since, as mentioned in Section 3.6, there may be thousands

of states within an application, complete crawling may require a very long time and may not

always be feasible. Therefore, a strategy which will capture as many states and transitions as

possible in a given time is needed.

Consequently, it is important that the strategy aims at discovering as many states as possible

using a minimum number of event executions and page reloads. If there is enough time to

discover all states of an application, the crawl can then continue by confirming that various

combinations of actions indeed lead to the same states. There is a need to determine which

sequences of event executions and page loads would best serve these goals. In previous work in

[18] and [25], the topic of a crawling strategy has not really been addressed in detail. Instead,

simplified crawling strategies based on breadth-first search and depth-first search have been

used.

26

3.10 Incomplete Model

It is necessary to ensure that the model which results from using the crawling strategy that is

developed includes all states and events which exist in the application. If the model ends up

missing one or more of these states and events, we consider it to be incomplete.

When several events can be executed from a given state, it is possible that executing them in

different orders will lead to different results (i.e., different states). Trying all the combinations is

obviously very time-consuming, but running a single one of the possible sequences is not an

acceptable trade-off.

Another potential pitfall that may lead to an incomplete model is a failure to capture intermediate

states. It is necessary to account for the state of the page before an event is executed, before the

associated callback is executed, and after the callback has been executed. In addition, an event

which causes multiple asynchronous events may result in multiple callback methods being

executed and so there may be multiple intermediate states in such a case.

The ability to correctly determine state equivalence will also factor in the ability to avoid

constructing an incomplete model. While it is important to avoid unnecessary state explosion as

much as possible, an equivalence function which ensures that states which are distinct will not be

considered equivalent is needed.

27

4 State Equivalence

The ability to distinguish one state from another is critical to being able to successfully crawl a

web application. This is particularly true in the case of AJAX applications where one cannot rely

on information such as the current URL to help identify states since multiple states may share the

same URL. In Section 3.3 state equivalence is defined. Following from that definition, there is a

need to determine whether or not two states are members of the same subset. This method of

evaluating whether or not two states are equivalent (the equivalence function, referred to in this

thesis as) impacts the ability to ensure that one can crawl an application entirely as well as do

so efficiently.

The equivalence function determines the number of subsets (of states) which are created (and

therefore the number of states in the model). If the function used for state equivalence creates too

few subsets, this results in states being classified as equivalent even when they should not be.

This could produce a model which is missing states (Section 3.10). In a scenario in which

crawling is used to uncover states for the purpose of security analysis, missing states would mean

that some states will not be analyzed. This could result in undetected vulnerabilities.

If the state equivalence function produces too many subsets, it could mean that states that should

be considered equivalent end up being interpreted as not being equivalent. This could cause the

28

model to have more states than necessary, affecting efficiency and leading to unnecessary state

explosion (Section 3.6), causing longer runs, or infinite runs (Section 3.4).

The ideas presented in this chapter help to address these challenges by improving on existing

methods of identifying duplicate states. However, additional work will need to be done to ensure

that these problems are fully solved.

4.1 Dif ferent Types of Equivalence

As mentioned in Section 1.4, the purposes for crawling web application are varied. With each

purpose, there are also aspects or elements of the page that are more important than others. For

instance, when crawling an application for the purpose of indexing (for example, for use by a

search engine), the text found in each state is essential and must be captured. Therefore, two

states that are identical in structure but with different text should not be judged equivalent since

users of a search engine may want to search for one or the other. On the other hand, when

looking for security vulnerabilities in an application, the elements of the page which allow the

user to interact with the page and related input data are more relevant. Therefore if the previously

mentioned states contain different news articles, but the exact same elements and logic for

allowing users to enter comments about these articles then these states should be judged

equivalent. This is because a security test would not be concerned with a difference in text on the

page and only seeks to evaluate the security vulnerabilities that exist on the page.

29

While the purpose of the crawl is important, the crawlerôs main job is to find as many states as

possible. In other words, two states can only have the possibility of being considered equivalent

if the set of states that can be reached from them are equivalents. This is where events,

hyperlinks, user input controls such as forms or dropdowns, or anything else that could influence

the set of states that are reachable from the current one become extremely important. Therefore,

two states with identical text may be equivalent if the purpose of the crawl is to index content.

However, if these two pages have a different set of enabled events, then these two states cannot

be equivalent in any crawl, since they may have different sets of states which are reachable from

them.

In order to discover all the unique states (in terms of the purpose of the crawl) of an application,

both crawling equivalence (based on the set of states which is reachable from a given state) and

equivalence based on the purpose of the crawl must be taken into consideration. It also means

that depending on the purpose of the crawl the model of a given website could vary. Failing to

take either type of equivalence into account could result in states being missed, an incomplete

model, and the inability to fulfill the purpose of the crawl. Therefore, any function which

determines whether or not two states, s1 and s2, are equivalent (s1 s2) should evaluate to true

only if the following condition holds:

eqcrawling(s1, s2) ὃὔὈ eqpurpose(s1, s2)

In this condition, eqcrawling is an equivalence function based on crawling equivalence and eqpurpose

is an equivalence function based on the purpose of the crawl. Therefore eqpurpose should be

30

substituted according to the purpose of the crawl. For instance, it would be eqsecurity if the

application is being evaluated for security vulnerabilities or eqaccessibility if the application is being

assessed for accessibility.

Logically, if two states are identical then they are also members of the same subset. Therefore

states s1 and s2 are also judged equivalent if the following condition holds:

areIdentical(s1, s2)

Therefore, the previous condition only needs to be evaluated if the two states are not identical.

Otherwise, it is automatically known that they are identical.

4.2 ñLoad, Reloadò

Web pages often contain bits of content that change very often but are not important in terms of

making two states non-equivalent. These could include, but are not limited to, advertisements,

counters, and time stamps. Figure 6 shows a page which highlights this type of content.

31

Figure 6: Example of a page with irrelevant data which changes over time

 When determining whether or not two states are equivalent, there is a desire to be able to ignore

these constantly changing but irrelevant portions of the page. This is especially important in

AJAX-based applications since failing to identify data that should be ignored could cause an

equivalence function to evaluate to false when it otherwise would not.

We have developed a technique for automatically inferring the portions of the page that should

be ignored. It requires loading a given page twice. The DOM of the page at each load can then be

compared and the differences indicate data that can be ignored. For example, a page x is loaded

at a time t1 and then again at t2. The DOM of x at t1 is then compared to the DOM of x at t2 to

produce Delta(X), in the form of a list of differences between the DOMs. When using an

equivalence function to compare this state with another, the data in this list can be excluded.

Therefore, two states can be considered identical if they are identical after the irrelevant data is

excluded from both.

32

5 Crawling Strategy

5.1 Overview

When developing the strategy for crawling rich internet applications, it is a goal to be able to find

any given state in a finite amount of time. This would make all content available for analysis or

indexing. In addition to being able to uncover the complete model of an application, the process

must take place in a deterministic fashion. Therefore, if the crawler is given x minutes to crawl

an application and all other factors are also equal (for example, the server response time for each

request) crawling should be completed in such a way that the model constructed (partial model if

x minutes is not sufficient for completing the crawl) is the same on subsequent crawls of x

minutes as long as the application remains unchanged. In a product which completes tasks such

as security scanning, this is important because it means that roughly the same set states would be

uncovered and available for analysis each time, providing a more predictable experience for the

user.

It is also very important to recognize that given a large web application, it may not be feasible to

crawl the entire application. Therefore, it is a priority to find as many states as possible within a

given time. Additionally, even in circumstances where there is enough time for the crawler to

uncover every state of the application, there may still not be enough time to execute every

33

transition. With this in mind, there is an additional priority. Once all states have been discovered,

there is a desire to cover ñnewò transitions (ones which were not previously traversed) quickly.

To aid the development of the strategy, it is necessary to make some assumptions about the

application which is being crawled. These assumptions ease or facilitate the ability to produce a

strategy for modeling applications that use asynchronous requests to the server in order to

retrieve data and update portions of the page using client-side JavaScript. The following are the

assumptions about the application being modeled:

¶ It is possible to return to a previously visited state by ñresettingò the application and

repeating some set of actions. That is, if we start from a given URL and execute a series

of actions, it is possible to ñresetò the application such that beginning from the same URL

and executing the same series of actions again, will produce the same results. It is not,

however, assumed that we can simply ñstep backwardsò from the current state to the

previous one.

¶ The only source of non-determinism is concurrency. What we want to avoid is an

application that will react differently, starting from the same global state, when the same

input is given at two different times.

¶ Every interaction between the application and the user can be modeled as a choice among

a known finite set of possibilities. This fits well with input such as buttons, check boxes,

and down-down menus. This means that for now, applications that allow the user to enter

ñfree textò are not considered. This would allow for an infinite set of possibilities.

34

It is also important to point out whether or not the crawling strategy addresses the challenges

described in Chapter 3. In this regard, the strategy does not consider intermediate states (Section

3.1). Instead, events which lead to an AJAX call are treated as synchronous events. This means

that the state following such an event is considered to be the one which exists after a response

has been received from the server and the callback method executed. The issue of control over

application flow (Section 3.2) is currently handled by using the URL to reload the page in order

to reset the application. However, this will not be sufficient for all applications so this challenge

will need to be further addressed in the future. The strategy also addresses the danger of infinite

runs (Section 3.4) by limiting the traversal depth (described later in this section). In addition,

given the means by which control over application flow is currently achieved as well as the

current exclusion of intermediate states, slow executions (Section 3.5) are not an issue at this

time. At present, the strategy also does not address the challenges related to data input values

(Section 3.8) or server states (Section 3.9). Finally, the strategy dictates that all events in each

state are executed. This would help to avoid an incomplete model (Section 3.10). However, by

the given definition of an incomplete model, the lack of intermediate states means that this issue

is also not fully addressed by the current strategy.

It should also be mentioned that the crawling strategy used is independent of the purpose of the

crawl. Therefore this strategy would be suitable for a variety of purposes provided that the

equivalence function used is based on the purpose of the crawl.

35

Overall Crawling Strategy

In AJAX applications, the current state of the application may change in two ways. The first is

through synchronous HTTP requests to the server, for example when the user clicks on a URL

which is part of the DOM of the current state. The other way to change state is through the use of

asynchronous HTTP requests and local JavaScript execution. This may either be initiated by

user-input or some time-out mechanism.

With this in mind, the overall crawling strategy needs to take both of these ways of state changes

into account. Therefore, both traditional crawling and event-based crawling are taken into

account. In traditional crawling, new URLs are followed (through, for example hyperlinks, to

discover new pages). In event-based crawling, events are executed on the page (possibly causing

asynchronous requests) to move from state to state in order to discover new states. There is also a

parameter k for alternating between the two approaches. To do so, we follow k URLs in the

traditional crawl then traverse k chains (we discuss chains later in this chapter) in the event-

based crawl. This process of alternation between the different methods of crawling is continued

until the crawl is completed or the crawler is stopped. In addition, a list of links (L) and a list of

states (B) are kept. L represents URLs which have not been visited by the crawler. B represents a

set of states which have some enabled events and which have not been completely explored by

the crawler. L is updated by removing a URL when it has been visited and adding any new URL

that is discovered during the crawl. Whenever the crawler arrives at a new state (with enabled

36

events) via synchronous communication, this state is added to B. These states are called base

states. When the event-driven crawling of a state in B is completed, the state is removed from B.

The algorithm crawlRIA(l,k) (Figure 7) is used for crawling applications. The input l is the start

URL of the application to be crawled. It becomes the first URL added to the list of links (L). The

crawl is fully completed when both L and B are empty.

Procedure ŎǊŀǿƭwL!ὰȟὯ
Input ὰ: the URL of the initial state of the application (String)
Input Ὧ: limit of exploration using either method (Integer)
begin
ὒ ὰ Ƞ
ὄ ɲ;
while (ὒ ɲ hw ὄ ɲ) {
 for (Ὥ ρ ǘƻ Ὧ) {
 if (ὒ)ɲ{
 traditionalCrawl(L,B,);
 }
 else{ break; }
 }

for (Ὥ ρ ǘƻ Ὧ) {
 if (ὄ)ɲ{
 eventBasedCrawl (L,B);
 }
 else{ break; }
 }
}
end

Figure 7: Procedure for crawling

Below, the algorithm used to complete traditional crawling is discussed quickly. Following this,

there is a detailed account of the strategy for event-based crawling.

37

Tradition al Crawling

Traditional crawling is accomplished using the procedure traditionalCrawl(L,B,k), shown in

Figure 8. It begins by removing the next URL from the list L. A synchronous HTTP request is

then made using the URL and after receiving a response, the resulting page is loaded. If this

results in the arrival at a previously unvisited state, this new state is processed. Processing the

state entails two steps. First, any new URLs within the current state are added to L. Second, if the

state has any enabled events, it (the state) is added to the list B, which means that it will be

explored at some point during the event-based crawl.

Procedure ǘǊŀŘƛǝƻƴŀƭ/Ǌŀǿƭό[Σ .ύ
Input ὒ : set of URLs that are to visit
Input ὄ : Set of discovered states with enabled events (base states)
begin
pick and remove a URL ὰ from ὒ;
Let ί be the state retrieved by requesting ὰ from the server;
if (ίɱŹ in B such that ί ίŹ){

 foreach(URL ὰŹ in ί){

 ὒ ὒ᷾ ὰŹ;
 }
 if (ί has some set of enabled events) {
 ὄ ὄ ᷾ Ó
 }
}
end;

Figure 8: Procedure for traditional crawling

38

Event-Based Crawling

The procedure of event based crawling will be very important in determining how efficient the

overall crawling strategy performs. Applying a simple breadth-first or depth-first type strategy is

one way to complete the crawl. This is more or less the approach taken in [18] and [25].

However we must remember the assumption that in order to ñgo backò to a previous state, we

need to at least load the URL of that base state again and retrace the steps to that state. Therefore,

in addition to a desire to limit the amount of required transitions (events that are executed), it is

also important to limit the number of resets that are required. To accomplish this goal, a more

complex strategy for event-based crawling needs to be developed. For this purpose, a hypothesis

is made about the application which, if true, allows the generation of an optimal strategy. The

efficiency of the strategy would therefore be affected by the accuracy of this hypothesis.

However, the strategy does not rely on it in order to be able to complete event-based crawling.

Since the hypothesis may be invalidated, there is also a technique for adapting the strategy so

that it is consistent with what has already been discovered about the application.

The hypothesis is as follows: Given a state s that has n enabled events, e1, e2,é, en, it is assumed

that these n events are independent. When event e in state s is executed a state is reached where

all events that were enabled in s except e are still enabled. This means that if one starts at s and

executes a given subset of these events in any order, this will lead to the same state. According to

this, there are 2
n
 possible subsets of events, which, when ordered by inclusion, define a

hypercube of size n, consisting of n! different paths from the bottom to the top. The bottom of

39

the hypercube is defined as the initial state s. The top of the hypercube refers to the state in

which there are no enabled events. This state can be reached by starting at the bottom of the

hypercube and executing all n events in any order. Figure 9 is an example showing a hypercube

of dimension four. There are 4!=24 different paths in this hypercube, with 2
4
=16 different states.

An efficient strategy for crawling this hypercube is developed. Following the goals that were

previously outlined, it is important to discover all states of the hypercube first, and then ensure

that all transitions are executed. In the following sections, we explain how these two objectives

are reached and then give a summary of the complete procedure for event-based crawling.

e1

e2

e3

e4

{}

{e1} {e2} {e3} {e4}

{e1,e2,e3}

{e1,e2}

{e1,e2,e3,e4}

Figure 9: A hypercube of size 4 dimensions

40

5.2 Minimum Chain Decomposition

A hypercube is a partially ordered set (a lattice in this case), and each path of the hypercube is

actually a chain of the order, that is, a set of pairwise comparable elements. The goal of visiting

each state of the hypercube using a minimum number of resets is achievable using what is known

as a minimal chain decomposition of the order ([45] presents an overview of these concepts). It

has been proven in [47] that the minimal number of chains necessary to decompose an order is

equal to the width of this order, that is, the maximum number of pairwise non-comparable

elements. Therefore, since the width of a hypercube of n dimensions is equal to
ê ú

öö
÷

õ
ææ
ç

å

2/n

n , this value

also represents the number of paths (chains) necessary to visit every state of the hypercube. As

an example, given a hypercube of size 4, the number of chains required to visit all states is equal

to
êú
öö
÷

õ
ææ
ç

å

2

4 = 6. Given that there are 24 (4!) paths in this hypercube, only 6 of those 24 paths are

required to discover all the states.

In 1952, de Bruijn, Tengbergen, and Kruyswijk [47] provided an algorithm for decomposing

certain orders, including a hypercube. In [48], Hsu, Logan, Shahriari, and Towse expose the

methods as follows (adapted to the hypercube definition):

Definition (adapted from [48]): The canonical symmetric chain decomposition, or CSCD, of a

hypercube of dimension n is given by the following recursive definition:

1. The CSCD of a hypercube of size 0 contains the single chain (Ø).

41

2. For n Ó 1, the CSCD of a hypercube of dimension n contains precisely the following chains:

1) For every chain A0 < é < Ak in the CSCD of a hypercube of dimension n - 1 with k >

0, the CSCD of a hypercube of dimension n contains the chains:

A0 < A1 < é < Ak < Ak U {n}

and

A0 U {n} < A1 U {n} < é < Ak-2 U {n} < Ak-1U {n}

2) For every chain A0 of size 1 in the CSCD of a hypercube of dimension n - 1, the

CSCD of a hypercube of dimension n contains the chain:

A0 < A0 U {n}

Applying this method to the hypercube of dimension 4 leads to the following 6 minimal chains

decomposition:

1. {}<{ e1}<{ e1, e2}<{ e1, e2, e3}<{ e1, e2, e3, e4}

2. { e4}<{ e1, e4}<{ e1, e2, e4}

3. { e3}<{ e1, e3}<{ e1, e3, e4}

4. { e3, e4}

5. { e2}<{ e2, e3}<{ e2, e3, e4}

6. { e2, e4}

42

This is illustrated in Figure 10 (states are identified by the events which were executed in order

to arrive there) with chains emphasized in bold. Note that two of the chains consist of just one

state.

e1

e2

e3

e4

{}

{e1} {e2} {e3} {e4}

{e1,e2,e3}

{e1,e2}

{e1,e2,e3,e4}

Figure 10: Minimum Chain Decomposition of a hypercube of size 4

5.3 Minimum Transition Coverage

Given that to the goal is not only visiting every state as quickly as possible, but also crawling the

entire application (execute every transition) as quickly as possible, there is a need for more than

just the MCD algorithm. In order to accomplish this we have developed a Minimum Transition

Coverage (MTC) algorithm. This algorithm focuses on executing every possible event in as few

paths as possible (requiring the minimum number of resets). However, in keeping with the goal

43

of first visiting every state as quickly as possible, the MTC algorithm accepts as input, a set of

disjoint chains called constraints. Each of these chains becomes a sub-chain of one of the chains

produced using the MTC algorithm (as discussed later in this section). Furthermore, the final set

of MTC chains are ordered such that constraint-containing chains come before non-constraint

containing chains. Therefore, if the chains produced by the MCD algorithm are used as

constraints for the MTC algorithm, the first goal can be achieved as well.

The MTC algorithm is shown in Figure 11 . It consists of four steps. First, the middle level of the

hypercube is found. Then, a set of upper chains (chains which begin at the middle level of the

hypercube and go upward) is generated followed by a set of lower chains. For each constraint

chain, the portion which exists above the middle level (or the full chain if it exists entirely above

the middle level) becomes a sub-chain in one upper chain. The same is true for the portion which

exists below the middle level (or the full chain if it exists entirely below the middle level). It

becomes a sub-chain in one lower chain. Following this the algorithm enters a phase where

chains covering the upper portion of the hypercube are combined with chains covering the lower

portion of the hypercube. The combined chains are then extended downward to the bottom of the

hypercube.

44

Algorithm MinimalTransitionCoverage
Input H: a hypercube of dimension n
Input CC: C constraint set of chains (list of chains)
Output CM: MTC of H constrained by C (list of chains)
begin

CU = Ø;//chains from the middle level to the top of the hypercube
 CD = Ø;//chains from the middle level to the bottom of the hypercube
 CM = Ø;

 CU = GenerateUpChains(H, CC);
 CD = GenerateDownChains(H, CC);

 CM = CombineChains(CU, CD);
 CM = ExtendChainsDown(CM);

 return CM;
end

Figure 11: Minimum Transition Coverage (MTC) algorithm

The tasks are accomplished as follows:

Upper Chains Stage : In this stage (performed by the procedure generateUpChains

which is shown in Figure 12), a set of chains (CU) covering all the transitions above the

middle level of the hypercube is generated. In doing this we must also take into

consideration the existing chains that are present in the set of constraints (Cc). This stage

begins by starting at a state in the middle level of the hypercube and building a chain

upwards. A chain is built upward by first selecting a transition (t=(s-e-sô)) which has not

been previously used in the MTC chains. We then need to check to see whether or not

this tranisition is used in one of the constraint chains.

45

If it is in fact used in a constraint chain and either we are still at the middle level state or

the transition represents the first in a constraint chain, then the upper chain can be

extended with the entire portion of the constraint chain which follows from the current

state. This is called the suffix of the chain. If the transition is used in a constraint chain

but we are not at a middle level state and this is not the first transition of the constraint

chain, then this transition cannot be used and must be marked as unavailable. This is

because we do not want to split the upper level portion of any constraint chain into

multiple parts.

If the transition is not used in any constraint chain then it can be used to extend the

current upper level chain. This process of extending the chain is continued until we reach

a state in which we cannot find any unused and available transition. We then go back to

the original middle state and repeat the process for each unused transition in that state.

These actions are repeated at each middle level state until we have covered all upper level

transitions while incorporating the constraints.

46

Procedure generateUpChains
Input H a hypercube of dimension n
Input CC: a constraint set for MTC (list of chains)
Output CU: chains from the middle level to the top of the hypercube (list of chains)
begin
 CU = Ø;
 UC = Ø; //current upChain
 foreach (state s in the middle level of H) {
 / *use each event available in s as the first transition in one chain (build one chain for
 each of these transitions*/
 foreach(event e in s where transition t=(s-e-ǎΩύ ƛǎ ǳƴǾƛǎƛǘŜŘύ
 sM = s; //current middle level state
 UC = s;
 // add a transition to extend the chain
 do{
 //check to see whether this transition exists in a constraint chain
 if(Cɱ ɴ CC and C contains t){
 if(first(C) = s or s is at middle level){

 UC = (UC ς s) U suffix CC (s);
 Mark each transition in Uc as visited;
 S = last(C);
 }
 else{
 Mark t as unavailable;
 }
 }
 else{
 UC = UC U e-ǎΩΤ
 { Ґ ǎΩΤ
 Mark t as visited;
 }

 / *at every iteration, t is the candidate transitions for extending the chain
 }while(eɱ in s where transition t=(s-e-ǎΩύ ƛǎ ǳƴǾƛǎƛǘŜŘ ŀƴŘ ǘ ƛǎ ƴƻǘ ǳƴŀǾŀƛƭŀōƭŜύ
 //add chain to set of upward chains
 if(length(UC) > 1){
 CU = CU U UC;
 }
 S = sM;
 }

}
return CU;

end

Figure 12: Procedure generateUpChains

47

Lower Chains Stage : In this stage, a set of chains (CD) covering all the transitions

below the middle level of the hypercube is calculated. This is symmetric to the upper

chains stage and thus is completed in the same manner.

Chain Combination Stage : The procedures associated with this stage are shown in

Figure 13 and Figure 14. In chain combination (performed by the procedure

combineChains), the chains in CU and CD are joined into larger chains spanning both the

lower and upper portions of the hypercube. First upper chains which contain a portion of

a constraint chain (chains in CUC) are matched with lower chains which contain a portion

of the same contraint chain (chains in CDC), thus keeping the constraint chains intact.

When using MCD chains as the constraints, there is always a one-to-one match between

constraint-containing upper chains and constraint-containing lower chains starting from

each state, so this part is simple. Using a different set of constraints, there may not be a

one-to-one match so there may be a greater number of chains in CUC compared to CDC. In

this case, lower chains are matched with upper chains until there are no unmatched lower

chains remaining. At this point we iterate over the lower chains, matching them with

upper chains to create complete chains until there are no unmatched upper chains either.

This is performed by the procedure matchChains. The next step is to combine non-

constraint containing upper chains (chains in CUN) with non-constraint constaining lower

chains (chains in CDN). This is also completed using the procedure matchChains.

48

Procedure combineChains
Input CU: List of chains from the middle level to the top of the hypercube
Input CD: List of chains from the middle level to the bottom of the hypercube

Output CM: MTC of H constrained by C (list of chains)
begin

CUC = chains in CU with constraints;
 CDC = chains in CD with constraints;
 CUN = chains in CU without constraints;
 CDN = chains in CD without constraints;

CM = Ø;

 //Combine constrained upper chains with constrained lower chains
 CM = MatchChains (CM, CUC, CDC); //fix

 //Combine non-constrained upper chains with non-constrained lower chains
 CM = MatchChains(CM, CUN, CDN);
 return CM;
end

Figure 13: Procedure combineChains

Procedure matchChains
Input CM: MTC of H constrained by C (list of chains added to this point)
Input CUN: non-constrained chains from the middle level to the top of the hypercube
Input CDN: non-constrained chains from the middle level to the bottom of the hypercube
Output CM: MTC of H constrained by C
begin
 complete = false;
 while(!complete){

 if(ᶬ#U ɴCUN ÁÎÄ ᶬ#D ɴCDN and CU and CD are unmatched and start(CD)
 start(CU)){

 combine CD and CU and add to CM;
 }
 else if(ᶬ#U ɴCUN ÁÎÄ ᶬ#D ɴCDN and CU is unmatched and start(CD)
 start(CU)){
 combine CD and CU and add to CM;
 }
 else{
 complete = true;
 }
 }
end

Figure 14: Procedure matchChains

49

Chain Extensions Stage: The chain extension stage ensures that each MTC chain begins

at the base of the hypercube. To do this, we take each chain that does not adhere to this

rule and continually add down transitions until we arrive at the base of the hypercube.

This needs to be done since we always need to start at the base state before traversing to

any specific state.

Given a hypercube of size 4, the MTC algorithm produces 12 chains. This is half of the 24 paths

present in a hypercube of that size. The 6 MCD chains are also covered within the first 6 chains

produced. The chains produced are as follows:

1. {}<{e1}<{e1, e2}<{e1, e2, e3}<{ e1, e2, e3, e4}

2. {}<{e3}<{e1, e3}<{e1, e3, e4}<{ e1, e2, e3, e4}

3. { }< {e4}<{e1, e4}<{ e1, e2, e4}

4. {}< {e2}<{e2, e3}<{e2, e3, e4}<{e1, e2, e3, e4}

5. {}< { e4}< {e2, e4}<{e1, e2, e4}

6. {}< { e4}< {e3, e4}<{e1, e3, e4}

7. {}<{ e2}<{ e1, e2}<{ e1, e2, e4}<{ e1, e2, e3, e4}

8. {}<{ e1}<{ e1, e3}<{ e1, e2, e3}

9. {} <{e1}<{ e1, e4}<{ e1, e3, e4}

10. {}<{ e3}<{ e2, e3}<{ e1, e2, e3}

11. {}<{ e2}<{ e2, e4}<{ e2, e3, e4}

12. {}<{ e3}<{ e3, e4}<{ e2, e3, e4}

50

In general, the number of paths required to complete crawling of a hypercube of n dimensions

using an MTC-based strategy is equal to

ê ú
è ø2/*

2/
n

n

n

ö
ö
ö

÷

õ

æ
æ
æ

ç

å
 . This is equal to the states at the middle

level of a hypercube of n dimensions multiplied by è ø2/n , the number of transitions leaving

every middle level state. Figure 15 shows how the number of paths (possible paths in the

hypercube), states, MCD chains, and MTC chains compare as the number of dimensions

increases. The rate of increase of MCD and MTC chains is about the same as the rate of increase

of the number of states. The number of paths, however, increases at a much greater rate.

Figure 15: Rate of increase in the number of paths, states, MTC chains, and MCD chains

1

1E+15

1E+30

1E+45

1E+60

1E+75

1E+90

1E+105

1E+120

1E+135

1E+150

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Dimensions

of paths

of states

MTC chains

MCD chains

51

5.4 Adapting the Strategy

It is inevitable that, while in the process of crawling a web application, there will be a state

which contradicts expectations based on the strategy generated by the MTC algorithm. This is

because real web applications will not come in the form of a perfect hypercube. As a result, it is

necessary to have the ability to adjust the crawling process in order to account for these instances

where the actual website deviates from the hypercube structure. In order to do this, there is a

need to have a means of identifying these deviations when they occur.

5.4.1 Identifying Deviations

We introduce the four possible scenarios in which the actual website deviates from the projected

model. These cases are appearing events, disappearing events, merges, and splits. We explain

these cases and give criteria for identifying them below. Following this, a method of dealing with

them is discussed.

Appearing Events

As a web application is traversed according to the chains produced by the MTC algorithm, it can

be determined in advance whether or not the arrival at a new state is expected. If it is the case

that we expect to arrive at a new state and indeed do arrive at a new state but find that one or

52

more events which are available in this state are not included in the list of events that we

expected to find, then we classify this case as one where there are appearing events. Figure 16

illustrates how appearing events can be identified. Beginning at state I, we execute event e1

(from the set of enabled events {e1,e2,...,en}) and arrive at state Sô which has previously been

unvisited. We find that there is a set of appearing events { a1,a2,...,an} which were not anticipated

to be available in this state based on the MTC chains that have been produced.

I

e1
Sô is a state that

has not been

previously visited

Sô

a2

a1

an

em

e2

Figure 16: Appearing events

53

Disappearing Events

Disappearing events are very similar to appearing events in that they occur under the exact same

scenario. We expect to arrive at a new state and do arrive at a new state. However, in the case of

disappearing events we find that one or more of the events that we expected to find in this state

{ d1,d2,...,dq} are not available. This occurrence is shown in Figure 17. Arriving at state Sô, we

find that some events, such as d1 which we expected would be enabled after a transition to state

Sx, are not present.

d2

Sô is state that has

not been

previously visited

Sô

d1

dq

Sx

I

e1

em

e2

Figure 17: Disappearing events

54

It is very important to note that these cases (appearing events and disappearing events) are not

exclusive. It is certainly possible to encounter a state which exhibits both appearing and

disappearing events if the criteria for each case are satisfied when we arrive at a given state.

Figure 18 illustrates this scenario

d2

Sô is state that has

not been

previously visited

Sô

d1

dm

Sx

a2

a1

an

I

e1

em

e2

Figure 18: Appearing and disappearing events

55

Merge

As stated previously, at any given time, the current set of MTC chains can be used to determine

what the next state that we encounter should ñlookò like and whether or not we expect to have

previously visited that state. In the case of a merge, it does not matter what the expectations are

with regard to whether the next state that we encounter should be one that we have previously

visited or not. However, if the state that we arrive at is one that we have indeed been to before

but not the one that we expected to arrive at (this means, that we either expected to arrive at a

previously unvisited state or a state that has been visited but which is not equivalent to this state),

then we say that a merge has occurred. Figure 19 illustrates a merge. We expect that executing

event e at state I will result in an arrival at state S but this transition instead leads us to state Sô.

I

SôS

e
e

Sô is a known

state (previously

visited state) but

not equivalent to

S

S can be expected

to be either a

previously visited

state or a new one

Figure 19: A merge

56

Split

Identifying the case of a split is very simple. It occurs when we arrive at a new state but had

expected to arrive at some known state. Figure 20 depicts this case. Taking transition e from state

I, we arrive at a new state Sô although we had expected to arrive at some known state S.

I

S

ee

Sô is state that has

not been

previously visited

S is expected to

be either a

previously visited

state

Sô

Figure 20: A split

It is also important to point out that while appearing and disappearing events may occur at the

same time, merges and splits occur exclusively.

57

5.4.2 Revising the Strategy

An algorithm which unifies the way in which these cases are handled has been created. In

simplified terms, we refer to any occurrence of one or more of the cases previously described as

a deviation from the projected model which is then fixed by making the appropriate changes to

the crawling strategy. Deviation detection and strategy revision is accomplished using an

algorithm reviseStrategy, shown in Figure 21.

Procedure reviseStrategy (ὅὬὥὭὲίίȟὅȟὩȟίᴂ)
Input ὅὬὥὭὲίί : strategy for the expected model based on ί
Input ὅ ί Ὡ ί Ễ ί Ὡ ί Ễ ί : the current chain
Input Ὡ : The event that has just been executed in ὅ
Input ίᴂ : The state reached by executing event Ὡ at ί
begin
/*A deviation has occurred if we expected to arrive at some known state but arrive at a different state
OR if we expected to arrive at a new state with a specific event set but arrive at either a known state or a
new state with an event set which is different from expectations*/
if ((ίᴂḜ ί) OR (ὩὺὩὲὸίίȭ ὩὺὩὲὸίί ᶺὩ)){
 //We attempt to replace each chain which contains the same prefix as the current chain
 foreach (ὅᴂɴ ὅὬὥὭὲίί such that ὴὶὩὪί ὴὶὩὪί){
 for (Ὧ Ὥ ρ to ȿὅᴂȿ){
 if (ɱὅ ᶰὅὬὥὭὲίί such that ί ɴὅὃὔὈ ί Ὡ ί ɵ ὅᴂᴂ){
 add chain ὴὶὩὪί ίόὪὪί to ὅὬὥὭὲίί ;
 if (ὰὥίὸὅᴂᴂί)
 remove ὅᴂᴂ from ὅὬὥὭὲίί ;
 break;
 }
 }
 remove ὅᴂ from ὅὬὥὭὲίί ;
 if (ίis unknown) {
 Generate ὅὬὥὭὲίίᴂ for the new hypercube based on ίᴂ;
 add ὅὬὥὭὲίίᴂ to ὅὬὥὭὲίί using Ὕίȭ ὴὶὩὪί ί Ὡ ίᴂ ;

}
}
 else if(ɱὬώὴὩὶὧόὦὩί ὬώὴὩὶὧόὦὩί such that ίȭ ί){

 remove all chains ὅȭ such that ὴὶὩὪί ὴὶὩὪί from ὅὬὥὭὲίί ;
end;

Figure 21: Procedure reviseStrategy

58

For a set of MTC chains (written as ὅὬὥὭὲίί , which are generated based on the events

enabled in ί), we denote the chain that we are currently crawling as ὅ ί Ὡ ί Ễ

ί Ὡ ί Ễ ί. Within this chain, Ὡ represents the event that has just been executed.

The task is to determine whether or not a deviation has occurred based on ίᴂ, the state which

resulted from executing Ὡ. This determination depends on whether ί has already been visited

or not. If it is the case that ί represents a state that has previously been visited, a deviation has

occurred if ίᴂ is not equivalent to ί ÔÈÅ ÃÏÎÄÉÔÉÏÎ ίᴂḜ ί has failed). If ί is supposed

to represent a state that has not yet been visited, then based on the hypothesis of events being

independent, we expect that ί will contain all of the events that were available in the previous

state (ί minus Ὡ. Therefore, if ίᴂ does not match this expectation a deviation has occurred (the

condition ὩὺὩὲὸίίȭ ὩὺὩὲὸίί ᶺὩ has failed where ὩὺὩὲὸίί denotes the set of

events enabled at state ί).

If we find that ίᴂ represents a deviation, we must update the chains in order to ensure that the

strategy is consistent with the model that has been uncovered thus far. To illustrate what this

means, it is important to discuss how a deviation impacts the strategy. When ίᴂ does not match

expectations, it means that executing transition Ὡ at state ί results in the discovery of some state

that is not equivalent to ί . The interpretation of this is not that it indicates that ί does not

exist or that it is not possible to reach ί . Instead, it may just mean that we cannot reach ί

by using ὴὶὩὪί , which is the sub-path that we took attempting to reach ί (shown in

59

Figure 22). This also means that any other chain that contains this same prefix will also not be

able to use that prefix to reach ί .

Figure 22: The prefix and suffix of a chain

In order to repair these chains so that they may be completed, we must first find some chain

which includes state ί but not the problematic sequence ί Ὡ ί . In other words, we

must find an alternate route to state ί . If we do find such a chain (ὅ), we must then replace

every chain (ὅ) which contains the prefix ὴὶὩὪί with a chain consisting of

ὴὶὩὪί ίόὪὪί . This would potentially allow us to reach state ί in each case

and would also allow us to complete the other transitions in the chain.

Another issue that may arise is that there may be no other chain which contains an alternate route

to state ί . In that case, for every chain(ὅ) that needs to be repaired we instead try to find an

alternate route to the next state (ί). We do this until we come to a state for which we can find

an alternate route or until we come to the end of the chain. If we come to the end of the chain

without having successfully found an alternate route, then we are unable to repair the chain and

simply remove it.

s1
si si+1 sn

ei

prefc(si+1) suffc(si+1)

Chain C

60

Responding to a deviation is not simply a case of repairing chains. We may find that ίᴂ, the state

in which we discovered a deviation, includes events which were not available in ί, the base of

the hypercube. This could be found both when there are appearing events and in the case of a

split. It also means that ίᴂ is outside the scope of the initial hypercube. We therefore consider this

to be an indication that we have a new hypercube with ίᴂ as its base. We also create a new

hypercube whenever we arrive in a previously unvisited state which does not have the set of

events which we expect. A new hypercube needs to have its own strategy generated and also be

explored. It also extends from the initial hypercube and is not reachable by URL. We can reach

the base of this hypercube using ὴὶὩὪίᴂ.

In the case that ίᴂ does not represent a deviation, there may still be some ñcleaning upò that

needs to be done. If ίᴂ does match ί within the current chain (ὅ) of this hypercube strategy but

is also equivalent to a state which exists in a separate hypercube, then we should remove all of

the chains from the current hypercube strategy that share this same prefix, ὴὶὩὪίᴂ . This is

because this state would have already been accounted for in the strategy of another hypercube so

we do not want to duplicate the exploration of the states and transitions that follow this state.

61

Choosing the Next Chain

If the application turns out to be a perfect hypercube then we will only need to generate the

initial set of MTC chains in order to successfully uncover all states and use all transitions. In that

case, during the course of a crawl, when we execute all events in a given chain the next chain

that is selected will simple be the next chain in the sequence. Since the MTC chains are already

organized to satisfy the priorities of first reaching all new states then using all unused transitions,

no additional logic is needed for this selection.

However, this will likely not be the case. Instead, while crawling a given hypercube we will find

that deviations occur and result in the need for chains to be repaired. In this case, it is necessary

to have a technique for selecting the next chain since after revising the strategy the order of the

chains may no longer reflect the established priorities. We select the next chain to crawl in a

given hypercube based on whether or not all of the states in the current hypercube have already

been visited. Here is the criteria based this factor:

1. If there are still unvisited states in the expected model (for a given hypercube), we select

the chain for which the value unvisited(C), the number of unvisited states in that chain, is

greatest. Therefore, the chain that is chosen is simply chain C that satisfies the following

condition:

ὔὕὝ ὉὢὍὛὝὛ ὧὬὥὭὲ ὅὃὔὈ όὲὺὭίὭὸὩὨὅ όὲὺὭίὭὸὩὨὅ.

This chain may or may not be a constraint containing chain.

62

2. If all states in the expected model (for a given hypercube) are already visited then we

select the chain C for which untraversed(C), the number of untraversed transitions in that

chain, is greatest. The chain that is chosen is therefore the one that satisfies the following

condition:

ὔὕὝ ὉὢὍὛὝὛ ὧὬὥὭὲ ὅὃὔὈ όὲὸὶὥὺὩὶίὩὨὅ όὲὸὶὥὺὩὶίὩὨὅ.

Choosing the Next Hypercube

Once multiple URLs (with enabled events) have been visited, there will be multiple base states in

the list B. One option could be to crawl the hypercubes of these base states in order. That is, we

could crawl all hypercubes associated with a state s in B before removing it and crawling all the

hypercube associated with the next state in B. Another option is to make the choice of which

base state will be explored (which group of hypercubes associated with a base state) before

making a choice about which particular hypercube and chain will be explored. These choices can

be made before every decision to choose a chain. That is, for each k, we would first choose the

group of hypercube to explore and then choose the hypercube to explore.

Again, a priority-based system (ὴὶὭέὶὭὸώί) is employed for this purpose. One possible formula

that can be used to calculate the priority of a hypercube group is essentially the same as the one

which is used to select the next chain to crawl. That is, we select the hypercube group (G) which

63

contains the hypercube having the chain (C) with the most unvisited states. We select the

hypercube group (G) for which the following condition is true:

ὔὕὝ ὉὢὍὛὝὛ Ὣὶέόὴ Ὃ ὡὌὉὙὉ ὅ Ὥὲ ὋὃὔὈ ὅ Ὥὲ Ὃ ὥὲὨ

όὲὺὭίὭὸὩὨὅ όὲὺὭίὭὸὩὨὅ.

We have the option of using many different priority functions but we believe that these resonate

with the goal of exploring new states first, followed by new transitions. We believe that this

would be the case when we select hypercube groups which contain the chains with the most

unvisited states.

Summary of Event Based Crawling

Having discussed the components of the event-based crawling strategy as well as how they work

in collaboration, the strategy can be summarized by the procedure eventBasedCrawl(L,B) shown

in Figure 23. Whenever this procedure is called, we first generate chains for any base state s in B

for which chains have not yet been generated (using the algorithm

minimumTransitionCoverage). We then choose a base state with the highest priority and

determine which chain associated with that base state will be explored next. Once we have

chosen a state, we explore it until we arrive at the end or encounter a deviation (which is

identified by and handled by the procedure reviseStrategy). If we have arrived at the end of the

chain, we remove it from Chains(s).

64

Procedure ÅÖÅÎÔÂÁÓÅÄ#ÒÁ×Ì ὒȟὄ
Input ὒ : set of URLs that are to be visited
Input ὄ: base states
begin
foreach(state ίɴ ὄ and Chains(s) has not yet been generated)
{

generate Chains(s);
}
choose a state ίɴ ὄ such that ᶅ ίᶰὄ ὴὶὭέὶὭὸώί ὴὶὭέὶὭὸώίᴂ; / /states
determine the next chain ὅᶰ#ÈÁÉÎÓÓ to execute;
executeChain(C, B, L);
remove ὅ from Chains(s);
end;

Figure 23: Procedure eventBasedCrawl

65

6 Prototype Tool for Crawling AJAX -based Web

Applications

6.1 Design and Implementation

We have developed a prototype crawling tool which implements the event-based crawling

strategy. The prototype tool is capable of crawling test AJAX applications and is able to collect

statistics related to the crawl.

The prototype crawling tool is implemented in Java and developed using the Eclipse IDE [49].

Java was selected mainly because the frameworks which were selected to aid in development are

implemented in this language. These frameworks are:

HtmlUnit : HtmlUnit [50] is an open source framework which can be summarized as a

web browser for Java programs. It can interact with web pages and simulate the actions

that would normally be completed by a person using a web browser. It also has fairly

good JavaScript support, which is important in order for most web applications to work

correctly (also required for AJAX requests to be possible). Given that it is open source, it

can be extended to support future developments in this research.

XmlUnit: XmlUnit [51] is a framework which makes it possible to unit test XML

documents. It provides an API which allows Java programs to quickly compare XML

66

documents. For example, it can determine if two documents are identical or similar (have

small differences such as the ordering of nodes). It also allows such comparisons to be

made for HTML documents.

Jung: Jung [52] is an open source graphing framework which provides a library that

allows easy visualization of data. It contains built-in support for producing a graph which

illustrates the data. It also allows graphs to be animated as changes are made to the

elements of the graph or its layout.

Another reason for selection Java is because using an object oriented programming language

makes it easier to integrate the research with IBMôs existing product.

In the prototype crawling tool, the overall crawling process is handled by the class AjaxCrawler

which is located in the Crawl module. This class contains the procedure eventBasedCrawl

(detailed in Figure 23). In addition, AJAXCrawler communicates with classes from five modules

which enable the ability to perform the crawl, and track and display related results. These

modules are WebBrowser, Strategy, Modeling, Equivalence, and Statistics. The architecture of

the tool, including these modules and the most important classes, are shown in Figure 24.

67

Statistics

Strategy

WebBrowser Modeling

Equivalence

Crawl

CrawlStats

Hypercube

HypercubeGroup

State

Transition

GraphAJAXCrawl

AJAXCrawler

StateEquivalence

StrategyGenerator

MCD

MTC

Browser

HTMLParser

GraphVisualizer

Prototype Crawling Tool

Figure 24 : The modules and selected classes of the prototype crawling tool

WebBrowser

The WebBrowser module is responsible for all actions that would normally be completed by the

browser. It is implemented in part using the API provided by HtmlUnit. The class Browser

within this module provides the ability to send an HTTP request to the server, given a URL.

Once the response is received from the server, it loads the corresponding page. This class also

handles event execution. For the handling of AJAX calls, HTMLUnit provides an AJAX

controller (NicelysynchronizingAjaxController) class which ensures that the next line of code in

the program does not get executed until a response has been received and the DOM updated. The

class HTMLParser parses the DOM to identify various elements based on attributes, such as

68

their id, or the values of those attributes. This allows easy identification of elements which

trigger events of interest.

Strategy

The Strategy module contains the MCD and MTC classes. These contain all the algorithms used

to generate the MCD and MTC chains associated with the event-based crawling strategy. The

class StrategyGenerator uses these classes to produce chains based on a hypercube. It also uses

the procedure reviseStrategy (described in Section 5.4.2) to replace chains when deviations

occur. The StrategyGenerator is also responsible for determining which events are executed and

in what order.

State Equivalence

The Equivalence module provides all functionality related to determining whether or not two

DOMs are equivalent. Using the DOMs provided by the Browser, the class StateEquivalence

determines whether or not the current state is equivalent (based on the equivalence function) to

one which has previously been visited. It also uses the concept of ñload, reloadò (discussed in

Section 4.2) to identify the portions of the DOM that can be ignored. This module is

implemented with the aid of the API provided by XMLUnit.

69

Modeling

This module keeps track of the model that has been discovered. It maintains information about

the states and transitions that have been discovered, and the various hypercubes that have been

generated. Information stored includes the number of states that have been discovered in a

particular hypercube versus the number of states that are currently expected to be found in that

hypercube. This type of information can be used when computing the next chain to crawl based

on some priorities.

The Modeling module also leverages JUNG in the class GraphVisualizer. This class produces

graphs that allow manual positioning of states and transitions (resulting from a crawl). This

means that graphs can be arranged in a way which makes it easy to visually compare the results

of the crawl with the known model of the test web application being crawled. Of course, this

feature is only useful for comparing the output of crawling web applications with a small number

of states. Graphs elements are also labeled. States are labeled with a unique ID which is given to

each state. Transitions are labeled with the element on which the event was executed.

Statistics

The Statistics module consists of one class (CrawlStats) that records statistics during the crawl.

The class keeps track of data such as the total number of transitions and the total number of

70

resets performed. It also records the number of transitions and resets that have been completed at

the arrival of each new state and is able to display a summary of these statistics at various points

during the crawl and after completion.

Communication

The sequence diagram shown in Figure 25 represents an example of communication between the

different classes in the prototype crawling tool and gives a simplified view of how the prototype

crawling tool works. Execution begins in AJAXCrawl, which initializes the AJAXCrawler for a

given start URL, and calls the Crawl method to begin the crawl. The AJAXCrawler then calls the

method LoadPage on the class HTMLParser. Once the page is loaded, the DOM and all

available events are returned. The GenerateStrategy method is then called on the

StrategyGenerator, and the initial set of MTC chains is produced. The events which need to be

executed are then return to the Crawler.

At this point the program enters a loop in which the AJAXCrawler first calls the ExecuteEvents

method on the Browser. The events are executed by the Browser and the resulting DOM is

returned. Then there is a check for duplicate states using StateEquivalence. If the transition that

was just executed is a new transition (this was the first time that it had been executed) it is added

to the graph using the method AddTransition. The method CheckForDeviations is then called

and the strategy revised. The StrategyGenerator then returns the next events to be executed and

71

the next iteration of the loop begins with ExecuteEvents being called again. If the end of the

current chain has been reached meaning a new chain will be crawled, a URL is provided as a

parameter for this method, and the Browser reloads the specified page before executing the

event(s).

LOOP

OPT

AJAXCrawl AJAXCrawler StateEquivalence GraphStrategyGeneratorBrowser

Crawl(url)
LoadPage(url)

dom, events

GenerateStrategy(events)

eventsToExecute

ExecuteEvents(url, events)

dom, events

checkForDuplicateState(dom)

state

AddTransition(previousState, currentState)

CheckForViolations()

ReviseStrategy()

eventsToExecute

GenerateStrategy(dimensions)

[transitionNew = true]

getStates()

states

checkForDuplicates()

[eventsToExecute.Count > 0]

Figure 25: Sequence diagram showing the communication between the classes of the crawler

72

6.2 Limitations of the Prototype Crawling Tool

The prototype crawling tool has the following limitations:

Inconsistent resynchronization of AJAX calls:

HtmlUnitôs NicelysynchronizingAjaxController class (discussed in Section 6.1) enables

resynchronization of AJAX calls but it has been observed that there are instances when

the next line of code gets executed before the response from the server has been received

and/or before callback method execution is complete. As a result, there are cases in which

events are executed but the DOM is not updated as expected. As a work around, a ñsleepò

delay of 6 seconds is used in these cases. This causes program execution to pause until

the DOM has been updated. However, this is an awkward and unreliable solution since a

delay of 6 seconds is more than required in some cases but there can be no guarantee that

it will be a sufficient delay in every case. Also, this work around is only feasible when

crawling smaller applications since it causes a significant increase in the duration of the

crawl. Therefore, the problem will need to be addressed in order to enable support for a

larger set of web applications going forward.

No support for intermediate states:

In the current implementation of the prototype crawling tool, there is no support for

capturing intermediate states (described in Section 3.1).

73

Strategy generation limited to a maximum of 16 events:

The prototype crawling tool is able to generate MTC chains given a base state with up to

16 enabled events. If a base state has more than 16 enabled events, the prototype crawling

tool is unable to successfully generate MTC chains due to insufficient memory. This

problem is due to the event based strategyôs current requirement that all chains for a

given hypercube be generated up front. For a base state having 18 enabled events, this

would require 437,580 chains to be generated.

Only onclick events are supported:

The initial version of the prototype crawling tool does not support other types of events

such as mouseover events and events which are triggered when a specific amount of time

passes.

In spite of the current limitations, the prototype crawl tool is still very useful since it allows

initial testing of the event-based crawling strategy. This means that the real-world consequences

of the drawbacks of the strategy can be observed. It also allows the strategy to be compared with

other strategies.

6.3 Integration with AppScan

Following the development of the initial prototype, Emre Dinçtürk
1
 and I worked to implement

components of the MTC-based crawling algorithm with the current AppScan product. In order to

1
 Emre Dinçtürk is a PhD candidate at the University of Ottawa.

74

accomplish this assignment, there was a need to re-implement the core algorithms since AppScan

is developed using C#. In addition, the logic of the crawler needed to be updated to fit the work

flow of that product. Integrating the tool with AppScan also allows for the possibility of using an

equivalence function which also takes the purpose of the crawl into account since AppScan

contains such functions (for example for accessibility and security testing).

Following 2 months of work at IBM, components of the MTC-based crawling algorithm were

successfully added to the current AppScan product. This produced a prototype AppScan which is

capable of utilizing portions of the event-based strategy for state discovery. When crawling

AJAX applications, AppScan is now able to discover a significantly larger number of states than

before. An initial demonstration of these increased capabilities has already been conducted for

members of the AppScan team.

75

7 Experiments and Evaluation of Results

This chapter is divided into two parts. In Section 7.1, ñload, reloadò (see Section 4.2) is tested. In

Section 7.2, experiments are conducted to evaluate the performance and potential of the crawling

strategy. Particularly, it is important to see how quickly the initial set of chains (MTC chains) is

generated, the maximum number of events (dimensions) that the prototype crawling tool can

handle, and the ability of the tool to model applications. We are also interested in the

performance of the strategy based on the number of transitions and resets required to discover

each state or transition in an application. In experiments, the performance of the prototype

crawling tool (which utilizes MTC-based strategy generation) is also compared to the

performance of a crawler which has been implemented using a breadth-first crawl strategy and

one which uses a depth-first crawl strategy.

7.1 ñLoad, Reloadò

The ñLoad, Reloadò technique is tested using 30 popular websites (listed in Appendix A: Test

Websites for ñLoad, Reloadò). First, the URL of each website is loaded twice and the pages

compared after the second load to determine whether or not the pages have some differences.

Following this, the ñload, reloadò technique is used on each website to determine how many of

the web pages which had been different after consecutive loads, would now be considered

76

identical. When loading pages, 10 seconds are allowed to pass before the page is loaded an

additional time.

After loading each URL twice and comparing the pages, only 4 of 30 websites (13.33%) produce

an identical page when the URL is loaded the second time. When the ñload, reloadò technique is

used, 22 of the 30 websites (73.33%) produce a page which is identical when then URL is loaded

the second time and irrelevant portions of the page ignored. This additional 18 pages which are

identical after using ñload, reloadò represents an increase of 450%. However, there are still 8

pages which are not identical even after the use of this technique. One potential reason for this is

the duration between reloads. For example, an application may have a page which displays a new

advertisement every 25 seconds. Therefore, if a page is loaded at time t = 0 seconds, and then

reloaded again at t = 10 seconds, the advertisement may still be the same and therefore not

automatically considered irrelevant content. If the page is then loaded again at t = 35 seconds, a

new advertisement may cause this page to be classified as not identical even though ñload,

reloadò is used. This technique therefore does not remove irrelevant content in all cases.

However, as the statistic regarding the increase in identical pages identified shows, ñload,

reloadò is still very useful in limiting the number of states that will have to be further evaluated

for equivalence.

77

7.2 Crawling Strategy

7.2.1 Strategy Generation

This test determines the maximum number of concurrent events enabled in a given state

(dimensions) that the prototype crawling tool can handle. That is, the largest hypercube for

which it can create a set of MTC chains. Results show that the prototype crawling tool is

currently able to generate MTC chains for a maximum of 16 events. This requires the production

of 102,960 MTC chains. At 16 dimensions, an ñout of memoryò exception is observed. These

results are based on testing using a machine running Windows Vista with 2GB RAM and a 2.10

GHz Intel Core 2 Duo CPU.

An experiment is also conducted to find the length of time taken to generate MTC chains for a

hypercube of n dimensions. For dimensions 1 - 16, the prototype crawling tool is used to

generate MTC chains at each dimension and the time taken to generate those chains is recorded.

Table 1 shows this data and Figure 26 shows a graph of these values.

78

Dimensions 1 2 3 4 5 6

Chains 1 2 6 12 30 60

Time(Seconds) 0.00 0.004000187 1.00E-03 0.002000093 0.006999969 0.005000114

 Dimensions 7 8 9 10 11 12

Chains 140 280 630 1260 2772 5544

Time(Seconds) 0.010999918 0.023000002 0.059999943 0.13499999 0.347000122 0.81099987

 Dimensions 13 14 15 16

 Chains 12012 24024 51480 102960

 Time(Seconds) 2.177999973 4.305999994 9.376999855 20.48900008

Table 1: Time taken to generate MTC chains

 for dimensions 1 ï 16

Figure 26: Time taken to generate MTC chains

for dimensions 1 ï 16

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

S
e
co

n
d

s)

Dimensions

79

7.2.2 Model Building

Before determining the efficiency of the crawling strategy, it is necessary to verify that the

prototype crawling tool is able to use this strategy to craw some test AJAX-based applications

and produce the correct model. This is done by testing the prototype crawling tool with some

applications and comparing the resulting model (the model created using the prototype crawling

tool) with the known model of the application. These applications as well as the results of the

crawls are detailed below:

80

4 Dimensional Hypercube Web Application

The prototype crawling tool is used to crawl a web application which follows the structure of a

hypercube of 4 dimensions. The application therefore has 16 states and 32 transitions. Figure 27

displays the actual model of the application (on the left) and the model produced by the

prototype crawling tool (on the right). A visual comparison confirms that the model produced

matches the actual model of the application.

{e1,e2,e3, e4}

{}

Actual Model Model Produced By Prototype Crawling Tool

{e1,e2,e3}{e1,e2,e4}
{e2,e3,e4}

{e3,e4}

{e4}

{e2,e4}

{e1,e4}

{e1,e2}

{e1}

{e1,e3}

{e2}{e3}

{e2,e3}

Figure 27: 4 dimensional hypercube web application - actual model vs. created model

81

Non-hypercube Web Application #1

This application does not follow the structure of a hypercube. It has 8 states and 12 transitions.

Figure 28 shows that the crawling tool is able to crawl the application and produce the correct

model.

{a,b,c}

{b,c}

{a,b}

{c,d}

Actual Model

{b} {d}

{}

{c}

Model Produced By Crawling Tool

a b
c

b

c

c

c

b

b

a

d

d

Figure 28: 4 Non-hypercube web application #1 - actual model vs. created model

82

Non-hypercube Web Application #2

This application has 13 states and 15 transitions. Figure 29 shows that the crawling tool is again

able to crawl the application and produce the correct model.

b

b

b

b

a

c a

c

a

d
e

e

f g h

{a,b,c}

{b,c}

{b} {}

{a}

{}

{a,b}

{d,e}

{e}

{}

{f,g,h}

{} {}

Actual Model Model Produced By Crawling Tool

Figure 29: Non-hypercube web application #2 - actual model vs. created model

83

Non-hypercube Web Application #3

This application consists of 24 states and 32 transitions. The prototype crawling tool produces

the correct model. Figure 30 shows that the model produced by the prototype crawling tool is

accurate.

84

{1,2,3,4,5,6}

Actual Model

Model Produced By Crawling Tool

{1,2,3,4}

{} {}{3}{1}

{}

{}

{}{3,5}

{6}

{4,6}

{4,5} {}

{2}

{4}

{5,7}

{4} {} {3}

{2}{1,8}{1,2,3}{8}

1

1

1

1
1

2

2

2

2

3

33

3

3

4 3

56

4

4
4

6

5

6

5

8

4

8

2

4

5

7

Figure 30: Non-hypercube web application #3 - actual model vs. created model

85

Non-hypercube Web Application #4: Previous, Next

This application consists of a series of states which are linked by ñpreviousò and ñnextò buttons.

next

Actual Model

next

next

next

next

next

next

previous

next

Model Produced By Crawling Tool

previous

previous

previous

previous

previous

previous

previous

Figure 31: Non-hypercube web application #4: Previous, Next - actual model vs. created model

86

Non-hypercube Web Application #5: AJAX News

The final application tested is a publicly available test AJAX application [53] developed by [19].

It consists of 8 states, each displaying a different news article. The application consists of

ñpreviousò and ñnextò buttons which allow the user to cycle through the articles. Additionally,

the title of each article is listed in every state. Therefore, the user can access any article (state)

from any state. The model of this application would therefore be a fully connected graph. Figure

32 illustrates this with the model produced by the prototype crawling tool.

Figure 32: Model of non-hypercube web application #5: AJAX News

87

7.2.3 Crawling Ef ficiency

Comparison testing is performed on the applications presented in Section 7.2.2. The event-based

crawling strategy presented in this thesis (which uses the MTC algorithm to generate the initial

set of chains for each hypercube) is compared to a breadth-first crawling strategy and a depth-

first crawling strategy. In an effort to ensure that results are not influenced by a specific ordering

of the events in each state, the events in each state are randomly ordered for each crawl and each

web application is crawled 10 times with each strategy. The results presented for a given

strategyôs performance for a specific application indicate the average of these 10 crawls. The

results are summarized in this section while tables showing the full results can be found in

Appendix B: Crawling Strategy Comparisons.

The results of these tests present the following statistics:

¶ How quickly new states are discovered (visited). This is tracked by:

o The total number of transitions required before discovering each state.

o The total number of resets required before discovering each state.

¶ How quickly new transitions are discovered (executed). This is tracked by:

o The total number of transitions required before discovering each transition.

o The total number of resets required before discovering each transition.

In testing, a reset is performed by reloading the page at the URL of the base state. However, as

discussed in Section 3.2, this method may not be sufficient for many web applications.

Therefore, the number of steps required to reset an application may vary.

88

Given that the strategy is expected to perform at its best in the case of a hypercube application (a

web application which follows the structure of a hypercube), the strategies are first compared by

crawling hypercube web applications.

4 Dimensional Hypercube Web Application

In Figure 33 and Figure 34 the MTC-based strategy is shown to outperform the breadth-first and

depth-first strategies both for transitions required to visit each state of the application and for

total transitions required to execute each transition of the application. The MTC-based strategy is

able to find all states in an average of 20 transitions whereas this is done in 68 transitions using

breadth-first and 47 transitions using depth-first. The MTC-based strategy also requires less

resets to find all states (5), compared to breadth-first (28) and depth-first (15).

89

Figure 33: Transitions vs. states discovered (4 dimensional hypercube web application)

Figure 34: Resets vs. states discovered (4 dimensional hypercube web application)

Figure 35 and Figure 36 show that the MTC-based strategy allows visiting all transitions before

the breadth-first and depth-first strategies. It takes 40 transitions and 11 resets while using

breadth-first takes 80 transitions and 31 resets and depth-first takes 52 transitions and 17 resets.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Transitions

States Discovered

MTC

Breadth-First

Depth-First

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Resets

States Discovered

MTC

Breadth-First

Depth-First

90

Figure 35: Transitions vs. transitions discovered (4 dimensional hypercube web application)

Figure 36: Resets vs. transitions discovered (4 dimensional hypercube web application)

Also, the MTC-based strategy makes it possible to complete the crawl in 40 transitions and 11

resets whereas this takes 80 transitions and 31 resets using breadth-first and 52 transitions and 17

resets using depth-first.

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Transitions

Transitions Discovered

MTC

Breadth-First

Depth-First

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Resets

Transitions Discovered

MTC

Breadth-First

Depth-First

91

Testing is also completed on hypercube applications of 3, 5 and 6 dimensions. In each case, the

results mirror those for the 4 dimensional hypercube web application. The MTC-based crawl

outperforms the depth-first and breath-first crawls by a significant margin with the disparity in

performance increasing as the number of states increase.

Non-hypercube Web Application #1

The strategy is tested using a non-hypercube web application. As Figure 37 and Figure 38 show,

the MTC-based strategy allows finding all states in fewer transitions and resets (9.8 and 2.4

respectively) than breadth-first (20.1 transitions and 9.7 resets) and depth-first (12 transitions and

3.7 resets) crawls.

Figure 37: Transitions vs. states discovered (Non-hypercube Web application #1)

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Transitions

States Discovered

MTC

Breadth-First

Depth-First

92

Figure 38: Resets vs. states discovered (Non-hypercube Web application #1)

The MTC-based strategy is also able to discover more transitions in less time. Figure 39 and

Figure 40 show this faster rate of transition discovery.

Figure 39: Transitions vs. transitions discovered (Non-hypercube web application #1)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Resets

States Discovered

MTC

Breadth-First

Depth-First

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Transitions

Transitions Discovered

MTC

Breadth-First

Depth-First

93

Figure 40: Resets vs. transitions discovered (Non-hypercube web application #1)

Non-hypercube Web Application #2

In this case, the breadth-first crawl again exhibits the worst performance, requiring 35.2

transitions and 13.3 resets to discover all 13 states of the application. It takes the MTC-based

crawl 24 transitions and 7.1 resets to accomplish the same task. The depth-first crawl is able to

discover all states in roughly the same number of states and transitions, taking 24.6 transitions

and 6.7 resets. However, as Figure 41 and Figure 42 show, the MTC-based crawl discovers states

at a faster rate for a signification portion of the crawl (this can be observed by looking at the data

for states 8 through 12) before slowing down to find the last state in about the same number of

transitions as the depth-first crawl.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

Resets

Transitions Discovered

MTC

Breadth-First

Depth-First

94

Figure 41: Transitions vs. states discovered (Non-hypercube web application #2)

Figure 42: Resets vs. states discovered (Non-hypercube web application #2)

Figure 43 and Figure 44 show that the discovery of transitions follows the same trend seen in

Figure 41 and Figure 42. The breadth-first crawl requires the most transitions (38) and resets

(14). The MTC-based crawl and the depth-first crawl have a similar rate of transition discovery

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13

Transitions

States Discovered

MTC

Breadth-First

Depth-First

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13

Resets

States Discovered

MTC

Breadth-First

Depth-First

95

in terms of resets. However, in terms of transitions, the MTC-based crawl once again discovers

many at a faster rate than the depth-first crawl before that rate decreases resulting in both

discovering the 15
th
 (final) transition in a similar number of transitions (26.4 for the MTC-based

crawl and 25.4 for the depth-first crawl).

Figure 43: Transitions vs. transitions discovered (Non-hypercube web application #2)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transitions

Transitions Discovered

MTC

Breadth-First

Depth-First

96

Figure 44: Resets vs. transitions discovered (Non-hypercube web application #2)

Non-hypercube Web Application #3

The results from testing this application (shown in Figure 45) reveal that the MTC-based crawl

discovers states at a slightly faster rate (in terms of transitions required) than the depth-first

crawl. The depth-first crawl and breadth-first crawl discover states at the same rate (in terms of

transitions required) for most of the crawl before the rate of discovery by the breadth-first state

increases.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resets

Transitions Discovered

MTC

Breadth-First

Depth-First

97

Figure 45: Transitions vs. states discovered (Non-hypercube web application #3)

Figure 46 shows that the number of resets required to discover all states is greatest for the

breadth-first crawl (27.9) whereas the MTC-based crawl and the depth-first crawl require a

similar number of resets for each state discovered. The total number of resets required to

discover all states is 15.2 for the MTC-based crawl and 13.8 for the depth-first crawl.

Figure 46: Resets vs. states discovered (Non-hypercube web application #3)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Transitions

States Discovered

MTC

Breadth-First

Depth-First

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Resets

States Discovered

MTC

Breadth-First

Depth-First

98

Figure 47 shows similar results to Figure 46. The number of transitions and resets required to

discover each transition is almost the same for depth-first and MTC-based crawling. Again, the

breadth-first crawl requires significantly more transitions for almost each transition discovered.

In total it takes 79 transitions for the breadth-first crawl compared to 52.2 and 48 transitions for

the MTC and depth-first crawl respectively. The results shown in Figure 48 indicate that the

number of resets required to discover each transition are similar to the number of transitions

required.

Figure 47: Transitions vs. transitions discovered (Non-hypercube web application #3)

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Transitions

Transitions Discovered

MTC

Breadth-First

Depth-First

