
An Implementation of Hierarchical Inter-domain

Routing in the context of UCLPv2

Master Thesis By

Qi Wang

A thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements for the degree of
Master of Applied Science, Electrical Engineering

Ottawa-Carleton Institute for Computer Science
School of Information Technology and Engineering

University Of Ottawa
Ottawa, Ontario, Canada

January 15, 2007

Abstract

As customer-owned and managed optical networks gain more popularity with large

enterprises and institutions, the need to enable end-users to dynamically provision and

configure network resources inspires the development of the second version of User

Controlled Lightpath Provisioning System (UCLPv2).

The UCLPv2 software is based on a service-oriented architecture in which network

resources are exposed as and managed through Web services. Furthermore, it introduces

a new concept called Articulated Private Network, which is a collection of resources that

end-users can change or articulate its topology dynamically.

The current system lacks the capability to automatically establish an end-to-end

connection given a pair of source and destination switches. The thesis describes the new

intra-domain and inter-domain routing functionalities as an enhancement to the UCLPv2.

Furthermore, it focuses on the design and implementation of the inter-domain routing,

which is based on the hierarchical management architecture for networks with condo-

switches. The routing algorithm is implemented through the adaptation of the Dijkstar’s

algorithm to a hypergraph.

 2

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Gregor von Bochmann for his

insightful feedback and motivational guidance. Over the past two years, he has taught me

how to engage in research activities and write an academic paper. I am also grateful to

Dr. Michel Savoie, Scott Campbell, Hanxi Zhang, who are the UCLPv2 development

team members at Communication Research Center, for their cooperation and support.

 3

Table of Contents

Abstract ... 2

Acknowledgements... 3

Table of Contents.. 4

List of Figures ... 6

Chapter 1 - Introduction.. 8

Chapter 2 - Service-Oriented Architecture and Web Services Technology 10

2.1. Service-Oriented Architecture.. 10

2.2. Web Services Technology.. 12

2.2.1. Extensible Markup Language .. 13

2.2.2. XML Schema ... 14

2.2.3. Web Service Description Language... 17

2.2.4. SOAP Protocol ... 20

2.2.5. Axis Web Service Engine .. 21

2.2.6. Service Orchestration and Business Process Execution Language.................. 22

Chapter 3 - Overview of Internet Routing Protocols .. 25

3.1. Routing Information Protocol... 26

3.2. Border Gateway Protocol ... 27

3.3. Open Shortest-Path First Protocol .. 28

3.3.1. Dijkstra’s Algorithm .. 29

Chapter 4 - User Controlled Lightpath Provisioning System Version 2 33

4.1. UCLPv2 Overview ... 33

4.2. UCLPv2 Use Case .. 35

4.3. UCLPv2 Architecture ... 37

4.3.1. Resource Management Layer... 38

4.3.2. Service Orchestration Layer... 39

4.3.3. User Access Layer.. 42

4.4. UCLPv2 Intra-domain Routing Capability .. 43

Chapter 5 - Design of Hierarchical Inter-domain Routing ... 46

5.1. Inter-domain Routing Concepts for Networks with Condo-switches 47

 4

5.2. Inter-domain Routing Design for UCLPv2 .. 51

5.2.1. Resource List Modification.. 52

5.2.2. Design Choices for Hierarchical Addressing ... 54

5.2.3. Network Management Web Service .. 54

5.2.3.1. Subnetwork Registration.. 55

5.2.3.2. Switch Resource Update .. 56

5.2.3.3 Subnetwork Unregistration ... 56

5.2.3.4 Establishing End-to-End Connections .. 56

5.2.3.5. Release Resource ... 60

Chapter 6 - Implementation of Hierarchical Inter-domain Routing 61

6.1. Client Program.. 61

6.2. Implementation of the END-TO-END Connection Establishment Operation 61

6.2.1. Analysis of Source and Destination Addresses.. 62

6.2.2. Establishment of Three Types of Connections .. 64

6.2.2.1. Establishing Connection of Type One ... 65

6.2.2.2. Establishing Connection of Type Two .. 65

6.2.2.3. Establishing Connection of Type Three .. 66

6.2.3. Implementation of Shortest-Path Routing Algorithm...................................... 66

6.2.3.1. HyperGraph Data Structure ... 67

6.2.3.2. Routing Algorithm... 68

6.3. Class-Level Implementation of the Hierarchical Network Management Web

Service ... 70

6.4. Consideration of Resource Access Rights.. 74

6.5. Network Management Web Service Example Usage... 75

Chapter 7 - Conclusion ... 80

References... 81

 5

List of Figures

Figure 1: Service Participants Relationship [3] .. 11

Figure 2: Web Services Architecture Stack [4] .. 13

Figure 3: XML Schema Data Types [6] ... 15

Figure 4: WSDL File Structure... 18

Figure 5: SOAP Message Structure .. 20

Figure 6: A simplified View of Axis Architecture [3].. 22

Figure 7: BPEL Process Example [12] ... 23

Figure 8: Graph Example.. 30

Figure 9: Physical Network View [21] ... 35

Figure 10: Logical Resource View [21].. 36

Figure 11: APN View [21].. 37

Figure 12: Three Layered System Architecture [20] ... 38

Figure 13: Relationship between LP-WS and XC-WS... 40

Figure 14: Relation between I-WS and XC-WS... 41

Figure 15: LP-WS and I-WS forming an END-TO-END Path .. 41

Figure 16: Example Configuration of Links, Switches, and Terminal Nodes [1] 48

Figure 17: Hierarchical Inter-domain Structure Overlaid on Figure 16 [1]...................... 49

Figure 18: UML Diagram of the Current UCLPv2 Resource List 51

Figure 19: UML Diagram of a Modified Resource List ... 53

Figure 20: Hypergraph Representation of a Physical Network .. 59

Figure 21: Hierarchical Relationship between Network Management Entities................ 62

Figure 22: UML Class Diagram of Graph Data Structure.. 67

Figure 23: UML Class Diagram of the Implementation of the Network Management

Service... 71

Figure 24: an Example of a Hierarchical Network Management System 75

Figure 25: Topology of Network N1 .. 76

Figure 26: Topology of Network N2 .. 77

Figure 27: Topology of Network N3 .. 77

Figure 28: Topology of Network N4 .. 78

 6

Figure 29: Topology of Network N5 .. 78

Figure 30: A List of Switches Involved in an End-to-End Connection Returned by

Network N1... 79

 7

Chapter 1 - Introduction

In recent years, the idea of customer-owned and managed optical network becomes

popular. This type of network is rooted in the metro dark fiber network and long-haul

wavelength network. Both research and commercial organizations have purchased or

leased dark fibers or wavelengths to acquire the right of usage of these resources.

Furthermore, these organizations can sublease the resources to their customers. A

common practice is that organizations share the capital cost of network deployment. For

example, they together purchase an optical switch, and each organization acquires

ownership of a subset of ports on the switch. Similarly, organizations can share the cost

of purchasing a single fiber, and each acquires ownership of a subset of channels on the

fiber. Because organizations share network resources in a condominium fashion, this type

of network is often referred as condominium network. Similarly, because a switch within

the condominium network can be shared by different organizations, such type of switch is

known as condo switch. An organization owning a port of the switch also owns the fiber

attached to the port [1].

A system for User Controlled Lightpath Provisioning (UCLPv2) [2] was developed to

facilitate the management of customer-owned networks. It enables network

administrators of an organization to configure a virtual network topology, provision

lightpaths, and allocate resources to end-users or other organizations. The software can

manage optical networks with different underlying switching technologies. Network

resources are abstracted as software objects in the system in order to achieve technology

transparency. Currently, the software is used to manage CA* net 4, a Canadian Internet

research and education optical network. Research institutes often lease resources from

CA* net 4. Subsequently, administrators of an institute use the software to create end-to-

end connections within their domain for the purpose of transferring large amount of

scientific data for a period of time.

However, the UCLPv2 software does have some limitations. One is the lack of an

automatic mechanism to establish an end-to-end connection across multiple

 8

administrative domains using advertised resources of these domains. At present,

representatives of organizations involved have to negotiate and coordinate the steps. This

manual process will become very inefficient as the need for setting up inter-domain

connections increases. To address the inter-domain routing problem within the context of

UCLPv2, this thesis focuses on a solution based on the hierarchical inter-domain

management approach proposed by Professor Bochmann [1]. The implementation

framework is built upon Web services technology in accordance with the service-oriented

approach of UCLPv2. The inter-domain routing is achieved by the collaborations of

routing Web services on behalf of condominium networks owned by different

organizations. Furthermore, a client program was implemented to provide end-users a

graphical interface to request end-to-end connections across different domains.

The thesis is organized as follows. Chapter 1 gives an introduction of the paper. Chapter

2 provides background information on service-oriented architecture and Web services

technology. Chapter 3 reviews some common Internet routing protocols and explains the

Dijkstra’s algorithm in detail. Chapter 4 presents the three-layer system architecture and

the intra-domain routing capability of the UCLPv2 software. In addition, the chapter

briefly explains the Eclipse Rich Client Platform upon which the UCLPv2 GUI was built.

Chapter 5 describes the concepts of hierarchical inter-domain routing for networks with

condo switches in detail. Furthermore, it explains how to apply the concepts to the design

of the inter-domain routing solution within the context of UCLPv2. Chapter 6 focuses on

the implementation of the hierarchical inter-domain routing. Finally, chapter 7 concludes

the thesis and presents some ideas for future improvement.

 9

Chapter 2 - Service-Oriented Architecture and Web
Services Technology

2.1. Service-Oriented Architecture

Service-oriented architecture (SOA) evolves from the client-server computing model.

The design principles of SOA dictate the software components to be modeled as services

conforming to well-defined interfaces. An interface definition specifies what functions

the component provides and how to interact with the service. The emphasis is on the

design of interfaces, rather than component implementation. After deployment, services

can be invoked over networks by any application knowing the interface [3]. In fact, a

large software system can be built based on many independent services, which is the

approach adopted by UCLPv2.

Service-oriented architecture is a natural extension of the object-oriented design. Object-

oriented design can be viewed as an abstraction at the class level; however, SOA extends

the abstraction higher to the service level. Consequently, SOA has the same benefits of

the object-oriented design approach. One of the advantages of object-oriented design is

the increased modularity. This is achieved by representing a real-world entity using a

class definition which encapsulates the entity’s attributes and behavior. SOA leverages on

the object-oriented design approach by defining service interfaces first. The

implementation logic is well encapsulated in the classes, and can be changed

independently. Increased modularity implies less dependency between components, as a

result, the whole system becomes loosely coupled.

One of the benefits of loosely coupled systems is their adaptability to changes in the

future. Giving the fact that the nature of the software development process is iterative,

and new feature requirements are inevitable, designing loosely coupled systems is of

paramount importance.

 10

The architecture promotes the reusability of software components. The same service can

be invoked by different applications, while providing the same external behavior in

accordance with its interface definition. Therefore, less programming codes are produced.

The objective is to code once, and use it many times. SOA often consists of three

participants: service requestor, service provider, and service registry [3]. Figure 1 shows

their relationship.

Figure 1: Service Participants Relationship [3]

Service requestor is the consumer of the service. It can communicate with the service

registry to obtain a proxy of the service, and invokes the service through the proxy. The

format of the request message is also defined according to the service interface

description. The invocation can be synchronous or asynchronous depending on the

application.

The service provider defines the interface, and publishes it to a well-known service

registry. Furthermore, it is responsible for implementing the service. Upon invocation, it

processes the input message and executes the implementation logic. It can optionally

send back a response message to the requestor.

The service registry provides a common directory service and it acts as a broker between

service provider and service requestor. A good example of a service registry is the Jini

lookup registry. A service provider can register its service with the lookup registry by one

 11

of two ways. If the service is implemented as a single class, the provider can store an

instance of the service at the registry. If the implementation of the service involves

multiple classes implemented on a server, then the provider can store a service proxy at

the registry. The proxy communicates with other server-side objects. A client can send a

request to the registry to search for a service with matching criteria such as service

attributes. The registry responds with either a copy of the service instance or the service

proxy.

Another well-known service registry is Universal Description, Discovery, and Integration

(UDDI). UDDI acts as a centralized service registry storing the locations and descriptions

of services. A client program can query the UDDI to obtain some meta-information about

a desired service. However, the disadvantage is that developers have to program the

service proxies themselves. At the current stage of development, UCLPv2 did not use a

service registry, instead some Web service proxies were developed which the GUI client

program uses to invoke the UCLP Web services. The proxies are to be installed along

with the GUI program. The approach simplifies the whole system.

2.2. Web Services Technology

Web services technology is the most dominant implementation of SOA, and its standards

are well accepted by the industry. The World Wide Web Consortium (W3C) working

group defines a Web service as a software system designed to support interoperable

machine-to-machine interaction over a network. Conceptually, services can be viewed as

resources that provide an abstract set of functionalities. A Web service is not bound to

any particular implementation. In practice, it has an interface described in a machine-

processable format, using Web Service Description Language (WSDL). Other systems

interact with it in a manner prescribed by its WSDL description using Simple Object

Access Protocol (SOAP) messages, typically conveyed over HTTP with an XML

serialization in conjunction with other Web-related standards [4].

 12

The most important benefit of the Web services technology is that it enables the

interoperability among software applications adhering to the relevant set of Web Services

specifications. Software applications can be implemented on different platforms and

using different programming languages. Figure 2 illustrates the Web services architecture

stack. At the bottom of the stack is the communication layer. Transport protocols such as

HTTP, FTP, JMS can be used to transfer Web service messages, which are encapsulated

in SOAP envelops. The description layer uses WSDL standard to specify service

interface definitions. The process layer includes several specifications to orchestrate Web

services. The technologies underpinning Web services are XML, DTD, and XML

Schema. The following sections discuss these technologies in more detail.

Figure 2: Web Services Architecture Stack [4]

2.2.1. Extensible Markup Language

 13

The development of Web services technology started with XML, which stands for

Extensible Markup Language. A markup language consists of a set of special tags that are

intermingled with the primary data, and these metadata contain extra information

describing the data.

XML has evolved into the de facto industry standard for structuring, describing, and

exchanging textual information. XML adopts a tree structure to embed markup elements

in document. Furthermore, it even allows users to design their own customized markup

language for their documents.

XML-based documents achieve reusability by defining namespaces for elements. As a

result, elements with the same name, but different namespaces, can be used in one

document. The full-qualified name of any XML element consists of its namespace and its

local name. Namespaces are based on Uniform Resource Identifier (URI) [3]. URIs are

used to uniquely identify resources on the Web. Resource can be network accessible such

as a web page, or network inaccessible such as an abstract concept. In fact, anyone can

create a URI to represent anything as long as the general specification of URI is followed

[5].

2.2.2. XML Schema

In order for an XML document to be machine-processable, it is not sufficient for the

document to merely comply with the rules of the XML syntax. The document must also

conform to a predefined structure, so that software can validate the content of the

document and automatically process it. The XML Schema notation was designed to

address the need for specifying the document structure.

XML Schema is a meta-language for describing the structure of XML documents and

provides a data typing system to define vocabularies embedded in XML document. It has

a built-in type hierarchy as shown in Figure 3. The base of the hierarchy is anyType,

which is then extended into two groups: any simple type and all complex types.

 14

Figure 3: XML Schema Data Types [6]

 15

Simple types including string, integer, and date which are built-in types. All complex

types are user-defined. One main difference is that complex data types may contain

nested XML elements and attributes, simple type can not have any child XML elements.

Furthermore, one can specify sequence order and multiplicity of child elements in the

definition of a complex data type.

Data types in an XML Schema are connected by derivation, that is, the definition of a

new type must be based on another existing type. The two common techniques of

derivation are restriction and extension. Restriction means narrowing the allowed set of

values in the current type; whereas, extension means expand the set of values of an

existing type the new type is based on [7].

The following is an example of defining a simple data type called countryType.

<xs:simpleType name=“countryType”>

<xs:restriction base=“xs:string”>

<xs:enumeration value=“Canada”/>

<xs:enumeration value=“China”/>

<xs:enumeration value=“Columbia”/>

</xs:restriction>

</xs:simpleType>

<element name=“country” type=“countryType”>

We define the countryType by restricting the base type String. A valid value must be one

of the strings Canada, China, Columbia. Consequently an XML document may contain

the following XML element:

<country>Canada</country>

The following is an example of defining a complex data type that we used in our

implementation.

 16

<xs:complexType name=”routingEndPoints”>

 <xs:restriction base=“xs:anyType”>

<xs:sequence>

<xs:element name="endPointOne" type="xs:string"

minOccurs="1" maxOccurs="1"/>

<xs:element name="endPointTwo" type="xs:string"

minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

</xs:restriction>

</xs:complexType>

<element name=“endPoints” type=“routingEndPoints”>

Consequently, an XML document may contain the following XML element:

< endPoints >

<endPointOne>switch1</endPointOne>

<endPointOne>switch5</endPointOne>

</endPoints >

2.2.3. Web Service Description Language

The W3C organization defined WSDL as a language for describing network services as a

set of endpoints operating on messages containing either document-oriented or

procedure-oriented information [8]. In essence, it provides the functional description of a

Web service, and plays the same role for Web services as the Interface Definition

Language (IDL) for Common Object Request Broker Architecture (CORBA) [9].

WSDL uses XML elements to describe the four aspects of a Web service which are the

functionalities of a Web service, the data types used in the request and response

 17

messages, the deployment location of a service, and the binding to a network transport

protocol. In other words, it specifies what the service does, where to locate the service,

and how to access the service. Since WSDL is a XML-based common language, it is

platform-neutral and language-independent. Figure 4 shows a typical WSDL file

structure.

Figure 4: WSDL File Structure

A WSDL document uses the following keywords to describe the service [8].

 18

• Definitions: It is the root XML element, signifying the starting point of a WSDL

definition. It specifies the name of a Web service, and namespaces used in the

WSDL file.

• Types: It is a container to define data type definitions used in the request and

response messages. A commonly used type system is XML Schema; however, it

is not confined to any particular type system, thereby providing the maximum

flexibility.

• Message: This section defines the precise format of input and output messages. It

consists of the name of the message, and zero or more message parts. The

message part specifies the input and output parameters.

• PortType: This section comprises one or more operations. It describes all the

actions that can be performed by a Web service. In other words, it specifies the

operational interface of a Web service.

• Operation: Each operation is equivalent to a message signature. An operation can

specify input and output messages by referencing their unique names.

• Binding: It specifies a concrete protocol and data format to be used for a

particular port type. As a result, abstract input and output messages can be

mapped to concrete data representation on the wire. A common binding is to use

SOAP message format over HTTP protocol.

• Service: It consists of one or more ports.

• Port: A port is an endpoint that specifies the network address of a service and the

corresponding binding.

There are two additional utility elements.

• Documentation: its purpose is to provide some annotation for human readers.

• Import: the purpose of this element is to advocate reusability of WSDL

documents. It allows one WSDL document to import other WSDL documents and

use any elements already defined in those namespaces.

 19

Message exchange is an importance aspect of Web services. Messages represent the data

structure and can be enclosed in different protocols. Common examples are HTTP

GET/POST message, a plain XML-message, SOAP message and so on. Among them,

SOAP messaging has become the most prevalent means for communication with Web

services.

2.2.4. SOAP Protocol

Simple Object Access Protocol is a protocol developed by W3C. It is an XML-based

communication protocol that enables distributed applications to exchange structured and

typed information. It is platform neutral and language independent. Due to its simplicity

and extensibility, it has become a cornerstone of the Web service architecture. Figure 5

shows the structure of a SOAP message.

Figure 5: SOAP Message Structure

 20

A Soap message uses keyword “envelop” to encapsulate a header section and a body

section. The header section can contain zero or more headers, whereas, there can only be

one Soap body per message. The body consists of the data content to be exchanged

between applications. The purpose of the header is to provide extensibility to the Soap

mechanism. For example, one can include some security information in a header without

affecting the format of the message in the body section. Furthermore, header attributes

serve to inform the message recipients to process the information in a particular way.

Depending on the content of the header, new functionality can be added with minimum

impact on the current system [10].

The SOAP data model and SOAP encoding provide means to map application-level data

structure to XML representation on the wires. For example, Java objects can be

transformed into XML elements and sent down the wire, on the receiving end, the XML

data will be converted back to the Java representation.

The SOAP specification also includes a protocol binding framework. A binding implies a

set of rules for transferring a SOAP message on top of a transport protocol. One of the

most popular binding is SOAP over HTTP, which takes advantage of the request-

response mechanism of HTTP to achieve two-way communication. In summary, SOAP

describes the format of the envelope, but not the format of the XML data inside the

envelope [11].

2.2.5. Axis Web Service Engine

Apache Axis is a popular SOAP engine, which is an implementation of the SOAP

protocol. It is an open-source software implemented both in Java and C++ languages. It

can be used to host Web services, process SOAP messages, and manipulate WSDL

documents. Furthermore, it provides client-side APIs to invoke Web services, and

utilities to deploy Web services. Its set of tools enables the fast development of Web

services both on the client-side and server-side.

 21

Figure 6 shows a simplified view of the Axis architecture, which is based on the concept

of chains of message handlers. A message handler in Axis is a software component that

implements a predefined interface. When a SOAP message is received, the engine will

pass the message through a chain of handlers, with each carrying out specific functions.

One advantage of the architecture is that developers can freely add their own handlers to

the processing chain. UCLPv2 took advantage of this feature by adding a customized

security handler into the chain to check the authenticity of messages. The core business

logic pertaining to a Web service is typically implemented in one of the handlers [3].

Figure 6: A simplified View of Axis Architecture [3]

2.2.6. Service Orchestration and Business Process Execution
Language

To achieve the full potential of the Web services technology, service orchestration plays

an important role. Service orchestration focuses on the composition and interaction of

Web services in order to realize a common business objective. The Business Process

Execution Language for Web Services (BPEL) is developed for this purpose. BPEL uses

a XML-based grammar to describe the behavior aspect of a business process. It enables

developers to define an executable long-running BPEL process which interacts with

third-parties’ Web services in a deterministic order. The service invocations can be

coordinated in sequential or concurrent order. Furthermore, a BPEL process itself is a

Web service, and exposes its interface defined by a WSDL document. As a result, service

orchestration becomes recursive in nature.

 22

A BPEL process is implemented as an XML file that consists of BPEL specific constructs

in order to define the process flow. These XML constructs include partner definitions,

message receive, message reply, variable manipulation, flow control, sequential

invocation, concurrent invocation, exception handling, and transaction compensation. For

example, the following are some commonly used elements: <receive>, <reply>,

<invoke>, <sequence>.

A BPEL specification uses WSDL message definition and XML Schema data types to

model information. For example, request and response messages are defined in WSDL

documents, and referenced in BPEL process, so long as the WSDL files are imported into

the BPLE process.

Figure 7: BPEL Process Example [12]

Figure 7 illustrates a typical scenario. A running BPEL process is invoked by a Web

service. Upon receiving a request message, the BPEL process creates an instance of itself,

which executes the control logic defined in the XML file. The steps consist of invoking a

series of external Web services. The activities can be carried out in both sequential and

concurrent orders. At the end of the lifecycle of the instance, a reply message is

 23

constructed and sent back to the client. The message could indicate a successful result, or

an exception. Meanwhile, the process waits for the next invocation.

The BPEL XML files are deployed in a BPEL engine, which interprets and executes the

BPEL grammar. The UCLP project adopted an open source BPEL engine, namely

ActiveBPEL. It provides a robust runtime environment that is capable of executing

process definitions defined by the BPEL specifications [13].

 24

Chapter 3 - Overview of Internet Routing Protocols

Routing protocols are developed to facilitate the process of computing paths from a

source node to a destination node in a network. In fact, routing protocols exist in

telephone network predating the Internet. As the Internet grew into thousands of inter-

connected networks of different sizes, a number of routing protocols were designed to

meet different requirements.

A routing protocol constructs a routing table at each router. This is achieved by the

exchange of routing information, which reflects current traffic conditions in the network.

When a packet arrives at a router, a switching process takes place. The router reads the

destination of the packet, and looks up the corresponding entry in its routing table. It then

forwards the packet to the next hop found in the table.

Routing protocols can be categorized into intra-domain and inter-domain based on

autonomous system division. Intra-domain protocols perform routing functions within a

single administratively autonomous domain. On the other hand, inter-domain protocols

carry out routing functions between different autonomous domains.

Another categorization of routing protocols is based on the type of the distributed routing

algorithm. These include distance-vector, link-state and path-vector routing. A router

using the distance-vector protocol sends its neighbors a vector of its estimated distances

to all the subnetworks periodically. The router builds up its routing table based on the

received updates from its neighbors. However, it does not have the knowledge of the

topology of the network. Routing Information Protocol (RIP) is an example of the

distance-vector approach. In a link-state protocol, every router sends the cost values of its

own links to all other routers in the network. As a result, every router knows the topology

of the network. By running a shortest-path algorithm, a router can build up its routing

table. Open Shortest-Path First (OSPF) protocol is an example of the link-state approach.

The path-vector approach is quite different, it does not use routing metrics, instead it is

based on routing policies associated with autonomous systems (AS). The protocol

 25

achieves better scalability and is often used for inter-domain routing. Border Gateway

Protocol (BGP) is an example of the path-vector approach.

This chapter begins with a brief overview of RIP as an example of intra-domain protocol

and BGP as an example of inter-domain protocol. It then describes OSPF including

Dijkstar’s algorithm in detail in order to relate our hierarchical inter-domain routing

approach with some fundamental concepts in OSPF.

3.1. Routing Information Protocol

RIP is a commonly used protocol based on a distance vector algorithm. The algorithm

uses distance vectors to mathematically compute lowest-metric paths to all given

destinations. The distance metric in RIP represents the number of hops between two

network elements. One main characteristic of the protocol is that routing information is

exchanged only between adjacent routers. Furthermore, the protocol is suitable for

medium-size networks. This is due to the mechanism adopted to prevent routing loop.

Any destination with a hop count greater than 15 is considered unreachable.

The way RIP works is quite straightforward. Each router maintains a routing table that

has a single entry for every destination subnetwork. Each entry consists of information

such as distance to the identified network and the IP address of the next hop router. Each

router sends an update message describing its routing table to all its neighboring routers

at regular intervals or when the network topology changes. If a receiving router discovers

that a shorter path to a destination exists, it will update its routing table. By repeating the

update process at every router, any network change is quickly propagated to the entire

network. In contrast to the OSPF protocol, routers using RIP do not have a complete view

of the network topology [14].

Over the years, RIP has evolved to version 2 with enhanced capabilities such as

authentication, subnet masks, and multicast support. Since RIP assumes that the same

 26

routing metric is used by all routers, it is only suitable for routing within a single

Autonomous System. In addition, the protocol is still not suitable for large network due to

the 15 hop limitation. Furthermore, “This protocol uses fixed metrics to compare

alternative routes. It is not appropriate for situations where routes need to be chosen

based on real-time parameters such a measured delay, reliability, or load. The obvious

extensions to allow metrics of this type are likely to introduce instabilities of a sort that

the protocol is not designed to handle” [15].

3.2. Border Gateway Protocol

BGP is an exterior routing protocol which has become the most widely used protocol for

inter-Autonomous Systems routing. It can also be used for the purpose of intra-AS

routing. Depending on the mode of operation, it can be referred to as Internal BGP or

External BGP. BGP-4 is the newest version. One interesting fact is that BGP uses TCP as

its transport protocol whereas most other protocols use UDP.

BGP thrives on a quite different routing approach, that is, instead of using routing

metrics, it is based on lists of autonomous systems to be traversed to reach a destination

network. This coarse-grained approach improves scalability, thereby, making it suitable

for large network such as the Internet. The selection of a path can be subject to routing

policy. For example, one common policy is to choose a path that minimizes the number

of ASs traversed. Another policy could be to avoid particular AS due to performance

reasons [14].

Similar to other routing protocols, BGP relies on the exchange of routing information

among routers. However, the roles of these routers are two-folded. First, the router must

run an intra-domain routing protocol to communicate with other routers within the same

AS in order to acquire the topology of the AS. Secondly, it runs BGP to exchange

information with routers located in different ASs.

 27

BGP routers must establish neighboring relationship with routers in other domains first.

A router initiates the neighbor acquisition process by sending an Open message to

another router, which can respond with a Keepalive message. Subsequently, neighboring

routers must send Keepalive messages to each other periodically in order to maintain the

relationship. Routers will broadcast Update messages when their routing table has

changed. An Update message consists of new route and/or withdrawn route information.

A route entry includes a list of ASs that are traversed for this route, the IP address of the

next-hop router for this route, and a list of subnetworks that can be reached. When

another router receives the Update message, it will compare a new route with existing

information in its routing table, and decide if the new route is the preferred path to the

subnetworks. If so, it will add its current AS to the AS list, modify the next-hop router,

and forward the message to its neighbors. In addition, it will update its routing table

accordingly. To prevent routing loops, a router ignores an Update message that already

includes its own AS in the AS list [14].

3.3. Open Shortest-Path First Protocol

OSPF is a link-state protocol and is specifically designed for intra-AS routing. Since each

router is aware of the state of its physical links, it will send the state information to all the

routers within its area. On subsequent link state changes, each router will again flood the

network with update messages. This approach results in every router to maintain a

complete view of the network topology in its routing database. Based on the consistent

view of the network topology, each router runs the Dijkstra’s algorithm to calculate

shortest paths between every pair of source and destination [14].

OSPF achieves better scalability by introducing the concept of subdividing a large

network into smaller, more manageable subnetworks or areas. The idea is to connect all

areas to a single area known as the backbone area. Acting as the core of a network, the

backbone area performs inter-area routing through the use of border area routers. The role

of a border area router is to connect the backbone area with one or more other areas;

 28

therefore, a border area router can be owned by multiple areas [14]. The role of a condo

switch in a UCLP network is very similar to a border area router in OSPF, since a condo

switch is also used to connect different networks [1]. Routers in a non-backbone area

uses OSPF as their intra-area routing protocol. By limiting the exchange of routing

information to only routers within the same area, the overall routing traffic is reduced.

We can also view the overall network in OSPF as having a two-level hierarchical

structure, with the backbone area at the top level. Our hierarchical approach for inter-

domain routing for network with condo switches shares some similarities with the OSPF

hierarchical concepts as explained in Chapter 5.

3.3.1. Dijkstra’s Algorithm

Dijkstra’s algorithm uses a single metric referred to as link cost to calculate the shortest

paths from a given vertex to all other vertices in a directed graph [16]. The link cost must

be nonnegative. The algorithm processes every vertex in a graph starting from the source

vertex. It divides vertices in a graph into two sets. Set A includes all vertices to which we

have already found the shortest paths from the source vertex; in addition, the total cost of

the path is associated with each of these nodes. Set B includes the rest of the unresolved

vertices.

The following description of the algorithm uses the following symbols. Symbol s

represents the source vertex. Symbol u and v represent any vertex in the graph. C(v)

represents the cost of the shortest path found so far from s to v. In case that the path

between s and v does not exist, C(v) would be set to infinity. Symbol L(u,v) represents

the link cost from vertex u to v. We use a minimum priority queue to implement B with

the order of the vertices in the queue determined by C(v).

The algorithm initializes C[s] to zero, and the path costs of all other vertices to infinity.

The set A is empty, and set B contains all the vertices including the source. The algorithm

repeatedly chooses a vertex u with the minimum cost value from B, and moves the vertex

 29

to set A. It then applies an edge relaxation operation on every adjacent vertex of u as

follows. Suppose v is one of the adjacent vertices of u. If the sum of C(u) and L(u,v) is

less than C(v), that means a shorter path from s to v has been found, then the current

value of C[v] should be replaced with the sum [17]. The pseudo code for Dijkstra’s

algorithm is shown below [18].

C[s] = 0;

C[u] = ∞ for all u ≠ s;

A Ø;

B all vertices;

while B ≠ Ø do

 u Extract-Minimum(B);

 A A union {u};

 for each adjacent vertex v of u such that v is in B do

(perform edge relaxation operation)

if C[u] + L(u,v) < C[v] then

 C[v] C[u] + L(u,v);

We will illustrate how the algorithm works with an example shown in Figure 8.

Figure 8: Graph Example
Step 1: The algorithm starts with initializing the following values.

C(s) := 0; C(v1) := C(v2) := C(v3) := C(v4) := infinite;

 30

A := {}; B := {s, v1,v2,v3,v4}

Step 2: It extracts a vertex with the minimum cost from B. Since the source vertex s has a

cost of zero, it will be chosen and added to A. The edge relaxation operation will be

applied on the adjacent vertices of s, which leads to

C(v1) = 8; C(v2) = 5; C(v3) := C(v4) := infinite;

A := {s}

B := {v1, v2, v3,v4}

Step 3: It repeats the step 2. The vertex with minimum cost extracted from B is v2. Its

adjacent vertices are s, v3 and v4. Since s is already in A, the edge relaxation operation

will be applied on v3 and v4, which leads to

Given: C(v3) = infinite; C(v2) = 5; L(v2,v3) = 10;

Therefore: C(v3) > C(v2)+L(v2,v3)

C(v3) := 15;

Similarly C(v4) := C(v2)+L(v2,v4) := 5+20 := 25;

C(v1) = 8; C(v2) = 5;

A := {s, v2}

B := {v1, v3,v4}

Step 4: The algorithm repeats the step 2 until B is empty.

C(s) := 0; C(v1) := 8; C(v2) := 5;

C(v3) := 9; C(v4) := 10;

A := {s, v1, v2, v3, v4}

B := {}

The algorithm finds the cost values of the shortest paths from the source to all other

vertices in the graph. In practice, it is often necessary to record the corresponding shortest

paths as well. This can be achieved by using a hash table to store a vertex and its

preceding vertex as a key and value pair. Whenever the edge relaxation operation is

 31

successfully applied to a vertex, the hash table will be updated with its new preceding

vertex.

An infinite cost value indicates that a path does not exist. If we are searching for a

shortest path between only two vertices, then the algorithm can exit when the destination

vertex is processed.

 32

Chapter 4 - User Controlled Lightpath Provisioning
System Version 2

4.1. UCLPv2 Overview

There is an increasing demand for organizations to acquire network resources from

multiple service providers or domains and dynamically control these resources suiting the

data transfer requirement of their applications. These applications are often data

intensive, and require the dynamic establishment of multiple end-to-end connections for a

period of time. The end-users of the organizations desire the flexibility to re-configure the

end-to-end connections, and full control and management of their resources without the

interference of network operators. Consequently, a user controlled lightpath provisioning

system was envisioned and implemented. UCLPv2 provides a software solution to enable

end-users to provision network resources in the form of lightpaths and dynamically

configure network topology subject to the requirements of user applications.

Furthermore, users can control bandwidth usage by partitioning a single lightpath into

multiple lighpaths with smaller capacity, or vice versa. Hence, the software provides a

more efficient means for resource utilization. It also facilitates an organization to

sublease resources to other organizations. In essence, UCLPv2, based on SOA design

approach, can be viewed as a configuration and provisioning tool for optical networks.

However, it is not intended to be an automated management system [2].

A key concept in UCLPv2 is the definition of a fundamental lightpath. A fundamental

lightpath is defined as an abstract representation of the basic unit of optical network

partitions. It implies a dedicated communication channel between two adjacent switches.

As a result, it can represent a SONET channel, a wavelength in Wavelength Division

Multiplexing (WDM) network or an Ethernet channel and so on, making this approach

technology independent. It is especially beneficial when making an end-to-end

connection across heterogeneous networks. Furthermore, a lightpath always has two end-

points. These end-points can be physical ports or virtual ports of optical switches [19]. By

 33

modeling physical resources as software objects, the system enables users to provision

lightpaths based on physical links.

Another salient feature is that the system is service-oriented in the sense that resources

including switches, lightpaths, and interfaces are exposed as and managed through Web

services. As a result, users can easily manipulate these resources through the use of Web

service orchestration tools, such as BPEL. More importantly, by linking application Web

services with network resource Web services in BPEL workflows, users effectively bring

the network into the application itself [2].

The software introduces a new concept called Articulated Private Network (APN). An

APN comprises a collection of network resources and is similar to a virtual private

network, except its network topology can be changed or articulated dynamically by end-

users [20]. The words “network topology” refers to the logical configuration of one or

more end-to-end connections using resources within an APN. By executing an APN, end-

to-end connections will be physically established.

There are three types of users in a UCLPv2 system: physical network administrator,

organization administrator, and end-user. Different users have different level of

privileges. A physical network administrator belongs to an organization that owns

physical networks. A user with this role is granted all the operational rights and is

responsible for creating and allocating logical resources to other organizations. An APN

administrator belongs to an organization that does not own physical network but acquires

some logical resources from a physical network provider. He or she is responsible for

managing the resources. A typical operation is to create multiple APNs and assign them

to different end-users. The software meets the needs of end-users of an organization by

allowing them to execute APNs and to re-configure APNs. However, end-users cannot

add or delete logical resources of an APN [20].

 34

4.2. UCLPv2 Use Case

The following is a typical use case of the software. A physical network administrator uses

the UCLPv2 GUI to create a model of the physical network as shown in Figure 9. The

model consists of graphical icons representing network elements for example, a variety of

optical switches. The administrator then provisions each network element by allocating

bandwidth for UCLP usage. Furthermore, these elements are connected by lines that

correspond to the physical fiber links between switches. The topology of the model

reflects the topology of the physical network. Subsequently, the administrator creates

logical resources including lightpaths and interfaces. An interface represents a port or

virtual port on a network element. A subset of the lightpaths and interfaces can be

grouped into a resource list and given to an organization. The resource list is an XML file

describing these logical resources, and it can be sent to APN administrators of the

organization by any electronic means.

Figure 9: Physical Network View [21]

 35

An APN administrator of the organization launches the GUI program that loads the

resource list. A visual representation of the logical resources can be displayed in the

resource list view of the GUI as shown in Figure 10. The administrator can group some

resources into an APN with a pre-configured topology, and assign the APN to an end-

user.

Figure 10: Logical Resource View [21]

The end-user uses the GUI to view, configure or execute an APN. Execution of an APN

means the making of cross connections on the switches along end-to-end paths. Figure 11

shows an APN with two established end-to-end connections in different colors. After

activating the topology, data transfer between any two end points can take place. In case

of new applications that require different end-to-end connections, the user can un-execute

the APN, change its topology, and re-execute it. In other words, the user can articulate

the private network in a way suitable for the current work context.

 36

Figure 11: APN View [21]

4.3. UCLPv2 Architecture

The design and implementation of UCLPv2 leverages multiple technologies including

Eclipse Rich Client Platform (RCP), Web services, and BPEL technologies. Java is the

programming language chosen.

The architecture of the UCLP system is service-oriented and consists of three layers:

User Access Layer, Service Orchestration Layer, and Resource Management Layer.

Figure 12 shows the high-level architecture of the system.

 37

Figure 12: Three Layered System Architecture [20]

4.3.1. Resource Management Layer

The Resource Management Layer comprises Network Element Web services (NE-WS)

that control a family of physical network elements such as optical switches. These are

Axis-based Web services to be deployed on the network carrier’s side. The main Web

service implemented today is a Cross Connect Web Service (XC-WS). XC-WS is

designed to manage optical switching devices such as SONET, SDH, Fiber, and Lambda

Cross Connects. The service has a well-defined WSDL interface that describes different

operations performed on switches. These operations include cross connecting and uncross

connecting a switch. It also handles resource allocation by assigning channels to users

and provides current state information about these resources. The state information

indicates whether a channel is currently being assigned or used. Resource-related

information is kept in a local database. The service translates XML requests into

TL1/CLI commands in order to control physical devices. In essence, XC-WS is the

lowest level of service interacting directly with physical devices. The Web services in the

resource management layer can be extended in the future to include new services to

 38

manage a GMPLS cloud, a VLAN enabled Ethernet switch, a layer-three router and so on

[20].

4.3.2. Service Orchestration Layer

The objective of service orchestration layer is to provide an abstracted view of the lower-

layer network resources. The idea is to use a high-level Web service to encapsulate the

orchestration of a number of Web services implemented in the resource management

layer; as a result, the details of invoking lower layer services become transparent to end-

users or other applications. Since orchestration provides a flexible way to configure

network topologies by invoking different Web services in different orders, it makes the

provisioning of network resources more effortless [20].

The implementation of this layer harnesses the power of BEPL technology to perform

Web service orchestration. With the use of BPEL workflow, it enables users to integrate

multiple Web service invocations into the execution of a single process. Two basic Web

services form the foundation of other higher-level workflows. These are Lightpath Web

Service (LP-WS) and Interface Web Service (I-WS) [20].

A LP-WS represents a communication link or lightpath connecting two Web service-

enabled end-points. An end-point can be an optical switch, an instrument, or any service-

enabled device. Consequently, LP-WS hides the underlying heterogeneous network

devices, thus achieving interoperability. Its WSDL interface definition specifies a set of

operations performed on lightpaths. The main operations include lightpath concatenation,

unlink, partition, and bonding. The concatenation operation creates a longer lightpath by

connecting two existing lightpaths. It invokes the XC-WS to make the cross connection

on the common switch of the two lightpaths. The unlink operation has the opposite effect,

it can be used to undo a concatenation. The partition operation divides the bandwidth of

an existing lightpath into smaller channels, and creates child lightpaths representing these

channels. The bonding operation is the opposite of partition. In addition, a LP-WS

 39

provides operations to query the state of the lightpath. The state information indicates

whether the lightpath is currently concatenated or bonded with other lightpaths [20].

By partitioning an optical network into fundamental lightpaths, and making these

lightpath Web service enabled, higher-layer software can better manipulate network

resources meanwhile hiding the complexity from end-users.

Figure 13 shows the relationship between LP-WS and XC-WS.

Figure 13: Relationship between LP-WS and XC-WS

A I-WS represents a single resource on a network element. For example, it can represent

a physical port or a virtual port on a switch. It supports operations such as create, delete,

query, and use. The purpose of this service is to provide interfaces on the switch for

instruments to attach to. These operations invoke the XC-WS of the switch associated

with a port [20]. Figure 14 shows the relationship between I-WS and XC-WS.

 40

Figure 14: Relation between I-WS and XC-WS

Figure 15 shows an end-to-end path abstractly represented by constituent Web services,

where LP-WSs represent logical channels between switches, and I-WSs represent logical

ports on switch A and C.

Figure 15: LP-WS and I-WS forming an END-TO-END Path

A user can establish an end-to-end connection from switch A to C by invoking I-WS and

LP-WS services. To better automate this process, the service orchestration layer includes

two higher-level workflows: utility workflow and custom workflow. The utility

workflow, also known as connection management Web service, enables users to

dynamically set up an end-to-end connection when provided with a list of lightpath and

interface identifiers. Furthermore, a user can call the utility workflow to partition a single

lightpath into many lighptaths with smaller granularity of bandwidth. The reverse

function, bonding multiple smaller lightpaths into a single lightpath is also feasible [20].

The customer workflow enables a user to predefine any particular sequence for invoking

web services. The result is a programmatically generated BPEL file, which represents a

specific network topology of the APN. At any point of time, the user can execute the

 41

workflow, that is, invoke the underlying LP-WS and I-WS to establish end-to-end

connections conforming to the predefined topology [20].

4.3.3. User Access Layer

User Access Layer includes a graphical user interface (GUI) program that facilitates end-

users to interact with the Web services in the orchestration layer. The GUI is built upon

the Eclipse RCP which was chosen due to its extensibility and popularity.

Eclipse is an open source project initially developed by IBM. It can be used as an

Integrated Development Environment or as a product base for developing new tools. The

plug-in based architecture empowers developers to integrate new tools seamlessly with

the existing Eclipse Platform and other tools. In Eclipse, a plug-in is a software

component that provides a specific set of functions. The Eclipse model offers mechanism

to discover, integrate, and run a set of plug-ins. There are two types of relationship

between plug-ins, dependency and extension. A plug-in can specify what other plug-ins it

requires in order to run. Furthermore, a plug-in can extend the capabilities of an existing

plug-in. Eclipse RCP is a set of plug-ins that acts as a middleware for building rich client

applications [22].

The Eclipse platform is built upon the SWT and JFace frameworks. SWT is comprised of

a collection of primitive GUI components and is implemented entirely in Java, thus, it is

portable cross different platforms. In addition, its design philosophy is to use native

widgets as much as possible by invoking the operative system functions through Java

Native Interface. As a result, the graphical performance is comparable to a native

application, while keeping the same look and feel [23]. JFace is a toolkit developed by

Eclipse team, and it is layered on top of SWT. Its purpose is to provide higher-level

reusable components to solve common user interface problems. It frees developers from

the tedious, low-level user interface programming. It adopts the Model-View-Controller

(MVC) design pattern to transform SWT widgets into model-driven widgets. In addition,

it extends the functionality of SWT by adding components such as wizards, dialogs and

so forth [24].

 42

By extending the Eclipse platform, UCLPv2 developers built an integrated tool consisting

of a set of views and graphical editors. The views are used to display and organize

network resources, which are categorized into physical, logical, and APN resources. The

GUI provides both outline and detailed view of the resources. In addition, the RCP

framework adds the navigation capabilities to these views [21].

The graphic editors include the physical network editor, the resource list editor, the APN

editor, and the physical resource utilization editor. The physical network editor enables

physical network administrators to create physical network representation, provision

network elements and logical resources such as lightpath and interface Web services. The

resource list editor enables physical network administrators and APN administrators to

view, edit and manage their logical resources. Users can select some resources to create

new resource lists, APNs or end-to-end connections. The APN editor enables all type of

users to view the resources in an APN. Users can change the topology of an APN and

execute it by invoking services in the orchestration layer to establish end-to-end

connections [21]. Once logical resources are created, they are stored both on the local

computer running the GUI and a remote database for backup purpose. These objects not

only serve as a basis for graphical display, but they are also used as resource identifiers

when communicating with the service orchestration layer.

4.4. UCLPv2 Intra-domain Routing Capability

The objective of the routing function is to enable end-users to automatically establish

end-to-end connections using logical resources belonging to a single organization. A two-

page JFace routing wizard was implemented to provide a user interface consistent with

the UCLPv2 GUI. A wizard is a JFace component that is capable of displaying multiple

pages in a single dialog, and it is often used to collect information from the users.

A user can select two interfaces on source and destination switches in the resource list

editor, and then launch the routing wizard. The first wizard page allows the user to

 43

specify a desired bandwidth. Furthermore, the user has the option of finding a shortest

path automatically or finding all the possible paths and then manually selecting one. In

either case, a routing graph will be built from the logical resources of the organization.

The vertices represent switches, and the edges represent available lightpaths. As a result

of the bandwidth requirement specified by the user, only lightpaths with equal or greater

bandwidth will be used in the construction of the graph.

The second wizard page displays the shortest path or all the possible paths depending on

the user’s choice. It also shows the corresponding number of hops taken for each path.

Since the current UCLPv2 system does not assign a cost value to a lightpath, we have

decided to use the number of hops as the cost value in the routing algorithm. When the

routing wizard is finished, the connection management Web services provided by the

UCLPv2 service orchestration layer will be invoked in order to establish an end-to-end

connection.

When a user chooses the option of finding a shortest path, the program will execute the

Dijkstra’s algorithm. To find all the possible paths between two switches, the algorithm

starts with the source vertex and discovers all its adjacent vertices. The discovered

vertices are put into a first-in, first-out queue. The algorithm repeats the above steps with

the first element of the queue as the new source until the queue is empty. It records the

path information as it proceeds with the discovery of new vertices.

The following is the pseudo code of the algorithm.

vertex.setVisited(false) for all vertex;

FIFO_Queue.add(source);

while FIFO_Queue ≠ Ø do

u FIFO_Queue.removeHead

for each adjacent vertex v of u do

if v ≠ destination and v.getVisited() = false then

 44

 v.setVisited(true);

FIFO_Queue.add(v);

end if

end for

end while

 45

Chapter 5 - Design of Hierarchical Inter-domain
Routing

UCLPv2 software provides a tool for users to provision and configure network resources

within their own domain. By introducing the notion of lightpath, the heterogeneity of

physical resources is well hidden from users. For example, a SONET channel, a WDM

wavelength, or an MPLS tunnel can all be represented as lightpath objects. Another

feature of the software is that it facilitates users to partition a lightpath into lightpaths of

finer granularity to better suite the applications’ bandwidth requirement. Since UCLPv2

is built upon a Web service orchestration layer, the system can be easily extended to

include new Web services representing scientific instruments, network devices and so on.

Organizations within the context of UCLP are independent administrative domains.

Currently organizational users can set up end-to-end connections using lightpaths

belonging to their own domains. If the desired end-to-end connection consists of

lightpaths that belong to different administrative domains, then the administrator of the

organization must contact those organizations and acquire requested resources in an

XML file through email. This is a manual process that is error prone and inefficient.

Therefore, a useful extension to the software would be to add inter-domain routing

capability; that is, the software will enable users to automatically acquire resources and

establish end-to-end connections across multiple administrative domains.

Another motivation for our thesis work is that currently organizations within the context

of UCLPv2 often have free resources to sublease to other organizations. To automate the

resource acquirement process, two main problems need to be solved. The first problem is

to develop a suitable resource advertisement mechanism. The second problem is to

automatically acquire resources needed for establishing end-to-end connections by end-

users. The framework will lead to the formation of a lightpath market place.

This thesis deals with the second problem. The goal is to develop new functionalities

based on the current UCLPv2 system that facilitate users to establish end-to-end

 46

connections using resources advertised by different organizations. To foresee the growth

of the number of organizations participated in such a lightpath market place, the inter-

domain routing solution must be scalable.

This chapter describes a conceptual approach to inter-domain routing for networks with

condo-switches in Section 5.1. These ideas were proposed in the paper “Hierarchical

inter-domain management for networks with condo-switches” [1]. Section 5.2 explains in

details how the concepts are applied to the inter-domain routing design for UCLPv2.

5.1. Inter-domain Routing Concepts for Networks with
Condo-switches

One salient characteristic of condominium networks is that organizations have shared

ownership of resources, such as fiber lines and switches. Due to economical benefits,

organizations prefer to share the capital cost and acquire partial ownership of resources.

In practice, they can purchase different channels on the same fiber line. In addition, they

can purchase different ports on the same optical switch. We categorize such type of

switches as condo switches. Furthermore, these condominium networks are connected

through condo switches. The advertised resources of an organization form a

condominium network. Since each condominium network is independently managed by

its owning organization, a distributed management function is required in order to

establish inter-domain end-to-end connections [1].

A distributed network management mechanism is proposed by structuring networks into

a hierarchy, where sub-networks are interconnected by condo switches. Furthermore, a

hierarchical addressing scheme can be developed to facilitate the routing algorithm. “The

multi-level hierarchical structure of networks and subnetworks provides an architecture

for distributed processing of management functions that is very scalable.” [1] The parent

network knows the existence of its subnetworks, but has no knowledge of the internal

structure of the subneworks. The approach is best illustrated by an example taken from

[1].

 47

Figure 16 shows an example of a physical configuration consisting of a number of

switches (larger round circles) and terminal devices, such as computers (smaller round

circles) interconnected by communication links. In particular, this configuration allows

an end-to-end connection between the terminals H1 and H2 through the switches S1, S2,

S3, S4, S5, S6, and S7. This figure does not show any administrative domains, although

the different communication links and switches may belong to different owners.

Figure 16: Example Configuration of Links, Switches, and Terminal Nodes [1]

Figure 17 shows the same configuration with the superposition of a hierarchical structure

of administrative domains, in the following called "networks" or "subnetworks". For

instance, network N6 consists of four subnetworks N2, N3, N4, and N5. These

subnetworks do not contain any sub-subnetworks, except N2 which contains N1. The

whole configuration shown in the figure is partitioned into four networks, N6, N7, N8

and N9. These networks are in fact subnetworks of the overall configuration, called

network N10.

 48

Figure 17: Hierarchical Inter-domain Structure Overlaid on Figure 16 [1]

We note that the colored switches in Figure 17 are condo switches, that is, for each of

these switches, different ports belong to different networks. For instance, switch S1 has

two ports belonging to network N1 (connected to the two terminals H1 and H3), and two

ports that are connected to links that belong to network N2. Similarly, switch S2 is a

condo-switch belonging to networks N2, N3, N4 and N5, while switch S4 interconnects

network N6 (and the subnetwork N3) with network N7.

Given this hierarchical structure, the establishment of an end-to-end connection between

two terminals will in general involve several networks. For the example of Figure 17, for

instance, the establishment of an end-to-end connection between the terminals H1 and H2

may proceed as follows: Since the two terminals are located within the networks N6 and

N8, respectively, the parent network of these two networks, network N10, will determine

that the route should include a segment from switch S4 through network N7 to switch S6.

The network N8 will determine the route from S6 to the terminal H2 which resides

directly in this network, and network N6 would be responsible for finding a route from

the terminal H1 to the switch S4. This will be done in two steps: first a segment from S2

(the chosen external condo-switch of the subnetwork N2 which contains H1) to S4, and

then a segment from H1 to S2. The former segment can be obtained from the subnetwork

 49

N3 by requesting a route between its external condo switches S2 and S4; and the latter

segment will become the responsibility of the subnetwork N2.

To facilitate this kind of hierarchical routing, it is suggested to introduce a hierarchical

naming scheme for networks, switches and terminals based on the hierarchical structure

of the networks within which they reside. For instance, the addresses of the terminals H1

and H2 would be the following, assuming that N10 is at the highest hierarchical level:

address of H1 = root/N10/N6/N2/N1/H1; address of H2 = root/N10/N8/H2.

A network can have the following three types of switches: external condo switches,

internal condo switches, non-condo switches. The original definitions for external condo

switches and internal condo switches are the following: “A switch S is an external condo

switch of network N if at least one port of S is connected to N or a subnetwork of N, and

at least one other port of S is connected to the parent network or another network N' or a

subnetwork of N', where N' is a peer of network N in the network hierarchy. A switch S

is an internal condo switch of network N if it is not an external switch of N, but it is an

external switch of at least one of its subnetworks.” [1] A complementary definition of

non-condo switch is added to denote a switch whose ports are entirely owned by a single

administrative domain. However, it is possible for a non-condo switch to become a condo

switch when the ownership of some of its ports is transferred to other organization.

The logical resources of a network consist of switches, subnetworks, and lightpaths. A

network provides a routing service to establish connections using its resources and/or the

resources of its subnetworks. From the perspective of a single network, the following six

types of connections can be established.

• A connection between two external condo switches of the network.

• A connection between two internal condo switches of the network, in other words,

a connection between two subnetworks.

• A connection between an external condo switch and an internal condo switch.

• A connection between two non-condo switches of the network.

 50

• A connection between a non-condo switch and an external condo switch.

• A connection between a non-condo switch and an internal condo switch.

5.2. Inter-domain Routing Design for UCLPv2

The current UCLPv2 software enables administrators to group logical resources including

lightpaths and interfaces, into a resource list XML file. Therefore, when an organization

has free resources for the use of others, an administrator of the organization can use the

existing tool to create a resource list which contains those free resources. Figure 18

shows an UML diagram describing the current relationship among resources in such a

resource list.

Figure 18: UML Diagram of the Current UCLPv2 Resource List

An assumption made is that all the lightpaths and interfaces in a resource list could be

connected through switches. Consequently, these resources essentially form a connected

network. Every organization using UCLPv2 could have such a resource list; as a result,

there would be many such networks. Based on the fact that the networks of these

organizations are connected through condo switches, we can apply the hierarchical inter-

 51

domain routing concepts to UCLPv2. By establishing the multi-level hierarchy among

networks owned by different organizations, we have a framework for automatically

finding an end-to-end connection across multiple administrative domains. This may lead,

in the future, to the establishment of a market for lightpath resources.

In order to realize this collaboration between the different UCLP organizations, we

propose the introduction of an additional network management service to be provided by

each participating organization. The purpose of this network management Web service is

to provide routing capabilities based on an organization’s free resources.

5.2.1. Resource List Modification

A resource list XML file created by an administrator, as defined by the UCLP system,

must be modified to include additional information in order to maintain the hierarchical

relationship among networks. The modification to the resource list is illustrated in Figure

19. Since a resource list is an XML file, the UML diagram is used here to represent

relationships among the XML elements.

 52

Figure 19: UML Diagram of a Modified Resource List

The diagram shows that a network can have at most one parent network and many

subnetworks. The network is connected with its parent network through at least one

external condo switch. Furthermore, the network is connected with any of its subnetwork

through at least one internal condo switch. The information is maintained during the

network registration process as explained in Section 5.2.3.1.

A resource list file also provides topological information and the provisioned cost values

associated with the resources in order to facilitate the routing functions. Each network

management entity has a service access point, namely a URL for the Web service

operations it provides. The service access points of the current network, the subnetworks,

 53

and the parent network are stored as attributes of the XML elements, in addition to the

hierarchical addresses of the networks.

To provide resources for third-party usage, an organization will store the XML file at a

predefined directory within the Web service container. The file will be read during the

network management Web service initialization phase and maintained subsequently.

5.2.2. Design Choices for Hierarchical Addressing

In order to facilitate routing, a hierarchical addressing scheme was designed to uniquely

identify network elements within the hierarchy. The address of a sub-network is the

concatenation of the address of its parent network and the name of the sub-network. The

name of a subnetwork must be unique within the scope of the parent network.

There are three design choices. The first choice is to allow the parent network to assign a

unique name to a subnetwork when the subnetwork registers with the parent network.

The second choice is to allow the subnetwork to propose a name during the registration

process. The parent network checks the uniqueness of the proposed name. The third

choice is to use the service access point of the network management Web service as the

unique name of a network. However, the last approach is impractical to adopt because a

hierarchical address made up of URLs could become very lengthy. We have decided to

choose the second solution because it gives a subnetwork the flexibility to choose a

proper name.

5.2.3. Network Management Web Service

The network management Web service of an organization has the following five

operations: registering a subnetwork, unregistering a subnetwork, updating switch

resources, fulfilling a routing request by establishing an end-to-end connection, and

releasing reserved resources. The network management Web services of different

organizations collaborate to form a hierarchical relationship among networks and to

 54

facilitate the inter-domain routing process. Communication takes place only between

management Web services having parent-child relationship in the hierarchy.

5.2.3.1. Subnetwork Registration

Every network management service provides a function to register subnetworks. The

function is crucial for the formation of a hierarchy of networks. In order to form a proper

parent-child network relationship, the following condition must be satisfied: the child

network must be connected with the parent network through at least one condo switch.

This condition ensures contiguousness of the networks, and it is checked when a child

network registers with a parent network. The name of the subnetwork must be unique

within the scope of the parent network.

During the initialization phase of any network management Web service, the service will

invoke the registration operation of its parent network. The input to this function consists

of four parameters. The child network must provide a proposed name, a list of all its

external condo switches, its SAP (URL), and an estimated cost value for using the

resources in the subnetwork. The parent network compares the external condo switches

of the subnetwork with all of its own switches. If at least one match is found, then the

network contiguousness condition is satisfied. In addition, the parent network compares

the proposed subnetwork name with the names of its other subnetworks to guarantee

uniqueness. When both conditions are met, the parent network will update its resource

list to include the subnetwork. The parent network will construct a hierarchical address

and return it to the subnetwork.

There is a general case regarding switches to be considered when a subnetwork registers.

This happens when some of the external switches of the subnetwork do not exist in the

resource list of the parent network. The parent network updates its resource list by adding

the subnetwork and the new switches. These new switches must be added to the parent

network as its external switches. As a result, the parent network must inform its own

parent network of the addition of these new switches. The purpose is to propagate the

 55

connectivity change through the hierarchy. This is achieved through another web service

operation called updateSwitchResources.

A special case occurs when all the external switches of the subnetwork already exist in

the resource list of the parent network. The parent network updates its resource list by

only adding the subnetwork.

5.2.3.2. Switch Resource Update

The objective of the operation is to provide a mechanism for a child network to notify its

parent network about the addition or removal of new external condo switches. A child

network invokes the operation by providing a list of condo switches that have been added

to or removed from its resource list. As a result, the parent network will update its

resource list, specifically adding external condo switches to or removing them from the

child network. If any condo switch does not already exist in the parent network, then the

parent network is responsible for informing its parent network about the addition of the

new condo switches. In that case, the changes will propagate up the hierarchy if

necessary.

5.2.3.3 Subnetwork Unregistration

The purpose of the operation is to allow a subnetwork to leave a parent network. The

input to this function is the hierarchical address of the subnetwork. The parent network

will update its resource list to remove information relevant to the subnetwork. In case that

the external condo switches of the parent network are affected, then it must inform its

parent network by invoking the updateSwitchResources operation.

5.2.3.4 Establishing End-to-End Connections

 56

The Web service routing operation is achieved through the following three steps: the

analysis of the input hierarchical addresses of the source and destination switches, the

search for a least-cost path, and the establishment of the path (that is, making cross-

connections on the switches en route). The input parameters of the operation are the

hierarchical addresses of the source and destination switches, and a desired bandwidth.

The output of the operation is a list of identifiers of the lightpaths and associated

networks used to establish the route.

The purpose of the analysis of the input addresses is to determine whether the current

network is the lowest common parent network of the source and destination switches. For

example, if the input addresses are root/N1/N2/S1 and root/N1/S2, but the current

network is N2 or root, then the current network is not the lowest common parent network

of the two switches, which is N1. Consequently, the routing request will be delegated to

the routing Web service of network N1. The address analysis process is executed as the

first step of the routing Web service. It ensures that the process of searching and

establishing a path starts at the lowest common parent network of the source and

destination switches.

By representing a network including its subnetworks by a hypergraph, the program can

execute the Dijkstra’s algorithm in order to search for a least-cost path. The searching

algorithm uses a single routing metric to calculate total cost of a path. A scalar value

must be assigned to every logical link and subnetwork by the network administrators. In a

lightpath market the metric usually represents the monetary cost of using resources. In

addition, the cost assigned to a subnetwork can represent the average cost of using

resources in the subnetwork. The drawback of assigning a single value to a subnetwork is

that the cost of a subnetwork becomes independent of the length of the connection

through that subnetwork. This imposes a limitation on the system. Since the metric is

simply a number in the system, administrators have the option to use the metric to

represent physical length of a fiber link, propagation delay, link reliability and so forth.

However, the choice of the metric must be consistent throughout the system so that the

total cost of a path is meaningful.

 57

The establishment of a path is based on the connection management Web services

provided by the UCLPv2 service orchestration layer. By invoking the connection

management Web service with a list of lightpath identifiers, the system can automatically

construct an end-to-end path.

A natural way to represent the hierarchical networks is to use hypergraph. A hypergraph

is a graph that contains at least one hyperedge. A hyperedge is defined as an edge

connecting possibly more than two vertices [17]. A physical network has three categories

of resources: switches, lightpaths, and subnetworks. Switches can be represented by

vertices. Lightpaths can be represented by regular edges. The challenge is how to

represent a subnetwork. A subnetwork is connected to its parent network through its

external condo switches, and these switches are already represented in the parent network

as vertices. Furthermore, we made the assumption that the subnetwork is fully connected,

that is, it may establish a connection between any two of its external switches. Based on

this assumption, the subnetwork can be represented by a hyperedge connecting all its

external switches. Consequently, a physical network can be transformed into a

hypergraph as shown in Figure 20, where the rectangles are the hyperedges.

 58

Figure 20: Hypergraph Representation of a Physical Network

After a hypergraph representing the network topology is constructed from the list of

resources, the Dijkstra’s algorithm can be adapted to find the shortest path on the

hypergraph. When the Dijkstra’s algorithm is applied to a regular graph, the edge

 59

relaxation operation is performed on one adjacent vertex connected by an edge. To

extend the algorithm to a hypergraph, we can perform the edge relaxation operation on all

the adjacent vertices connected by a hyperedge. The implementation of the algorithm is

described in Section 6.2.3.

In order to find a least-cost path in the hypergraph, we must assign cost values to edges or

hyperedges. An edge representing a lightpath will inherit the cost value associated with

the lightpath. The implication is that if two lightpaths having the same source and

destination switches, but different cost values, will be represented by two different edges.

An hyperedge representing a subnetwork will inherit the cost value associated with the

subnetwork.

5.2.3.5. Release Resource

The purpose of the operation is to decompose an end-to-end connection and release its

resources. Decomposing an end-to-end connection is achieved by invoking the

connection management Web service of UCLPv2 to undo cross connections on the

lightpaths. Releasing resources is done by updating the status of the lightpaths in the

resource list to become available. The input parameter of this operation is a list of

lightpath identifiers. The output parameter is a boolean value indicating whether the

operation was successful.

 60

Chapter 6 - Implementation of Hierarchical Inter-
domain Routing

The implementation of the distributed hierarchical management system is based on Web

services. The implementation consists of two modules: a client program and a network

management Web service. This section briefly describes the client program and focuses

on the implementation of the most important network management Web service

operation, namely the establishment of an end-to-end connection. Furthermore, an

example usage of the network management Web service was designed to validate the

implementation of the system.

6.1. Client Program

A client program provides a graphical user interface for end-users to request end-to-end

connections. It is implemented as an Eclipse Jface wizard dialogue and integrated into the

UCLPv2 GUI. A user provides the hierarchical addresses of the source and destination

network elements, and the URL of the network management Web service representing

the local network where the user is known as a legitimate user. Furthermore, a user

specifies a desired bandwidth. The client program invokes the routing Web service to

establish an end-to-end connection. Another administrator client program is implemented

to provide a graphical user interface for invoking the following management functions:

subnetwork registration and subnetwork unregistration. This is important for the

establishment of the network management hierarchy.

6.2. Implementation of the END-TO-END Connection
Establishment Operation

The operation is capable of establishing both intra-domain and inter-domain end-to-end

connections. The process starts with the analysis of input addresses. The implementation

 61

of the search for a least-cost path deals with three scenarios. The establishment of the

path involves the invocation of the UCLPv2 connection management Web service.

6.2.1. Analysis of Source and Destination Addresses

The objective is to determine if the current network is the proper place in the hierarchy to

process the routing request. The process starts with finding the lowest common parent

network of the two switches first, and then compares it with the current network to

determine its relative position in the hierarchy. There are three possible situations. The

common parent network could be located in a higher position in the hierarchy, or a lower

position in the hierarchy, or in a peering position. The implementation of the analysis

process for each situation is best illustrated with the following examples. Figure 21 shows

the hierarchical relationship between network management entities.

Figure 21: Hierarchical Relationship between Network Management Entities

Network N1 stores the following information in the resource list:

• Its own hierarchical address, namely root/N1

• Its own URL, for example, http://www.networkN1.com/webservices

 62

http://www.networkn1.com/webservices

• URL of its parent network, for example,

http://www.networkroot.com/webservices

• Hierarchical addresses of its child networks, namely root/N1/N3 and root/N1/N4

• The URLs of its child networks, for example,

http://www.networkN3.com/webservices and

http://www.networkN4.com/webservices

Other networks store information in a similar fashion.

An example where the common parent network is located in a higher position than the

current network would be that a client program sends a routing request to network

management entity of N6 to establish a path between two switches in network N6 and

N7. The input source and destination addresses are root/N1/N3/N6/S1 and

root/N2/N5/N7/S2.

Network N6 scans the two addresses from left to right, and extracts the common portion

of the addresses. In this case, the common address is root. It then compares the common

address with its own hierarchical address. If the comparison indicates that the common

address belongs to a network with a higher position in the hierarchy, it will delegate the

routing request to its parent network, namely N3. The same analysis process takes place

at N3. Eventually, the root network receives the request and launches the searching

process for a least-cost path between S1 and S2.

An example where the common parent network is located in a lower position than the

current network would be that a client program sends a routing request to network

management entity of the root network to establish a path between two switches in

network N3 and N4. The input source and destination addresses are root/N1/N3/S3 and

root/N1/N4/S4. The root network scans the two input addresses and determines that

root/N1 is the common portion. By comparing the common address with its own address,

it concludes that the common address belongs to a network with a lower position in the

hierarchy. Furthermore, it can conclude that one of its child networks is the proper

network to delegate the routing request to. In this case, that network is N1. Since N1 is

 63

http://www.networkroot.com/webservices
http://www.networkn3.com/webservices
http://www.networkn4.com/webservices

the least-common parent network of the S3 and S4, it executes the routing request and

returns the result to root, which returns the result to the client program.

An example where the common parent network is located in a peering position would be

that a client program sends a routing request to network management entity of N2 to

establish a path between two switches in network N3 and N4. The input source and

destination addresses are root/N1/N3/S3 and root/N1/N4/S4. The common address is

root/N1. The process continues by comparing the common address with the hierarchical

address of the current network, which is root/N2. The comparison indicates that these two

networks are peers, and the root network is their common parent network. Therefore, the

process will delegate the routing request to the root network, which will determine that

N1 is the proper network to handle the routing request.

6.2.2. Establishment of Three Types of Connections

In Chapter 5 we concluded that there are six possible types of connections that can be

established. Instead of providing six different operations for finding different types of

connections, we decided to implement a single operation that is capable of finding a

connection in all these cases. The advantage of this approach is to simplify client-side

processing. Client programs need not to distinguish the type of a connection and find the

corresponding operation to invoke. Instead, client programs simply input source and

destination parameters when invoking the route establishment operation.

From an implementation perspective, these connections can be further categorized into

three types, depending on the nature of input source and destination addresses. Type 1

occurs when both source and destination switches belong to the current network. For

example, network N1 in Figure 21 receives a routing request with the following input

parameters: root/N1/S1 and root/N1/S2. If an end-to-end connection between S1 and S2

can be constructed using resources only from network N1, then this scenario is equivalent

to the intra-domain routing. Type 2 occurs when the source switch is located in the

current network, but the destination switch is located in one of its subnetworks, or vice

 64

versa. An example of this scenario would be that network N1 receives a routing request

with the following input parameters: root/N1/S1 and root/N1/N3/S2. Type 3 occurs when

both source and destination switches belong to two of its subnetworks, respectively. An

example of this scenario would be that network N1 receives a routing request with the

following input parameters: root/N1/N4/S1 and root/N1/N3/S2.

6.2.2.1. Establishing Connection of Type One

The case implies that both switches are resources belonging to the current network. The

program executes the routing algorithm and finds a least-cost path if it exists. The routing

algorithm stops as soon as the destination is reached. If the resultant path does not contain

any subnetwork, then the program simply invokes the connection management Web

service to concatenate the lightpaths. On the other hand, if the path contains subnetworks,

then the program invokes the routing Web services of these subnetworks to find segments

of the path. If one of the subnetworks fails to find the segment, then this entire path must

be abandoned. An implementation decision is made in order to simplify the handling of

subnetwork failure; that is, if a subnetwork fails to establish a path between two of its

external condo switches, then it will be removed from the graph before the re-execution

of the routing algorithm. As a result, the routing graph is updated, and the above routing

process will be repeated.

6.2.2.2. Establishing Connection of Type Two

In this case one of the endpoints is located in a subnetwork. Once a path from the source

switch to the subnetwork is found, the program delegates the request to the subnetwork to

find the remaining segment of the path.

Since a subnetwork could have more than one external condo switch, this case requires

the routing algorithm to find a list of shortest paths from a single source switch to

multiple external switches of the subnetwork. The program will compare all the resultant

 65

paths by their total cost, and choose a path with the least cost. Since the path chosen is

connected with the subnetwork through a particular external switch, the program will

send a routing request to the subnetwork in order to find a segment from that external

switch to the destination switch.

In case a segment cannot be found by the subnetwork, the program will use the next

shortest path to the subnetwork and send a routing request with a different external

switch. The process repeat until a path can be successful established or the list of paths is

exhausted.

6.2.2.3. Establishing Connection of Type Three

In this case the two endpoints are located in different subnetworks. The program must

find a shortest path connecting the two subnetworks, then delegate the requests to both

subnetworks in order to find the two remaining segments of the end-to-end path.

Since either subnetwork can have multiple external condo switches, this demands the

execution of the routing algorithm multiple times in order to find all shortest paths from

every external condo switch of the source subnetwork to every external condo switch of

the destination subnetwork. Since these are the shortest paths between every two external

switches of the subnetworks, the program performs similar steps as described in scenario

two to determine the absolute shortest path between the two subnetworks. Subsequently,

the program sends routing requests to the subnetworks to establish the end-to-end

connection. The failure handling steps are similar to scenario two.

6.2.3. Implementation of Shortest-Path Routing Algorithm

The Java implementation of the hypergraph data structure is used to facilitate the

implementation of the shortest-path routing algorithm.

 66

6.2.3.1. HyperGraph Data Structure

Java classes are created to implement the hypergraph data structure, and their UML class

diagram is shown in Figure 22. Class Switch and LightpathWebService are existing class

definitions of UCLPv2. They are shown here to reveal their relationships with the

hypergraph.

Figure 22: UML Class Diagram of Graph Data Structure

• Class Hypergraph: The implementation of the hypergraph is based on an adjacent

list. The hypergraph uses a Java HashMap container to maintain its vertices,

edges, hyperedges and their relationships. The HashMap uses a Vertex object as

its key, and a list of adjacent edges and/or hyperedges as its value.

• Class Edge: An instance of an edge contains a list of lightpaths. These lightpaths

share the same cost, and the same source and destination pairs. It also contains a

cost value, source and destination vertices. The implication is that if two

lightpaths with the same source and destination pairs, but different cost values

will be represented by two different edges.

• Class Vertex: Vertex contains the corresponding switch information.

• Class Hyperedge: Hyperedge contains a list of vertices, a cost value, and a

reference to a subnetwork.

 67

6.2.3.2. Routing Algorithm

The following five variables represent different data structures that are used to implement

the routing algorithm. These variables are referred to in the pseudo codes below as

unResolvedVertices, resolvedVertices, precedingVertices, precedingEdges, costMap,

respectively.

• unResolvedVertices: A Java PriorityQueue structure is used to store unresolved

vertices. The PriorityQueue stores elements in a specific order default to ** not

clear ascending order. We set up the queue so that the vertices are ordered

according to their cost values, with the head of the queue being the element with

the minimum cost. The use of this structure saves coding effort when the

algorithm retrieves the vertex with minimum cost from the queue.

• resolvedVertices: A Java HashSet structure is used to store resolved vertices.

• precedingVertices: A Java HashMap structure is used to store preceding vertices.

The key stores the current vertex, the value is its preceding vertex.

• precedingEdges: A Java HashMap structure is used to store preceding edges. The

key stores the current vertex, the value is its preceding edge.

• costMap: A Java HashMap structure is used to store cost values. The key stores a

vertex, the value is the total cost from the source to the vertex.

The pseudo code below represents a modification of Dijkstra’s algorithm in order to

allow for the processing of hyperedges. It also checks whether an edge contains at least

 68

one available lightpath and the associated bandwidth value is equal or greater than the

input bandwidth before proceding with the edge relaxation operation.

costMap.add(s, 0), where s is the source node

costMap.add(u, ∞) for all u ≠ s

resolvedVertices Ø

unResolvedVertices all vertices

while unResolvedVertices ≠ Ø do

u Extract-Minimum(unResolvedVertices)

if u = destination then

 exit the algorithm

end if

resolvedVertices.add(u)

for each adjacent object of u do

if the object is a regular edge then

if the edge contains at least one available lightpath and

 the lightpath’s bandwidth >= input bandwidth then

v adjacent vertex of u connected by the edge

relaxEdge(v,u)

end if

 else if the object is a hyperedge then

for each vertex v connected by the hyperedge do

if v ≠ u then

relaxEdge(v,u)

end if

 end for

end if

end for

end while

Relax Edge Function:

 69

Input: v1, v2

if resolvedVertices contains v1, then return

c1 costMap.getCost(v1)

c2 costMap.getCost(v2)

c3 cost of the edge between v1 and v2

if c2+c3 < c1 then

 costMap.update(v1,c2+c3)

 precedingVertices.update(v1,v2)

end if

When the algorithm processes an hyperedge, it does not check for the bandwidth

requirement. The assumption made at this point of the algorithm is that the subnetwork

represented by the hyperedge could establish a path satisfying the bandwidth

requirement. When the parent network invokes the routing function of the subnetwork, it

will input the bandwidth parameter in addition to the source and destination addresses. If

the subnetwork cannot find a path satisfying the bandwidth requirement or for any other

reason, the subnetwork will notify the parent network about the failure of the routing

request and the parent network will try another path as explained in Section 6.2.2.1,

6.2.2.2, and 6.2.2.3.

Since the precedingVertices variable is used to keep track of the shortest path, it must be

updated when the edge relaxation operation results in a new preceding vertex.

6.3. Class-Level Implementation of the Hierarchical
Network Management Web Service

Figure 23 shows an UML class diagram that illustrates the relationships among the main
classes implemented.

 70

Figure 23: UML Class Diagram of the Implementation of the Network Management Service

• The RoutingAgent class provides the end-to-end connection establishment

operation. It implements high-level logic, but delegates specific operations to

other classes to which it holds object references.

• The RoutingStrategy class has three subclasses that deal with the three different

types of end-to-end connections.

• The ResourceManager class is implemented to read from and write to the XML

file. It uses a third-party tool, Apache Xerces, to parse the XML file.

• The Dijkstra Algorithm class encapsulates the implementation details of the

application of the Dijkstra’s algorithm to a hypergraph.

• The AddressAnalyzer class provides an operation to determine the lowest

common parent network of the source and destination.

An organization stores the resource list XML file at a predefined directory in the Web
server. An example resource list XML file is given below.

<?xml version="1.0" encoding="UTF-8"?>
<resource-list>

<hierarchical-address>root/N1</hierarchical-address>
 <service-access-point>

http://www.networkN1.com/routingservice

 71

http://www.networkn1.com/routingservice

</service-access-point>

 <parent-network>
 <service-access-point>

http://www.rootnetwork.com/routingservice
</service-access-point>

 <hierarchical-address>root</hierarchical-address>
 <external-condo-switch>cdn-switch1</external-condo-switch>
 <external-condo-switch>cdn-switch2</external-condo-switch>
 </parent-network>

 <subnewtwork>
 <service-access-point>

http://www.networkN2.com/routingservice
</service-access-point>

 <hierarchical-address>root/N1/N2</hierarchical-address>
 <internal-condo-switch>ons-switch1</internal-condo-switch>
 <internal-condo-switch>ons-switch2</internal-condo-switch>
 <cost>20</cost>
 </subnewtwork>
 <subnewtwork>
 <service-access-point>

http://www.networkN3.com/routingservice
</service-access-point>

 <hierarchical-address>root/N1/N3</hierarchical-address>
 <internal-condo-switch>ons-switch1</internal-condo-switch>
 <internal-condo-switch>ons-switch2</internal-condo-switch>
 <cost>10</cost>
 </subnewtwork>

 <lightpath-webservice>
 <lightpath-url>http://www.canarie.com/LP-WS1</lightpath-url>
 <lightpath-key>LPkey1</lightpath-key>
 <source-switch id="cdn-switch1" port="1000">
 </source-switch>
 <target-switch id="cdn-switch4" port="2000">
 </target-switch>
 <bandwidth>51 mbps</bandwidth>
 <cost>10</cost>
 <status>available</status>
 </lightpath-webservice>
 <lightpath-webservice>
 <lightpath-url>http://www.canarie.com/LP-WS2</lightpath-url>
 <lightpath-key>LPkey2</lightpath-key>
 <source-switch id="cdn-switch3" port="100">
 </source-switch>

 72

http://www.rootnetwork.com/routingservice
http://www.networkn2.com/routingservice
http://www.networkn3.com/routingservice

 <target-switch id="cdn-switch2" port="200">
 </target-switch>
 <bandwidth>155 mbps</bandwidth>
 <cost>20</cost>
 <status>available</status>
 </lightpath-webservice>

 <interface-webservice>
 <interface-url>http://www.canarie.com/I-WS1</interface-url>
 <interface-key>interfaceKey1</interface-key>
 <switch id="cdn-switch1" port="500">
 </switch>
 <bandwidth>155 mbps</bandwidth>
 <status>available</status>
 </interface-webservice>
 <interface-webservice>
 <interface-url>http://www.canarie.com/I-WS2</interface-url>
 <interface-key>interfaceKey2</interface-key>
 <switch id="cdn-switch5" port="500">
 </switch>
 <bandwidth>51 mbps</bandwidth>
 <status>available</status>
 </interface-webservice>

</resource-list>

The Eclipse Web Tools Platform (WTP) was chosen as the integrated development tool.

The WTP extends the functionalities of Eclipse 3.1 platform to support the development

of J2EE applications including Web services. WTP enables developers to create a Web

service from a WSDL file, or convert an existing Java class into a Web service. It also

offers tools such as the Web service explorer and SOAP message monitor for testing

purpose. In addition, the latest Java JDK version 1.5 was used.

The network management Web service was deployed in the Apache Axis SOAP engine

version 1.3, which requires the Apache Tomcat as its Web server. UCLPv2 software was

also installed according to the user manual [21]. A Java-based build tool, Apache Ant,

was used to write service startup scripts.

 73

6.4. Consideration of Resource Access Rights

The current UCLPv2 system associates access rights with resources such as lightpaths,

interfaces, and APNs. An organization is the owner of its resources. Furthermore, the

access right policies specify that only the current owner of a resource has the rights to

perform operations on the resource. However, the ownership of a resource can be

transferred from one organization to another. The GUI provides a resource exportation

function which effectively transfers the ownership of the resources. The ownership

information is maintained at the network element Web services in the form of a stack,

with the top of the stack being the current owner, and the bottom of the stack being the

original owner. Consequently, the ownership information will be verified before

performing an operation on the network element. For example, to perform an operation

such as concatenating two lightpaths (making a cross connection) at a common switch,

the network element Web service must first verify that both lightpaths are owned by the

same organization [20].

However, this access right mechanism imposes a problem for the inter-domain routing.

The problem manifests when concatenating two lightpaths that belonging to two different

organizations, representing a parent network and a subnetwork. To establish an

end-to-end path involving a subnetwork, the parent network invokes the routing Web

service of the subnetwork to establish a segment of the path. The subnetwork executes its

routing process and constructs a new lightpath that represents the segment of the path.

The subnetwork returns the lightpath to the parent network. However, since the owner of

the lightpath is still the subnetwork, the parent network cannot concatenate the returned

lightpath with any of its own lightpahs at a condo switch.

There are two solutions to the above problem. The first solution requires that when an

organization advertises resources for the use of others, the advertisement mechanism

must disassociate the access rights with these resources to allow any organization to use

it. The second solution is to use the current resource exportation function to change the

access rights associated with the resources as follows. When the routing Web service of a

 74

subnetwork establishes a path segment upon the request of its parent network, it must

export the lightpath, representing the segment, to its parent network. The exportation

operation will change the owner of the lightpath to the parent network, thereby, enabling

the parent network to perform operations on the lightpath.

6.5. Network Management Web Service Example Usage

The following use case of the network management Web service was designed to

demonstrate the successful establishment of end-to-end connections. There are six

networks in the example forming a hierarchical management system, as shown in Figure

24.

Figure 24: an Example of a Hierarchical Network Management System

In order to form the hierarchy, the Web service of the root network is launched first, and

network N1 registers with it as a child network. The name of a network can be arbitrarily

chosen, we are using N1 for convenience. Next, network N2 invokes the subnetwork

registration operation of network N1 with the proposed network name and its external

condo switches. Similar registration processes take place with N3, N4, and N5.

 75

A client program sends a routing request to its local network which is N5. The source

address is Root/N1/N2/N5/S1, and the destination address is Root/N1/N4/S2.

The topologies of network N1, N2, N3, N4, N5 are shown in Figure 25, 26, 27, 28, 29

respectively. These topologies are designed to demonstrate the routing of the three types

of connection segments. Network N1 establishes a segment between two subnetworks,

namely N2 and N4. Network N2 establishes a segment between one of its external condo

switch and its subnetwork N5. Network N5 establishes a segment between one of its

external condo switches and the source switch.

Figure 25: Topology of Network N1

 76

Figure 26: Topology of Network N2

Figure 27: Topology of Network N3

 77

Figure 28: Topology of Network N4

Figure 29: Topology of Network N5

The routing request is initially sent to network N5. Since the lowest common parent

network is N1 for the two switches. The request is delegated to N2, and eventually N1.

After analyzing the input addresses, which are Root/N1/N2/N5/S1 and Root/N1/N4/S2,

network N1 understands that it must find a shortest path between network N2 and N4

first. It executes the routing algorithm and finds the following path: N2, S-N1-7, S-N1-8,

N3, S-N1-10, S11, S-N1-12, N4.

The Web service operation is recursive due to the hierarchical nature of networks. When

the routing alogrithm produces a path containing subnetworks, the parent network is

responsible for invoking the routing operations of the subnetworks respectively to

 78

establish the end-to-end connection. Since there are three subnetworks involved in the

end-to-end connection, network N1 will send three routing requests to the subnetworks.

• It sends a routing request to N2 with the following addresses: Root/N1/N2/N5/S1

and Root/N1/N2/S-N1-7.

• It sends a routing request to N3 with the following addresses: Root/N1/N3/S-N1-8

and Root/N1/N3/S-N1-10.

• It sends a routing request to N4 with the following addresses: Root/N1/N4/S-N1-

12 and Root/N1/N4/S2.

Network N2, N3, and N4 executes the routing algorithm to establish path segments. N2

will send a routing request to N5. When the routing process is finished, network N1 will

send a respond message to the client indicating that an end-to-end connection has been

established. Figure 30 shows the switches involved in the connection.

Figure 30: A List of Switches Involved in an End-to-End Connection Returned by Network N1

By observing the topological graph of each network, we can verify that the established

path is the shortest path within each network.

 79

Chapter 7 - Conclusion

The thesis describes the service-oriented architecture of the UCLPv2 system and the

integration of new routing functionalities to automatically establish end-to-end

connections. My major contributions are the following:

• I designed and implemented the intra-domain routing functionality, which is

integrated into the UCLPv2 GUI. An end-user can establish end-to-end

connections using resources belonging to his or her organization.

• I designed and implemented the inter-domain routing functionality. This is

achieved through the introduction of a new network management Web service for

each organization in UCLPv2. These Web services form a scalable network

management hierarchy and collaborate to accomplish inter-domain routing.

Consequently, end-users can establish end-to-end connections using resources

belonging to different organizations. Furthermore, I built a client program into the

UCLPv2 GUI so that end-users can make inter-domain routing requests. I also

built an administrator client program to manage the network hierarchy.

The inter-domain routing framework presented in the thesis lays the foundation for future

improvement.

• One improvement would be to add security and access control mechanism to the

network management Web service, which should provide routing service only to

authorized users or management entities.

• Another improvement can be made as part of the resource advertisement

mechanism. Currently, a resource list file is modified manually and copied to a

predefined Web service resource directory. This process can be improved by

designing a tool in the GUI to export the file directly into the network

management Web service.

 80

References

[1] G. v. Bochmann, “Hierarchical inter-domain management for networks with condo-

switches”, Proceedings IASTED International Conference on Communication Systems

and Applications, Banff, Canada, Acta Press, pp. 190-196, July 2005.

[2] “What is UCLP”, http://www.uclp.ca, January 2007.

[3] S. Graham, D. Davis, S. Simeonoy, G. Daniels, P. Brittenham, Y. Nakamura, P.

Fremantle, D. Koenig, C. Zentner, “Building Web services with Java”, Second Edition,

Sams Publishing, 2005.

[4] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard,

“Web Service Architecture”, http://www.w3.org/TR/ws-arch/, February 2004.

[5] Tim Berners-Lee, “Uniform Resource Identifiers (URI): Generic Syntax”, RFC2396,

http://www.ietf.org/rfc/rfc2396.txt/, August 1998.

[6] P. V. Biron, A. Malhotra, “XML Schema Part 2: Datatypes”,

http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/, October 2000.

[7] D. C. Fallside, P. Walmsley, “XML Schema Part 0: Primer”,

http://www.w3.org/TR/xmlschema-0/, October 2004.

[8] E.Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services Description

Language (WSDL) 1.1”, http://www.w3.org/TR/wsdl, March 2001

[9] Object Management Group, Inc. (OMG), “The Common Object Request Broker:
Architecture and Specification”, http://www.omg.org/docs/formal/98-12-01.pdf, July
1995.
[10] N. Mitra, “SOAP Version 1.2 Part 0: Primer”, http://www.w3.org/TR/2003/REC-

soap12-part0-20030624/, June 2003.

[11] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. F. Nielsen, “SOAP Version

1.2 Part 2: Adjuncts”, http://www.w3.org/TR/soap12-part2/#datamodel, June 2003.

[12] C. Peltz, “Web services orchestration”,

http://devresource.hp.com/drc/technical_white_papers/WSOrch/WSOrchestration.pdf,

January 2003.

[13] “Introduction to the ActiveBPEL Engine”,http://www.activebpel.org/info/intro.html,

January 2007.

 81

http://www.uclp.ca/
http://www.w3.org/TR/ws-arch/
http://www.ietf.org/rfc/rfc2396.txt/
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/wsdl
http://www.omg.org/docs/formal/98-12-01.pdf
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://devresource.hp.com/drc/technical_white_papers/WSOrch/WSOrchestration.pdf
http://www.activebpel.org/info/intro.html

[14] W. Stallings, “High speed networks and Internets: performance and quality of

service”, Ch.15, Ch.16, Second Edition, Prentice Hall Publishing, October 2001.

[15] G. Malkin “Rip version 2”, RFC 2453, http://rfc.sunsite.dk/rfc/rfc2453.html,

November 1998.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs”, Numerische

Mathematik, pp. 269–271, June 1959.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to algorithms”,

Second Edition, The MIT Press, pp. 595, 2001.

[18] M. T. Goodrich, R. Tamassia, “Data Structures and Algorithms in Java”, Second

Edition, pp. 587, 2001.

[19] H. Zhang, M. Savoie, J. Wu, S. Campbell, G. v. Bochmann, B. St. Arnaud, “Service-

oriented Layer 1 Virtual Private Network for Grid Applications”, Proceedings of the

2005 International Conference on Grid Computing and Applications (GCA'05), pp. 106-

111, June 2005.

[20] H. Zhang, M. Savoie, J. Wu, S. Campbell, G. v. Bochmann, R. Liscano, M. T. Si, Q.

Wang, B. Ho, S. Figuerola, G. Junyent, E. Grasa, J. Recio, A. López, Á. Sánchez, M.

Lemay, “UCLPv2 detailed design document”,

http://uclp.ca/twiki/bin/viewauth/UCLP/DetailedDesignDoc, April 2006.

[21] “UCLPv2 user manuals”

http://uclp.ca/uclpv2/documents/help/uclpv2.0.2/, January 2007.

[22] A. Bolour, “Notes on the Eclipse Plug-in Architecture”,

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html,

July 2003

[23] M.Scarpino, S.Holder, S.Ng, L.Mihalkovic, “SWT/JFace in Action: GUI Design

with Eclipse 3.0”, Manning Publications, January 2004.

[24] B.Sam-bodden, C.Judd, “Rich clients with the SWT and JFace”, APress, March

2004.

 82

http://rfc.sunsite.dk/rfc/rfc2453.html
http://uclp.ca/twiki/bin/viewauth/UCLP/DetailedDesignDoc
http://uclp.ca/uclpv2/documents/help/uclpv2.0.2/
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html

	Qi Wang
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Chapter 1 - Introduction
	Chapter 2 - Service-Oriented Architecture and Web Services T
	2.1. Service-Oriented Architecture
	2.2. Web Services Technology
	2.2.1. Extensible Markup Language
	2.2.2. XML Schema
	2.2.3. Web Service Description Language
	2.2.4. SOAP Protocol
	2.2.5. Axis Web Service Engine
	2.2.6. Service Orchestration and Business Process Execution

	Chapter 3 - Overview of Internet Routing Protocols
	3.1. Routing Information Protocol
	3.2. Border Gateway Protocol
	3.3. Open Shortest-Path First Protocol
	3.3.1. Dijkstra’s Algorithm

	Chapter 4 - User Controlled Lightpath Provisioning System Ve
	4.1. UCLPv2 Overview
	4.2. UCLPv2 Use Case
	4.3. UCLPv2 Architecture
	4.3.1. Resource Management Layer
	4.3.2. Service Orchestration Layer
	4.3.3. User Access Layer

	4.4. UCLPv2 Intra-domain Routing Capability

	Chapter 5 - Design of Hierarchical Inter-domain Routing
	5.1. Inter-domain Routing Concepts for Networks with Condo-s
	5.2. Inter-domain Routing Design for UCLPv2
	5.2.1. Resource List Modification
	5.2.2. Design Choices for Hierarchical Addressing
	5.2.3. Network Management Web Service
	5.2.3.1. Subnetwork Registration
	5.2.3.2. Switch Resource Update
	5.2.3.3 Subnetwork Unregistration
	5.2.3.4 Establishing End-to-End Connections
	5.2.3.5. Release Resource

	Chapter 6 - Implementation of Hierarchical Inter-domain Rout
	6.1. Client Program
	6.2. Implementation of the END-TO-END Connection Establishme
	6.2.1. Analysis of Source and Destination Addresses
	6.2.2. Establishment of Three Types of Connections
	6.2.2.1. Establishing Connection of Type One
	6.2.2.2. Establishing Connection of Type Two
	6.2.2.3. Establishing Connection of Type Three

	6.2.3. Implementation of Shortest-Path Routing Algorithm
	6.2.3.1. HyperGraph Data Structure
	6.2.3.2. Routing Algorithm

	6.3. Class-Level Implementation of the Hierarchical Network
	6.4. Consideration of Resource Access Rights
	6.5. Network Management Web Service Example Usage

	Chapter 7 - Conclusion
	References

