

Quality of Service Management for Tele-Teaching

Applications Using MPEG-4/DMIF

By

Zhen Yang

A thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements for the degree of

Master of Computer Science

In

Computer Science

Ottawa-Carleton Institute for Computer Science
School of Information Technology and Engineering

Faculty of Computer Science
University of Ottawa

April, 2000

© 2000, Zhen Yang, Ottawa, Canada

I

Abstract

The main objective of this thesis is to introduce an approach of quality of service

management for multicast multimedia applications based on the Delivery Multimedia

Integration Framework (DMIF) of MPEG-4 as a session management protocol. We

consider that the distributed multicasting applications may involve a large number of

users, therefore, a single quality of service level may not be appropriate for all

participants. It is necessary to distribute part of the QoS management process and allow

each user process to make certain QoS decisions based on its local context. This report

gives an overview of some background knowledge, presents the design of a teleteaching

system that uses our paradigm for QoS management, explains how DMIF can be adapted

as a session protocol for such an application, and finally, provides the implementation

details of the system.

II

Acknowledgements

I would like to thank some persons for their contributions to this thesis.

First, I would like to express my sincere appreciation to my supervisor, Dr. Gregor v.

Bochmann, for giving me this opportunity to participate in the “Quality of Service

Monitoring and End-User Control” research project. I really enjoyed working under his

supervision. His work ethics, rich knowledge, encouragement, and patience throughout

my research were the most important factors that helped me finished my M. Sc. program.

Many thanks to Mr. Vasilios Darlagiannis (student at the MCRLab) for the friendly

discussions and the exchange of knowledge, which helped me a lot in understanding the

DMIF concepts. I really own many thanks to him since his implementation of the DMIF

DNI layer is used in my implementation.

I am also deeply grateful to Dr. Nicolas. D. Georganas (Director of the MCRLab) and

Mr. Francois Malric (Manager of the MCRLab) for providing me a comfortable

environment and adequate research facilities in the early time of my research.

I would like to thank my colleagues at the “Distributed Systems” lab, especially Khalil

El-Khatib, Qing Zhu, Tiejun Tang and Xiaoqing He, for their valuable comments,

interesting discussions, supportiveness, and kindness. I really appreciate all of their help.

I would also like to acknowledge the support of CITO (Communications and Information

Technology Ontario) and Nortel-Networks for the funds for this project.

III

Table of Contents

ABSTRACT………………………………………………………………………… I

ACKNOWLEDGEMENTS……………………………………………………….. II

TABLE OF CONTENTS………………………………………………………….. III

LIST OF ACRONYMS……………………………………………………………. V

LIST OF FIGURES………………………………………………………………… VI

LIST OF TABLES…………………………………………………………………. VII

CHAPTER 1 INTRODUCTION………………………………………………….. 1

 1.1 Background………………………………………………………………….. 1
 1.2 Main Contributions………………………………………………………….. 1
 1.3 Thesis Outline..……………………………………………………………… 1
 1.4 Publication Arising from the Research……………………………………… 1

CHAPTER 2 MULTIMEDIA APPLICATIONS OVER INTERNET…………. 11

 2.1 Internet Protocols for Multimedia Applications…………………………….. 11
 2.1.1 Internet Protocols - UDP/TCP/IP……………………………………… 11
 2.1.2. IP Multicasting and MBone…………………………………………… 14
 2.1.2.1 IP Multicasting Overview……………………………………….. 14
 2.1.2.2 Group Addressing and TTL……………………………………… 17
 2.1.2.3 MBone…………………………………………………………… 19
 2.1.3. Multicasting Protocols………………………………………………… 23
 2.1.3.1 Group Management Protocol……………………………………. 24
 2.1.3.2 Multicast Routing Protocols…………………………………….. 26
 2.1.4 Higher Level Protocols………………………………………………… 29
 2.2 Different Voice / Video Encoding…………………………………………… 31
 2.2.1 Traditional Voice / Video Encoding…………………………………… 31
 2.2.2 MPEG-4……………………………………………………………….. 34

CHAPTER 3 QUALITY OF SERVICE MANAGEMENT……………………… 37

 3.1 Network QoS………………………………………………………………… 37
 3.1.1 QoS Definition………………………………………………………… 37
 3.1.2 Related Works…………………………………………………………. 38
 3.2 Adaptive Applications………………………………………………………. 40
 3.2.1 Adaptation Principles………………………………………………….. 40
 3.2.2 Related Works…………………………………………………………. 41

CHAPTER 4 SYSTEM REQUIREMENTS……………………………………… 45

 4.1 Video Conferencing / Tele-teaching Applications………………………….. 45
 4.2 Requirement Specification ………………………………………………….. 47

IV

CHAPTER 5 PROVIDING QOS ALTERNATIVES FOR MULTICAST

APPLICATIONS…………………………………………………………………… 50

 5.1 General Assumptions………………………………………………………… 50
 5.2 QoS Alternatives…………………………………………………………….. 52
 5.3. General System Architecture……………………………………………….. 52
 5.4 A Typical Interactive Scenario………………………………………………. 56

CHAPTER 6 PROTOCOL ALTERNATIVES………………………………….. 59

 6.1 Data Transport Protocols…………………………………………………….. 59
 6.1.1 TCP/IP vs. UDP/IP…………………………………………………….. 59
 6.1.2 RTP and RTCP………………………………………………………… 60
 6.1.3 Protocol Choice and Overhead Analysis………………………………. 61
 6.2 Session Protocols……………………………………………………………. 62
 6.2.1 SAP/SDP………………………………………………………………. 62
 6.2.2 SIP…………………………………………………………………….. 63
 6.2.3 DMIF………………………………………………………………….. 64
 6.2.4 Protocol Choice and Overhead Analysis……………………………… 68

CHAPTER 7 USING DMIF FOR SESSION MANAGEMENT IN TELE-

TEACHING APPLICATION……………………………………………………… 71

 7.1 A Typical Interactive Scenario………………………………………………. 71
 7.2 Changes to DMIF……………………………………………………………. 76

CHAPTER 8 PROTOTYPE IMPLEMENTATION…………………………….. 79

 8.1 Language and Environment Choices………………………………………… 79
 8.2 Key Design Issues……………………………………………………………. 80
 8.2.1 Global Program Structure……………………………………………… 80
 8.2.2 Format of QoS Alternatives……………………………………………. 82
 8.2.3 Format of DAI Primitive Parameters………………………………….. 83
 8.2.4 User Profile Manager APIs……………………………………………. 83
 8.2.5 User Interface………………………………………………………….. 84
 8.2.6 QoS Adaptation Algorithm……………………………………………. 91
 8.3 Tests and Results…………………………………………………………….. 94

CHAPTER 9 CONCLUSION AND FUTURE WORK………………………….. 97

REFERENCES……………………………………………………………………… 101

APPENDIX A. MULTICAST ROUTING ALGORITHMS…………………….. 100

APPENDIX B. FORMAT OF DAI PRIMITIVE PARAMETERS…………….. 111

APPENDIX C. USER PROFILE MANAGEMENT API……………………….. 111

V

List of Acronyms

AVO Audio/Visual Object
CBT Core Based Tree
DAI DMIF Application Interface
DCDT Data Consumer DMIF Terminal
DMIF the Delivery Multimedia Integration Framework
DNI DMIF Network Interface
DPDT Data Producer DMIF Terminal
DVMRP Distance Vector Multicast Routing Protocol
ES Elementary Streams
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
IP Internet Protocol
JMF Java Media Framework
MBone Multicast Backbone
MOSPF Multicast Extension to OSPF
MPEG Moving Picture Experts Group
MRouter Multicast Router
PIM Protocol Independent Multicast
PIM-DM PIM-Dense Mode
PIM-SM PIM-Sparse Mode
QoS Quality of Service
RMI Remote Method Invocation
RPB Reverse Path Broadcasting
RPM Reverse Path Multicasting
RSVP Resource Reservation Protocol
RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol
RTSP Real-time Stream Protocol
SAP Session Announce Protocol
SDP Session Description Protocol
SIP Session Initiation Protocol
TCP Transmission Control Protocol
TRPB Truncated Reverse Path Broadcasting
TTL Time-To-Live
UDP User Datagram Protocol

VI

List of Figures

Figure 2.1 Example of Internet Layer Operation……………………………………. 1

Figure 2.2 Example of Unicast Transmission……………………………………….. 1

Figure 2.3 Example of Multicast Transmission……………………………………… 1

Figure 2.4 IPv4 Class D Address (Multicast Address)………………………………. 1

Figure 2.5 IPv6 Multicast Address………………………………………………….. 1

Figure 2.6. MBone Architecture…………………………………………………….. 1

Figure 2.7 SDR Main User Interface………………………………………………… 1

Figure 2.8 VAT User Interface………………………………………………………. 1

Figure 2.9 VIC User Interface……………………………………………………….. 1

Figure 2.10 Example of IGMP………………………………………………………. 1

Figure 2.11 Example of DVMRP……………………………………………………. 1

Figure 2.12 General MPEG-4 Architecture………………………………………….. 1

Figure 5.1 Overall System Architecture…………………………………………….. 1

Figure 5.2 General System Architecture……………………………………………. 1

Figure 5.3 Example Interactive Scenario……………………………………………. 1

Figure 6.1 Role of DMIF……………………………………………………………. 1

Figure 6.2 DMIF Session Creation………………………………………………….. 1

Figure 6.3 Example Scenario of a Session Initiation………………………………… 1

Figure 7.1 Multicast Session Interaction Scenario including DMIF (Part 1)……….. 1

Figure 7.1 Multicast Session Interaction Scenario including DMIF (Part 2)……….. 1

Figure 8.1 Sender Side Class Diagram……………………………………………… 1

Figure 8.2 Receiver Side Class Diagram……………………………………………. 1

Figure 8.3 QoS Alternatives Class Diagram………………………………………… 1

Figure 8.4 User Profile Manager Program Module Class Diagram…………………. 1

Figure 8.5 Sender Side Main User Interface………………………………………… 1

Figure 8.6 Video Variants Create and Edit………………………………………….. 1

Figure 8.7 Channel Request by Receiver……………………………………………. 1

Figure 8.8 Receiver Side Main User Interface………………………………………. 1

Figure 8.9 Create a New User……………………………………………………….. 1

Figure 8.10 Profile Edit……………………………………………………………… 1

Figure 8.11 QoS Management………………………………………………………. 1

Figure 8.12 Session Initiation……………………………………………………….. 1

Figure 8.13 Monitoring Window……………………………………………………. 1

VII

List of Tables

Table 2.1 Summary of Audio Coding Standards……………………………………. 1

Table 2.2 Summary of Video Coding Standards……………………………………. 1

Table 4.1 Survey of Video Conferencing / Tele-teaching Researches and Products... 1

Table 5.1 QoS Table for Logical Multimedia Streams………………………………. 1

Table 8.1 video variants for testing………………………………………………….. 1

Table 8.2 Testing Results……………………………………………………………. 1

1

Chapter 1 Introduction

1.1 Background

With the fast development of multimedia and network techniques, transmitting video and

audio across the networks is attracting many applications. A large number of commercial

and research organizations are involved in this area in various ways. The typical

applications include video conferencing, tele-teaching, network telephony, and so on.

These commercial products and research demonstrators are diverse in technological

infrastructure, such as networks employed, protocols used, and compression standards

supported. In this very competitive field, good quality becomes an important factor.

Quality of Service (QoS) issues are getting more concerns. Video and audio applications

normally have a large amount of data, which may cause a high consumption of the

bandwidth. Many products provide QoS guarantees based on ATM or ISDN connects

because of the nature of this type of connections. The traditional best-effort network, e.g.

the Internet, cannot guarantee satisfying video and audio quality since it was not designed

to support this type of applications.

The IP multicast concept emerged about eleven years ago. It provides a bandwidth-

efficient way to transmit video and audio data to multiple parties over the current

Internet. More and more Internet video and audio applications have been built based on

IP multicasting and research efforts have been made to integrate QoS management into

the multicast applications. However, QoS management becomes more complex when a

large number of users are involved because of the heterogeneous nature of the Internet.

The complexity is caused by the conflicts among the receivers. A single quality of service

2

level may not be appropriate for all the participants because of the different link

capacities. Some users may participate with a limited workstation that is not able to

provide the quality that most of the other participants adopted. Some users may prefer to

pay a higher price to obtain a maximum quality, while others may prefer a lower quality

to keep the cost down. The source providing a single high-quality stream may cause the

low-bandwidth users to suffer high packet loss, and a single low-quality stream may

bring complains from the high-bandwidth users. There are many open research issues in

this area and one aims at building a simple and easily-implemented QoS architecture.

QoS adaptation schemes are often discussed for the case that the quality level is

changing, aiming at adapting the application to the available bandwidth. However, the

number of applications in this area is small. We also noticed that in this category, few

applications take the user’s satisfaction into account. Most of them are from the network

point of view. Implementing QoS adaptation from the user’s point of view is an

important aspect of our project.

1.2 Main Contributions

A QoS adaptation approach in the multicast environment was proposed by Stefan Fischer

and other scholars [33]. In their paper, they described an architecture where the source

provides QoS alternatives concerning frame rate, video color, and video resolution, and

the adaptation is performed according to the available bandwidth combined with the

users’ preferences, which can be defined through a user interface. The session is

controlled by some so-called QoS agents. Our research goal is to prove the feasibility of

this approach. We adopted a system design, in which video, voice and control messages

are transmitted over separate channels. Therefore, the most important design concern was

3

to choose an appropriate session control protocol. Through the study of several session

protocol alternatives, we found that the DMIF (Delivery Multimedia integration

Framework), which has been designed as a tool to support the MPEG-4 systems features,

was the best candidate for our system. Although the DMIF was intended to be used with

MPEG-4 systems, it includes the definition of a generic session level protocol to fulfill

the requirements of multimedia applications. We will explain in detail how DMIF has

been adopted into our system.

A simple case study, tele-teaching application, was developed. The system build-up

process went through the usual phases of specification, design, implementation and test.

The implementation and test results met our goals. We believe that this research is

valuable since (a) it has demonstrated that Fischer’s QoS adaptation approach is feasible,

and (b) it provided a general architecture for supporting QoS adaptation in a multicast

environment, which can be employed by other similar types of video or audio

applications.

1.3 Thesis Outline

The thesis is organized in the following way. Chapter 2 gives an introduction of some

background knowledge. The first section introduces some protocols related to multimedia

delivery over the Internet. We will mention first the Internet protocol set TCP/UDP/IP,

then IP multicasting concepts and protocols, and finally some higher level protocols that

are often used to provide feedback on multimedia delivery characteristics. The reason of

introducing multicast concepts is that our work is based on the Multicast Backbone

(MBone), which is a test bed for Internet IP multicasting research. The second section is

a short description of various video and audio coding schemes. We will discuss the

4

Quality of Service (QoS) principles and Adaptation mechanisms in Chapter 3. Also some

related work are mentioned. Chapter 4 begins with a survey of current video conferencing

applications, followed by a discussion of what kind of system we wanted to build, its

characteristics, and in which way it is different from other systems. General system

architecture and a typical interactive scenario are described in Chapter 5. To implement

this system, we need to choose appropriate protocols for video delivery and session

control. We will list several protocol alternatives in Chapter 6, and analyze the

advantages and disadvantages of using those protocols, including their overhead. DMIF

was our final choice for session control. Chapter 7 explains how we adapted DMIF into

our system. The system design and test results are given in Chapter 8. We describe some

key design issues and implementation choices. Some other design details are given in the

Appendixes. In the final chapter, “Conclusion and Future Work”, we summarize the

contribution of the work, illustrate other type of applications to which this scheme can

apply, and finish this thesis with a discussion of future work.

1.4 Publication Arising from the Research

G. v. Bochmann, Z. Yang, “Quality of Service Management for Tele-teaching

Applications Using the MPEG-4/DMIF”, International Workshop on Interactive

Distributed Multimedia Systems and Telecommunication Services, Toulouse, Oct 12-15,

1999, Proceedings, page 133-145.

5

Chapter 2 Multimedia Applications over Internet

2.1 Internet Protocols for Multimedia Applications

2.1.1 Internet Protocols – UDP/TCP/IP

Data communication networks were developed to allow people share computer resources

from different places. As computers have spread among organizations and families, the

early networks, where a user of one network was not able to access other networks,

became inadequate for information sharing among businesses or individuals. Therefore,

the concept of internetworking emerged, and also technologies and standards were

developed to allow users to communicate with each other from different networks. In the

early 1970s, several groups around the world started to address this issue. The

International Telecommunication Union – Telecommunications Standardization Sector

(ITU-T), the International Standards Organization (ISO), and some designers from the

Advanced Research Projects Agency (ARPANET) were the pioneers in this field. With

the initial efforts of several ARPANET designers, some early protocols and network

control programs were developed, and later, the Transmission Control Protocol / Internet

Protocol. Today, TCP/IP has become the standard suite of data communication protocols

on the Internet.

Network software and hardware require a wide range of functions to support the

communication activities. To solve this problem, the protocol functions are usually

structured in a layered architecture. Different from the ISO 7-layer architecture, the

Internet is based on 5 layers, from top-down: application layer, transport layer, network

layer, data link and physical layer.

6

Here is an example of the networking operation. Suppose Host A wants to send

information to Host B. The data is going downwards as arrow ‘a’ shows in Figure 2.1. To

perform corresponding functions, each layer adds headers to and encapsulates the data

from the upper layer, until the data reaches the physical layer, which is responsible for

launching the data into the network. The data goes to the router and is passed to the IP

layer in the router, where, based on the address provided by Host A, the routing functions

are working to find the route to Host B. Once the data arrives at the Host B, the headers

are stripped off / decapsulated at the appropriate layer, as arrow ‘b’ shows in Figure 2.1,

and finally the Host B gets the proper information.

Figure 2.1 Example of Internet Layer Operation [2].

• Internet Protocol (IP)

IP [1] is the internetworking protocol. It allows the exchange of traffic between two host

computers, hiding the underlying network from the user. IP provides a connectionless

service, which means “No logical connection between the user and the network is

Router

Host B Host A

Application
Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application
Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Layer

Data Link Layer

Physical Layer

Subnetwork Subnetwork

a b

7

established prior to data transmission. The data units are transmitted as independent

units.” [2]. Because of this feature, IP is robust, however unreliable. An IP packet can be

lost, duplicated or arrive out of order. IP was not designed to deal with these problems. It

does not provide error recovery or flow control. These functions can be provided by an

upper layer (transport layer) connection-oriented protocol, e.g. TCP.

An Internet IPv4 address has 32 bits divided into 2 segments: network address, which

identifies the sub-network where the destination host is located, and the host machine

address. Three classes of IPv4 addresses, Class A, B, and C, were designed to fit in with

the needs of allocating IP addresses to hosts whose networks have different sizes.

Another class of IP address, Class D, was defined later for multicasting.

• Transmission Control Protocol (TCP)

TCP [3] was designed to run above IP, providing reliable data transmission with flow

control. TCP is a connection-oriented protocol, which means “A user and network set up

a logical connection before transfer of data occurs. Usually, some type of relationship is

maintained between the successive data units being transferred through the user /

network connection.” [2]. TCP uses sequence numbers and checksum facilities to ensure

that a segment of data is not damaged during the transmission. TCP also allows

retransmission by sending acknowledgement message back to the sender. When the

segment is received correctly, a positive acknowledgement (ACK) is returned to the

sender, otherwise, a negative acknowledgement (NACK) is returned; in this case, the

sender would retransmit the data. In addition, TCP also uses the sequence numbers to

deliver the segments in order even if the segments arrive over the network out of order.

TCP also checks for the duplication. Another useful feature provided by TCP is flow

8

control. It is based on the “sliding-window” technique. A window size value is assigned

to the transmitter. The transmitter is only allowed to transmit a specified number of bytes

within this window. On receiving of the correct ACKs, the window slides forward. The

transmitter must stop the transmission when the window is closed. Another point to

mention is the port number. Each application process needs to identity itself by a port

number, which is used to identity which application program should receive the incoming

traffic. Since the port number allows several programs to communicate concurrently, it

can be used to support multiplexing capabilities.

• User Datagram Protocol (UDP)

UDP [4] is a connectionless transport protocol. UDP is running faster than TCP because

it has no reliability, flow-control or error-recovery features. It provides port numbers for

distinguishing different information flows. This protocol assumes that the underlying

protocol is IP.

2.1.2 IP Multicasting and MBone

2.1.2.1 IP Multicasting Overview

In recent years, demands for interactive multimedia applications were rapidly increasing,

such as desktop video and audio conferencing, remote education, white board,

collaborative computer group works, and so on. In these applications, the video and audio

data are captured, compressed and transmitted to usually a group of receiver stations.

Although lots of developments in compression techniques have emerged, the multimedia

applications still need a lot of bandwidth.

9

In the traditional setting, Internet applications employ point-to-point (unicast)

communications. In the case that there is a group of receivers, the packet of media

information is replicated to the same number of receiver hosts and is forwarded until it

finally reaches the receiver stations. An example is given in Figure 2.2.

Figure 2.2 Example of Unicast Transmission

If the sender host “S” is sending a packet to host “A”, “B” and “C”, then it has to

replicate the packet in three copies, and transmit them independently to the three receiver

hosts. When one-to-many or many-to-many communication involving a large number of

hosts is considered, this transmission style is quite bandwidth consuming and has poor

scalability over a wide area network.

The concept of IP Multicasting arose years ago. It is an extension to the standard IP

protocol. Steve Deering described IP Multicasting in his paper “Host Extension for IP

Multicasting” [5]: “The transmission of an IP datagram to a host group, a set of zero or

more hosts identified by a single IP destination address. A multicast datagram is

delivered to all members of its destination host group with the same best-efforts

reliability as regular unicast IP datagrams. The membership of a host group is dynamic,

that is, hosts may join and leave groups at any time. There is no restriction on the

location or number of members in a host group. A host may be a member of more than

one group at a time.”

IP Multicasting is an important advance in IP networking. It provides a scalable delivery

mechanism that efficiently supports one-to-many or many-to-many transmission by

S

R
R

packet to A A

B

C

packet to B
packet to C R

B

A

C

10

enabling the source host to send a single copy of the information to multiple receivers. IP

Multicasting involves groups of recipients on a multicast channel. A receiver needs to

explicitly join a group to receive the traffic that is only forwarded to the group members

who want to receive the information.

Consider the same example in Figure 2.3 again. The transmitting host “S” does not have

to duplicate the packet for each intended receiver any more. Instead, only one copy is

sent out. The sender host does not have to maintain the information of the location and

number of the receivers. It is the receiver’s responsibility to register itself as a member of

the multicast group through an appropriate protocol. The packets are forwarded by so-

called “Multicast Routers” (we will call them “MRouters”), which are a special kind of

routers that support IP Multicasting. A receiver node joins a group by registering with its

directly connected MRouter. The data messages are only duplicated as needed by the

intermediate multicast routers.

Figure 2.3 Example of Multicast Transmission

IP Multicasting significantly reduces network load thus provides a scalable solution for

the Internet multi-party communication. It is far more efficient than point-to-point

(unicast) communication in the sense that it allows the source host sending a single copy

of a message to a group of recipients, instead of one copy for each recipient, where the

available bandwidth of the sender limits the number of the receivers. It is also more

efficient than another transmission style – broadcasting, in which case one copy of

S MR

MR
packet to

multicast group

group

group

MR

A

B

C

11

message is sent to all nodes on the network. Since many receiver nodes may not want to

receive the message, broadcasting may consume unnecessary bandwidth.

To send the information to a group of receivers, a special kind of IP address is needed to

describe a group of host. Also, IP multicast uses the Time-To-Live (TTL) field in IP

header to limit the packets’ propagation range. We will introduce the group IP address

mechanism and the TTL usage in the following section. Furthermore, MBone (Multicast

backBone), a multicasting test bed that virtually layers on top of the normal Internet IP

protocol will be introduced in Section 2.1.2.3.

2.1.2.2 Group Addressing and TTL

• Group Addressing

In IP multicast, a group of receivers is identified by a multicast group ID. When a sender

node wants to send messages to multiple receivers, it sends to a group ID, which specifies

the destination group. If a host wants to receive the information sent to a group, it needs

to explicitly join that group. The group ID is based on a set of IP addresses, called “class

D IP address” in IPv4, and “multicast IP address” in IPv6.

The 32-bit addresses of IPv4 are expressed in standard “dotted-decimal” notation. A class

D IP address has the first 4 bits set to “1110”, followed by a 28 bit multicast group ID,

ranging from 224.0.0.0 to 239.255.255.255.

Figure 2.4 IPv4 Class D Address (Multicast Address)

However, not all of the addresses are available for the users. Some addresses are reserved

by the Internet Assigned Numbers Authority (IANA). For instance, 224.0.0.0 cannot be

1 1 1 0 Multicast Group ID

0 32

28 bits

12

assigned to any group. 224.0.0.1 – 224.0.0.255 are reserved for routing protocols or other

low-level protocols. The reserved numbers are defined in [6].

IPv6 [7] increases the IP address size from 32 bits to 128 bits, in order to support a large

addressing hierarchy. There are 3 types of addresses, unicast, anycast and multicast [8].

IPv6 multicast addresses have their high-order 8 bits set to “11111111”, followed by 4-bit

flags, 4-bit scope and 112-bit group ID.

Figure 2.5 IPv6 Multicast Address

The “flag” has the format “000T”, where “T” is a flag to differenciate the reserved

addresses and the user available multicast address. “T=0” refers to reserved addresses,

and “T=1” refers to user available multicast addresses.

The “scope” field limits the scope of multicast message forwarding. IPv4 does not have

this scheme. Instead, it uses the TTL field to fullfil the same function.

The already assigned multicast addresses of IPv6 are defined in [9].

• TTL

Each IPv4 multicast packet uses the Time-To-Live (TTL) field in the IP header as a

scope limit parameter. It provides a mechanism to control the multicast packet

propagation within an expected range. The TTL value is specified by the sender

application. Each time a router forwards a packet, it decrements the TTL value by 1, until

the TTL expires (=0). A packet with an expired TTL will be dropped without any error

notification to the sender. The usage of TTL provides a convenient way to prevent

information from being unnecessarily transmitted to regions that are beyond the subnet

1 1 1 1 1 1 1 1 flags scope group ID

 8 bits 4 bits 4 bits 112 bits

13

that contains all group members. There is a set of recommended TTL values [10] defined

according to the MBone infrastructure. Multicast packets sender can consult these values

to specify the transmission scope.

2.1.2.3 MBone

MBone [11, 12] stands for “Multicast backBone”. It was established in early 1992 with

an attempt to transmit video and audio from the Internet Engineering Task Force (IETF)

meetings. It was setup as a test bed in the Internet to support the research of multicast

applications. MBone uses special routers, as we mentioned before, MRouters, to

distinguish unicast packets and multicast packets and to forward multicast packets by

implementing multicast routing algorithms. Moreover, it uses a so-called “IP-tunneling”

scheme to operate over the standard Internet IP multicast architecture.

• IP Tunneling

MBone is a virtual network layered on top of the unicast IP service. It consists of

MRouters, which run the MRouted multicast routing daemon to support the routing of

multicast traffic. Since not all routers support IP multicasting and not all multicast routers

are connected with each other, a mechanism has to be employed to support the delivery

of multicast packets through unicast routers. This mechanism is call “IP Tunneling”. A

picture from [10] gives an overall architecture of MBone IP tunnels (Figure 2.6).

Each tunnel is configured with a metric and a threshold. The metric is the cost associated

with sending a packet on the tunnel. The threshold is the minimum TTL that is required

to send a packet over the tunnel. It is used to limit the transmit scope for multicast

packets. Whenever a MRouter forwards a multicast packet over a particular tunnel, it

checks whether the TTL value of this packet is greater than the threshold of the tunnel.

14

Figure 2.6. MBone Architecture

The MRouter will only forward the packets with greater TTL. Otherwise, the packets will

be discarded. Some standard TTLs are specified for MBone [10]:

• MBone Applications

A number of MBone applications are available on the Internet nowadays. They are

categorized into several groups according to the functionality, including video / audio

utilities, session announcement utilities, debugging tools, etc. This section will introduce

three typical applications: the session tool – SDR, video tool – VIC, and audio tool –

VAT. Archives of other software can be found at [13]. We use VIC in our project as a

video transmission tool. We prepared a relatively complete introduction of MBone

applications in [55].

SDR

SDR is a Session Directory that was designed for collecting MBone multimedia

conference information, and also for announcing and scheduling multimedia conferences

on the MBone.

MR – Multicast Router LA – Local Area Network
 Multicast Router Unicast Router

LA

LA

LA

LA

MR

Unicast
Network

MBone
Network

tunnel

tunnel tunnel

MR

MR
MR

15

SDR makes use of two session protocols: SDP (Session Description Protocol) [14] and

SAP (Session Announce Protocol - Internet draft, working in progress). Through these

two protocols, all session related messages are periodically broadcast over the MBone.

SDR captures those messages and shows them on the screen, providing an easy way to

receive multicast sessions. A user can also create his own advertisement sessions and

broadcast on MBone.

A session may contain several single media sessions, such as a video session, an audio

session, etc. A user may receive them independently by selecting a proper tool according

to the media type used. For instance, a user may use VIC for video, VAT for audio, WBD

for whiteboard, etc. These applications can be easily plugged in and automatically

launched by SDR.

The main user interface, which shows a list of sessions, is given in Figure 2.7.

Figure 2.7 SDR Main User Interface

16

VAT

VAT, which stands for Visual Audio Tool, is the original MBone audio tool developed

by Van Jacobson of the Lawrence Berkeley National Laboratory (LBL). It allows the user

to conduct point-to-point or multi-point audio teleconferences over the Internet.

VAT is used to send and receive audio in several coding schemes. It is based on a real

time transport protocol, RTP, which is entirely implemented within VAT.

Through a simple user interface, multiple users can talk with each other. By clicking

“listen” or / and “talk” button, a user can select receiving and / or sending audio

messages. A pair of vertical sliders allows the user to adjust the microphone and

speaker’s volume. VAT has the following user interface:

Figure 2.8 VAT User Interface

VIC

17

VIC is a tool for video conferencing over the Internet. It allows users to receive and

transmit video streams from their desktops. This application was also developed by Van

Jacobson and Steven McCanne of the Lawrence Berkeley National Laboratory (LBL)

[15]. VIC can be ran point to point but it was primarily intended as a multiparty

conferencing application.

The VIC supports a number of encoding schemes for M-JPEG, H.261, H263, nv and

cellb. Like VAT, VIC is based on the RTP. The VIC interface allows easy access to basic

functions like receiving and transmitting video. When receiving video, VIC shows a

thumbnail sketch of each transmitting source with information about the transmitter to the

right of the thumbnail. The user can select to see one or more of these videos. When

transmitting video, the user can control the maximum bandwidth and the maximum

number of frames per second by selecting the appropriate options from the “Menu”

button of the VIC window.

VIC offers the following receiving and transmitting user interfaces:

Figure 2.9 VIC User Interface

2.1.3 Multicast Protocols

Multicast is different from unicast in several aspects. First of all, in real world multicast

applications, a receiver can join or leave a multicast group at any time. As we mentioned

18

before, an appropriate protocol is needed to implement the group management function.

It allows the receiver nodes to join or leave a group and lets the intermediate router know

when to forward the messages to its directly connected local network.

Secondly, the delivery of multicast messages is different from that of unicast messages.

Multicast routing protocols are needed for MRouters to keep track of each other and

determine proper ways to forward information among neighboring routers.

Finally, a number of higher level protocols have been developed to enhance the Internet

architecture to support typical multicast applications – such as multimedia conferencing.

2.1.3.1 Group Management Protocol

Multicast is a receiver-based concept. Hosts need to join a multicast group to listen to the

messages that are sent to the group. To join or leave a group, a host sends messages to

inform the multicast router on its sub-network. If there is no such a router on the sub-

network, a host is not able to receive the multicast packets. In this way, the multicast

routers know the group membership on their networks, so that they can determine

whether or not to forward multicast packets. A multicast router forwards multicast

packets of a group to its network only when there are hosts registered as members of that

group. The Internet Group Management Protocol (IGMP) [5] is developed for this

purpose.

IGMP is used by receive nodes to join or leave a multicast group, and by multicast

routers to learn the existence of group members on their directly connected sub-networks.

It accomplishes this purpose by sending IGMP queries from multicast routers and having

hosts report their group memberships back to the multicast routers. Up to date, IGMP has

three versions. The later versions improve on their previous versions in different aspects.

19

IGMP (version 1)

A MRouter periodically transmits a Host Membership Query to the all-hosts group

(224.0.0.1) to determine whether there are multicast members on its directly connected

network. Since the Query message should not go beyond the local network, it has IP TTL

equal to 1. When a host receives a Query message, it needs to respond with a Host

Membership Report for each host group to which it belongs. In our example, host 1

reports its membership of group 1, host 2 of group 1 and 2, and host 3 of group 1, so that

the multicast router knows that messages sent to group 1 and 2 need to be forwarded to

this sub-network. Rather than sending the Report immediately, a host waits for a

randomly chosen delay. If in this period, another Report of this group is heard, the host

resets the timer and waits for another random delay. This procedure is to prevent the

flooding of Reports on a network.

Since a host can join or leave a group at any time, a MRouter needs to periodically

transmit the Query to update its group membership information. If a MRouter does not

receive a Report for a particular group after a certain number of Queries, it removes the

group from its list. When a host first joins a group, it does not wait for a Query to

respond. Instead, it immediately transmits a Report to the multicast router to claim the

existence of a group member.

Figure 2.10 Example of IGMP

H2H1

H3 H4

Multicast Router
group1

group1

group1,2
Query

Report

20

• IGMP (version 2)

When there are more than one MRouter attached to a local network, one MRouter is

elected as a multicast querier. The election of the querier in IGMPv1 is determined by the

multicast protocol. Different multicast protocols may use different methods to decide the

querier. To avoid the uncertainty problem, IGMPv2 [16] stipulates that the querier has to

be the router with the lowest IP address on the local network.

To reduce the traffic, IGMPv2 defines a Group Specific Query message, which allows a

multicast router to query a particular group. When a host wants to leave a group, for

example, host 2 wants to leave group 2, another new introduced type of message Leave

Group message is sent to the multicast router. The router will send a Group Specific

Query regarding group 2. If no reports have been received in a period of time, group 2

will be eliminated from the router’s list.

• IGMP (version 3)

A multicast group may have several sources. Further refinements have been made in

IGMPv3 (Internet draft, working in progress) to help to conserve the bandwidth by

adding Group Source Report and Group Source Leave Report, which make it possible to

identify a specific source of a multicast group. IGMPv1 and IGMPv2 do not have this

mechanism. Even if a host wants to receive messages from only one source of a multicast

group, the messages from all sources have to be forwarded onto the sub-network.

2.1.3.2. Multicast Routing Protocols

IGMP only provides the final step in multicast packet delivery. A multicast routing

protocol is needed for the multicast routers to construct multicast delivery trees and

forward multicast packets between neighboring routers or across the inter-network.

21

Several routing algorithms have been proposed to build the multicast trees [17, 18]. They

can be used to implement multicast routing protocols. In this section, we introduce some

currently used multicast routing protocols. The description of multicast routing

algorithms is given in Appendix A.

• Multicast Routing Protocols

Distance Vector Multicast Routing Protocol (DVMRP)

DVMRP was originally defined in [19]. It was based on Truncated Reverse Path

Broadcasting (TRPB) algorithm, and enhanced to Reverse Path Multicasting (RPM)

algorithm later on. The latest standard of this protocol is developed by the IETF Inter-

Domain Multicast Routing working group. DVMRP implements the RPM. In addition, it

uses a “graft” message to allow a “prune” message to be “canceled”.

In Figure 2.11, host H~ joins the group shortly after the router R~ sent out a “prune”

message. Then the R~ should immediately send a “graft” to the upstream router, in this

case the source, to cancel the previous prune.

Figure 2.11 Example of DVMRP

DVMRP is used by a majority of MBone routers. Others are using MOSPF or PIM

protocols. We will introduce them in the following part. All interfaces of a DVMRP

S

R

R

R

R

R

R

H

H

H H

H

R~
H~

H
prune prune

prune

graft

22

router are configured with a metric that indicates the cost of the interface, and a TTL

threshold to limit the scope of the multicast delivery.

An implementation of the DVMRP is called the MRouted [20], which is a MBone routing

utility used by MBone routers to support IP multicasting. MRouted forwards a multicast

packet on a multicast delivery tree, which is constructed by pruning back a broadcast

delivery tree. Therefore, datagrams are only forwarded to those sub-networks, which

have members that have joined the destination group. As we discussed before, the

multicast scope is limited by the IP TTL field of a multicast packet.

MRouted supports the IP tunneling mechanism. IP multicast packets are encapsulated for

transmission through tunnels, so that for the intermediate non-multicast-capable routers

and sub-networks, they look like normal unicast packets. The encapsulation is added on

at the entry of a tunnel, and stripped off at the exits from a tunnel. By default, the packets

are encapsulated using the IP-in-IP protocol (IP protocol number 4).

Mrouted suffers the scaling problem that is well-known for any distance-vector routing

protocol.

Multicast Extension to OSPF (MOSPF)

MOSPF is an IP multicast extension of OSPF, which is a link-state protocol defined in

[21]. MOSPF added a new “Group-Membership-LSA (Link State Advertisement)”. A

multicast delivery tree is constructed using Dijkstra’s algorithm based on the OSPF link

state information, then the non-group links are pruned by conducting the group

membership information. MOSPF supports hierarchical routing. Hosts are divided into

“Autonomous Systems”, and further partitioned into areas. There are three types of

23

routing: intra-area, inter-area, and inter-AS routing. Since this is not the focal point of

this paper, we do not discuss the details here. MOSPF is specified in [22].

Protocol-Independent Multicast (PIM)

PIM is being developed by the IETF Inter-Domain Multicast Routing working group.

They consider that the DVMRP and MOSPF cannot work efficiently where group

members are sparsely distributed and bandwidth is limited, because DVMRP needs to

refresh the multicast tree by periodically flooding the network with a packet, and MOSPF

sends group membership information over all the links. Therefore, there are two

protocols in PIM: PIM-Dense Mode (PIM-DM) and PIM-Sparse Mode (PIM-SM).

PIM-DM applies in a situation where group members are relatively dense and bandwidth

is plentiful. In this case, PIM-DM is very similar to DVMRP. One difference is that PIM-

DM is independent from mechanisms employed by the unicast routing protocols; it is a

“protocol independent protocol”. The other difference is that PIM-DM simply forwards

all multicast traffic on all downstream interfaces until explicit prune messages are

received, while DVMRP forwards traffic along the multicast tree.

PIM-SM [23] is efficient in the situation where group members are distributed across

many regions and bandwidth is not widely available. The main difference from PIM-DM

is that to join a sparse mode multicast tree, routers are required to transmit explicit join

messages.

2.1.4 Higher-Level Protocols

Due to the real-time characteristics of multimedia applications, some other upper layer

protocols were developed to improve the support for this kind of applications. We will

discuss them in Section 1.1.3.3.

24

This section gives an overview of several typical higher level protocols used with IP

multicasting [24]. These protocols have been developed to enhance the Internet support

for real-time multimedia applications. They are Real-time Transport Protocol (RTP),

Real-time Transport Control Protocol (RTCP), Real-time Stream Protocol (RTSP), and

ReSource reserVation Protocol (RSVP). Our project is developed using RTP and RTCP.

• RTP

RTP (version 2) provides end-to-end delivery services to support real-time data

transmission. It typically runs on top of the transport layer protocol, UDP, and works

together with it to carry the real-time data across the network. It was proposed by the

IETF Audio and Video Transport working group. The original version was defined in

[25], and followed by some Internet drafts with some further improvements. We will

introduce RTP in more detail in Section 6.1.2.

• RTCP

RTCP works together with RTP to provide feedback information about RTP streams.

Each participant in a session periodically transmits RTCP control packets to all the other

participants. There are 5 different types of RTCP packets to carry various control

messages, including Sender Report (SR), Receiver Report (RR), Source DEScription

(SDES), BYE, and APPlication specific information (APP). We will discuss in Section

6.1.2 the functions that RTCP provides and how they can benefit our project

implementation.

• RTSP

RTSP is an application-level protocol, which was designed to work on top of RTP, to

control the delivery of data with real-time characteristics. RTSP provides a framework

25

for streaming multimedia data in one-to-many applications. Sources of data may include

both live data feeds and stored clips. This protocol is intended to control multiple data

delivery sessions. It provides a way to choose delivery channels such as UDP, multicast

UDP and TCP, and also provides a means to choose the delivery mechanisms based upon

RTP. Detail information can be found in [26, 27].

• RSVP

RSVP was developed to provide end-to-end quality of service guarantees for data streams

between senders and receivers from the network. It enhances the current Internet

architecture with the support for quality of service. RSVP operates over the IPv4 or IPv6,

serving as a control protocol through the transmission of QoS parameters. It was also

designed to route RSVP messages along all the nodes in the reserved path to establish

and maintain state information to provide the requested service. RSVP was defined by the

IETF Networking working group in [28].

2.2 Voice / Video Encoding

2.2.1 Traditional Voice / Video Encoding

Multimedia applications may contain different types of media, such as video, audio,

image, text. Normally, this kind of applications has a large amount of data, which causes

high cost of bandwidth in the network. The multimedia information have to be

compressed and converted into binary bits of data at the source node (encoded), then

delivered over the network, and finally resumed (decoded) by the destination node. Some

technologies and standards have been developed to support the encoding and decoding of

multimedia information. The International Telecommunications Union (ITU), and the

26

Internet Engineering Task Force (IETF) are at the forefront of standards development for

communications and conferencing products. In this section, we introduce some video and

audio coding standards.

• Voice Coding Standards

The changes in air pressure create audio waveform that reaches the human eardrum. We

can hear sound if the frequency of air disturbance is between 20 to 20,000 Hz. To send

the audio across the network, the audio waveform has to be converted into binary bits,

then encapsulated by a transport protocol. The conversion contains several phases: analog

to digital, sampling, quantification, and compression. PCM (Pulse Code Modulation) is

the most popular used encoding method. ITU has standardized some audio codecs, which

are different in bandwidth and transmission rate. The summary is given in the following

table [29].

Name Audio Frequency Transmission Bit Rate Codec Algorithm
G.711 3.4 – 300 KHz 56K, 64 K bps PCM
G.728 3.4 – 300 KHz 16K bps LD-CELP
G.722 7 – 50 KHz 48K, 56K, 64K bps ADPCM
G.723.1 3.4 – 300 KHz 5.3K, 6.3K bps ACELP, MP-MLQ

Table 2.1 Summary of Audio Coding Standards

• Video Coding Standards

An image in the human eye remains for several milliseconds. If a sequence of individual

images is flashed quickly, the human eyes consider it as a motional picture. The video

system takes advantage of this principle. Therefore, video contains a huge amount of

data. Compression is included in the encoding processes, which requires high

computational power. The most important video coding standards are H.261, H.263,

MJPEG, MPEG1, MPEG2, and MPEG4. A brief description of each standard is given

below.

27

H.261

H.261 is designed for low data rates and relatively low motion. It includes a mechanism

that optimizes bandwidth usage by trading picture quality against motion. A quickly

moving picture has a relatively low quality compared with a static picture. H.261 is

optimized for low data rates, but generally, it cannot provide a good quality.

H.263

H.263 is an advancement of the H.261 and MPEG-1 standards. It was designed for

producing better quality with low bit-rate communication. The coding algorithm of H.263

is similar as that of H.261, with some refinements to improve the performance and error

recovery.

M-JPEG

JPEG was designed for compressing either full-color or gray-scale images of real world

scenes. JPEG can achieve 10:1 to 20:1 compression without visible loss, and 30:1 to 50:1

with small or moderate defects. 100:1 can be achieved if only low quality is required. M-

JPEG stands for Motion-JPEG. Various vendors applied JPEG to individual frames of a

sequence of video, and they call the result M-JPEG. Since there is no standard for

sequencing the individual video frames, there is an incompatibility problem among

different vendors’ products. It is popularly used in digital studios because each video

frame can be accessed directly.

MPEG-1

MPEG-1 coding targets a bandwidth of 1-1.5 Mbps. It can provide excellent audio and

video quality and can be used in many environments. However, to achieve this quality,

MPEG-1 requires fairly powerful playback hardware, such as sufficient CPU power for

28

basic playback and high-quality video card for playback acceleration. Moreover, the

interdependency of P (predicted) and B (bi-directionally predicted) frames makes the

video quality highly affected by packet loss.

MPEG-2

MPEG-2 was designed to broadcast high quality digitally encoded video and audio. It

provides excellent quality for TV-broadcast applications. MPEG-2 enhances MPEG-1 by

including support for higher resolution video and increased audio capabilities. The target

bit-rate is 4-15 Mbps. Compare to MPEG-1, MPEG-2 requires more complicated

hardware to encode and decode.

MPEG-4

The initiative of MPEG-4 is to provide a compression scheme suitable for video

conferencing, with very low data rates – less than 64 Kbps. MPEG-4 is based on AVOs

(audio / visual objects), which can be multiplexed for transmission over heterogeneous

networks. The detailed information will be given in the next section.

A summary of video resolution and transmission rates for these video coding schemes is

given in the following table [29].

Name Video Resolution Transmission Bit Rate
H.261 CIF (Common Intermediate Format) – 352*288,

QCIF (Quarter CIF) – 176*144
64K – 2M bps

H.263 CIF (Common Intermediate Format) – 352*288,
QCIF (Quarter CIF) – 176*144,
SQCIF (Sub QCIF) – 128 * 96,
4CIF (4 * CIF) – 704 * 576,
16CIF (16 * CIF) – 1408 * 1152

15K – 20K bps

MPEG-1 352*240 1.2 M bps
MPEG-2 352*240 (low), 720*480 (main),

1920*1080 (high), 1440*1152 (high 1440)
4M – 9M bps (can up
to 80Mbps)

Table 2.2 Summary of Video Coding Standards

29

2.2.2 MPEG-4

MPEG-4 [30] is a new ISO standard on multimedia stream coding that goes beyond the

previous MPEG-1 and MPEG-2 standards by providing adaptation to low-data-rate

transmission and support for multiple video and audio streams, which can be useful for

teleconferencing applications and applications involving virtual environments. In contrast

to traditional coding standards, MPEG-4 allows the definition of video streams which

represents objects with arbitrary contours, not only the rectangular screens of TV or film

presentations.

MPEG-4 provides a standardized way to:

• Describe units of visual or audiovisual content in the form of “objects”, called

“Audio/Visual Objects” (AVOs), which form the audiovisual scenes. The AVOs are

organized in a hierarchical manner. Basic units at the leaf level are called primitive

AVOs, such as a picture of a car, the voice associated with the car, etc.

• Compose AVOs to create compound audiovisual objects, which form the final scenes.

A scene is composed of individual objects, and compound AVOs that groups AVOs

together, such that AVOs are organized in a hierarchical way.

• Multiplex and synchronize the data associated with AVOs, so that they can provide

an appropriate QoS when transmitted over the network. AVO data is conveyed in one

or more Elementary Streams (ES), which carries the requested QoS, such as bit error

rate, maximum bit rate, and also necessary parameters like stream type information,

encoding timing information, etc.

• Interact with AVOs. MPEG-4 provides standards to compose a scene, such that an

AVO can be placed anywhere, a user can change his viewing or listening point to

30

anywhere in the scene, etc. A user can drag an object to another position in a scene,

trigger a series of events including starting or stopping a video stream, change the

view point, etc. The flexibility of the operation with AVOs allows the composition of

an arbitrarily shaped screen.

A general MPEG-4 architecture contains 3 layers as shown in the following figure:

Figure 2.12 General MPEG-4 Architecture

The function of the Compression Layer is to encode and decode media into Elementary

Streams (ES); the Sync. layer keeps the synchronization and hierarchical relations of the

ESs; and the Delivery Layer provides transparent access to MPEG-4 contents

irrespectively of the transport network technology. The boundary between the Sync layer

and the Delivery Layer is the DMIF Application Interface. We will introduce DMIF in

detail in Section 6.2.3.

 Compression Layer media aware, delivery unaware

Elementary Stream Interface (ESI)

 Sync Layer media unaware, delivery unaware

DMIF Application Interface (DAI)

 Delivery Layer media unaware, delivery aware

31

Chapter 3 Quality of Service Management

3.1 Network QoS

3.1.1 QoS Definition

Quality of Service has a number of different definitions in different research fields. In

general, it is a term that is very often used in computer networks. One of the definitions

published in a web technology dictionary [31] is: On the Internet and in other networks,

QoS (Quality of Service) is the idea that transmission rates, error rates, and other

characteristics can be measured, improved, and, to some extent, guaranteed in advance.

QoS is of particular concern for the continuous transmission of high-bandwidth video

and multimedia information. Transmitting this kind of content dependably is difficult in

public networks using ordinary "best effort" protocols.

The following parameters [32, 33] are normally used to evaluate the QoS of a system

component:

• Transit Delay: A packet is sending from one computer to another. The time is

different between the moment when the packet is sent out at an output port and the

moment when this packet is received at an input port. Transit delay is used to express

the time gap.

• Transit Delay Jitter: For the same stream, different data units may have different

delays. Transit delay jitter indicates the variation of the transit delay.

• Loss Rate: Data may be lost during the transmission. Loss rate is the fraction of data

loss.

32

In the context of multimedia applications, another parameter, throughput, can be used to

express the communication requirements for the multimedia stream.

In the real world, networks are interconnected. The result of end-to-end service can be

considered to be the concatenation of the individual network services [32]. The QoS

parameters Pee of the end-to-end service may be calculated from the QoS parameters Pi

of the i-th network (i-1,…, n).

• Available_Throughputee = minimum (for all i = 1,…, n) of Available_Throughputi.

• Delayee = sum (for all i = 1,…, n) of Delayi.

• Jitteree = sum (for all i=1,…, n) of Jitteri [assuming that the jitter is defined as the

difference between maximum and minimum delay].

• Jitteree = square-root of sum (for all i = 1,…, n) of square of Jitteri [assuming that the

jitter is defined as the average deviation of the delay from the average delay, and the

delay is assumed to have a normal distribution].

• Log (1 – Lossrateee) = sum (for all i= 1,…, n) of log(1 – Lossratei).

While the QoS provided by the networks can be characterized by the above parameters,

the delivery guarantee can be categorized into the following levels:

• Best-effort: network performs as well as it can. No consideration of user’s

requirements. The Internet today is in this mode.

• Target-objectives: network knows the user’s requirements. It performs as well as it

can to meet the requirements, but with no guarantee.

• Statistical-guarantee: deterministic guarantee for a certain fraction of the traffic, e.g.

delay is less than 0.1 second for 95% of packets.

33

• Deterministic-guarantee: network service is always equal or better than the

specified QoS requirements.

3.1.2 Related Work

Over the past years, there has been a large amount of research focussed on QoS

management issue. The topics range from end-to-end QoS specification and adaptive

QoS architecture, to QoS management agents, etc. The research covered both architecture

and implementation issues of QoS management functions, such as QoS negotiation, QoS

re-negotiation, QoS adaptation, QoS mapping, resource reservation, and QoS monitoring.

We summarize several of these aspects in the following:

Local Components: The research in this field puts effort in providing QoS in servers and

end-systems, such as CPU scheduling, memory management, and disk scheduling

mechanisms [34, 35].

Advanced Reservation: For some applications, immediate reservation may not be

suitable. The reservation needs to be set in advance. [36] describes a QoS negotiation

approach with future reservations that de-couples service starting time and service

request time. It allows to compute the QoS that can be supported for the time the service

request is made, and at certain later times carefully chosen. If the requested QoS cannot

be supported for the time the service request is made, the proposed approach allows to

compute the earliest time, when the user can start the service with the desired QoS.

Traffic Management: Networks are operated in a store and forward paradigm, where the

queuing strategies play an important role. Several queuing schemes are mainly used

today: FIFO (First In First Out) queuing, Priority queuing, Class-Based queuing, and

Weighted-Faired queuing. Each of them has advantages and disadvantages in the context

34

of QoS control. In addition, traffic shaping can be operated with non-FIFO queuing

disciplines, to control what data are transmitted to the network and the transmission rate.

Two methods for traffic shaping exist: Leaky-Bucket and Token-Bucket methods [37].

QoS Based Routing: Attempts in this field have been made towards providing routing

algorithms that take QoS requirements into account. The state information is exchanged,

so that a router can find a suitable route that satisfies the QoS constraints [38].

Pricing: Pricing can be an additional parameter of QoS negotiation. The issues are: who

pays for the service, how is it indicated, what benefits can the receivers get from paying

higher or lower prices, the fairness among all users, etc. [39]

We have introduced the QoS definition and some related issues in this section. An

important branch of the QoS management named adaptation, will be discussed in the next

section.

3.2 Adaptive Applications

3.2.1 Adaptation Principles

Adaptation is described in [40] as: Adaptive methods, using scaling and filtering, may be

seen as an alternative to reservation-based QoS provisioning, e.g., if reservations are not

supported by the used networks. These techniques adapt the generated workload to the

available resources by changing the characteristics of the transmitted data stream, e.g.,

lowering the frame rate of a video stream, and, thus, allow a smooth decrease in quality.

Scaling means to reduce the load when the current service cannot be supported. To apply

scaling at the receiver node, the network load and the end-system performances have to

be monitored, based on the QoS parameters we introduced earlier, so that when a change

appears that the service cannot be kept on the current level, an appropriate action can be

35

performed to reduce the load. For example, the reduction can be done by informing the

sender node to slow down the transmission. The receiver node can achieve this goal

either by sending an explicit message back to the sender, or through some other feedback

mechanism. Different applications may deploy different scaling mechanisms.

Filtering is considered mostly in distributed applications that involve a large number of

participants. Such kind of applications often possesses heterogeneous properties, which

do not allow the implementation of scaling mechanism. One example is a multicast

application, which involves many receivers who may have different system

configurations, hence, may require different amounts of load from the sender. The sender

cannot slow down the transmission because of a single receiver’s request, while other

receivers still request the higher load. A filter mechanism can be used to support such

cases. It is often applied at an intermediate node, which can change the transmission load

to adapt to different requests. The change can be done by re-encoding or discarding parts

of the data. Removing parts of the data requires that the data is encoded into a hierarchy

of layers, such as with MPEG-2 [41] or MPEG-4. An implementation of such filtering is

described in [42]. The receiver starts with the base information, adding up enhanced

layers until all the layers are reached, or a change happens, and the current parameter

cannot be maintained.

3.2.2 Related Work

Adaptive applications are applications that can cope with wide and unexpected QoS

variants and maintain the performance in an acceptable way. The issue is “How to adapt

multimedia application dynamically and continuously to their environment to make them

deliver the best possible service under any given set of conditions”[43].

36

A number of applications are developed along this line. They have been trying to deploy

adaptation from different points of view, and to deal with different circumstances.

[43] gives an overview of adaptation algorithms and applications. Some examples of

adaptivity are introduced. They are categorized into three main aspects: user centered – to

emphasis on the user interface and interaction; system centered – to maintain a system

parameter at a constant level; and mixed – to observe parameters from both the system

and the users.

P. Moghe and A. Kalavade discussed in their paper [44] that recent work on QoS issues

have two distinct trends: networking aspects and operating system aspects, including two

kinds of QoS measures: end-to-end QoS measures, such as delay, packet loss, delay jitter,

and terminal QoS measures, such as application processing delay. In their research, they

tried to find the interaction between these two approaches. They considered a terminal

that uses end-to-end QoS feedback to support adaptive applications according to their

adaptation algorithm. The question was what the effect can adaptation have on the

terminal processing delay. A theoretical framework was used to quantify the result. The

goal of this research was to find a maximum adaptation level at which the processing

delay is acceptable, and to use a terminal QoS measure to tune the adaptation algorithm.

At the time this paper was published, the experiments were still in process.

[45] presented a scheme to adapt the transmission rate to the level of network congestion

in the context of multimedia applications. The research was based on RTP and RTCP.

RTCP provides an algorithm to adjust the packet transmission interval according to the

number of the participants. The authors of this paper introduced a new algorithm, which

can be used by the source node to control the transmission rate according to the feedback

37

information. The results were obtained from simulations. They considered that this

scheme was efficient in utilizing the network resources and decreasing the packet loss

rate.

In the CITR (Canadian Institute for Telecommunications Research) project “Quality of

Service negotiation and adaptation”, solutions were developed for applications involving

access to remote multimedia databases. [32] discussed a few principles that can be used

in QoS management. Three possibilities of QoS adaptations were introduced, in which an

application can adapt to reduced network performance, related to throughput, loss rate,

delay, and delay jitter. The first possibility is – when congestion occurs, the network may

refuse new connection request – to delay the application and try later, or to degrade the

QoS parameters in a session. The second way is to adapt to limited quality of

communication service through alternative configurations, such as switch to another

server or use another network. In the context of multicasting, another multicast tree may

be selected. The last possibility to adapt is to use an alternative document structure, such

as to present some text instead of some corresponding video stream.

[33] proposed an adaptive approach that allows to recover automatically from QoS

violations. Three schemes were suggested. Component Reconfiguration Scheme: to

replace the overload component by another component that is able to support the initially

agreed QoS level and with the same functionality. Resource Reconfiguration Scheme: in

response to QoS violation, to change the amount of resources reserved by the

components, such that the end-to-end requirements can still be met. Delay Recovery

Scheme: to request a higher level QoS from the other system components when a given

component experiences a delay violation.

38

QoS adaptation in a multicast application is different in the sense that this kind of

application usually involves many participants that may have a variety of QoS

requirements. From this perspective, the end-to-end QoS adaptation algorithms are not

applicable anymore. We will discuss this problem in the next chapter.

39

Chapter 4 System Requirements

4.1 Video Conferencing Applications

Video conferencing is a rapidly growing and changing field. Tele-teaching, which usually

consists of one teacher site and some students sites, is a special type of video

conferencing. There are numerous products available today. Products vary widely in the

features, platforms, network techniques, and so on. New products are still being

introduced. Since the concept of IP multicast arose years ago, it has been playing an

important role in distributed multimedia applications. In fact, a number of today’s

products and research applications are based on IP multicasting, for example, a number

of video applications on MBone are available at [13]. In the very competitive field of

distributed multimedia application, the ability to provide the best possible quality over a

range of networks becomes highly desirable. Hence, QoS adaptation is discussed more

and more in this field. However, QoS management in the context of multicast

applications has only been addressed recently.

The following table provides a survey of the video conferencing market and research

efforts. A majority of this kind of applications does not provide QoS adaptation. Some

applications with QoS adaptations are built on top of ATM or based on ISDN. In the field

of QoS over IP, there are more researches projects than actual applications, and the

products using IP multicast are fewer.

 With QoS Adaptation Without QoS
Adaptation ATM/ISDN IP End-to-End IP Multicast

Research Theories some lots some N/A

Commercial Products /
Research Demonstrator

some some few lots

40

Table 4.1 Survey of Video Conferencing / Tele-teaching Researches and Products

Among the applications that provide dynamic end-to-end QoS adaptation, the most

common technique is dropping frames. Vosaic [46], a research project at the University

of Illinois, provides dynamic adaptation by dropping frames within a pre-determined

boundary. However, simply frame dropping can cause loss of synchronization.

Alternatively, a layered compression technique is used in many cases. For instance,

VXtream [46] has a number of WebTheater products, which use a layered compression

scheme to divide the compressed video into multiple streams with different priorities

based on the impact on the video quality. The Department of Computer Science and

Engineering, Oregon Graduate Institute of Science and Technology constructed an

MPEG video and audio player [46] that supports frame dropping to cope with reduced

bandwidth. The Application Level Gateway project 46] at the University of California,

Berkeley uses the frame dropping algorithm and another technique, called transcoding, to

achieve the dynamic adaptation. Video transcoding is the conversion from one encoding

format to another. Another application, called SuperNOVA (Negotiated Online Video

Access) also uses this technique [46]. However, this is a computationally expensive

method.

There are only few applications with QoS adaptation based on IP multicasting. Scholars

from the Lawrence Berkeley National Laboratory and the Department of Electrical

Engineering, Texas A&M University proposed and implemented a dynamic QoS control

scheme for video conferencing in the Internet [47]. This approach also uses the layered

frame dropping mechanism. A source transmits layered video streams through multiple

41

channels. This information is available to the receivers, and the receivers can dynamically

add or drop layers to reduce the packet loss.

As a summary, we can say that most of the applications provide QoS adaptation by frame

dropping. And few applications consider IP multicast. We put our focus in this relatively

new area, and developed our system using another adaptation approach. We will describe

the approach and specify the system requirements in the following section.

4.2 Requirement Specification

Simply put, the system we want to build is an adaptive application that suits different

QoS requirements of different users based on IP multicast. Implementing QoS adaptation

from the user’s point of view is the main driving force of this project. Stefan Fischer,

together with Abdelhakim Hafid, Gregor v. Bochmann and Hermann de Meer, proposed

an approach called “Cooperative QoS Management” [48], which meets our requirement

to a large degree. Our project was based on this approach.

In their paper, they present an approach, where different levels of qualities are provided

in the context of a distributed multimedia application, and so-called application-oriented

QoS agents are distributed throughout the network and in the end-systems, which

communicate with each other and manage the QoS obtained by the different users.

Distributed multimedia applications may involve many users. Therefore, the negotiation

between the sender and all receivers becomes difficult, since the sender would have to

keep state information for each receiver. Obviously, there is a scalability problem. The

idea of Fischer’s approach is not to do such direct negotiation, but to distribute part of the

QoS management process to the receivers and allow each receiver to make certain QoS

decisions locally based on its local QoS context.

42

It was assumed that for some mono-media component of a multimedia application, the

sender process is able to offer several variants with identical content but different QoS

characteristics. For example, a video clip may be available in several variants, having

different frame rates, color qualities and/or resolutions. These variants are multicast to the

receivers’ workstations throughout the network.

Based on this idea, the requirements of our system are defined as following:

• We should have two basic types of modules: a sender module which multicasts

several stream variants, and receiver modules that select a particular QoS variant. In

each module, a logical entity, called QoS agent, which is separate from the media

data transmission should be used to fulfill the session and QoS management

functions.

• The QoS variants should be defined in an appropriate format.

• The QoS agent that resides in the receiver node should know QoS variants

information, such as the number of variants, parameters, and so on. The QoS agent

also should know the user’s preference. When the user wants to join a session, the

QoS agent should be able to select the best variant according to the user’s preference

using an appropriate algorithm. Once a session is established, the QoS agent has to

monitor the overall system. When temporary difficulties arise and the user-specified

requirements cannot be met with the selected QoS variant (we say that a QoS

violation occurs), the QoS agent should be able to find an alternative variant to

maintain the ongoing session. The QoS agent should also provide the user the ability

to modify the originally specified QoS criteria at any time during a session.

43

• The session control entity that resides in the sender node, which we call the QoS

manager) should decide the parameters of the variants.

• The user interfaces at the sender side and at the receiver side should be friendly and

intuitive. At the sender side, the user should be able to define the parameters of the

variants. At the receiver side, the user should be able to define the criteria that the

QoS agent will use to select from the available variants the most suitable one.

• There should be a separate entity that stores the receiver user profiles. The user does

not have to define his / her preference every time he / she starts a session.

Having specified the system requirements, we will discuss how the system was

constructed in the next chapters.

44

Chapter 5 Providing QoS Alternatives for Multicast Applications

Bearing in mind the requirements we specified in the previous chapter, we developed a

general architecture for our system. This chapter explains the system architecture in

detail.

5.1. General Assumptions

Our goal is to develop multimedia applications that can adapt to changing QoS conditions

in the underlying transport service. The adaptation of applications to the different QoS

requirements of different users in the context of multicast applications is considered. We

consider a typical distributed multimedia application, teleteaching, where most data

originates in one computer system at the teacher’s side, which we call the sender node,

and is multicast to a large number of student systems, the receiver nodes. We note that in

such an application, there may also be some real-time data going from a receiver node to

the sender and / or to the other receiver nodes. For instance, a student may ask a question

which is broadcast to the teacher and all the other participants in the teaching session.

However, we ignore this aspect in our discussion.

Figure 5.1 Overall System Architecture

Figure 5.1 shows the overall system architecture which we consider for a single instance

of our multimedia application. The sender and receiver nodes are connected to one

Sender

Receiver Receiver

Receiver Receiver

45

another through a communication network which supports a multicast service. The video

and audio streams originating from the sender are therefore broadcast to the different

receiver nodes that participate in the application session.

We assume that the users at the different receiver workstations have different quality of

service requirements. These differences may be due to the following reasons:

• Different hardware and / or software resources available in the end system.

Distributed multimedia applications may involve a range of end-user equipment, from

low-end PCs to powerful workstations, which poses new challenges to QoS

management.

• Different transmission-level QoS parameters provided by the network. Distributed

end-user equipment may be connected to various network technologies, from wireless

links to high-speed attachment. The transmission-level QoS parameters are different

for the different receivers due to the specific network architecture and interconnection

structure.

• Different user-level QoS parameters (that is, user preferences), such as requiring low-

cost network service or high reception quality, which may imply higher costs. There

may be different user-defined priorities for different aspects of quality, such as frame

rate, color, resolution, etc. The priority factors show the user’s preferences for a

particular aspect of quality.

In order to accommodate these different QoS requirements, we assume that the sender

node provides for each logical multimedia stream (for instance “video of teacher”, “video

of demonstration”, and “audio of teacher”) different stream variants, each representing a

specific choice of user-level QoS parameters. Actually, some stream variant may

46

represent several user-level qualities in the case that some form of scalable encoding is

used; however, in most cases scalable encoding implies several elementary streams which

can be combined in order to obtain a specific quality.

5.2 QoS Alternatives

Two logical streams are shown in Table 5.1, to give an example of what the QoS

alternatives may look like. Video stream variants are distinguished by different frame

rates, colors, resolutions, and coding schemes. Audio stream variants are different for

audio qualities and coding schemes. Each variant is associated with a cost value, which

gives the price that a user needs to pay in order to get this quality. The active flag

indicates whether the stream variant is currently transmitted. The values of active flags

are decided by the QoS manager at the beginning of a session and also during the session

when there is a state change of the corresponding channel. The details will be explained

in the next section.

Video Stream A Audio Stream B

 Ch1 … Chn Ch1 … Chn

Frame Rate 10 30 Quality CD Phone

Color Grey Color Coding Scheme PCM PCM

Resolution 640*480 640*480 Cost 2 1

Coding Scheme h.261 jpeg Active Flag Yes No

Cost 10 20

Active Flag Yes No

Table 5.1 QoS Table for Logical Multimedia Streams

5.3 General System Architecture

47

Figure 5.2 shows a general system architecture for distributed multicast applications with

QoS alternatives. The figure includes one sender node and two receiver nodes. The

Figure 5.2 General System Architecture

Local Network
QoS Monitor

Sender Appl. Module

QoS Manager

User Profile Manager

Real-time
Streams

Control Messages

U
ser Interface

…

Logical
StreamA

… …

…

Session Management

Transport Protocols

… …

Network

Session Management

Receiver Appl. Module

QoS Agent

U
se

r
In

te
rf

ac
e

… …

… …

… …

Transport Protocols

Logical
StreamA QoS Agent

U
ser Interface

Session Management

Transport Protocols

…

… …

… …

…

Receiver Appl. Module

Logical
StreamB

Logical
StreamB

Logical
StreamA

Logical
StreamB

48

receiver nodes communicate with a user profile manager that contains information about

the user’s QoS preferences and may also be used for user authentification. These profiles

can be produced offline and stored for different users or applications. The sender node

may also communicate with a local network QoS monitor which, in the case of best-

effort networks, provides information about the transmission quality that is presently

available. We have not implemented such a separate network monitor in our prototype

application described in Chapter 8. However, our prototype application monitors the

network QoS, using parameters such as loss rate, delay, etc. at the receiver’s side in order

to detect any QoS violation.

There are two different kinds of channels involved, real-time channels that are shown as

solid lines, and a signalling channel shown as a dotted line. Different variants are

transmitted over different channels. One session may have several real-time channels for

transmission of real-time session video and one signalling channel for exchange of

session control messages between QoS manager and QoS agents.

The architecture of the sender and that of the receiver nodes are similar. They contain the

application module that performs the application-specific functions, including all real-

time media stream processing, such as video capturing, coding in several stream variants,

transmission, reception, decoding and display, etc.

The transport layer provides a data transmission service with multicasting. In our

prototype implementation, we assume that this includes the protocols IP with MBone

multicasting, UDP and RTP/RTCP. The session management layer looks after the

management of the application session, including the management of the transport

49

channels for the different multimedia streams and the knowledge about the participating

users.

The user (teacher) at the sender side determines the list of potential stream variants for

each logical multimedia stream. These variants are defined through an appropriate user

interface and passed to the QoS Manager in the sender node. However, not all of these

variants will actually be transmitted at a given time. A variant will be transmitted if its

active flag is true. This active flag is decided by the QoS Manager. The active streams

transmit over different channels (multicast trees) all the time during a session. The

receiver may choose one of them that best suites his / her preference. The receiver is

connected to one channel at one time. For the selection of the potential stream variants

and the activation of some of these variants, the QoS manager may take into account the

information about the presently available network transmission quality which can be

obtained from the local network QoS monitor and through the monitoring of the active

transport channels. It may also take into account specific requests sent by the users

participating in the application. A stream variant becomes active and is transmitted if the

QoS manager considers that there are enough users that have requested the stream to be

activated. On the other hand, through monitoring the active channels, the QoS manager

may decide to deactivate a channel (stop transmitting a stream variant) when there are not

enough users that are connected to that channel. An example of potential stream variants

is shown in Table 5.1.

The QoS agent in the receiver node obtains information about the user QoS preferences

either directly through the user interface, or by retrieving the user’s QoS profile. Through

an appropriate protocol, it can also acquire the potential stream variants information from

50

the QoS manager in the sender node. And it selects for each logical multimedia stream a

specific stream variants which best fits the QoS preferences of the user. In case that the

most suitable stream variant is not active, it sends an activation request to the QoS

manager in the sender node. The QoS agent is also responsible for monitoring the

transport channel. When the current stream variant’s quality cannot be maintained, it

declares a QoS violation, and selects another suitable variant from the other potential

variants. A user should be able to overwrite the automatic choice by selecting one

channel manually or he / she may choose to leave the group. It is totally the user’s

decision. In addition, the user can stop the session at any time, and redefine his profile.

The user interface in the receiver node lets the user define his/her QoS profile, which is

passed to the QoS agent and stored by the User Profile Manager. Through the user

interface, the user observes the circumstances of the current session in the context of

what potential variants are available, which ones are active, and which one is actually

used, etc.

5.4 A Typical Interactive Scenario

An example of a possible interaction scenario of QoS adaption is shown in Figure 5.3.

Point [1]: When a sender node starts a session, the QoS Manager initiates the session by

multicasting the Give_QoS_Info(session_ID, qos_List) message. It specifies a particular

session_ID, and encodes the information about the potential stream variants into

qos_List. This primitive is broadcast over the signalling channel.

Point [2]: When a new receiver joins the session, the user defines a profile or selects one

profile from the pre-defined profile list first, and informs the QoS Agent to start the

session. The QoS Agent sends an Ask_QoS_Info (session_ID, user_ID) to the QoS

51

Manager, asking for the session information. The QoS Manager then responds with a

Give_QoS_Info (session_ID, qos_List) to the Agent, providing information for all

potential stream variants, as shown in Table 3.1. According to the user’s profile, the QoS

Agent then selects the best stream variant (port1 in our example). In case that no active

stream is acceptable but some inactive streams are acceptable, the QoS Agent will select

the best variant from the inactive ones, and go to Point 4. Otherwise, neither active nor

inactive stream is acceptable, the QoS Agent will show the user a message, suggesting

him to change his profile.

Point [3]: When a QoS violation is detected by the QoS agent, it first checks whether one

of the other currently active streams is acceptable. If so, it switches to it (port 2, in our

example).

Point [4]: If some inactive streams are acceptable, the QoS Agent selects the best one

from these streams, and asks the QoS Manager to activate this potential stream (port 4, in

our example) by sending an Ask_Add_QoS (session_ID, user_ID, qos). The QoS

Manager determines whether or not to activate this channel. If the requested channel is

activated, the QoS Agent simply switches to it. Otherwise, the QoS Agent shows a

message to the user, reporting the current circumstance. If none of the streams, whether

active or not, satisfies the user’s expectations, the QoS Agent should inform the user

about this situation and check whether the user wants to change the preferences in his/her

profile.

Whenever there is a change in the table of potential streams, the QoS manager should

broadcast this information to all the receivers by sending a Give_QoS_Info (session_ID,

qos_List) message.

52

Figure 5.3 Example Interactive Scenario

Stop (port1)
Play (port2)

Sender Appl. QoS Manager QoS Agent Receiver Appl.

Ask_QoS_Info (session_ID, user_ID)

Stop (port1)
Play (port4)

Give_QoS_Info (session_ID, qos_List)

Ask Add QoS (session ID, user ID, qos)

Give_QoS_Info (session_ID, qos_List)

Start (port1)

Play (port1)

1

2

3

Start (port4)

Give_QoS_Info (session_ID, qos_List)

4

53

Chapter 6 Protocol Alternatives

We have specified the system requirements and the system architecture in the previous

chapters. Before implementing this system, we have to choose appropriate protocols for

the real-time data transmission, and more importantly for the session control operations.

In this chapter, we discuss several protocol alternatives, and analyze our final choices,

explaining how these protocols can simplify or benefit our implementation, and what the

costs of using them are.

6.1 Data Transport Protocols

We have introduced UDP, TCP and IP in Section 2.1.1, and also mentioned RTP/RTCP

briefly in Section 2.1.4. For the video transmission part, we decided to use RTP over

UDP/IP. In this section, we first describe why UDP/IP was our choice instead of TCP/IP,

then illustrate what the benefits of using RTP/RTCP are, and finally discuss the costs, for

example overhead problem of using these protocols.

6.1.1 TCP/IP vs. UDP/IP

TCP/IP protocols were designed to provide reliable data transmission with minimum

delay. The Internet has been used primarily for this type of traffic. TCP/IP works very

well in this context. However, for multimedia application, which comprises a significant

amount of traffic and possesses different characteristics, TCP/IP is not quite suitable.

Most media playback algorithms can tolerate missing data much better than long delays

caused by retransmissions, and they do not require guarantee in sequence delivery. For

example, in the case that a small portion of the data is lost in the transmission, if the

receiver has to wait for a TCP retransmission, there will be an unacceptable gap in

54

playing the real-time data. In fact, the loss of this small portion of data may not influence

the play effect. Moreover, TCP’s slow-start congestion control mechanism can interfere

with the audio and video natural playing rate. Given the reasons above, multimedia

applications generally ignore the complexity of TCP and use instead the simpler UDP.

Most of today’s multimedia applications are based on UDP/IP.

6.1.2 RTP/RTCP

RTP is intended to support the real-time multimedia transmission because it provides

mechanisms that suite the characteristics of this type data. It has become a very popular

protocol and is used by the majority of the multimedia applications on the Internet. RTP

provides (a) payload type identification to identify the type of data, video, audio, etc. that

is being passed to the receivers; (b) a sequence number to determine whether packets

have been lost or have arrived out of order; and (c) a timestamp to reconstruct the time

the packet was produced by the source. RTP does not provide QoS guarantees, nor does it

ensure timely and in-order delivery. However, it can be used in conjunction with RTCP

to monitor the QoS.

RTCP provides the following functions:

QoS feedback information: RTCP provides feedback information on the quality of data

reception. For instance, the header of a receiver report includes several QoS related items,

such as “fraction lost”, “cumulative number of packets lost”, “inter-arrival jitter”, etc.

Since RTCP control packets are sent from each participant to all the other participants, it

can be easily used by a receiver or a third-party monitor to locate the network problem.

This feature has significantly simplified our implementation because this information can

be used by the monitoring entity to detect any QoS violation.

55

RTP source identification: RTCP uses a canonical name (CNAME) to identify each

RTP source. CNAME is used to track the participant in a session and can also be used for

synchronization purpose, e.g. to synchronize multiple media streams from one

participant.

RTCP transmission interval control mechanism: Since RTCP packets have to be sent

from each participant from time to time to all participants, to prevent network congestion,

a mechanism is needed to control the transmission interval. Otherwise, a session with a

large number of participants will occupy a lot of bandwidth. RTCP provides a scheme to

scale the transmission interval according to the number of participants. Generally, the

more the participants, the longer the interval.

Minimal session control information: This is an optional function of RTCP. In the case

that participants frequently join and leave the session, the RTCP allows to convey a

minimal amount of control information to all the session participants.

6.1.3 Protocol Choice and Overhead Analysis

Using RTP over UDP/IP does have drawbacks. The basic RTP header is twelve bytes

long. This does not include the contributing source identifiers (CSRC) field and header

extensions. The combination of RTP/UDP/IP has at least a forty-byte header which

seems to be a large overhead. However, given the advantages and necessities of

RTP/RTCP and UDP discussed in the previous sections, we came to the conclusion that

there are compelling reasons to use RTP/UDP/IP for our project, although it may or may

not outweigh the costs of using them. For further improvement, there are techniques to

reduce this overhead, as introduced in “RFC 2508: Compressing IP/UDP/RTP

Overheads”. We do not further discuss this technique in this report.

56

One good thing is that RTP does have controls of the RTCP traffic. As we discussed in

the previous section, periodically transmitting RTCP packets from each participant to all

of the other participants may overwhelm the network. RTP provides a mechanism to

reducing the traffic to at most 5% of the total session traffic by adjusting the RTCP

packets generating rate. This mechanism helps to reduce the traffic on the network,

thereby alleviating the overhead problem to some degree.

6.2 Session Protocols

6.2.1 SAP/SDP

SAP (Session Announcement Protocol) is a protocol that is used to advertise multimedia

conferences and to communicate the sufficient conference information necessary for

participation. A SAP entity announces a session by periodically multicasting a packet to a

well-known multicast address. Recipients listen to that address to get the session

information. Such sessions are described by SDP (Session Description Protocol). SDP is

used to describe the session specific information, such as the media type, attributes,

session sender’s information, and so on. Both SAP and SDP are text-based protocols. A

SAP message includes a header and a text payload, which may be a SDP message.

SAPv0 requires that the payload is SDP, while SAPv1 allows non-SDP payload.

SAP, together with SDP, is an efficient tool in terms of conveying session information

between the sender and receivers. One good reason of using SAP/SDP as the session

protocol in our system is that SDP defines a field “i”, which is intended for describing the

media specific attributes. It is claimed that it is most likely to be useful when a single

session contains more than on distinct media streams of the same media type. This

feature makes it perfectly suitable for our need of conveying information on different

57

channels to the receivers. However, there are several significant problems with SAP/SDP

in our context.

The biggest problem is that SAP is sort of a “one-way” protocol. Session initiators

(senders) use it to spread over the session information to the session participants

(receivers). One of the important requirements of our system is to allow the receiver to

request the sender to add a new channel into the session. This operation can not be done

by SAP/SDP.

6.2.2 SIP

SIP was originally a research product of the IETF Multiparty Multimedia Session Control

(MMUSIC) group. It was submitted as Internet-Draft in July, 1997 and assigned as RFC

[49] in March, 1999. As the number of people that are interested in this protocol has

increased rapidly, the IETF has recently created a new working group, called SIP group.

In the early 1990’s, SAP and SDP were used to establish MBone sessions. The initial

intent of SIP was to create a way to invite new users into a conference. SIP is a client-

server protocol. A client is an entity that originates messages, called requests, and a

server is used to respond to or forward the messages. Logical SIP entities include the user

agents and network servers. A user agent may contain a User Agent Client to initiate SIP

requests and / or a User Agent Server to return SIP requests. A User Agent Server needs

to register with a SIP server at start up time, so that it can be localized afterwards. A SIP

network server may be one of three types: proxy, redirect and registrar server. The proxy

server decides the next hop and forwards the requests; the redirect server sends address of

the next hop back to the client; and the registrar server is usually co-located with the

proxy or redirect server to offer the location services. An invitation to a session starts

58

with a client issuing an INVITE request. The request may be processed by either a proxy

server or a redirect server. A proxy server receives a request and forwards it to a next hop

server, which may be another proxy server or the destination client. If the next hop is

another proxy server, this procedure goes on until the request reaches the destination. A

redirect server receives a request and returns one or more next hop server addresses to the

client so that the client can contact them directly. However, the usage of proxy servers or

redirect servers is not mandatory. In the case that a client knows the destination IP

address, it can send the INVITE request directly to the other end. However, SIP does not

prescribe how a conference is managed.

SIP is a text-based protocol, which makes it relatively easy to implement. Furthermore,

SIP is also a good protocol in terms of flexibility, extensibility, and scalability. It is

gaining more and more acceptance by vendors and in fact, it is appearing in many

products today. All the above advantages make SIP a very strong competitor with other

session protocols. However, from the perspective of our system requirement, SIP was not

the best choice since the QoS issues were totally outside the scope of SIP. Extensions to

SIP are being introduced to make it useful for more specialized applications or to satisfy

additional requirements. The QoS extension is one of them. However, at the time this

project was developed, this extension did not exist.

We will see in the following section that DMIF’s QoS model significantly simplifies our

design.

 6.2.3 DMIF

DMIF is the abbreviation for Delivery Multimedia Integration Framework, which is

included in the suite of MPEG-4 standard specification. (ISO/IEC 14496-6). It is

59

functionally located between the MPEG-4 application and the transport service,

providing functionality that is needed to establish sessions and transmission channels

between an application at one DMIF terminal and an application at another DMIF

terminal over the network. The main purpose of DMIF is to define a session level

protocol for the management of real time, QoS sensitive streams, to hide the delivery

technology details from the DMIF user, and to ensure interoperability between end-

systems in the control plane.

Figure 6.1 Role of DMIF

An interface, called DMIF Application Interface (DAI), is defined in order to hide the

delivery technology details from the applications. Also, by using media related QoS

metrics at the DAI interface, applications are able to express their needs for QoS without

the knowledge of the delivery technology. It satisfies three major technologies: broadcast

technology, local disk technology and interactive network technology. Applications

interact through the DAI without concerns of which technology is used. In addition, in

case of interactive operations across a network, it ensures interoperability between end

systems through a common DMIF protocol and network interface (DNI), which is

mapped into the corresponding native network signaling messages.

Figure 6.2 provides a high level example of how DMIF creates a session. The arrows

represent the following actions:

Application DMIF Network DMIF Application

60

Figure 6.2 DMIF Session Creation

<1> To create a service session, the originating DMIF requests a service activation

through DAI to its local DMIF.

<2> The originating DMIF established a network session with the target DMIF.

<3> The target DMIF forwards a service activation request to its application.

<4> The target application creates channels that carry actual data.

The basic DMIF concepts are defined in MPEG-4 version 1. Version 2, now being

developed, specifies extensions for multicast scenarios [50]. Our project is based on these

extensions. A DMIF terminal in a multicast session can be either a Data Producer DMIF

Terminal (DPDT) – an information source, or/and a Data Consumer DMIF Terminal

(DCDT) – an information receiver. A DMIF multicast session consists of a DMIF

multicast signaling channel (C-plane / Control-plane) to distribute the state information

of the session, and one or more multicast transport channels (U-plane / User-plane) to

deliver the multimedia data. We will use the DMIF C-plane in our project since it meets

our need for message exchange between two session control entities.

The DAI provides the DA_ServiceAttach and DA_ServiceDetach primitives for an

application to create a new session (to attach itself to a given session), or to terminate a

session (to detach itself from the session), and the DA_ChannelAdd and

DA_ChannelDelete primitives for adding or deleting a transport channel for the session.

3 1

Appl.

DMIF

Appl.

DMIF
2

4

Originating Terminating

61

In addition, it introduces a DA_UserCommand primitive that provides a means for

transmitting control information between the applications. Similar primitives exist at the

network interface (DNI). Since in a multicast scenario, there may be more than one

source involved in a session, the DNI includes in addition so-called SyncSource and

SyncState primitives, which allow the receivers to identify different senders in a session

and the senders to distribute the information about the multimedia streams to all

receivers. The DN_ChannelAdd primitive at the DNI also includes a parameter for

requesting different options of QoS monitoring for the transmission service provided by

the channel.

The following points are some details on the establishment of a multicast session between

data producer and consumer DMIF terminals:

• A DMIF multicast session is identified by a DMIF-URL. A DMIF-URL is used to

identify the location of a remote DMIF instance. In the multicast scenario, this URL

is extended with the role of the DMIF terminal in the multicast session (DPDT /

DCDT). So that the local DMIF layer is capable of recognizing the role of the

application (sender or receiver) in the multicast session.

• The session’s signaling channel address (IP address and port number) is available to

the interested DMIF terminals by mean of a session directory or through e-mail, etc.

• Each DPDT must explicitly join and leave the DMIF multicast session by sending

messages over the signaling channel.

• When a DCDT joins a session, in order to reduce the number of signaling messages,

it should listen on the signaling channel to collect the state information from all

62

DPDTs participating in the session. If the DCDT does not acquire the information

within a given time period, it should ask the DPDTs for their state information.

Figure 6.3 illustrates the scenarios of a session initiation.

Figure 6.3 Example Scenario of a Session Initiation

6.2.4 Protocol Choice and Overhead Analysis

In the previous sections, we provided short introductions to three session protocol

alternatives: SAP/SDP, SIP, and DMIF. SAP/SDP solution has several significant

DN_MC_SyncStateResp (srcID, srcData)

DN_MC_SyncStateResp (srcID, srcData)

DN_MC_SyncSourceResp (srcID)

DN_MC_SyncStateReq (srcID)

DN_MC_SyncSourceResp (srcID)

DN_MC_SyncSourceReq

DN_MC_SessionJoin (srcID, serviceID)

(OUT: resp,ssID,

uuData)

DA_ServiceAttach

(IN:URL,uuData)

Enable the
multicast signaling
channel

Records
the info.
received
in
signaling
channel

T1

DN_MC_SyncSourceReq If not receive from
other DCDT in
T1, to get a list of
all DPDTs

T2

DN_MC_SyncStateReq (srcID)

.

Ask those that
were NOT
received in T1

. T3

Agent DAI DMIF DNI + Network

.

63

drawbacks that do not meet our requirements. SIP is a strong competitor, but compare

with DMIF, it is not the best candidate for our system.

As a final decision, we came to DMIF. DMIF, as a session control scheme in our

prototype, has the following advantages:

• The QoS model of DMIF significantly simplifies our implementation. Assume that

we could use either SAP/SDP or SIP solution, we still would have to extend the

protocol with QoS parameters, because the QoS issues are out of the scope of those

protocols. Whereas, DMIF (version 2) provides two primitives, DA_ChannelMonitor

and DA_ChannelEvent, for the purpose of monitoring a certain channel and reporting

the violation, which fully meet our requirements.

• DMIF is a signaling protocol, which separates the user data from the control

messages by using two different kinds of channel types: the session data channel and

the control message channel. In this way, the exchange of control messages does not

interfere with the media content. This is a common advantage of signaling protocols,

including SAP and SIP.

• The concept that one session may contain several channels perfectly meets our

requirements.

• A parameter uuData, stands for user data, is defined in most of the primitives. This

parameter can be used to handle the transmission of proprietary data in our system,

hence gives the implementation the maximum flexibility.

Having discussed the advantages, we now analyze whether DMIFv2 has overhead

problems. All DMIF signaling messages have a common header with the length of twelve

bytes. This also seems to bring an overhead problem. However, given the way the DMIF

64

works, we note that DMIF does not have an overhead problem in general for the

following reasons. First, as we have explained in Section 6.2.3, every time when a

DMIFv2 entity wants to request information for some specific channels or sessions, it

listens on the signaling channel for a short period of time to see whether the same request

has been sent by others. This scheme helps to reduce the traffic. Second, unlike the

session media data, DMIF messages are not transmitting all the time, for example, the

sender multicasts DMIF messages at start up time, on receiver’s requests, and when the

channel information changes. The receiver sends DMIF messages only when he wants to

request an addition of a channel. Moreover, DMIF messages take a separate channel so

that the media transmission is affected by the DMIF messages. So we came to the

conclusion that the DMIF overhead is not a big concern in our project.

We have discussed why DMIF was our choice. In the next chapter, we will discuss how

DMIF can fit into our project, what modifications have been made to make it more

suitable for us. A typical interactive scenario is given to explain how the DAI primitives

are used to implement the session management functions.

65

Chapter 7 Using DMIF for Session Management in Tele-
Teaching Applications

7.1 A Typical Interactive Scenario

The DMIF of MPEG-4 was designed not only for use with MPEG-4 applications, but

also for generic use in a much wider context. It defines a session level protocol that can

be useful for any real-time multimedia applications using a number of concurrent streams

in a distributed environment. DMIF defines a control plan that is used for applications to

exchange session control messages, and a user plan, which may contain one or more data

channels that carry the actual data of the session. DMIF ensures interoperability between

end-systems in the control panel. Considering the example scenario in Figure 5.3, we see

that we have to specify a mechanism for message exchange between the QoS manager

and the QoS agents. We also compared several session protocol alternatives in the

previous chapter and came to a conclusion that DMIF is the best choice.

Our tele-teaching application is developed in the context of the Internet. We assume that

the underlying transport is provided by the IP/UDP protocols complemented with some

multicasting facilities, such as IP tunneling, provided by MBone. There are two kinds of

multicast channels: real-time transmission channels and a control message exchange

channel. Each multicast channel is identified by a multicast IP address plus a UDP port

number. We assume that RTP and RTCP are used for real time multimedia stream

transmission. They are used for the purpose of synchronization and for monitoring of

network-level QoS parameters. The DMIF network interface is therefore mapped onto the

66

multicast transport service provided by RTP/RTCP. The application lies over the DMIF

layer.

The abstract scenarios shown in Figure 6.3 can be mapped to the DMIF primitives

provided to the application through the DAI. A typical example is shown in Figure 7.1,

which corresponds to the abstract scenario described in Section 5.4. Specifically, the

figure shows the following interactions:

Point [1]: The QoS manager initiates a session. The session’s signaling channel address

is identified by a DMIF-URL. The information of the potential stream variants (see Table

3.1) is encoded in the user data field uuData of the DA_ServiceAttach primitive and

forwarded by the DMIF through the SyncSource and SyncState messages. SyncSource

and SyncState should be broadcast over the signaling channel. SyncSource contains a

session identifier. SyncState contains the session identifier and the state information of

the session, in our case, the potential stream variant information encoded in uuData.

Point [2]: The session’s signaling channel address DMIF-URL is available somehow to

the receiver DMIF terminals, for example, by a session directory or email, etc. When a

receiver wants to join the session, the QoS agent sends a DA_ServiceAttach primitive to

inform the local DMIF protocol entity. Since there may be a number of receivers

involved in the session, to avoid requesting the information that other receivers just

requested, the DMIF entity listens on the signaling channel for a reasonable time period,

and collects the SyncSource and SyncState messages from the sender side. If these

messages are not gotten during a given time period, the DMIF entity should request them.

A SyncSource request is sent first to get a list of all the sources (senders) in this multicast

session, in our module, only one. A SyncState request is sent afterwards to get the stream

67

variants information from the sender. The received information is passed to the QoS

agent in the uuData parameter of the service attach confirmation. The QoS agent keeps

this information locally. Whenever a channel activation or deactivation happens, the QoS

agent should refresh the local information.

Point [2']: According to the user’s current profile, the QoS agent selects an appropriate

stream variant, and sends a DA_ChannelAdd response primitive to DMIF entity. The

DA_ChannelAdd response primitive is originally used to respond the DA_ChannelAdd

indication primitive, but it can also be used at any time during a session. In our case, the

receiver does not have to connect to the new activated channel. This primitive can be

used when the receiver wants to connect to a certain channel. The channel is indicated by

the channel ID that is carried in this primitive. The DMIF will perform a group join

operation at the DNI in order to join the MBone multicast group for the selected

multimedia stream. Another primitive DA_ChannelMonitor is sent along with the

channel add response primitive to inform the DMIF layer to start monitoring the network

activities, and also defines the monitoring mode to the DMIF. There are three options for

the QoS monitoring mode defined in the DMIF specification:

• Periodic Monitoring: The DMIF layer monitors the QoS of a particular channel and

reports to the application periodically.

• QoS Violation Detection: DMIF layer reports to the application only when a QoS

violation happens.

• Application Request: DMIF layer reports when the application requests it.

We use the second mode in our implementation.

68

Point [3]: The DMIF entity indicates a QoS violation, by sending a DA_ChannelEvent

primitive, with detailed QoS information in qosReport parameter. If one of the other

currently active streams is acceptable, the QoS agent simply decides to switch to that

stream.

Point [4]: If none of the currently active streams is acceptable, but an inactive streams is

acceptable, the QoS agent sends a DA_UserCommand primitive to ask for the activation

of that stream, as specified in the uuData parameter. If neither active nor inactive streams

are acceptable, the QoS agent should suggest the user with three options: change his/her

QoS profile, wait for some time and try again later, or abandon the session.

Figure 4.1 mainly shows the mapping from the abstract scenarios in Figure 3.3 to the

corresponding DMIF primitives. It only contains the session setup and interactive

operations during the session. To make the example more complete, the channel

deactivation and session finish scenarios are shown in Figure 4.2.

Once the QoS Manager finds that there is no user of a particular channel, it may decide to

deactivate it. It broadcasts the DA_ChannelDelete primitive over the signaling channel to

inform all the receivers to update their session stream information. A receiver can leave a

session at any time. When a session is finished, the sender stops all the channels and

broadcasts DA_ServiceDatach primitive over the signaling channel. If a receiver is still

attached to this session, a message will be displayed to inform the receiver that the sender

leaves.

69

Figure 7.1 Multicast Session Interaction Scenario including DMIF (Part 1)

DA_ChannelAdd
OUT:chID,rsp,uuData

OUT: resp, uuData

Stop(port1)
Play(port4)

DA_ChannelAddCallback
(chID, dir, qosDescriptor,
uuData)

DA_ChannelAdd
(ssID, dir, qosDescriptor,
uuData)

OUT: ssID,
response, uuData

DA_ChannelEvent
(chID, qosReport)

Sender Appl QoS Manager DMIF Network DMIF QoS Agent Receiver Appl.

DA_UserCommand
Callback(ssID, uuData)

DA_UserCommand
(ssID, uuData)

DA_ServiceAttach
(URL,uuData)

OUT: ssID,
response, uuData

DA_ServiceAttach
(URL,uuData)

Start(IP, Port1)

Play(port1)

Stop(port1)
Play(port2)

1

2’

3

DA_ChannelAdd
OUT:chID,rsp,uuData

OUT: chID, resp,
uuData

Start(IP,
port4)

4

2

DA_ChannelMonitor
(chID,qosMode)

70

Figure 7.1 Multicast Session Interaction Scenario including DMIF (Part 2)

7.2 Changes to DMIF

The MPEG-4 standards are versioned, as well as the DMIF specifications. Our

development is based on the ISO Working Draft of DMIF Version 2.

We found that the DMIF specifications of this version fit well with the session and QoS

management functions that were required by our tele-teaching application. However,

there are certain points that do not fit our requirements well. We mention in particular the

following aspects:

Stop(IP, port1)

DA_ChannelDeleteCallback
(chID, reason)

Sender Appl QoS Manager DMIF Network DMIF QoS Agent Recv. Appl.

…
…

Stop(IP, portN)

OUT: resp

DA_SessionDetach
(ssID, reason)

OUT: resp

OUT: (response)

DA_Channel
Delete(chID,
reason)

DA_ServiceDeta
ch (ssID, reason)

Stop(portM) OUT: (resp)

71

• SyncState message parameters: The information about all potential stream variants

(see Table 5.1) is encoded in the user data field uuData of the DA_ServiceAttach

primitive invoked by the QoS and session manager in the sender node. When a

receiver node joins the multicast session, this information is passed along in the

SyncState message from the sender to the receiver DMIF protocol entity. As specified

in the Working Draft, this primitive only contains the information of the active

channels and the QoS information included provides only information about the

transmission-level QoS parameters of the channels, but not the user-level parameters

as we need in Table 5.1. This requires certain changes to the SyncState message

parameters. The user-level parameters in Table 5.1 must be added to the SyncState

message. In addition, the information for the inactive channels must be included.

• Requesting the activation of a stream variant: Another issue is the question how a

QoS agent in a receiver node could request that an inactive stream variant be

activated. We have adopted the use of the DA_UserCommand primitives for this

purpose. This primitive is designed to allow the transfer of user information from

application to application, in our case from the QoS agent in the receiver node to the

QoS manager in the sender node. The IP address and port number of the requested

channel is carried in the parameter uuData of this primitive, which is sent from the

QoS agent to the QoS Manager. The QoS manager should decide whether or not to

activate this stream variant channel in a certain period of time. If it decides to activate

the channel, it invokes a DA_ChannelAdd that leads to a multicast control message to

all participating receiver nodes and a DA_ChannelAdd indication to all QoS agents. If

the QoS Manager does not activate the channel in the time period, as we described

72

before, QoS Agent in the receiver node will launch a message that suggests the user

to change his/her profile or try again later on.

73

Chapter 8 Prototype Implementation

8.1 Implementation Languages and Environment

Our implementation environment is based on MBone. One sender (teacher) node and

several receiver (student) nodes communicate over the Internet via RTP/RTCP, UDP/IP

and MBone protocols. At each side, there are two major parts: real time video

transmission and session control message transmission. For the first part, we did not

develop a completely new multimedia application, but used an existed MBone video

conferencing tool VIC at the teacher side, and a Java application ‘RTP player’ at the

student side. ‘RTP player’ is an example application of the Java Media Framework (JMF)

[51], which provides APIs that specifies a unified architecture, messaging protocol and

programming interface for playback of the timed media. It enables multimedia content in

Java technology-based applets and applications, and allows for Web-based multimedia

solutions that run in any Java compatible environment. However, these tools have to be

modified in order to be suitable for multicast applications and QoS management. The

Java interfaces representing the abstract DAI primitives are specified in the DMIF

(version 2) specification. We implemented these interfaces in the sender and receiver

applications with the necessary modifications (describe below) for realizing the session

and QoS management functions.

Due to the time limitation and some technical difficulties, the following functions are

ignored in this implementation.

• The “Local network QoS monitor” module was not implemented. Instead, we let the

sender decide which channel is activated at the beginning through the user interface.

74

• VIC was initially planned to be modified so that the sender application is able to

capture data from one camera and send it over different channels using different

frame rates. In final implementation, this feature was ignored but several cameras

were used instead, one for each channel. VIC was used in the Windows operating

system simply as a separate process, which is initiated by a system command line that

is created and executed by the Java program.

• The QoS adaptation was applied only in the context of frame rate. The sender

application offers different frame rates by simply adding one parameter “-F rate” to

the command, which initiates the VIC process.

• In the earlier implementation, only the DMIF application interface (DAI) was

implemented. The service provided by this interface was implemented by using Java

RMI (Remote Method Invocation) [52]. Later, the DMIF protocol together with the

DMIF network interface (DNI) was implemented by Mr. Darlagiannis as part of his

MSc. project [54]. This software was integrated into our final prototype.

8.2 Key Design Issues

8.2.1 Global Program Structure

There are three main program modules: sender side, agent side, and user profile manager.

This section gives the class diagrams of the first two modules. The user profile

management module will be described in Section 8.2.4.

• Notes Concerning the Sender Side Class Diagram (see Figure 8.1)

<1> Two DMIF APIs –ApplicationSession and DMIFInstance – are defined in the DMIF

specification in the form of Java interfaces. They are implemented by two concrete

75

classes: QoSManager implements ApplicationSession, and DMIF implements

DMIFInstance.

<2> The program starts to execute from the Main class, which contains the main method.

<3> All user interface classes have the suffix Frame. GenericFrame is the super class of

all user interface classes.

<4> ChannelInfo is used to maintain information for a channel, namely the port number

and a channel ID, which is provided by the DMIF entity. It has the following simple

attributes: port (integer) and chID (long integer). QoSManager keeps a collection of

active channels (a Vector of ChannelInfo), which may contain 0 or more channels.

<5> VIC is called as a separate process under the Windows operating system.

<6> The subclasses of AllStream are explained in the next section.

Notation : means “1-to-many” relation.

is the sign of class hierarchy. It means “class 1 is the sub-class of class 2”

Figure 8.1 Sender Side Class Diagram

• Notes Concerning the Receiver Side Class Diagram (see Figure 8.2)

0, 1+

GenericFrame

MainFrame VideoFrame AudioFrame AllStream

QoSManager

DMIF

ChannelInfo

Vic

Main

Class1

Class2

76

<1> The notes 1, 2, 3, and 4 for the sender side class diagram apply here as well.

<2> The classes QoSMode and QoSReport are introduced in order to conform to the Java

DMIF API specification. The format of these two classes will be described in Section

8.2.3.

Figure 8.2 Receiver Side Class Diagram

8.2.2 Format of QoS Alternatives

Video and audio QoS alternatives are shown in Table 5.1. To express them in a logic

way, the following class diagram was designed:

Figure 8.3 QoS Alternatives Class Diagram

0, 1+

GenericFrame

UserFrame

UserCreateFrame

UserDeleteFrame

UserLoginFrame

SessionFrame MainFrame

ProfileEditFrame

MonitorFrame

QoSAgent

Profile

AllStream

DMIF

ChannelInfo

RTPPlayer

Main

QoSMode

QoSReport

AllStream LogicalStream MMchannel

VideoChannel AudioChannel

77

AllStream is what a sender can offer to the receivers. It may contain several logical

streams (LogicalStream), video and / or audio, etc. Each logical stream may contain

several variants, which we call channels (MMchannel). Video and audio channels have

some common parameters, such as IP address, port number, active flag, cost, and a value

(netQoS) to express the network level QoS parameters, which will be used by the receiver

DMIF entity to detect the QoS violation. There are also some differences between video

and audio channels. Video channel parameters include parameters for frame rate, color,

two-dimension resolution, and the coding scheme. Audio channel parameters include

parameters for voice quality and coding scheme.

8.2.3 Format of DAI Primitive Parameters

The format of DAI primitive parameters is defined in the DMIF specification. However,

the formats of some of the parameters need to be modified in order to be more suitable

for our particular application. The modified primitives are listed in Appendix B.

8.2.4 User Profile Manager API

As described before, the User Profile Manager is a server application that is used to store

user (student) profiles. A student who is a new user of the system should first create an

account. For security reason, a password is required. Once a student creates an account

on this server, he / she is automatically assigned a default profile, which can be modified

later on, but cannot be deleted. A student may keep several profiles. Students are able to

add new profiles, modify or delete existed profiles (except for the default profile). When

joining a session, a student may either select one of the profiles or not select any, in

which case the default profile will be used to for the new session.

78

A User Profile Manager maintains a number of users, and a user may have a number of

profiles. The class diagram is shown in Figure 8.4.

The Profile class has attributes to describe the user’s preferences concerning frame rates,

colors, resolutions, audio qualities, etc. It includes a profile name and parameters in three

categories: video, audio and cost. Each video or audio parameter has a desired and a

minimum acceptable value. An importance factor is associated with each parameter in all

three categories. This class definition is shown in Appendix C.

Figure 8.4 User Profile Manager Program Module Class Diagram

The user profile manager is a server program that should always run, since we do not

know when a user may login to get a profile. In the case that the server has to be shut

down, for maintenance or any other reason, the user and profile information will be

stored in a file, and will be reloaded into the program when the server is run again. The

users and profiles are stored in the object format provided by the Java Object

Serialization [53] facility.

The client-server structure for the profile manager is implemented by using Java Remote

Method Invocation (RMI). User Profile Manager is seen as a remote object on which the

student application may invoke remote method calls. The available methods (APIs)

include user-related methods, such as createUser, deleteUser, loginUser; and profile-

related methods, such as getDefaultProfile, addNewProfile, getCertainProfile, and so on.

The exact definitions of these APIs are shown in Appendix C.

8.2.5 User Interface

ProfileManager User Profile

79

• Sender Side User Interface

The user interface at the sender side is shown in Figure 5.5. Through this interface, the

user at the sender side defines the potential stream variants of a session, including video

and / or audio streams.

At the bottom of the screen, there is a text area that the user uses to specify the signaling

channel’s IP address, port number and TTL. We assume that for a given session the same

IP address is used for all channels, including signaling and data channels. The different

channels are distinguished by port numbers.

Figure 8.5 Sender Side Main User Interface

80

The user may create, edit or delete a stream variant. The user interface for defining the

parameters of a video stream is shown in Figure 8.6.

Figure 8.6 Video Variants Create and Edit

To activate or deactivate a given channel, the user needs to highlight the channel in the

list, then click the button “Activate” or “Deactivate”. The user may activate more than

one channel at one time. Channel activation and deactivation can be done before the

session begins or at any time during the session. If a channel is requested by a receiver, a

message window is launched. An example is shown in Figure 8.7. It asks the user to click

“No” within 20 seconds if he does not want to activate the channel. Otherwise, after 20

seconds, the channel will be automatically activated. The user may click “Yes” right

away to activate the channel, instead of waiting for 20 seconds.

81

Figure 8.7 Channel Request by Receiver

When the button “Start” is clicked, the session begins. All the buttons are grayed

(disabled), except for the “Activate” / “Deactivate” button and the “Stop” button. The

reason of doing this is to ensure that the user is not able to create, edit or delete any

channel during the session. The session has to be stopped, as the sender has to leave the

multicast group explicitly, before exiting the whole program. When the “Stop” button is

clicked, all buttons resume the enabled status. The user may edit the channel information

and start a new session or exit the program.

• Receiver Side User Interface

A user may choose to create a new account, delete an account, or login. The start menu

and a user create account example are shown in Figure 8.8 and 8.9.

82

Figure 8.8 Receiver Side Main User Interface Figure 8.9 Create a New User

After the user logs in, a list of his profiles is displayed. The default profile is at the first

position. The user may choose to create a new profile, edit or delete an existing profile, or

join the session. To edit or delete a profile, the user should highlight the profile first.

Through the profile-editing interface, the user specifies his preferences. For each

parameter, the user defines the desired value and the minimum accepted value, and a

factor for the importance of improvement. Error message will be displayed in the

following cases:

<1> The minimum value is bigger than the desired value.

<2> For the same parameter, more than one check box is checked, or none is checked.

<3> There is an empty text area.

83

Figure 8.10 Profile Edit

84

The user selects a profile to join the session. This profile will be used by the QoS agent to

select the most suitable stream among the variants. The default profile is highlighted

initially. The user does not have to select any profile, in which case, the default profile

will be used (see Figure 8.11 below).

Figure 8.11 QoS Management

Figure 8.12 Session Initiation

The Monitoring Window (see Figure 8.13) continuously shows the updated session

information. The first list shows the channel description, frame rate, color, resolution, etc.

The active flag of each channel is displayed in the same line. In case of channel

85

activation or deactivation, the flag changes immediately. Another column shows the

operation status of each channel. For instance, a channel may be the currently connected

channel, be requested to be activated, or refused to be activated, etc. For the current

channel, the loss rate is displayed and updated every 5 seconds. This window may also be

used by the user to overwrite the QoS agent’s automatic selection. The user can make his

own choice by simply double clicking the channel to be selected within the parameter

list.

Figure 8.13 Monitoring Window

8.2.6 QoS Adaptation Algorithms

• To select the most suitable channel at the beginning of a session

At the beginning of a session, the QoS Manager broadcasts the channel information

(LogicalStream) over the control channel. When a QoS agent joins the session, it should

first get this information. Then it checks for each channel whether the parameter values

(frame rate, color, resolution, etc.) are higher than the minimum acceptable value from

the user profile. The desired value is currently not used by the algorithm. It might be used

to further optimize the selection. Two arrays are used to store all the information of

acceptable channels, one is for the currently active channels, and one is used for the

86

inactive channels. The QoS agent scans all the channel parameters, and puts acceptable

channels into the corresponding arrays. When this operation is done, the QoS Manager

makes a decision according to the obtained result. The following cases may occur:

<1> Both of the arrays are still empty: The QoS agent prompts a message, informing the

user that none of the channel that the sender offers is suitable for him, and suggesting him

to change his profile.

<2> The active channel array is not empty: We do not care whether the inactive channel

list is empty or not. The best channel should be selected from the active channel list. The

selection is based on the parameters’ importance factors. All parameters are assigned an

importance factor. The parameters are sorted according to this value, from the highest to

the lowest. The parameter in the first place (with the highest importance factor) is used

first for selection. The variant with the highest value of this parameter is assumed to be

the most suitable one. If two variants have the same value for this parameter, the second

parameter is used, and so on. Finally, the receiver system is connected to the selected

channel and begins to receive the video.

<3> Active channel array is empty and inactive channel array is not empty: The most

suitable potential channel is selected from the inactive channel list, and a user command

is sent to the QoS Manager, asking to activate this channel. A message

“Requesting….Please wait for 30 seconds” is displayed in the monitoring window at the

receiver side. The QoS agent waits for 30 seconds. If the sender activated the requested

channel during this period, the video will start playing. Otherwise, a message will be

displayed, suggesting the user to change the profile or wait some time to try again.

• To select the most suitable channel when QoS violation happens

87

During a session, the network QoS (loss rate) is always monitored. This is done by a

thread that calls the JMF APIs to get the loss rate from the RTCP receiver report every 5

seconds. The acceptable loss rate of a channel is given by the sender. If the observed

value is higher than this value, a counter starts to work, and after 20 seconds, a QoS

violation is announced. Since the loss rate might be fluctuating, we will not announce a

QoS violation immediately when a high loss rate is detected. We consider that QoS

violation occurs when several subsequent disappointing loss rates were measured. When

a violation happens, the QoS Agent selects again a channel. We assume that when a

violation happens, the system cannot support any stream with higher quality. The QoS

agent uses the same selection algorithm (as described under “To select the most suitable

channel at the beginning of a session”), except that the selection is made among the

channels whose parameter’s value is lower than the current one. Again, there are three

possibilities:

<1> Both of the arrays are still empty: The QoS agent prompts the following message to

the user: “QoS violation happens, no channel is acceptable, please either change your

profile, or wait for some time and try again.”

<2> The active channel array is not empty: QoS agent simply stops the current video and

switches to the best stream in the array.

<3> Active channel array is empty and the inactive channel array is not empty: The QoS

agent selects the most suitable inactive channel, sends a user command to the sender,

asking to activate that channel, and waits for 30 seconds. If the sender activates the

requested channel during this period, the current video is stopped, and switched over to

88

the new channel. Otherwise, a message will be displayed, suggesting the user to change

the profile or wait some time to try again.

At the receiver side, there is a monitoring window. The user can easily see the channels

offered by the sender, their parameters, which channels are active, which channel is

currently used, and the loss rate of the currently used channel.

8.3 Tests and Results

We have tested our prototype implementation in a simplified setting. The testing

environment consisted of one camera connected to the sender machine, and one receiver

machine. Another machine was used to provide another camera, running a background

program always ready to be invoked to start or stop another VIC application. Three video

channels were defined in the following table:

No. Port Frame Rate Color Resolution Coding Scheme Loss Rate Cost

1 30004 10 B&W 640*480 H.261 0.08 4

2 30008 20 Grey 800*600 H.261 0.05 6

3 30012 30 Color 1024*768 H.261 0.01 8

Table 8.1 video variants for testing

A network analyzer was used to generate traffic in order to increase the loss rate. Since

QoS adaptation was only applied for the frame rate, the user assigned the highest

importance factor to the frame rate. At the beginning of the test, only channel 2 was

activated. The following steps were applied, and the results are listed below.

89

No Receiver

Action

Sender

Action

Rationale Result

1 Define cost = 2 Define a cost

parameter that

is out of the

offered range.

A message displayed at the

receiver side: “Cannot find

suitable channel, please change

your profile."

2 Define

acceptable

frameRate=35

 Define an

unacceptable

frame rate.

A message displayed at the

receiver side: “Cannot find

suitable channel, please change

your profile."

3 Define

acceptable

frameRate=22

 An inactive

channel is

suitable for the

user.

A message displayed at the

sender side: “Channel with port

30012 is requested to be

activated.”

In the receiver’s monitor

window, status of channel3 was

“Requesting…”

4 Wait for 30

seconds.

 Sender refuses

to activate the

requested

channel.

A message displayed at the

receiver side: “No currently

active channel is suitable.” In

monitor window, the status of

channel3 was “Refused”.

5 Define

acceptable

frameRate=8

 An active

channel is

suitable.

Video transmission began with

port 30008. In the receiver’s

monitor window, the status of

channel2 was “Current

channel”, and the loss rate

begins to display.

After some time…

6 QoS violation A message displayed at the

90

happens. One

inactive channel

with lower

quality is

suitable.

receiver side: “QoS violation

happened.” In the monitor

window, the status of channel1

was “Requesting…”. At the

sender side, a message

displayed “Channel with port

30004 is requested to be

activated.”

7 Wait for 30

seconds.

Activate

channel1

within 30

seconds.

Sender activates

the requested

channel

Video transmission switched to

another channel. A message

displayed: “Switched to another

channel”. In the monitor

window, channel1’s status was

“Current Channel”, and the loss

rate began to display.

After some time….

8 Deactivate

channel2

Deactivate a

channel.

In the receiver monitor window,

the active flag of channel2

changed to “N”.

9 Activate

channel3

Activate a

channel.

In the receiver monitor window,

the active flag of channel3

changed to “Y”.

10 Deactivate

channel1

Deactivate the

current channel.

Video transmission of this

channel stopped. The message

“Current channel is deactivated

by the sender” was displayed.

Channel3 was selected and the

monitoring window showed

channel3 as “Current channel”.

Video transmission resumed.

Table 8.2 Testing Results

91

Chapter 9 Conclusion and Future Work

We have introduced in this thesis an approach to implementing quality of service (QoS)

management for tele-teaching applications using the MPEG-4 / DMIF (Delivery

Multimedia Integration Framework). Most of the existing Internet video conferencing or

tele-teaching applications do not support QoS adaptation, especially in the multicast

context. Those that support dynamic QoS adaptation use a frame dropping scheme to

reduce the effective throughput. Furthermore, few applications in this area consider the

user’s satisfaction; most of the work has been done from the network’s point of view. We

have chosen a different approach and also have implemented a system that provides QoS

alternatives in a session and also considers the user’s satisfaction. The main contribution

of the work is that we have proved the feasibility of this approach that we believe can be

used in other similar applications.

In this thesis, we first reviewed some background knowledge, such as the TCP/UDP/IP

protocols, the MBone facilities, voice and video coding schemes, network QoS, adaptive

applications, and so on. Then we discussed QoS management for multimedia applications

with multicasting, which is a complex task, especially when a large number of users are

involved. We introduced Fischer’s approach in which media variants with different

qualities are provided by the sender to adapt to different user needs. We developed our

own prototype based on this approach. To implement this prototype, we specified the

system requirements and also defined the general architecture. Then we discussed the

protocol alternatives for both video transmission and session control, and discussed

overhead issues. One of the most important issues was the selection of an appropriate

92

session control protocol. It appears that the Delivery Multimedia Integration Framework

(DMIF) standard for MPEG-4, which is presently extended for multicast applications,

provides interesting session management functions for distributed multimedia

applications in general, independently of the question whether MPEG-4 encoding is used.

We described some popular session protocols, such as SAP/SDP and SIP, and discussed

why DMIF was our final choice, how it benefited and simplified the implementation of

our system.

We have shown how these DMIF functions can be used for session management of a

tele-teaching application including different QoS alternatives for the participating users.

In such an application, the sender node of the teacher provides different stream variants

(with different QoS attributes) for each logical media stream. Each user participating as a

student may then select one of these variants according to its QoS preferences. The

detailed analysis of the DMIF protocol in the multicasting context has identified certain

generalizations that would be useful in order to make it more generally usable for various

distributed multimedia applications. This includes general means for distributing user

information from the stream producers to the stream consumers, and some means for

sending general user requests from a consumer to a particular producer.

We ended up with a prototype implementation of the tele-teaching application with QoS

alternatives, including the implementation of the MPEG-4 / DMIF application and

network interfaces for session and QoS management. The test cases and results are

described at the end.

Providing QoS alternatives in a session and therefore supporting dynamic QoS adaptation

is a relatively new idea and is important in the study of this field. One of the important

93

ongoing research issues in this field is to develop a simple and easily-implemented QoS

architecture.

Through the implementation of a simple case study, such as our tele-teaching application,

we have proved that this approach is feasible. We believe that this work is valuable since

it provides a general architecture for the multicast multimedia applications with QoS

adaptation, and this architecture is relatively easy to implement. It employs a session

control mechanism, which separates the data and the session control message channels,

so that these two types of data do not interfere with each other. It also provides the users

an intuitive way to define their QoS preferences and be aware of the QoS adaptation

process through a friendly user interface. Rather than being used only in tele-teaching

applications, we believe that this system architecture can be used in other similar

applications, for example, in a conference where a video tutorial needs to be shown from

a central place, or for a video news or TV multicasting on the Internet, and so on.

However, due to time limitations and technical difficulties, some of the originally planed

functions were simplified or not implemented. The first step of the future work is to

complete and refine these functions. By the time the prototype was implemented, the Java

Media Framework (JMF) (version 1.0) was available only for receiving media. So it was

used only at the receiver side. At the sender side, we used instead an existing MBone

video conferencing tool VIC, running as a separate process under the Windows NT

environment. The JMF version 2.0 was released recently, which includes the video

capture function. A next step would be to replace the VIC tool with the Java video

capturing and sending functions, making use of the JMF 2.0 APIs. Furthermore, QoS

alternatives provided by the sender are currently implemented by using different cameras.

94

This should be modified such that we can use a single camera and appropriate filtering

functions to provide several video streams with different qualities. Another function that

needs to be completed is to provide video QoS alternatives not only for frame rate, but

also for color and resolution.

An important feature of the future work is to integrate scalable encoding techniques into

the current system. A number of scalable encoding schemes have been proposed, such as

dropping a specified percentage of frames, dropping frames with lower priority, reducing

the number of bits per pixel, multiplexing frames from multiple streams into one stream,

etc. Some of these mechanisms are included in H.261, H.263, MPEG-1, MPEG-2 and

MPEG-4. The future research will focus on how to apply certain techniques to provide

the QoS adaptation from this perspective.

95

References

[1] RFC 791. J. Postel, “Internet Protocol”, 1981.

[2] Uyless Black, “TCP/IP & Related Protocols (Second Edition)”, 1994, McGraw-Hill

Ryerson, Limited.

[3] RFC 793. J. Postel, “Transmission Control Protocol”, 1981.

[4] RFC 768. J. Postel, “User Datagram Protocol”, 1980.

[5] RFC 1112. Steve Deering, “Host Extension for IP Multicasting”, 1989.

[6] RFC 1700. J. Reynolds, J. Postel, “Assigned Numbers”, 1994.

[7] RFC 2460. R. Hinden, S. Deering, “Internet Protocol, Version 6 (IPv6)

Specification”, 1998.

[8] RFC 2373. R. Hinden, S. Deering, “IPv6 Addressing Architecture”, 1998.

[9] RFC 2375. R. Hinden, S. Deering, “IPv6 Multicast Address Assignment”, 1998.

[10] David R. Kosiur, “IP Multicasting”, 1998, John Wiley & Sons Canada, Limited.

[11] Michael R. Macedonia, Donald P. Brutzman, “MBone Provides Audio and Video

Across the Internet”

http://www-atp.llnl.gov/atp/papers/HRM/references/mbone-av.html

[12] Frequently Asked Questions (FAQ) on the Multicast Backbone (MBONE)

http://www.cs.columbia.edu/~hgs/internet/mbone-faq.html

[13] MBone Software Archives

http://www.merit.edu/~mbone/index/titles.html

[14] RFC 2327. M. Handley, V. Jacobson, “SDP: Session Description Protocol”, 1998.

[15] S. McCanne, V. Jacobson, “Vic: A Flexible Framework for Packet Video”

96

http://www-nrg.ee.lbl.gov/vic

[16] RFC 2236. W. Fenner, “Internet Group Management Protocol, Version 2”, 1997.

[17] M. Banikazemi, “IP Multicasting: Concepts, Algorithms, and Protocols”

http://www.cis.ohio-state.edu/~jain/cis788-97/ip_multicast/index.htm

[18] C. Semeria, T. Maufer, “Introduction to IP Multicast Routing”

http://www.3com.com/nsc/501303.html

[19] RFC 1075. D Waitzman, C. Partridge, S. Deering, “Distance Vector Multicast

Routing Protocol”, 1988.

[20] Mrouted manual page

http://hegel.ittc.ukans.edu/topics/linux/man-pages/man8/mrouted.8.html#sect1

[21] RFC 1583. J. Moy, “OSPF Version 2”, 1994.

[22] RFC 1584. J. Moy, “Multicast Extension to OSPF”, 1994.

[23] RFC 2362. D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V.

Jacobson, C. Liu, P. Sharma, L. Wei, “Protocol Independent Multicast-Sparse Mode

(PIM-SM): Protocol”, 1998.

[24] V. Johnson, M. Johnson, “Higher Level Protocols Used with IP Multicast”

http://www.ipmulticast.com/community/whitepapers/highprot.html

[25] RFC 1889. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport

Protocol for Real-Time Applications”, 1996.

[26] RFC 2326. H. Schulzrinne, A. Rao, R. Lanphier, “Real Time Streaming Protocol

(RTSP)”, 1998.

[27] RTSP Information Page

http://www.real.com/rtsp

97

[28] RFC 2205. R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, “Resource

ReSerVation Protocol (RSVP) - Version 1 Functional Specification”, 1997.

[29] K. Chang and C. Semeria, “Standards for Multimedia Applications on Converging

Networks”

http://www.summitonline.com/netmanage/papers/3com2.html

[30] ISO/IEC 14496-1 "MPEG-4 Systems", ISO/IEC 14496-2 "MPEG-4 Visual",

ISO/IEC 14496-3 "MPEG-4 Audio", ISO/IEC 14496-6 CD "DMIF"

From MPEG homepage http://drogo.cselt.it/mpeg

[31] “QoS” Definition in a Dictionary of Technology Terms on Web

http://whatis.com/qos.htm

[32] G. v. Bochmann, A. Hafid, “Some Principles for Quality of Service Management”,

Distributed Systems Engineering Journal 4, 1997, pages 16-27.

[33] A. Hafid, G. v. Bochmann, “Quality of Service Adaptation in Distributed

Multimedia Applications”, Multimedia Systems Journal (ACM), 1998, Vol. 6, No. 5,

pages 299-315.

[34] D. B. Waldegg, “A temporal QoS Based CPU Scheduling Model for Multimedia

Applications in General Purpose Operating Systems”, Fifth IFIP International Workshop

on Quality of Service, IWQOS’97 Proceedings, 1997, pages 157-160.

[35] K. Lakshman, R. Yavatkar, R. Finkel, “Integrated CPU and Network-I /O QoS

Management in an End System”, Fifth IFIP International Workshop on Quality of

Service, IWQOS’97 Proceedings, 1997, pages 167-178.

98

[36] A. Hafid, “Providing a Scalable Video-on-Demand System Using Future

Reservation of Resources and Multicast Communications”, Fifth IFIP International

Workshop on Quality of Service, IWQOS’97 Proceedings, 1997, pages 277-288.

[37] P. Ferguson, G. Huston, “Quality of Service: Delivery QoS on the Internet and in

Corporate Networks”, 1998, John Wiley & Sons Canada, Limited.

[38] Q. Ma, P. Steenkiste, “Quality of Service Routing for Traffic with Performance

Guarantees”, Fifth IFIP International Workshop on Quality of Service, IWQOS’97

Proceedings, 1997, pages 115-126.

[39] Errin W. Fulp, Maximilian Ott, Daniel Reininger, douglas S. Reeves, “Paying for

QoS: An Optimal Distributed Algorithm for Pricing Network Resources”, Sixth IFIP

International Workshop on Quality of Service, IWQOS’98 Proceedings, 1998, pages 75-

84.

[40] R. Steinmetz, L.C. Wolf, “Quality of Service: Where are We?”, Fifth IFIP

International Workshop on Quality of Service, IWQOS’97 Proceedings, 1997, pages 211-

222.

[41] “MPEG-2: Generic Coding of Moving Pictures and Associated Audio Information”

http://drogo.cselt.stet.it/mpeg/standards/mpeg-2/mpeg-2.htm

[42] S. McCanne, V. Jacobson, M. Vetterli, “Receiver driven Layered Multicast”,

Proceedings of SIGCOMM’1996, http://www-nrg.ee.lbl.gov/nrg-papers.html.

[43] J. Gecsei, “Adaptation in Distributed Multimedia Systems”, IEEE Multimedia,

April-June 1997, pages 58-66.

[44] P. Moghe, A. Kalavade, “Terminal QoS of Adaptive Applications and Its Analytical

99

Computation”, Fifth IFIP International Workshop on Quality of Service, IWQOS’97

Proceedings, 1997, pages 369-380.

[45] D. Sisalem, “End-To-End Quality of Service Control Using Adaptive Applications”,

Fifth IFIP International Workshop on Quality of Service, IWQOS’97 Proceedings, 1997,

pages 381-392.

[46] Jane Hunter, Varuni Witana, Mark Antoniades, “A Review of Video Streaming over

the Internet”.

http://www.dstc.edu.au/cgi-bin/redirect/rd.cgi?http://archive.dstc.edu.au/RDU/staff/jane-

hunter/video-streaming.html

[47] SanKu Jo, Pierce E. Cantrell, “A Dynamic QoS Control Scheme for

Videoconferencing in a Heterogeneous Internet”.

http://www-itg.lbl.gov/~skjo/paper/inet99

[48] S. Fischer, A. Hafid, G. v. Bochmann, H. d. Meer, “Cooperative Quality of Service

Management for Multimedia Applications”, proceedings of the 4th IEEE Internatinal

Conference on Multimedia Computing and Systems, Ottawa, Canada, June 1997, pages

303-310.

[49] RFC 2543. M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, “SIP: Session

Initiation Protocol”, 1999.

[50] ISO/IEC 14496 – 6, “Information Technology – Very Low Bit-rate Audio-Visual

Coding, Part 6: Delivery Multimedia Integration Framework (DMIF)”, (N2720).

From MPEG homepage: http://drogo.cselt.stet.it/mpeg

[51] Java Media Framework API

http://java.sun.com/products/java-media/jmf/index.html

100

[52] Java Remote Method Invocation (RMI) Interface

http://java.sun.com/products/jdk/rmi/index.html

[53] Java Object Serialization API Reference

http://java.sun.com/products/jdk/1.1/docs/guide/serialization

[54] Vasilios Darlagiannis, Master Thesis: “COSMOS: Collaborative System Based on

MPEG-4 Objects and Streams”, December, 1999.

[55] Cezar Zaharia (University of West Ontario), Zhen Yang (University of Ottawa),

“MBone Report”, Oct. 1998.

ftp://beethoven.site.uottawa.ca/Publications/-REPORTS-THESES/

101

Appendix A Multicast Routing Algorithms

A.1. Flooding

The flooding algorithm is the simplest multicast delivery algorithm. When a packet

arrives at a router, the only thing the router checks is whether it has seen this packet

before. If this packet reached here before, the router will discard the packet. If it is the

first time that the router sees this packet, it will forward it to all the neighboring routers

except for the one from which the packet was forwarded.

Although this algorithm is very simple, it has two major drawbacks. Routers generate a

large number of duplicated packets that cause a big waste of network bandwidth. Routers

have to keep track of each recently received packet to check whether a new arrived

packet has been here. It is not an efficient use of the routers’ memory resources.

A.2. Spanning Trees

This algorithm defines a tree structure that consists of a subset of network links. This tree

spans to all nodes in the network. Consider the example in Figure 1.11.

Figure 1.11 Example of Spanning Tree Routing Algorithm

 There are 6 nodes connected by 8 links. The cost associated with each link is labeled

beside the link. A spanning tree from the source node is constructed in solid lines. When

a multicast packet arrives at a router, the router will only forward the packet over the

3

1

24

6 7

5

8

Source

102

links that are branches of the spanning tree, except for the one that the packet was from.

This algorithm avoids too many duplicated packets flooding the network, and also

improves the router memory usage since a router only keeps a boolean value for each

interface whether it is in the spanning tree.

It still has two disadvantages: the traffic is centralized to a small set of network links, and

the packets are forwarded to all routers no matter whether there are group members there.

A.3. Reverse Path Broadcasting (RPB)

The Reverse Path Broadcasting algorithm modifies the Spanning Tree algorithm by

constructing a shortest path tree for each source, instead of only one tree for all the nodes

in the whole network. When a router receives a packet from a link, it will see whether

this link belongs to the shortest path back to the source. If it is, the router forwards the

packet to all the links except for the previous one. See below the same small network

structure as in Figure 1.12. The tree is constructed differently.

Figure 1.12 Example of Reverse Path Broadcasting (RPB) Routing Algorithm

This algorithm is fast, since it uses the shortest path algorithm to build the tree, and it is

easy to implement. But one problem still exists, as for Spanning Tree, it does not take

into account the group membership information.

A.4. Truncated Reverse Path Broadcasting (TRPB)

3

1

24

6 7

5

8

Source

103

As we introduced before, through IGMP, a router knows whether or not there are

members of a particular group on its local network. The TRPB algorithm improves the

RPB by introducing a truncation mechanism, which removes the leaf routers that do not

have group members on their networks. However, only the leaf routers can be removed

from the tree. This algorithm cannot prevent unnecessary traffic forwarding to non-leaf

routers that do not have group members.

A.5. Reverse Path Multicasting (RPM)

The RPM algorithm was proposed to overcome some of the limitations of RPB and

TRPB. Consider the example below:

Figure 1.13 Example of Reverse Path Multicasting (RPM) Routing Algorithm

For each (source, destination group) pair, the first packet is forwarded based on the TRPB

algorithm. If a router receives a packet and it does not have group members on its

network, it will send a “prune” message one hop back towards the source. The upstream

router needs to keep this “prune” message in its memory. In turn, if the upstream router

receives a “prune” message, and it does not have recipients on its network, it will send a

“prune” message back to its upstream router. The pruning continues until the source is

reached. Once the tree is constructed, the packets are sent along this tree. The tree is

refreshed periodically by another packet flooding to the whole network.

S

R

R

R

R

R

R

H

H

H H

H

R
H

H
prune prune

prune

104

Since each router has to keep the state of all the source destination pairs, this algorithm

requires a big memory space on the router, so that it is not very scalable.

A.6 Core Based Tree (CBT)

The CBT builds a single tree for each group, regardless of where the sources are. A single

router or a small set of routers is selected to be the “core” routers. A multicast packet is

forwarded towards a core router by unicast until it reaches a router that belongs to the

tree. Then the packet is forwarded over all links in the tree.

In this algorithm, the routers do not have to maintain much state information. But there

are some other problems that may happen. Since there is only a single tree for each

group, the traffic is centralized and there might be a bottleneck around the core routers

with the result of delay in delivery.

We have described some multicast delivery algorithms that may be potentially used in

multicast routing protocols. Next we will introduce some often used routing protocols.

105

Appendix B Format of DAI Primitive Parameters

• QoS Manager Side

DA_ServiceAttachReq(String url, LogicalStream uuData)

This primitive can be issued by either a QoS manager or a QoS Agent from the

application layer to DMIF layer. The url has the following format:

“xdmif://<user><password>@<ip><port>/<service-entity-path>/<service-entity-

role>”. The address of the session’s signaling channel is defined by <ip> and <port>.

The value of <service-entity-role> is used to identify the application role, either a QoS

Manager or a QoS Agent.

The QoS manager issues this primitive to the sender DMIF entity to explicitly join the

multicast session. The potential stream information is encoded in uuData, in the format

of an object, which was described in the previous sub-section (AllStream). On receiving

this primitive, the DMIF entity should broadcast the uuData over the signaling channel

through the DMIF network Layer.

DA_ServiceAttachCnf(long ssID, int response, int uuData)

This primitive is issued by the DMIF entity to respond to the DA_ServiceAttachReq

primitive.

In the case of unicast, this primitive is initiated from the other end of the connection to

report the connection status. In the multicast case, since the sender does not have

knowledge of where the receivers are, the primitive is emulated by the local DMIF layer.

The local DMIF randomly generates a session ID, which identifies the session uniquely

106

such that the QoS Manager can refer to it in subsequent interactions. The response and

uuData could be null.

DA_UserCommandInd(long ssID, int uuData)

This primitive is an indication of a channel activation request for a given session, which

is identified by ssID. It is sent from the receiver side and issued by the sender DMIF layer

to the QoS manager, providing the uuData, which in our application contains the

requested channel port number.

DA_ChannelAddReq(long ssID, long dir, QoSDescriptor qosInfo, int uuData)

This primitive is issued by the QoS manager to announce the activation of a data channel

in the context of a particular session identified by ssID. In our case, the QoS manager

provides information about the new activated data channel in the uuData parameter. The

qosInfo expresses the network level QoS parameter of the channel. Since we have already

included it in the logical stream information, this parameter could be null in this case. dir

indicates the direction of the transmission. It has the value UPSTREAM when this

primitive is sent from the sender side to the receiver side, and DOWNSTREAM in the

reverse direction.

DA_ChannelAddCnf(long ssID, long chID, int response, int uuData)

Similar to DA_ServiceAttachCnf, this primitive is not sent from the other end, but from

the local DMIF layer to emulate a response and uuData. These two parameters could be

null. The DMIF also randomly generates a chID, which identifies the channel to which

the QoS manger may refer to in subsequent interaction.

DA_ChannelDeleteReq(long chID, int reason)

107

This primitive is issued by the QoS manager to announce the deactivation of a data

channel, which is identified by chID.

DA_ChannelDeleteCnf(long chID, int response)

This primitive is sent by the local DMIF to emulate the channel deactivation response.

DA_SessionDetachReq(long ssID, int reason)

This primitive is issued by a QoS manager, informing the local DMIF the session’s

termination. The DMIF program module clears its variables associated with this session.

DA_SessionDetachCnf(long ssID, int response)

The local DMIF emulates the confirmation of the service detach.

• QoS Agent Side

DA_ServiceAttachReq(String url, int uuData)

As mentioned before, this primitive can be issued by either QoS Manager or QoS Agent.

The application role is indicated in the url. When issued by a QoS agent, it is used for the

receiver DMIF to initialize a session, getting the source information of the session, in our

case, the potential stream variants from the manager. The format of the source data is

described in Section 5.2.2. The multicast session control channel address is identified by

the url. The uuData could be null.

DA_ServiceAttachCnf(long ssID, int response, LogicalStream uuData)

The local DMIF layer emulates the response to a service attach. It randomly generates a

ssID, which identifies the session such that the QoS Agent can refer to it in subsequent

interactions, and provides the received source data to the QoS agent in uuData.

108

DA_ChannelAddInd(long ssID, long chID, long dir, QoSDescriptor qosInfo, int

uuData)

This primitive is issued by the receiver’s DMIF layer to inform the QoS agent that a

channel is activated in the context of a particular session identified by ssID. In our case,

the information of the channel is provided to the QoS agent in uuData. The local DMIF

randomly generates a chID, which identifies the channel uniquely such that the QoS

Agent can refer to it in subsequent interactions. dir and qosInfo have the same meaning as

in the QoS manager’s DA_ChannelAddReq primitive. On receiving this primitive, the

QoS agent should update its local session stream variant information.

DA_ChannelAddRsp(long ssID, long chID, int response, int uuData)

This primitive can be used to respond to the DA_ChannelAddInd primitive, or to inform

the DMIF to add a given channel (e.g. connect to a MBone channel). chID is used to

differentiate these two cases. In the first case, the local DMIF emulates the response,

carrying 0 as chID. In the second case, the chID is the actual ID of the channel that is to

be connected to.

DA_ChannelMonitor(long chID, QoSMode mode)

This primitive is used to inform the DMIF to start monitoring the channel, identified by

chID. The mode specifies the monitoring mode. There are three options defined in DMIF

specification. Integer values are assigned to these options. We use the QoS violation

indication option. The QoSMonitorPeriod is defined as 0, because we do not use that

option. The status is “0”. The monitoring is automatically stopped when another channel

becomes the current channel or the session is ended.

public class QoSMode {

109

 int mode;

 int qosMonitorPeriod;

 int status;

}

Mode QosMonitorPeriod status

NO_QOS_NOTIFICATION (0) Frequency of QoS

reports in

milliseconds (0)

START (0)

PERIODIC_QOS_NOTIFICATION (1) STOP (1)

QOSVIOL_DETECT_NOTIFICATION (2) SINGLE (2)

Table 5.2 QoS Mode

DA_EventHandle(long chID, QoSMode mode, QoSReport report)

This primitive is issued by the DMIF layer when a QoS violation is detected for a given

data channel identified by chID. Detailed information is encoded in the report.

Metrics that are used to measure the QoS violation are defined in the DMIF specification.

In our implementation, we get the network information from the RTCP receiver report.

There are certain differences between these two specifications. A comparison is given in

the following table. We decided to use only the loss rate parameter to measure the QoS

violation.

metrics defined in DMIF metrics in the RTCP report

MAX_DELAY

AVG_DELAY

LOSS_PROB

Dejitter Buffer

DLSR (delay since last SR)

Cumulative number of packet lost

Fraction lost

inter-arrival jitter

Table 5.3 Two Different QoS Metrics

110

The structure of the QoSReport is shown below. The qos_QualifierCount is the count of

how many metrics are used, in our case, only one (the loss rate). The qos_QualifierTag is

the name of the metric. We assign an associated integer 0 to represent “loss rate”. The

qos_QualityfierData is the measured loss rate.

public class QoSReport {

 int qos_QualifierCount;

 int qos_QualifierTag[];

 long qos_QualifierData[];

}

DA_UserCommandReq(long ssID, int uuData)

This primitive is intended to support the delivery of control information (uuData) to the

remote peer. In our case, it is issued by a QoS agent to request a channel activation. The

channel’s IP address and port number can be provided in the uuData.

DA_ChannelDeleteInd(long chID, int reason)

This primitive is issued by the DMIF entity to inform the QoS agent about a channel

deactivation. On receiving of this primitive, the QoS agent should update the local stream

variant information.

DA_ChannelDeleteRsp(long chID, int response)

The local DMIF emulates the response.

DA_ServiceDetachReq(long ssID, int reason)

This primitive is used by the QoS agent to leave a session. In multicast applications, the

receivers can leave a session at any time; this primitive does not have any effect on the

111

sender side. The QoS agent program module clears all the variables, and sends this

primitive to the local DMIF. The DMIF program module clears all its variables as well.

DA_ServiceDetachCnf(long ssID, int response)

The local DMIF emulates the confirmation of a service detach.

112

Appendix C User Profile Management APIs

boolean createUser (String usrName, String pwd)

Given the user name and password, create a new user. If the user name was already used

by another user, a Boolean value “false” is returned. Otherwise, “true” is returned.

boolean deleteUser (String usrName, String pwd)

Given the user name and password, the user is deleted. If either the user name or the

password does not exist, a Boolean value “false” is returned. Otherwise, “true” is

returned.

int loginUser (String usrName, String pwd)

Given the user name and the password, check whether a user already has an account on

this server. If user name and password are correct, return 0, otherwise, return –1. A user

has to login correctly first to be able to edit his profile and join the session.

Profile getDefaultProfile (String usrName, String pwd)

For security reason, the user needs to give his name and password again to get his

profiles. Given the user name and the password, this method returns the user’s default

profile. The default profile is always at the first position in the user’s profile array.

Profile getCertainProfile (String usrName, String pwd, String profileName)

Given the user name, the password, and the profile name, return the required profile.

addNewProfile (String usrName, String pwd, Profile pro)

Given the user name, the password, and the newly created profile, put this profile into the

user’s profile array.

113

deleteProfile (String usrName, String pwd, String profileName)

Given the user name, the password, and the profile name, deleted this profile from the

user’s profile array.

saveProfile (String usrName, String password, String oldProfileName, Profile pro)

Given the user name, the password, the old profile name and the new profile, replace the

old profile with the new one.

Vector getProfileList (String usrName, String pwd)

Given the user’s name and the password, return a list of all profile names.

Note: The class Profile has the following definition:

public class Profile{

public String profileName;

public int frameRateD, colorD, resolutionXD, resolutionYD, audioD;

 /* desired values

public int frameRateA, colorA, resolutionXA, resolutionYA, audioA;

 /* acceptable values

public int cost;

public int frameRatePri, resolutionPri, colorPri, audioPri, costPri;

/* importance factor

}

