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Abstract 

 

 

 

 

 In this thesis, we present an algorithm to transform a subset of generalized semi-

Markov processes into semi-Markov processes. The transformation preserves steady-state 

simulation, a simulation that allows us to retrieve the steady state probability of the 

generalized semi-Markov process from that of the transformed process. The method 

presented could generate semi-Markov processes with big state spaces, for that reason we 

introduce a two state simplification techniques. The first one deals with the state space 

explosion problem by deleting states from the original generalized semi-Markov process. 

The aim of this technique is to generate semi-Markov processes with smaller state space. The 

technique deletes states from the generalized semi-Markov process while preserving the 

distribution of time needed to travel between non-deleted states; the technique also preserves 

the transient state probabilities of a subset of the states in the process. The other technique 

deals with the state space explosion problem at the level of semi-Markov processes. It works 

by deleting states from the semi-Markov processes while preserving the average time to 

travel between non-deleted states, or what we call mean passage-time equivalence, the 

technique also preserves the steady state probabilities of a subset of the states in the process.  
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Chapter 1. Introduction 

 

 

 

 

 

 

1.1. Motivation 

 Performance engineering (PE) covers modeling, analysis and synthesis of systems. 

Temporal behavior of real systems is measured and modeled, characteristic performance 

measures are then defined and measured [16],[52],[71],[76],[82]. The general scenario is as 

follows: 

- The environment generates requests; these are known as the workload to the 

system: The workload represents the sum of all needed activities and services 

such as type of activities and frequency of requests. 

- The system consists of one or more components trying to satisfy these requests. 

- An optimal system structure is reached if the system fulfills all requirements 

concerning the quality of service such as liveness, throughput and response time. 

The steps to achieve PE are: 
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- Workload characterization and system parameter specification,  

- Modeling,  

- Analysis, which involves extracting performance measures from the model using 

methods of statistics, stochastic processes, or simulation. 

 For more details about the above steps refer to [76]. 

 In this thesis, we focus mainly on modeling. In general, we have two main modeling 

categories: hard real-time and soft real-time systems: 

- Hard real-time systems need deterministic timing models because actions take 

place at distinct time instants or within fixed time intervals. Examples of hard real 

time systems are avionic systems and robots. Properties of interest in such 

systems include safety and liveness. Typical modeling techniques are: timed 

automata [4], timed Petri nets, timed process algebra. 

- Soft real-time systems need stochastic timing models due to contention, faults, 

and random service strategies. Examples include time sharing computers and 

telephone systems. Properties of interest in such systems include: throughput, 

utilization, and delays. Randomly varying time delays are captured by stochastic 

processes or by high-level models such as stochastic Petri-Nets (SPN), queuing 

networks or stochastic process algebras (SPA) whose underlying process is a 

stochastic process. To extract performance parameters from SPN and SPA, we 

need to generate the underlying stochastic process and analyze it. 

 The stochastic processes that are mostly studied in the literature for performance and 

dependability purposes are in increasing order of expressivity: Continuous-Time Markov 

Chains (CTMC) [25], Semi-Markov Processes (SMP) [25],[56],[59], and Generalized Semi-

Markov Processes (GSMP) [67]. The difference between them lies in the set of instants in 

the process life that satisfy the Markov property, A stochastic process satisfies the Markov 

property at time instant t , if the conditional probability distribution of the states of the 

process after time instant t  is conditionally independent of the states of the process before 
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time t  (path of the process), given its state at time t . For CTMCs this property holds at 

every instant of the process life, for SMPs the property holds at the instants of state change 

only, and for GSMPs, the property may never hold. 

 Because of the holding of the Markovian property at all instants of the process life, 

CTMCs can only represent activities with an exponentially distributed duration [19]. The 

only candidates for representing systems with generally distributed, not necessarily 

exponential, event durations are SMPs and GSMPs. SMPs and GSMPs are state automata 

whose transitions are triggered by the occurrence of stochastically timed events. A set of 

active events )(sA  is associated with each state s  of the automaton. Each event has an 

associated generally distributed lifetime. If in a state s  the life of an active event e 

terminates, one says that event e occurs, and the automata moves to another state. Active 

events of a state compete to trigger the next transition.  

SMPs are not suitable for representing event concurrency, as explained in the 

following example:  

 Example 1: Consider two concurrent events e and e’ running in parallel; event e has a 

deterministic duration of 1 time unit, and event e’ has a geometrically distributed duration 

with parameter 0.1. The situation is represented in Figure 1. Each state is annotated with a set 

of events; these are the events that become active once we enter the state (i.e. they are 

assigned a lifetime according to their distribution once we enter the state, we also say that the 

events are initialized in that state). In state 0 of the system shown in Figure 1, both events e 

and e’ are initialized; the system stays in state 0 until the lifetime of one of the events 

terminates. At that point, the event occurs, and a transition labeled with the event takes the 

process to a new state. If event e occurs first, we move to state 2, the sojourn time in state 2 

(which is determined by the residual lifetime of event e’) is not given, it rather depends on 

the time spent in state 0. Hence the above process is not Markovian at the point we enter 

state 2. So even the simplest case of two concurrent activities can not be represented by an 

SMP. The example above is in fact a GSMP. 
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Figure 1. Concurrent events 

 

 The Transient State Probability of a stochastic process (TSP) is the probability of 

being in a given state of the process at a given time, And the steady state probability (SSP) is 

the probability of being in a given state of the process at equilibrium, i.e. after the system hs 

been in operation for a pretty long time. The TSPs and SSPs are everything we need to know 

to be able to extract key performance and dependability measures from a process; for that 

reason, finding the TSPs and/or SSPs is referred to as “solving the process”. 

 In Markov processes (CTMC, SMP), the calculation of the transient and steady state 

probabilities is possible through a straightforward application of linear algebra 

[15],[27],[73],[78].  

 The absence of the Markov property in GSMPs renders the solution of these systems 

a tedious task. Since events associated with computer and communication systems may be 

concurrent and have a distribution of general nature [61], the modeler needs to be provided 

with tools for quantitative analysis of performance and dependability in GSMPs. The 

existing approaches that dealt with this problem are limited in applicability to processes 

whose general events (i.e. non-exponentially distributed events) are mutually exclusive, 

referred to as EGSMPs. 
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1.2. Thesis Contributions 

As mentioned above, existing approaches that analyze GSMPs are limited in 

applicability to EGSMPs. In fact, imposing this restriction (the mutual exclusivity of the non-

exponential distributions) leads to algorithms with reasonable costs while going beyong the 

restriction is one of the most challenging open issues in the field.  

In this thesis, we will define a technique that relaxes the above restriction by allowing 

several non-exponentially distributed events to be enabled at any time; however, we impose 

a restriction on the type of cycles allowed; the GSMPs with the cycle restrictions will be 

referred to as near-regenerative semi-Markov Processes, NRGSMPs. The NRGSMP’s will 

be presented in Chapter 3, and formally defined in Chapter 4.  

In Chapter 4, we will show that the set of EGSMPs is a subset of the set of 

NRGSMPs; moreover, we it will be proved that the models shown in Figure 3, Figure 10, as 

well as the software rejuvenation models presented in Section 7.3 are all examples of 

NRGSMP’s that are not EGSMPs. We will also characterize the subset of GSMPs that are 

not NRGSMPs. 

In finding the steady state probability of the NRGSMP’s, we will present an 

algorithm that transforms the NRGSMP into a semi-Markov process (SMP) with a bigger 

state space. The transformation preserves steady-state simulation, which allows us to 

determine the steady state probability of the NRGSMP from that of the SMP constructed. 

One of the drawbacks of this method is the big state space of the SMP created. In fact, the 

largeness of the state space is one of the main obstacles that the modeler faces when 

analyzing a stochastic model, it is known as state space explosion. 

 On the level of stochastic processes, several approaches have been introduced to deal 

with the issue of state space explosion. Several techniques could be applied to overcome this 

problem, such as state lumping, approximation methods by state truncation (aggregation), or 

bounding methods [9],[62],[78]. All these methods simplify the process on the state level by 

reducing the number of states. Other methods work by exploring properties of the model 

such as equivalence and partition, then reducing the state space [62],[78], but they are limited 
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in applicability as the model needs to have certain properties. In this thesis, to overcome the 

size of the SMP created, we will introduce two algorithms: 

•  The first algorithm deletes certain states of the original GSMP while preserving the 

distribution of time to travel between non-deleted states. As will be seen in Chapter 5, the 

technique is limited in applicability to very particular states. The passage of time 

equivalence is not new, it was introduced by Bradley in [14] in the context of SMPs. So 

we use the same definition and extend it in the context of GSMPs. As far as we are 

aware, no similar simplification exists on the level of GSMP’s 

• The second algorithm deletes certain states of the resulting semi-Markov process, while 

preserving the mean passage-time between non-deleted states. As far as we are aware, the 

only existing simplification in the context of semi-Markov processes was introduced by 

Bradley in 2002 [14]. In his paper, Bradley introduced a simplification technique that 

preserves the exact passage-time distributions between pairs of non-deleted states; this in 

stochastic terms is a very strong equivalence, the two models under comparison should 

have strong similarity. In this chapter, the equivalence is less restrictive; processes would 

still be equivalent if they have the same average of passage time distribution between 

states rather than exact distributions; and the simplification procedure requires less time 

as its steps are straightforward. This equivalence is useful when the user is only 

interested in mean passage-time delays and not actual distributions. The “mean-passage 

time equivalence” preserves all performance measures that depend on mean passage time 

such as reliability and availability. So if we are interested in such measures, the 

simplification technique would help us reduce the size of the SMP and hence the 

complexity for the performance evaluation procedure. 

 

1.3. Outline of the thesis 

 In the next two chapters, some background information will be provided: Chapter 2 

introduces the different performance models and the advantages and disadvantages of 

modeling with each of them, and Chapter 3 introduces the two main existing methods for the 
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numerical analysis of generalized semi-Markov processes: the method of supplementary 

variables and the method of embedded regenerative process. These methods provide a 

solution for a subset of GSMPs, the retriction being that at most one non-exponentially 

distributed clock can be enabled at any given time. Aside from being a severe restriction, the 

main problem with these methods is that it is hard to check whether a GSMP is part of this 

subset using static analysis. As a result, more restrictive conditions are set on the subset of 

solvable GSMPs to make the subset checkable using static analysis.  

Chapters 4 to 6 introduce the results of this thesis: Chapter 4 introduces a new 

technique for the numerical analysis of generalized semi-Markov processes and compares it 

with previous methods. The new technique transforms a GSMP into an SMP, and calculates 

the steady state probabilities of the GSMP from that of the SMP created. This new method 

provides a solution for the steady state probability of a wider class of GSMPs, moreover, it is 

easy to check whether a GSMP is a subset of this class or not as will be dicussed in Chapter 

7.  

Chapter 5 introduces a method to remove states from GSMPs while preserving the 

distribution of time needed to travel between non-deleted states and the transient and steady 

state probabilities for a subset of the states of the automata is preserved as well. Chapter 6 

deals with the issue of state space explosion of the SMP created; it deals with the problem by 

introducing a new simplification technique for semi-Markov processes. The technique 

deletes states from the SMP while preserving the average time to travel between non-deleted 

states, or what we call average delay simplification equivalence, the equivalence is shown to 

preserve measures that depend on the mean time to travel between states, examples of such 

measures are mean time to failure and mean time to repair. The technique also preserves the 

SSPs of a subset of the states of the automata. The whole picture becomes clearer with an 

application and a case study presented in Chapter 7. And finally, Chapter 8 provides our 

conclusions and suggestions for future research directions. 
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Chapter 2: Performance modeling  

 

 

 

 

 

 

2.1. Introduction 

 Performance, dependability and performability techniques provide a method to study 

the behavior of computer and communication systems. Performance refers to the response 

time as seen by the users. Responsiveness determines a system’s effectiveness and as a 

consequence affects the productivity of the users [7],[76]. Dependability modeling covers 

failure and repair related aspects of system behavior. Performance and dependability 

techniques are vital to most hardware and software systems. Software systems that perform 

customer service functions, such as ticket reservation systems and ATM banking systems 

must provide rapid responses to satisfy the customers. Hard real-time systems, such as flight 

control systems, must meet their response-time requirements to prevent disasters. If an 

automated flight-control system does not provide a rapid response, the airplane depending on 

it could crash. 

Performance and dependability analysis can be studied separately, but sometimes, a 

measure that takes into account their interactions and trade-offs, or what is known as 

performability analysis, is needed. In fact, fault-tolerant systems are designed to guarantee 
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continuity of service even in the presence of component failure [82],[47]. However, the 

performance of the system will be reduced in the presence of failure. For example, a system 

may operate as long as one of two components is operational, however, the system is 

assumed to deliver a higher performance when both components are operational. 

Performability analysis aims to capture the performance of the system in the presence and 

absence of failure and the interaction between the failure-repair behavior. For a survey of 

techniques and tools that can be used in reliability and performability analysis refer to [82]. 

To ensure that a system meets performance and reliability goals, performance has 

become an essential part of the software development process [77],[83]. 

 

2.2. Models 

 To evaluate the system or component during the development process for their 

performance, dependability and performability, a software designer has several options: 

“make an educated guess based on his past experience, build prototypes and make 

measurements, use discrete event simulation to model the system, or construct analytical 

models of the system” [47].  

 Assessing a prototype is not always possible during the implementation phase. 

Moreover it might not be possible to assure whether a prototype meets a performance, 

dependability or performability criteria, for example a system with high reliability might take 

months before it fails [72]. 

 Discrete event simulation (DES) is commonly used in practice. Many software tools 

are available that could help in the construction and execution of DES models. However, 

simulation models are generally expensive to define because this involves writing and 

debugging a complex computer program. Moreover, they can be expensive to parameterize, 

because a highly detailed model typically requires a large number of parameters. And finally 

they are expensive to evaluate because running a simulation requires substantial 

computational resources, especially if narrow confidence intervals are desired [53],[47]. 
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 Analytical modeling is a cost effective alternatives for DES. They are the main focus 

of our research. Analytical modeling is based on constructing a model and analyzing it. A 

model is an abstract representation of the system; it is used to capture the essential 

characteristics of the system so that its performance can be reproduced; it should include 

sufficient information to make us understand the actual system’s behavior [54], and such 

characteristics could be fault-tolerance, contention for resources, concurrency and 

synchronization…. A software designer has a wide range of different types of models to 

choose from. These models could be divided into two main categories: 

a)  Queuing models, such as product form queuing networks [48], can represent contention 

for resources. However they can not model failure, synchronization or concurrency. 

b)  Stochastic models, such as stochastic Processes [19],[62],[78], stochastic Petri-nets, 

(SPN), [24],[23],[60] and stochastic process algebras, (SPA), [46],[50],[54], can model 

interactions between system components. They are also known as state space models [47].  

 The stochastic processes that are mostly studied in the literature for performance and 

dependability purposes are, in increasing order of expressiveness, continuous-time Markov 

chains (CTMC), semi-Markov processes (SMP), and generalized semi-Markov processes 

(GSMP). The difference between them lies in the set of instants in the process life that satisfy 

the Markov property. A stochastic process satisfies the Markov property at the current time 

instant if the conditional probability distribution of the future states of the process, given the 

present state and all past states, depends only upon the present state and not on any past 

states; for more details refer to [19]. 

For CTMCs the Markov property holds at every instant of the process life, for SMPs 

the property holds at the instants of state change only, and for GSMPs, the property may 

never hold. 

 Because of the holding of the Markovian property at all instants of the process life, 

CTMCs are shown to only represent activities with an exponentially distributed duration 

[19]. The only candidates for representing systems with generally distributed activity 

durations are SMPs and GSMPs. 
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 Although the state space models provide flexibility for modeling dependability, 

performance and performability, the state space of these models can be very large; in fact 

their state space grows much faster than the increase in system components. To deal with this 

issue, many high level specification techniques, such as stochastic Petri nets, and stochastic 

process algebras were introduced. These are higher level representations of stochastic 

processes. When the underlying stochastic process is a CTMC, the CTMC can be obtained 

automatically from these higher level models, moreover, effective methods for its solution 

are available [47]. 

 

In the remaining of this chapter, we will introduce CTMCs, SMPs and GSMPs; the 

information is taken from [53] and more details could be found in [12],[76]. Examples will 

be provided for all the state-based models. We will then introduce queuing models, Petri nets 

and process algebras; more details could be found in [12],[29],[54],[60],[23]. 

 

2.3. Stochastic Models 

 As discussed earlier, the state-based model, such as CTMCs, SPNs, and SPAs are all 

based on the notion of stochastic processes, so, in this section, we will present the stochastic 

processes that are mostly used in the context of performance modeling, and these are 

CTMCs, SMPs, and GSMPs. We start first by presenting some notions that are common to 

these three types of processes; for that purpose, any stochastic process that is a CTMC, an 

SMP or a GSMP will be referred to as a Markov-Like-Stochastic Process or MLSP. 

 An MLSP X is a state automata whose transitions are triggered by the occurrence of 

stochastically timed events associated with the occupied state. We denote by X(t) the state of 

the process at time t. Only continuous time models will be considered, in other words t takes 

its values from the set of positive real numbers. An MLSP is said to be irreducible if all 

states can be reached from all other states, by following the transitions of the process. An 

irreducible MLSP is also known as strongly connected. 
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 Let X  be an MLSP with finite state space S={1,2,…,n} and let j be the starting state, 

in other words, X(0)=j, let Pij(t) = P{X(t) = i| X(0)=j} denote the probability of the process 

being in state i at time t given that the process was in j at time 0, then the row vector P(t) = 

[P1j(t), P2j(t),…,Pnj(t)] represents the transient state probability vector of the process. The 

steady-state probability (SSP) vector is π=(π1,…, πn)=limt→∞P(t). Note that limt→∞P(t) may 

not exist, in which case the SSP would not exist, the conditions under which the SSP of the 

process exists will be presented later in this chapter. 

 In addition to transient state probabilities, “cumulative probabilities” can be useful 

sometimes. These are denoted by L and are given by  

L(t)=∫0tP(u)du; 

L(t)={L1(t),…,Ln(t)}, where Li(t) denotes the “expected total time the process spends in state i 

during the interval [0,t)”. 

 With these definitions, many interesting performance dependability and 

performability measures can be defined by assigning rewards to states or to transitions 

between states of the process to form what is known as a reward model (RM). In this section 

we consider state-based rewards only, the results are taken from [47],[54]. Let ri be the 

reward rate assigned to state i. Then, the random variable Z(t)=rX(t) is “the instantaneous 

reward rate of the RM at time t”. The reward that is accumulated over the interval [0,t) is 

given by  

Y(t)=∫0t Z(u)du)=∫0t rX(u)du 

Various measures can be defined from the random variables: X(t), Z(t), and Y(t). A useful 

example is “the expected instantaneous reward rate” which is defined as follows: 

E[Z(t)]=Σi∈SriPij(t) 

And “the expected reward rate in steady state” is: 

E[Z( ∞ )]=Σi∈Sriπi 
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And “the expected accumulated reward” is: 

E[Y(t)]=Σi∈SriLi(t) 

 Some models can have states that do not have any outgoing transitions, these states 

are called absorbing states. In these models, the system would be in one of these absorbing 

state at equilibrium [68], and the limit as t→∞  of the expected accumulated reward is called 

the expected accumulated reward until absorption 

E[Y(∞)]=Σi∈SriLi(∞) 

Given the RM framework the next question is: what are the appropriate reward rate 

assignments?” We will answer this question in the context of dependability analysis with two 

target measures: availability and reliability. For information on reward assignment for 

performability measures, the reader is referred to [47],[69]. 

 Availability : availability measures the probability of a system going to an 

undesirable state, such as failure or service interruption. Availability is used for systems that 

tolerate interruption in service. In such systems failure is usually recoverable. 

 The simplest and most used availability measure is “the steady state availability”: It 

describes the probability of the system being in one of the desirable states at steady state. The 

availability is obtained by assigning a reward rate 1 to the desirable states and a reward rate 0 

to down states 

A=∑s∈S rsπs. 

The mean time to failure or MTTF is another availability measure, it is related to A as 

follows: 

A=MTTF/(MTTF+MTTR) 

where MTTR is the average time spent in the fail state. 
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 Reliability : reliability is the measure of uninterrupted service over a period of time. 

Reliability is used for systems that do not tolerate down times, such as flight control systems. 

 The simplest and most used reliability measure is also the mean time to failure, 

however, the failure here is unrecoverable, and so MTTF is the same as mean time to 

absorption (or MTTA). MTTF is again obtained by giving a reward rate of 1 to the up states 

and reward rate 0 to the down states. MTTF would then be given by 

E[Y(∞)]=Σi∈SriLi(∞) 

 

 So from the above we conclude that to obtain a complete description of a Markov-

like-stochastic process, we need to find the transient state probabilities of the MLSP. 

However, it is often difficult to obtain such solutions [68], Moreover, in many practical 

situations one needs to know the behaviour of the system in steady state, in other words, one 

needs to know the behavior of the system when it reaches an equilibrium state, a state it 

reaches after being in operation for a sufficiently long time [68]. For that reason, it is 

necessary to know the conditions for the existence of these probabilities. This will be 

discussed across this section. When such limit exists, the system is said to reach equilibrium 

or steady state, and then problem translates to finding the steady state probabilities. The 

calculation of TSPs or SSPs is referred to as finding the solution for the process. 

In the remainder of this section, we will present the different types of Markov-like-

stochastic processes; we start first by presenting the exponential model: continuous-time-

Markov chains. 

 

2.3.1. Exponential Models 

 Models with exponentially distributed holding times have been extensively studied 

[2],[25],[54],[60]. In this sub-section, we will present CTMCs and their properties, we start 

first by defining a poisson process. 
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2.3.1.1. Continuous-time Markov chains  

A Poisson process is a counting process in which interarrival time of successive 

jumps are independently and identically distributed exponential random variables. For 

more details refer to [19]. 

A CTMC is an MLSP; each state in the automaton is associated with several Poisson 

processes. A transition between any two states of the automaton is governed by the jump 

of one of the Poisson processes associated with the occupied state. The different Poisson 

processes associated with a state compete to trigger the next transition. The distribution 

of the time spent in a state of a CTMC, or what is known as the soujourn time in the 

state, is shown to be exponentially distributed  [19]. 

 

  

Formally, a Continuous time Markov chains X (CTMC) is made up of the tuple 0( , , )S s q  

where 

1.  S  is a nonempty set of states, 

2.  0s S∈  is the starting state, 

3.  :q S S× → ℜ  (where ℜ  is the set of real numbers). For  i j S≠ ∈ , ijq  is called 

the instantaneous transition rate from state i  to state j . It is the parameter of the 

exponential distribution of the sojourn time in state i ,  given that the next state to be 

visited is j , in other words, it is the parameter of the distribution of the interarrival 

time of the Poisson process associated with the transition from i  to j . iq  is called 

the exit rate for state i , and it is the parameter of the exponential distribution of the 

sojourn time in state i . In other words: i ij
i j S

q q
≠ ∈

= ∑ , and ii iq q= − . For more details 

refer to [19]. The matrix [ ]ijq  is denoted by Q . 
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 Continuous-time Markov chains with small state space are commonly represented as 

a state transition diagram. Each state is represented by a node. Possible transitions between 

the different states are represented through arcs. The arcs are labelled by the parameters of 

the exponential distributions governing the transitions: ijq .  

 For more details and for examples of CTMCs refer to [12],[19],[25],[68],[78]. 

 

2.3.1.2. Deriving the steady state probabilities for continuous-time Markov models 

 Let X  be a CTMC. Recall that Pij(t) = P{X(t) = i| X(0)=j} is the transient state 

probability for state i , and that P(t) = [P1j(t), P2j(t),…,Pnj(t)] represents the transient state 

probability vector of the CTMC. Then  

• The transient behavior of the CTMC can be described by the Kolmogorov 

differential equation [19]: dP(t)/dt=P(t)Q given P(0), where P(0) represents the 

initial probability vector (at time t = 0).  

• The steady-state probability vector π=(π1,…, πn)=limt→∞P(t) satisfies: πQ=0 and  

Σnπi=1 [19]. 

 

Theorem 2.1. A steady state probability distribution exists for every finite and strongly 

connected continuous-time Markov Chain (irreducible). [68] 

( 

 

 The different methods for steady state calculation are: 

1. The direct methods which are numerical methods that compute solutions to 

mathematical problems in a fixed number of operations [78]. 
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2. The iterative methods, which are the mostly used methods, begin from some 

initial approximation and produce a sequence of intermediate results, which are 

expected to eventually converge to the solution of the problem [78]. 

3. Other methods include: projection Methods, decompositional methods …[78]. 

 The complexity of the methods above lies between 2.7(2 )O n , and )( 3nO . In fact it is 

)
3

(
3nO  in most of the methods. 

 

2.3.2. Non Exponential Models 

 As explained in the previous section, because of their memoryless properties, CTMCs 

can be easily analyzed through straightforward application of numerical analysis. And that is 

the reason behind the popularity of the exponential distribution. However, the exponential 

assumption is not always realistic [34],[25],[41]. The following list, taken from [61], 

contains few examples of events that can not be modeled using exponential distributions. 

- If only the minimum and maximum of some quantity is known and more 

information is not available, the uniform distribution would be a good choice. 

- File transmission times in the internet and file sizes on a host give evidence of 

heavy-tail distributions. 

- The Weibull distribution is common in reliability, since it has an age-dependent 

failure rate. 

- Clock cycles in computers are fixed, i.e. they have deterministic distributions. 

- Repair times and scheduled maintenance intervals have often a fixed length. 

 So the above list proves the need for models with non-exponential distributions, in 

fact the focus on non-exponential distributions has flourished in the past 20 years in the area 
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of SPN [43],[23],[55],[63],[64] and SPA [13],[18],[33],[51],[79]. If we allow transitions to 

be delayed by non-exponential distributions, the Markov property need not hold anymore, 

the future behavior of the process might depend on a distribution that was started in the past 

and has not triggered a transition yet. A stochastic process that allows non-exponential 

transitions and has the Markov property at the time of state change is the semi-Markov 

process. In a semi-Markov process, all distributions that govern transitions are initialized 

every time we enter a state; as a result, we do not need to memorize the lifespan of 

distributions from past states.  

In the next sub-section, we will informally present GSMPs and SMPs. Formal 

definitions and illustrations will then follow. 

 

2.3.2.1. Semi-Markov processes and generalized semi-Markov processes 

A generalized semi-Markov process (GSMP) is a state automaton whose transitions 

are triggered by the occurrence of stochastically timed events associated with the occupied 

state. A set of active events )(sA  is associated with each state s  of the automaton, these 

events compete to trigger the next transition. Each of these events has its own distribution for 

determining the next state. At each transition to a state s , a set )(sK  of new events will be 

scheduled. For each of these new events, a clock indicating the time when the event is 

scheduled to occur is set (according to the random distribution associated with the event). If 

an event e’ occurs causing a transition from state s  to state 's , and if another event e was 

active in state s , then e is either associated with the next state (i.e. )'(sAe ∈ ), and its clock 

continues to run; or e is not associated with the next state 's , in that case, it is abandoned (or 

we say aborted), i.e. its associated lifetime is discarded and it is considered inactive. A 

transition between two states is labeled by an event e and a set of events E that are aborted, 

written 'ss E
e→ . This means that if the clock of event e expires (or we say simply if event 

e occurs) in s  then the process aborts the events in E and moves to state 's . Only one 

transition out of s  should be labeled with a given event e (determinism). The active events in 

state 's  would then be )'()()()'( sKEesAsA +∪−= . The events in the set )()( EesA ∪−  
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keep their residual lifetime, while events in )'(sK  are assigned a lifetime according to their 

distributions (initialized). Note that we need not represent the set of aborted events E because 

they can be deduced from the functions A  and K .  

SMPs are GSMPs with the property that K(s)=A(s) for all s. In other words, all active 

events in a state are initialized once we reach the state. Because of this restriction, SMPs 

satisfy the Markov property at the time of state change. 

 

A. SMP definition. 

Definition 2.1: Semi-Markov processes. 

A Semi-Markov Process (SMP) [25],[68] G is made up of the tuple 

),,,,,( 0 KFsSG �Ε= where  

• S  is a nonempty finite set of states including the initial state 0s ,  

• Ε  is the set of events,  

• )(: Ε℘→ finSK  is the event setting function which represents all the events that 

are initialized when we reach a state (note that these are the only active events in 

the state).  

• For every Ss ∈ , the function ])1,0[()(: →ℜ→sKFs  assigns the event 

distribution functions such that for all e  in )(sK , ( )( ) 0sF e x =  for 0<x  and 

lim ( )( ) 1x sF e x→∞ = . (As mentioned before, the distribution of an event depends 

on the state it was initialized in) 

• S S⊆ ×Ε×�  is the set of edges where 'ss
e

�  means that if event e occurs first in 

s  then the process moves to state 's . Note that the process is deterministic, in 

other words, if  1( , , )s e s ∈�   and 2( , , )s e s ∈�  then 1 2s s= . 
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 An SMP with finite states can be represented as a labeled transition system (refer to 

Figure 2). Every state s is annotated with a set of events inside brackets, these are the events 

that are active in that state ( )(sK ). Transitions out of a state are annotated with an event, say 

e, meaning that the transition takes place when event e occurs, the distribution governing the 

transition is given by ))(( xeFs . The numbers inside the state are labels that identify the state. 

 Let ),,,,,( 0 KFsSG �Ε=  be an SMP, let , 's s S∈  such that 'es s→ , then: 

• The conditional probability of moving out of state s  to state 's , given that 

the process is currently in state s , is calculated as follows: 

'
( )0

( )( )
(1 ( )( ))s

ss s
f K s

dF e x
p F f x dx

dx

∞

∈

= −∏∫ , i.e. it is the probability that event e  

occurs first from state s . For the different states in S , these probabilities 

form a Matrix '[ ]ssp  referred to as the embedded Markov chain.  

• Let sS  be the set of all states that are directly accessible from s , in other 

words, sS  is the set of all states { r S∈ , such that res r→ }. Then, the 

mean waiting time in state s , sM , is calculated as follows: 

( )
s

s sr sr
r S

M p E T
∈

= ∑  where srT  is the conditional waiting time in state s  given 

that the next state to be visited is r , and ( )srE T  is the expected value of srT .  

For more information on the above definitions and derivations, the reader is referred to [68]. 

 

B. Embedded Markov chain 

 

 In this sub-section, we will briefly describe the embedded Markov chain, for more 

background, the reader is referred to [25],[59],[68].  
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Let ),,,,,( 0 KFsSG �Ε=  be an SMP, let , 's s S∈  such that 'es s→ . As pointed 

out in the previous sub-section, the conditional probability of going from state s  to state 's : 

'
( )0

( )( )
(1 ( )( ))s

ss s
f K s

dF e x
p F f x dx

dx

∞

∈

= −∏∫ . 

For the different states in S , '[ ]ssp  form a matrix for the embedded discrete-time 

Markov chain, or simply the embedded Markov chain. The embedded Markov chain 

describes the probability of moving between the states of the process without regard to the 

sojourn time in the different states of the process. In other words, it refers to the state of the 

process at the n+1 transition given its state at the nth transition; regardless of the time of 

occurrence of these transitions (we consider here the case where this probability is 

independent of n). The probability 'ssp  is also denoted by ( '( 1) | ( ))P s n s n+ ( '(1) | (0))P s s= . 

Now, the conditional probability of moving to state s  at the nth transition, given that the 

chain started from state 0s , is denoted by 0( ( ) | (0))P s n s .  

 For any s S∈ , the steady state probability of state s , sπ , is probability of being in 

state s  in steady state, i.e. 0lim ( ( ) | (0))s n P s n sπ →∞= . The steady state probability of the 

embedded Markov chain is determined using the following equations: 

s r rs
r S

pπ π
∈

= ∑  and 1s
s S

π
∈

=∑
 

 

Theorem 2.2. A steady state probability distribution exists for every finite, irreducible, and 

ergodic [68] discrete-time Markov chain. 

 

C. Example of an SMP. 

 Example 2. The following example is taken from [25]: A system has two identical 

devices, each of the devices may fail independently of the other with constant failure rate 

� >0, in other words, the time until a failure occurs is exponentially distributed with 
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parameter � . The failure is modeled by event f. State 1 represents the normal mode of 

operation, both units are working (see Figure 2). Upon failure of one device, the process 

moves to state 3, and the service is suspended for a random amount of time, during which the 

faulty device is identified, the identification of the faulty device is modeled by event I. The 

distribution � (t) associated with event I according to which the system moves into the next 

state (state 2) is of general nature. 

 We assume that no failure can occur in State 3. Subsequently (in State 2), the 

working unit resumes service while the faulty one undergoes repair. The repair rate �  is 

constant, and repair is modeled by event R. State 4 stands for "both units down", and it can 

be entered or exited only through State 2. The failure rate in State 1 is 2�  because both 

devices are up, and similarly the repair rate in State 4 is 2�  (assuming independent failure 

times).  

 

 

 

 

 

 

 

Figure 2. An example of a semi-Markov process 

 

D. Transient and steady probabilities for semi-Markov models 

 Semi-Markov processes are heavily used in this thesis; the results of Chapter 4 rely 

on the transient state probability theory for SMPs. Hence, in this sub-section, we will outline 
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the different methods for determining the transient and steady state probabilities for semi-

Markov processes, and their complexities.  

 Let {X(t), t >= 0} be an SMP, and assume that, jX =)0( , recall that Pij(t) = P{X(t) = 

i| X(0)=j} is the transient state probability of the process for state i, and that P(t) = [P1j(t), 

P2j(t),…,Pnj(t)] represents the transient state probability. The steady state probability can be 

obtained from the formulae: π=(π1,…, πn)=limt→∞P(t). A different, but equivalent, definition 

for steady state probabilities was presented in [27]; the definition considers the proportion of 

time spent in every state of the SMP:  

  ∫∞→=
t

ijti dxxP
t 0

)(1limπ   (1) 

 The different methods for determining the TSP of an arbitrary n-state SMP include 

the following: 

1. Cox and Miller [27] derive a matrix technique for solving the TSPs of a two-state 

semi-Markov process. The technique extends directly to arbitrary number of 

states. 

2. In Bradley [15], a different method is presented. It concentrates on finding the 

TSP of a two-state semi-Markov process. Then the method is generalized to cover 

an arbitrary state process. The generalization is achieved by reducing a general n-

state process into two states using the process of stochastic aggregation;’ for more 

details, refer to [14].  

3. In Pyke [73] a different method is presented. It provides a formula for calculating 

the vector matrix P(t) from its Laplace transform. As in Bradley’s method above, 

this method concentrates on finding the TSP for two-state processes; the result is 

then generalized in the same way as in [15] to an arbitrary state process. 

In all the three methods, SSPs are derived from TSPs using formula (1) above. Another 

direct method to obtain the SSP is illustrated in the theorem below: 
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Theorem 2.3. Let ),,,,,( 0 KFsSG �Ε=  be an SMP with finite state space. Let P  be the 

transition matrix for the embedded Markov chain of G . Let { }s s SV v ∈=  be the probability 

vector that is the solution of the equation V VP= . Then, if V  exists, and if the mean waiting 

time in state s , sM < ∞  for all s S∈ , then the steady state probabilities exist and can be 

calculated as follows: s s
s

r r
r S

v M
v M

π

∈

=
∑

. 

 

 The complexity of the methods above is dominated by the inversion of an nn ×  

matrix, where n  is the number of states in the SMP. The inversion of an nn ×  matrix is 

possible through several different methods [84], the complexity of the procedure (finding the 

TSP or SSP) for the different methods is between )( 376.2nO  and )( 3nO . 

 As discussed in the first Chapter, SMPs are not suitable for representing event 

concurrency. Hence the need for more general models such as generalized semi-Markov 

processes. 

 

2.3.2.2. Generalized semi-Markov process 

 In the next sub-section, we formally define generalized semi-Markov processes and 

present their properties. 

A. Formal definition and examples 

Definition 2.2: Generalized semi-Markov processes. 

A GSMP is a tuple ),,,,,,( 0 KAFsSG �Ε=  where:  

• S  is a nonempty set of states including the initial state 0s ,  

• Ε  is the set of events,  
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• )(: Ε℘→ finSK  is the event setting function which represents all the events that 

are initialized when we reach a state. Note that, because of their memoryless 

property, all active events in a state s  that have an exponentially distributed 

lifetime  are assumed to be initialized in s  (i.e. they are assumed to belong to 

)(sK ) 

• For every Ss ∈ , the function ])1,0[()(: →ℜ→sKFs  is an s-dependant function 

that assigns the event distribution functions such that for all e  in )(sK , 

( )( ) 0sF e x =  for 0<x  and lim ( )( ) 1x sF e x→∞ = . (As mentioned before,  the 

distribution of an event depends on the state it was initialized in). 

• )(: Ε℘→ finSA  is the set of events that are active in a state, note that )()( sAsK ⊆  

for all Ss ∈ . 

• S S⊆ ×Ε×�  is the set of edges where 'ss
e

�  means that if event e occurs first in 

s  then the process moves to state 's .  Note that the process is deterministic, in 

other words, if 1( , , )s e s ∈�   and 2( , , )s e s ∈�  then 1 2s s= . 

 A GSMP is depicted as a labeled transition system, as shown in  
 

Figure 3. Every state s is annotated with a set of events inside brackets, these are the events 

that are initialized in that state ( )(sK ). Transitions out of a state are annotated with an event, 

say e, meaning that the transition takes place when event e occurs. The numbers inside the 

state are labels that identify the state. 

 Example 3. We consider the model of a machine that receives requests and services 

them. The machine can service one request at a time, and requests are generated when the 

machine is not in service. The request generation is modeled by event r  and servicing a 

request is modeled by event s , both have a generally distributed lifetime duration. The 

machine keeps working for a constant period of time then undergoes tune-up. If the machine 

is servicing a request when tune-up is due, the machine aborts the current service to undergo 
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the tune-up. The interval between two consecutive tune-ups is constant and is modeled by 

event a . The tune-up process is generally distributed and is modeled by event u . While in 

service, the machine can fail, at that time it has to undergo repair, the failure and repair are 

modeled by events f  and p , respectively, they both have generally distributed lifetimes. If 

the machine fails and is repaired, it reinitializes event a , Transition d  is immediate. Note 

that a  might have a different lifetime distributions in state 4 and 0, because the tune-up time 

after a repair is not so urgent. The model is depicted in Figure 3. 

Now, we present another example of a GSMP: 

 Example 4 (refer to [61]): Consider a G/G/1 queue of size 3. The arrival and the 

service are represented by a  and s  respectively. The number inside a state represents the 

state label as well as the number of customers inside the system (number of customers 

waiting+ number of customers in service). Refer to Figure 4. 

 

 

 

 

 

 

 

 

Figure 3. Example of a GSMP 
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Figure 4. G/G/1/ 

B. Transient and steady state probabilities for GSMPs 

 Transient State Probabilities: as explained in Chapter 1, finding the TSPs for 

GSMPs is difficult because of the absence of the Markov property. In the next chapter, we 

will present the different methods available to analytically find the transient state 

probabilities of GSMPs. 

 Steady state Probabilities: once the TSPs are calculated, the SSPs are derived from 

TSPs using Formulae (1) in Section 2.3.2.1.C. However, for a subclass of GSMPs, referred 

to as insensitive GSMPs [67],[75], the steady state probability can be derived through a 

simple application of numerical analysis. Insensitivity results were originally presented by 

Matthes in [67]. 

 

Definition 2.3: Insensitive GSMPs. 

A stochastic process is said to be insensitive if its steady state distribution depends only on 

the mean of the random variables representing residence time in the states of the process. 

 Matthes showed the following result [67]: 

Theorem 2.4. Given a GSMP ),,,,,,( 0 KAFsSG �Ε= , the following two statements are 

equivalent: 
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1. The process is insensitive to the events of E . That is, the distributions of the 

lifetimes of the events of E  may be replaced by any other distribution with the 

same mean. 

2. When all events of E  are assumed to be exponentially distributed, the flux (i.e. 

the instantaneous rate) out of each state due to the occurrence of an event of E  is 

equal to the flux into that state due to the activation of that event. 

( 

 

 So if a GSMP ),,,,,,( 0 KAFsSG �Ε=  is insensitive to the events in E , and if 

),,,',,,(' 0 KAFsSG �Ε=  is the GSMP obtained from G  by replacing the distributions 

associated with events in E  with the exponential distributions having the same mean - in 

other words )(eFs  and )(' eF s  have the same mean for all Ee∈ , and )(' eF s  are 

exponential distributions - then G  and 'G  have the same steady state probabilities. 

 Conditions for insensitivity have been investigated by several researchers in the 

context of SPN. In [34], authors investigated the notion of insensitivity when the stochastic 

model underlying the SPN is an SMP. In [3],[49], the authors investigated insensitivity in the 

context of GSMPs, the restrictions presented identify a class of allowed general distributions 

along with some restrictions on the concurrently enabled transitions that result in an 

insensitive GSMP. Clark et al. translate these restrictions to the context of SPA [22]. 
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2.4. Queuing Models 

 

2.4.1. Introduction  

 Queues have been studied by mathematicians for more than 100 years [48], and the 

first applications they looked at were in telephone exchanges. Queues became popular with 

computer scientists about four decades ago, at which time, they came to the realisation that 

single queues, and networks of queues could be used as models to study the performance of 

computer systems. Recently, the growth in computer systems’ models resulted in models that 

can not be expressed using queuing networks. However many people still view performance 

analysis as the synonym of queuing theory.  

  

2.4.2. Single Queues  

 In single queues, customers arrive at a service facility where one or more servers are 

waiting to service these customers. Servers are usually assumed to be indistinguishable in 

terms of the service they can provide. If a customer cannot gain access to a server it must 

wait in a queue, until a server becomes ready. Upon completion of the service request, a 

customer departs from the facility, the next customer is then selected from the queue 

according to a predefined service discipline.  

 The following items are required in the study of queuing models: 

 Arrival Pattern of Customers: servicing of customers depends on the distribution 

function of the inter-arrival times. Inter-arrival times are usually assumed to be exponentially 

distributed, i.e. they correspond to a random arrival with a large customer population. 

However, this scenario need not be always true.  

 Service Time Distribution: is the time that a server spends servicing a customer. The 

distribution function of the service time is usually assumed to be exponential. 
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 Number of Servers: If one server is available, the service facility can only serve one 

customer at a time; other customers have to wait in the queue until the server is available; the 

next customer is chosen depending on the service discipline. If infinitely many servers are 

available, then customers never wait for service and the queue is always empty. If a fixed 

number of servers (usually denoted c) are available, then arriving customers wait in the 

queue only if the number of customer in the facility exceeds c 

 Queue Capacity: Customers who cannot receive service wait in the queue for a server 

to become available. The number of customers waiting may grow, depending on the inter-

arrival and service distributions. If the queue has a finite capacity c, then it may become full. 

In this case, any additional customer is turned away and lost.  

 Service Discipline: When several customers are waiting for service, a discipline for 

selecting the next customer must be provided. Some of the commonly used disciplines are: 

• FCFS first come first serve (or FIFO first in first out).  

• LCFS last come first serve (or LIFO last in first out).  

• PRI priority. The assignment of priorities to customers according to the service 

they require 

2.4.2.1. Solving single queues 

 If inter-arrival time and service time are exponential, then the queue can be 

modelled as a continuous-time Markov chain [53]. However, the SSP of the underlying 

continuous-time Markov chain can be obtained through simple application of linear algebra 

(it is a function of the arrival time, the service time and the size of the queue). Hence 

common performance measures can be obtained through simple application of linear algebra 

without referring to the underlying CTMC and without the need to solve it. Examples of such 

measures are: mean number of customers in the queue, mean service time and the probability 

of the system being idle. 
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 If inter-arrival time and/ or service time are non-exponential, then the queue can 

be modelled as a generalized semi-Markov process. Solutions of these queues are available 

(without referring to the underlying GSMP) for the case where either the service time or the 

arrival time is non-exponential. For more details refer to [12],[25],[68]. 

 

2.4.3. Networks of Queues  

 If we view a computer as a set of devices, and customers (or requests) move from one 

device to the other sequentially, then we can model the system as a queuing network. Each 

device is represented by a separate queue or service centre. Customers in the network 

correspond to the users in the whole system. A customer may move from one service centre 

to another in the system, the pattern in which customers move around is predefined. Each 

service centre is a single queue, however, its characteristics (arrival, service time,…) are not 

independent of the other service centres within the network.  

 A queuing network is characterized by: the network topology, the characteristics of 

each service centre, and by its customers. If the network is closed, i.e. if external arrivals are 

not allowed, then the number of customers inside the network is fixed an must be known. If 

the network is open, then the arrival process to each service centre is needed. 

 A queuing network is represented as a directed graph, nodes represent service 

centres, arcs represent the paths customers can take when moving between service centers. 

The state of the network is defined by the number of customers in each service centre.  

The analysis of a network of queues is based on the analysis of the underlying 

stochastic process. The underlying stochastic process is usually a CTMC. The state of the 

process includes the number of customers in each service center [6].  

For a closed network, the state of the underlying process grows exponentially relative 

to the number of service centers and the number of customers in the network, for an open 

network, the number of states in the underlying process is infinite. For that reason, extracting 

performance measures from a network of queues is not always possible. However, for a 
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subclass of queuing networks, referred to as product form queuing networks straightforward 

means of extracting performance measures have been found [6]. 

 

2.4.5. Product Form Queuing Networks  

 The term “product form” represents the fact that the steady state probability of the 

queuing network can be derived as the product of the steady state distributions of each of the 

service centres that make up the network. In other words, once the different service centres 

reach equilibrium they behave independently of each other; for more information refer to 

[48],[53].  

Recall that the state of a single service facility can be characterized by the number of 

customers currently in the system. In a queuing network the state of the system is 

characterized by the number of customers waiting at each of the service centres. This is 

usually represented as a tuple.  

Product form solution for a network of queues holds under certain assumptions. 

These assumptions are defined on the Markov process underlying the network. The precise 

characterization of product form queuing networks is not easy, for that reason, conditions 

that are sufficient to ensure product form have been derived; an example is the quasi-

reversibility of every service centre: quasi-reversibility states that the current state of a 

service centre, the past departures and the future arrivals are independent. For more 

information, refer to [6]. 

Under the assumption of a product form queuing network, using the already 

established formula for individual queues, the steady state probability of the network can be 

obtained without the need to develop the underlying process. 
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2.4.5. Expressiveness  

 Some aspects of computer and communication systems can not be represented by 

queuing networks. Some of these aspects are listed below. Ways for providing solutions for 

systems with such aspects remain topics for research. 

 Simultaneous resource possession: In a computer system a job may be using more 

than one resource in the system simultaneously. A solution for this problem is to use Layered 

Queuing Networks [85]. 

 Bulk arrivals: the arrival rate between customers is not always independent, 

examples are bulk arrivals (i.e. arrivals that occur in batches).  

 

2.4.6. Queuing Networks: Pros and Cons 

 Queuing models can be constructed, and evaluated relatively easily [12]. The 

behavior of each service is expressed based on the six characteristics of Kendall’s notation 

[12]. However, the expressivity of queuing networks is limited. Queuing networks cannot 

represent systems in which more than one resource must be simultaneously retained, or 

systems in which there is internal concurrency. Some work has been done to remedy these 

cases, but its applicability is still limited [53],[85]. 

 

2.5. Petri Nets 

 In this section, we will briefly present the notion of Petri nets; for more information 

and for examples refer to [23],[60]. 
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2.5.1. General Notions 

Petri nets provide a graphical notation for the formal description of the dynamic 

behaviour of systems. They are particularly well suited to systems which exhibit 

concurrency, synchronization, mutual exclusion and conflict. The primitives of the notation 

are the following:  

• PLACES are used to represent conditions or local system states, e.g. a place 

may relate to one phase in the behaviour of a particular component.  

• TRANSITIONS are used to describe events that occur in the system; these 

will usually result in a modification to the system state. The occurrence of the 

event in the system is represented by the firing of the corresponding transition 

in the Petri net.  

• TOKENS are identity-less markers that reside in places. The presence of a 

token in a place indicates that the corresponding condition or local state holds.  

• ARCS specify the relationships between local states or conditions (places) 

and events (transitions). An arc from a place to a transition is termed an input 

arc. This indicates the local state in which the event can occur. An arc to a 

place from a transition is termed an output arc. This indicates the local 

transformations which will be induced by the event. Tokens move between 

places according to the firing rules imposed by the transitions.  

A transition can fire when each of the places connected to it has at least one token; 

when it fires, the transition removes a token from each of these places and deposits a token in 

each of the places it is connected to by output arcs. This is called the firing rule. Sometimes a 

transition will require an input place to contain two or more tokens before it can fire. In this 

case, rather than draw more than one arc between the place and the transition, we denote the 

multiplicity of the arc by a small number written next to the arc. Similarly for output arcs. 

The state of the system combines information about all the local states. Since each local state 

is represented by the number of tokens present in a particular place, the state of the system is 
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represented by a tuple, with one entry for each place, and the value of the entries denoting 

the number of tokens in that place. This is termed a marking of the net.  

A Petri net consisting of places and transitions linked by arcs is incomplete if it does 

not also have tokens in some places. The initial placing of tokens is called the initial 

marking, this represents the starting state of the system.  

Starting from an initial marking and following the firing rule we can progress through 

the states of the model. Continuing in this way, recording all the states we see and stopping 

only when we can reach no states that we have not already seen, we obtain all the possible 

states of the model. This is called the reachability set; it is the set of all possible markings 

that a net may exhibit, starting from the initial marking and following the firing rules. 

Different initial markings might lead to different reachability sets. This is why the initial 

marking is an important part of the model definition. If we record all possible states and all 

possible transitions between those states, we obtain the reachability graph. This is a graph in 

which the nodes are the reachable markings and the arcs between nodes represent the 

possible transition firings which may move the model from one marking to the other.  

If we wish to extract timing information from a model we must represent timing 

information about the system in the model when it is constructed. In the case of Petri nets 

there has been a variety of suggestions of how to introduce timing information into Petri net 

notation.  

If we consider the reachability graph of a Petri net model it resembles the state 

transition diagram of a Markov-like process. Stochastic Petri Nets (SPN) formalise this 

intuitive correspondence. Given a Petri net model (complete with initial marking): we 

associate a state in the Markov process with every marking in the reachability graph of the 

Petri net; we associate an event, or transition, in the Markov process with each firing of a 

transition in the Petri net which causes the corresponding change of marking. Since an 

exponentially distributed delay is associated with each event in a Markov process, and 

transitions in the Petri net correspond to events, in an SPN model an exponentially 

distributed delay is associated with each transition in the net structure. Thus each transition 
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in an SPN has a firing rate which is the parameter of the corresponding exponential 

distribution, and transitions are sometimes termed timed transitions. 

Non-exponentially distributed delays are added to a PN in the same way,  the 

resulting process is referred to as non-Markovian Petri net, for more information refer to 

[34],[38],[23]. 

One of the advantages of SPN models is the straightforward correspondence between 

the reachability graph of the SPN and the state transition diagram of the Markov-like process 

it generates.  

 

2.5.2. Petri Nets: Pros and Cons 

 

• The time required to model construction is often greatly reduced compared with 

Markov-like processes. However some additional skill is required to learn the 

notation and semantics of the nets [53].  

• Solution of the Petri net is obtained by generating the underlying Markov-like 

Process (the reachability graph of the Petri net is generated and then the Markov-like 

process). In the case of SPN, deriving the Markov process is a straightforward task. 

Once the Markov Process is generated, the solution proceeds numerically. So 

deriving performance is handled the same way as in the Markov process case. 

However the identification of states of interest could be easier using the Petri net.  

• State space explosion and problem size are the major problem in steady state 

distribution of the underlying process. Extensive research has been dedicated to 

finding efficient approaches to dealing with the problem [9]. 
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2.6. Process Algebras 

In this section we consider another class of performance modelling paradigms:- 

stochastic extensions of process algebras. Like queuing networks and stochastic Petri nets, 

these formal languages can be regarded as high level model specification languages for low-

level stochastic models. As we will see, the development of stochastic process algebras, or 

SPA, has been very similar to that of SPN: in both cases an untimed formalism, used for 

studying the correct functional behaviour of systems, is extended by associating generally 

distributed delays with actions and reachability analysis is used to construct a corresponding 

stochastic process. The advantages of SPAs are that they incorporate the attractive features 

of process algebras and thus bring to the area of performance modelling several attributes 

which are not offered by the existing formalisms. Perhaps the most important feature is the 

compositionality which is inherent in the models and can be exploited during their analysis. 

Several stochastic process algebras have appeared in the literature but they are all broadly 

similar. Here we will concentrate on PEPA (Performance Evaluation Process Algebra [54]). 

 

Process algebras are abstract languages used for the specification and design of 

concurrent systems. The most widely used process algebras are Milner's Calculus of 

Communicating Systems (CCS) and Hoare's Communicating Sequential Processes (CSP) 

and the SPAs take inspiration from both these formalisms. Models in CCS and CSP have 

been used extensively to establish the correct behaviour of complex systems by deriving 

qualitative properties such as freedom from deadlock or livelock.  

In the process algebra approach, systems are modelled as collections of entities, 

called agents, which execute atomic actions. These actions are the building blocks of the 

language and they are used to describe sequential behaviours which may run concurrently, 

and synchronizations or communications between them.  

In CCS two agents communicate when one performs an action, a say, while the other 

performs the complementary action a. The resulting communication action is regarded as an 

internal action that is invisible to the environment. Agents may proceed with their internal 
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actions simultaneously but it is important to note that the semantics given to the language 

imposes an interleaving on such concurrent behaviour, i.e. it is not possible for two actions to 

occur simultaneously. The grammar of the language makes it possible to construct an agent 

which has a designated first action (prefix); has a choice over alternatives (choice); or has 

concurrent possibilities (composition).  

The communication mechanism is different in CSP as there is no notion of 

complementary actions: this is a major distinction between CCS and CSP. In CSP two agents 

communicate by simultaneously executing actions with the same label. Since during the 

communication the joint action remains visible to the environment, it can be reused by other 

concurrent processes so that more than two processes can be involved in the communication. 

This is the communication mechanism adopted in the SPA languages and in Lotos.  

 

2.6.1. PEPA 

According to Hillston [53], “Process algebras offer several attractive features which 

are not necessarily available in existing performance modelling paradigms. The most 

important of these are compositionality, the ability to model a system as the interaction of its 

subsystems, formality, giving a precise meaning to all terms in the language, and abstraction, 

the ability to build up complex models from detailed components but disregarding internal 

behaviour when it is appropriate to do so. Queuing networks offer compositionality but not 

formality; SPN and GSPN offer formality but not compositionality; neither queuing 

networks nor Petri nets offer abstraction mechanisms”. 

PEPA extends classical process algebra by associating a random variable, 

representing duration, with every action. These random variables are assumed to be 

exponentially distributed and this leads to a clear relationship between the process algebra 

model and a Markov process.  

PEPA models are described as interactions of components. Each component can perform 

a set of actions: an action a is described as a pair (e,r), where e is the type of the action and r 
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is the parameter of the exponential distribution governing its duration. Whenever a process P 

can perform an action, an instance of a given probability distribution is sampled: the 

resulting number specifies how long it will take to complete the action. A small set of 

constructors is used to build up complex behaviour from simpler behaviour. The constructors 

are: sequential composition (prefix), choice, synchronization (cooperation) and abstraction 

(hiding). We explain each of them below, in terms of a extremely simple model of a web 

based information system.  

• Prefix (.): A component may have purely sequential behaviour, repeatedly 

undertaking one activity after another and eventually returning to the beginning of its 

behaviour.  

• Choice (+): A choice between two possible behaviours is represented as the sum of 

the possibilities. A race condition is assumed to govern the behaviour of 

simultaneously enabled actions and the continuous nature of the probability 

distributions ensures that the actions cannot occur simultaneously. Thus a sum will 

behave as either one summand or the other. When an action has more than one 

possible outcome, e.g. the display action in the browser, it is represented by a choice 

of separate actions, one for each possible outcome. The rates of these actions are 

chosen to reflect their relative probabilities (decomposition principle).  

Note that in a GSPN we would represent this situation by a single timed transition to 

represent the display action, which when it fired enabled two immediate transitions 

with weights p1 and p2 to reflect the different possible outcomes.  

• Cooperation P∞LQ: The cooperation constructor represents a parallel composition 

between P and Q for all the actions not in the set L. Actions in this set L require the 

simultaneous involvement of both components. The resulting action, a shared action, 

will have the same type as the two contributory actions and a rate reflecting the rate 

of the action in the slowest participating component. Note that this means that the rate 

of a passive action will become the rate of the action it cooperates with.  
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• Abstraction (/): It is often convenient to hide some actions, making them private to 

the component or components involved. The duration of the actions is unaffected, but 

their type becomes hidden, appearing instead as the unknown type τ. 

 

 The formality of the process algebra approach allows us to assign a precise meaning 

to every language expression. This implies that once we have a language description of a 

given system its behavior can be deduced automatically. The meaning, or semantics, of a 

PEPA expression is provided by a formal semantics, in the structured operational style, 

which associates a labeled transition system with every expression in the language. This 

form of directed graph shows the possible evolutions of the model. 

 

2.6.2. Non-Markovian Process Algebras 

 

The algebra we discussed above have the property that delays are governed by 

exponential distributions. In this section we will briefly discuss how arbitrary, nonMarkovian 

probability distributions can be represented in process algebras. The information is taken 

from [61]. 

Because of the memoryless property of the exponential distribution, the parallel 

composition of two exponentially distributed events can be incorporated into an interleaved 

setting, i.e. 

a ∞φ b = a.b + b.a 

If we allow actions to be delayed by arbitrary distributions, the above law becomes 

invalid, in other words, if an action a has arbitrary distribution F and an action b has arbitrary 

distribution G  then: 

a ∞φ b ≠ a.b + b.a 
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In fact, after the delay imposed by F, the residual lifetime of G has to be computed in order 

to correctly determine the remaining delay before b occurs (refer to Figure 1). To overcome 

this, the idea is to make a distinction between three activities: (i) starting a delay, (ii) 

finishing a delay, and (iii) the occurrence of immediate actions. This separation has been 

brought up by D’Argenio, Katoen and Brinksma [29],[33], they denote their process algebra 

by ♠. A similar distinction has been made in GSMPA [17].  

For more information and for a complete characterization of the algebra, refer to 

[29],[33],[61]. 

Once arbitrary probability distributions are allowed, the underlying stochastic process 

does not have to satisfy the Markov property. It can be shown [17],[61] that the underlying 

stochastic process is in fact a generalized semi-Markov process (GSMP) (for the case of 

deterministic process algebras). 

 

2.6.3. Process Algebras: Pros and Cons 

• The time required for model construction is often greatly reduced over Markov-like 

processes. The component-based approach greatly simplifies the task of model 

construction.  

• Basic performance measures could be derived from the solution of the underlying 

stochastic process without detailed knowledge of the algebra. Generation of the 

underlying process is formally defined based on the operational semantics of the 

language. For the case of Markov processes, tools exist to do this automatically 

[53],[54], and deriving performance is handled the same way as in the Markov 

process case. However, the identification of states of interest could be easier using the 

process algebra. 

• Stochastic process algebra models bring several attractive features to performance 

modeling, among these is the compositional structure of these models. It not only aids 
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model construction (by focusing on one component of the model at a time rather than 

the whole model) but could also be exploited during model solution [54],[61].  

• State space explosion and problem size are the major problem in the calculation of 

steady state distribution of the underlying process. Extensive research has been 

dedicated to finding efficient approaches to dealing with the problem [9]. 
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Chapter 3: Non-Markovian Analysis 

 

 

 

 

 

 

3.1. Analysis Approaches for non-Markovian Models 

 With the aim of providing the modeler with more general models, various models 

have been discussed in the literature. In [28] Cumani presented a model in which every 

transition is assigned a PH [70] distributed firing time. The steady state and transient state 

solution for such models was also presented. In [3] the authors presented a model in which 

exponential and deterministic firing times are allowed with the restriction that at most one 

deterministic transition can be active at any time. Only the steady state solution was 

presented in [3]. The transient state probability of these models by the method of embedded 

regenerative process was then presented in [21]. The method of embedded regenerative 

process was then extended in [20] to cover any general distribution (not only deterministic) 

with the restriction that at most one non-exponential distribution could be active at any time 

(the enabling restriction). In [44], German et al. derived the steady state probabilities of the 

same model using another method, the method of supplementary variables [26]. The method 

was then generalized to the transient state analysis in [45]. 
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In what follows we give a brief review for each of these approaches: the method of 

embedded variables, the method of embedded regenerative process, and the method of 

continuous phase type distribution PH, more information can be found in [8],[40],[45],[65]. 

 

3.2. Method of Supplementary Variables 

 The method of supplementary variables is well known in queuing literature [26]. It 

was originally proposed in the context of non-Markovian processes by German et al. in 

[42],[44], then more general execution policies were discussed in [43]. The method of 

supplementary variables has been applied to GSMPs ),,,,,,( 0 KAFsSG �Ε=  with the 

property that, in each state, at most one enabled event (active event) can have a non-

exponential distribution, while all other enabled events are exponentially distributed, a 

property known as the enabling restriction. 

 Let )(ta  be the age of the only enabled non-exponential event at time t , if any. The 

enabling restriction implies that if )(tX  is the state of the GSMP G  at time t , then the new 

process formed from )(tX  and the supplementary variable )(ta , i.e. ))(),(( tatX , satisfies 

the memoryless property. The new process has an uncountable state space ℜ×S  [44] (ℜ  is 

the set of non-negative real numbers), it can be analyzed using the method of supplementary 

variables as discussed in [44]. The solution approach is hereby briefly summarized following 

the concepts in [45]: 

 If },...,{ 1 ngg  is the set of non-exponentially distributed events, then the state space 

S  can be partitioned into 1+n  disjoint sets: }}1,...,1{,{ +∈ niS i  where },...,1{, niSi ∈  is the 

set of states in which event ig  is active, and 1+nS  is the set of states in which no general 

transition is enabled. Note that such a partition exists because at most one ig can be active at 

any point in time. The probability of being in state s  at time t  is })({Pr)( stXobts ==Π . If 

},...,1{, niSs i ∈∈ , and if the distribution associated with event ig  is )(xFi  then we define 
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the instantaneous age rate ),( xths  as the conditional firing rate of ig  at time x when we are 

in s  at time t, given that ig does not fire before time x: 

dx
dxxtaxstXob

xths
))(,)((Pr

),(
+≤<=

=  
)(1

1
xFi−

 

where ))(,)((Pr dxxtaxstXob +≤<=  is the probability that ig  will expire when its age is 

between x   and dxx + , and 
)(1

1
xFi−

 is the probability that ig  does not fire in the interval 

],0[ x . And we define ),(),( xthxth s
g
s

i =  if iSs ∈  and 0 otherwise, and the vector 

>∈=< i
g
s

g Ssxthxth ii ),,(),( . 

The state transitions of the stochastic process are given by the following matrices: 

• Matrix igQ  is defined over the set ii SS × where the entry ',
',

ssQ
ssg i ≠ , is the rate 

of  transition from state s  (in which the general transition g  is active) to state 's  

provided that the transition is exponential. While 
ssgiQ

,
 is the negative sum of all 

rates of exponential state transitions out of state s .  

• Matrix ∆  whose entry ',ss∆  is the probability of moving from state s  to state 's  

upon the firing of a general transition ig , i.e. {Pr', obss =∆ the next state is |'s the 

current marking is s  and transition ig  fires}.  

 With the above definitions, the age rate vector can be described by the following 

differential equation: 

gggg Qxthxth
x

xth
t

),(),(),( =
∂
∂+

∂
∂    (1) 

The transient state probability vector )(tΠ  can be calculated in partitioned form from the age 

rate vector using the following facts: 
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The different ways to reach a state in 1+nS  are: 

(i) By the firing of an exponential transition which results in a state in 1+nS . 

(ii) By the firing of a general transition which results in a state in 1+nS . 

(iii) By the disabling of a general transition which results in a state in 1+nS . 

And the different ways to reach a state in iS  are: 

(i) By the firing of an exponential transition which results in a state in iS . 

(ii) By the firing of a general transition jg  which results in a state in iS . 

(iii) By the firing of an exponential transition which disables the active general 

transition jg  and results in a state in iS  (i.e. event ig  is enabled). 

 The complete system of equations is presented in [40]. A numerical analysis of the 

equation system is possible by discretization. The method of supplementary variable has a 

worst case of 2

1

( | | )i

n
g

i
i

O c tq S
=
∑  time complexity and 2

1
1 1

(| | | | | | )
n n

n i i
i i

O S c S S+
= =

+ +∑ ∑  space 

complexity where c  denotes the time for integral calculation, and igq is the absolute 

maximum diagonal entry for igQ . For more information, refer to [40]. 

 

3.3. Method of Embedded Regenerative Processes 

This technique applies to Markov regenerative processes, MRGP. An MRGP is a 

GSMP with infinitely many regeneration points, i.e. points where the process satisfies the 

memoryless property. Because of this property, the analysis of a MRGP can be split into 

independent sub-problems given by sub-processes starting and ending at a regeneration 
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point. Following this method, transient analysis for systems satisfying the enabling 

restriction is described in [11],[20],[65]. 

 

Definition 3.1: Markov renewal sequence [62] 

A Markov renewal sequence is defined as the sequence of pairs of random variables 

),( nnX θ  (usually iX  represents the state of the process that was entered at time iθ ) for 

which the following properties hold:  

 ==≤−= −−++ },,....,,,,|,{ 001111 θθθθθ XXiXxjXP nnnnnnn  

        }|,{ 011 iXxjXP =≤= θ  

 According to the above definition, the current state of the process alone determines 

probabilistically the next state and the duration of time in the current state. 

Given a stochastic process )(xY , if a Markov renewal sequence ),( nnX θ  is embedded in 

)(xY , i.e. if the behavior of )(xY between instants nθ  and 1+nθ  is of any kind, but at 1+nθ  

)( 11 ++ = nn YX θ , then )(xY  is called a Markov regenerative process.  

 

Definition 3.2: MRGP [62] 

A stochastic process )(xY  is said to be a Markov regenerative process, MRGP, if there exists 

an embedded Markov renewal sequence ),( nnX θ such that 

 }|)({},0),(|)({ iXjxYPiXuuYjxYP nnnnn ==+==≤≤=+ θθθ  

              }|)({ 0 iXjxYP ===  

So MRGPs behave like a Markov process relative to instants nθ , these instants are 

known as regeneration instants. But between these instants, the process can evolve in any 
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way. From an intuitive point of view, it can be said that there are instants ,...,...,, 10 nθθθ  

between which the behavior of the process is not affected by its previous history. Moreover, 

each of the cycles can be studied as if the point of regeneration from which the process is 

examined where 00 =θ .  

As described in [62] two quantities are capable of describing the evolution of the 

MRGP are defined:  

• The local kernel )(tE : )|')(()( 01' sXtstYPtEss =>∧== θ  describes the 

evolution of the process between two regeneration instants, and  

• the global kernel )(tK : )|')(()( 01' sXtstXPtK ss =≤∧== θ  describes the 

evolution of the process at the regeneration instants themselves.   

So if )]([)( ' tVtV ss= = }])0(|')({[Pr sYstYob ==  denotes the transition probability of the 

MRGP, then the transient state probabilities can be obtained by solving the following 

equation [45]: 

∑∫ −+=
r

t

rssrssss xtVxdKtEtV
0

''' )()()()(   (1) 

Or its Laplace transform domain [40] 

)()]([)( ~1~~ xExKIxV −−=     (2) 

A solution can be obtained by numerically integrating equation (1), or by a 

combination of numeric and symbolic computation for equation (2). In both cases, the 

complexity of the solution of the above equation limits the applicability of this technique to 

MRGPs implementing the enabling restriction [40],[45]. With MRGPs implementing the 

enabling restriction, the regenerative method has )|(| 2SO  space complexity and 

)|(| 4SO time complexity in the worst case [40]. 
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3.4. Continuous Phase Type Distribution 

This technique consists of approximating general distributions by a series/parallel 

combination of exponential distributions, thus transforming the process into a Markovian 

one.  

An interesting class of distributions that serves this purpose are the PH distributions 

[70]. PH distributions can be defined as “the distributions of absorption time in a CTMC 

with a single absorption state” [8]. PH distributions can approximate any distribution 

arbitrarily close. Many tools are available to find the PH distribution that approximates any 

given general distribution. After approximating all distributions of events in the process 

using PH distributions, the process is expanded into a CTMC. The expansion algorithm can 

be performed automatically by a computer program. Exact results are obtained only when the 

firing times of the original process are PH-distributed. For recent updates on this method 

refer to [8]. 

 

3.5. Contributions Outline 

The first two methods presented in this chapter deal with the case where events with 

non-exponentially distributed durations are mutually exclusive. Imposing this restriction 

leads to algorithms with reasonable costs while going beyond the restriction is one of the 

most challenging open issues in the field [10],[38],[41],[55]. However for events with 

deterministic durations, efficient numerical analysis can be found [42]. For a comparison of 

these approaches refer to [40],[45]. The continuous phase type distribution technique is not 

restricted to Markov regenerative processes, however, exact results are only obtained when 

all firing times of the original process are PH-distributed.  

 In this thesis, we will extend the class of solvable GSMPs by allowing several generally 

distributed events to be enabled at any time. However, we impose the restriction that every 

cycle 121
11 ... ssssC nn e

n
ee →→→= −  in the GSMP must either be near semi-Markovian 

or regenerative. These properties are defined as follows: 
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1. cycle C  is near semi-Markovian (NSM), if every state is  in the cycle has the 

property that given any event g  that starts its lifetime in a state js  of C , if g  is 

active in is  then g  restarts its lifetime in is . Intuitively, when taken as a separate 

entity from the GSMP, C  becomes a semi-Markovian process. An NSM cycle is 

called near Markovian  (NM), if all the events activated inside the cycle (i.e. the 

set of events 
1

( ) ( )
n

i
i

K C K s
=

= ∪ ) have exponentially distributed delays. Formally, 

C  is NSM iff for all is C∈ , if ( ( ) ( ; ( ))i jg A s j i g A s∈ ∧ ∃ ≠ ∈  then ( )ig K s∈  

2. Cycle C  is regenerative (REG), if there exists a regenerative state is  in the cycle 

(i.e. the GSMP satisfies the Markovian property at the time state is  is entered). 

Formally, there exists is C∈ , such that ( ) ( )i iA s K s= . 

 GSMPs whose cycles are either NSM or REG are referred to as near-regenerative 

generalized semi-Markov processes, NRGSMP. NRGSMPs are more general than the 

GSMP’s implementing the enabling restriction which we will abbreviate as EGSMPs. In 

fact, among other restrictions, the only cycles allowed in a EGSMP are either regenerative or 

near-Markovian. However, an important class of GSMP’s is not covered by NRGSMPs; an 

example is the queue G/G/1 of size 3 shown in Figure 4. Note that the cycle 

2'12 →→ as  is neither regenerative nor near semi-Markovian. In fact, all GSMPs with 

at least one cycle satisfying both points below: 

• The cycle has no regenerative states, and  

• There exists a transition 'es s→  such that ( )e K s∉  

are not NRGSMPs, and the cycle 2'12 →→ as  of  Figure 4 satisfies both of these points. 

NRGSMPs will be formally defined in Chapter 4 . 

In finding the steady state probabilities for NRGSMPs, we will present an algorithm 

to transform the NRGSMP into a semi-Markov process (SMP) while preserving steady-state 

simulation, which enables us to determine the steady state probability of the NRGSMP from 
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that of the SMP constructed. The algorithm will be presented in full details in Chapter 4. The 

chapter will also include a comparison between the different methods. 

The method described above could generate semi-Markov processes with large state 

spaces. For that reason, Chapter 5 introduces a method to remove states from GSMPs while 

preserving the distribution of time needed to travel between non-deleted states and preserves 

the transient state probabilities for a subset of the states of the automata as well. Chapter 6 

deals with the issue of state space explosion of the SMP created; it deals with the problem by 

introducing a new simplification technique for semi-Markov processes. The technique 

deletes states from the SMP while preserving the average time to travel between non-deleted 

states, or what we call mean passage-time equivalence. Chapter 7 presents an application for 

Chapters 4,5 and 6, a case study, and presents the procedure needed to determine whether a 

GSMP is an NRGSMP. Finally, Chapter 8 provides our conclusions and suggestions for 

future research directions. 
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Chapter 4: A Deeper Look into Non-Markovian 

Analysis  

 

 

 

 

 

 

4.1. Introduction 

 In this chapter, we will present a new class of processes: Near-Regenerative GSMP’s or 

NRGSMP. The NRGSMP’s extend the class of solvable GSMPs by allowing several events 

with a generally distributed lifetime to be enabled at the same time. However, they satisfy the 

restriction that every cycle 121
11 ... ssssC nn e

n
ee →→→= −  must either be near semi-

Markovian (NSM) or regenerative (REG), recall from Section 3.5 that 

1. cycle C  is near semi-Markovian (NSM), if every state is  in the cycle has 

the property that given any event g  that starts its lifetime in a state js  of C , 

if g  is active in is  then g  restarts its lifetime in is . Intuitively, when taken 

as a separate entity from the GSMP, C  becomes a semi-Markovian process. 

An NSM cycle is called near Markovian  (NM), if all the events activated 
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inside the cycle (i.e. the set of events 
1

( ) ( )
n

i
i

K C K s
=

= ∪ ) have exponentially 

distributed delays. Formally, C  is NSM iff for all is C∈ , if 

( ( ) ( ; ( ))i jg A s j i g A s∈ ∧ ∃ ≠ ∈  then ( )ig K s∈  

2. Cycle C  is regenerative (REG), if there exists a regenerative state is  in the 

cycle (i.e. the GSMP satisfies the Markovian property at the time state is  is 

entered). Formally, there exists is C∈ , such that ( ) ( )i iA s K s= . 

  These properties will be formally defined in the next section. 

For finding the steady state probabilities for NRGSMPs, we will present an algorithm 

to transform the NRGSMP into a semi-Markov process (SMP) while preserving steady-state 

simulation, a simulation that enables us to determine the steady state probabilities of the 

NRGSMP from that of the SMP constructed. To transform the NRGSMP G  into such an 

SMP 'G  we need to calculate, for every state s , the distribution of the remaining lifetime of 

every active event e  of s  given that G  has been running for a sufficiently long time. We 

call this distribution the “average residual lifetime distribution” and we denote it by 

Re ( , )Av s e s . We call the distribution “average residual lifetime distribution” because it is 

the expected distribution of event e  in state s  regardless of the trace followed to reach state 

s . To explain the transformation and the equivalence informally, let s  be a non-regenerative 

state in G, and let Γ  be the set of all traces in G  from the starting state 0s  to s . Note that Γ  

could be infinite.  We construct 'G  as follows: 

• We divide Γ  into distinct subsets },...,{ 21 nΓΓΓ such that each iΓ  has the following 

property: 

o if we reach state s  by following a trace from iΓ , the average residual lifetime 

for the active events of s  can be calculated (Note that given two traces T  and 

'T  in iΓ , Re ( , , )Av s e s T  may not be equal to Re ( , , ')Av s e s T . However, 

given that a trace from  iΓ  was followed to reach state s , then the average 
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residual lifetime for the active events in state s , which is the expected 

distribution associated with the active events in s  can be calculated). We will 

see in Section 4.3 how such iΓ ’s look like. 

•  Then we create n  copies of state s : { nss ,...,1 } one for each subset iΓ . We say that 

state s  is split into n  states. And we modify the GSMP G  such that every set of 

traces iΓ  leads to state is , i.e. the set of traces from the starting state 0s  to is  

becomes iΓ . (Note that this step might involve splitting states other than s ). The 

active event e  in is  is then assigned a distribution equal to Re ( , )iAv s e s . We 

identify the modified process  as 'G . 

 Based on the above construction, it will be shown that 'G  steady-state simulates (or s-

simulates) G . One of the properties of the simulation is that, given G  and 'G  have been 

running for a sufficiently long time, the distribution of the sojourn time in state s  in G , 

denoted by ( )G sζ ,  is equal to 
' '

'1

1

( ) ( )

( )

G Gn
i i

n
Gi

j
j

P s s

P s

ζ
=

=

∑
∑

, where '( )G
iP s  is the probability of being 

in state is in 'G  and ' ( )G
isζ  is the sojourn time in state is  in 'G . 

 Another property of the s-simulation is that if a GSMP s-simulates another, then the two 

GSMPs are bisimulation equivalent from a functional point of view, i.e. if we neglect the 

time distributions associated with the events and consider only the order of events labels, the 

two GSMPs become bisimulation equivalent. 

 To illustrate this, we consider the two GSMPs G  and 'G  depicted in Figure 5. We 

consider the following relation R : ,',',' 1
331100 RssRssRss and 2

33 'Rss  (i.e. state 3s  was split 

into two states 1
3's  and 2

3's ) . Note that the two GSMP’s are bisimulation equivalent from a 

functional point of view. 

While the algorithm presented in this chapter provides a theoretical solution for all 

NRGSMP’s, its applicability is restricted because of its exponential time and space 

complexities. However, we have identified a subset of NRGSMPs for which the algorithm 
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has )( 2nO  space complexity and a polynomial time complexity. This subset contains all the 

EGSMP’s, and exceeds them to include a subset of the NRGSMPs that are not EGSMPs 

(refer to Figure 10 in Section 4.3.3). 

 

   

(a) GSMP G              (b)GSMP G’ 

Figure 5. Two GSMPs 

 

The algorithm for transforming an NRGSMP into an SMP works by transforming all 

non-regenerative states into regenerative states by splitting states as required. The algorithm 

will be presented in Section 4.4 after defining NRGSMPs and explaining the intuition behind 

the transformation in Section 4.2. Some needed definitions and preliminary results will be 

presented in Section 4.3. And finally, the complexity of the algorithm is discussed in Section 

4.5. 

 

4.2. Preliminary Definitions and Algorithm Overview  

 In this section, we present the formal definition for NRGSMPs followed by the 

algorithm overview. We start first with some preliminary definitions. 
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4.2.1. Preliminary definitions 

Definition 4.1: Regenerative state 

A regenerative state s in a GSMP is a state with the property: )()( sKsA = .  

 

Definition 4.2: Trace, regenerative trace, single regenerative trace, simple trace, path, 

execution sequence and cycle  

Let ),,,,,,( 0 KAFsSG �Ε= be a GSMP. Assume that the set of transitions �  contains n  

transitions denoted by ntt ,...,1   

• A trace of G  is a finite sequence of transitions ,...,
21 ii tt such that transition 

jit  leads 

to a state from which transition 
1+jit is possible (has a non-zero probability).  

• A regenerative trace of G  is a trace ,...,
21 ii tt  such that 

1i
t  is a transition out of a 

regenerative state.  

• A single regenerative trace of G  is a regenerative trace that contains exactly one 

regenerative state.  

• A simple trace, also referred to as path, is a trace with no cycles (i.e. no state appears 

twice in the trace) 

• An execution sequence Ex is a tuple of the form 1( , ,..., )nEx T x x= < >  where 

11
1 2... nee

nT s s s−= → →  is a regenerative trace and ix  is the time spent in state is , 

or what is known as sojourn time in state is  denoted by ( )isς  for all {1,..., }i n∈ . 

• An n-cycle in a GSMP is a trace of the form 121
11 ... ssssT nn e

n
ee →→→= −  

where ji ss ≠  for ji ≠ , , {1,..., }i j n∈ . 
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Definition 4.3: Near-Markovian, near Semi-Markovian, and regenerative cycles 

An n-cycle 121
121 ... ssssc nn e

n
eee →→→→= −  in a GSMP is said to be: 

• Near semi-Markovian (or NSM), if  

(a)  All events on the cycle, i.e. 1{ ,..., }ne e , are initialized just before they are executed, 

formally, )( jj sKe ∈  for all },...,1{ nj ∈  and  

(b) If a non-cycle event g  (i.e. g 1{ ,..., }ne e∉ ) is initialized in some state in the cycle, then 

this event can only be active in a state on the cycle provided it is initialized there. 

Formally if there exists a state is , {1,..., }i n∈ , such that ( )ig K s∈  and 1{ ,..., }ng e e∉  

then ( ){1,..., }, ( ) ( )j jj n g A s g K s∀ ∈ ∈ ⇒ ∈  

• Regenerative (REG), if at least one of its states is a regenerative state. 

• An NSM cycle is called near-Markovian (NM) if all events in },...,1{),( nisK i ∈  are 

exponentially distributed.  

 

An example of a near semi-Markovian cycle is shown in Figure 6. If seee ,",',  were 

exponentially distributed (in all states they are initialized in) then the cycle becomes near- 

Markovian. 

 

 

 

 

Figure 6. Part of a GSMP 
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Definition 4.4: NRGSMP 

A near-regenerative generalized semi-Markov process, NRGSMP, is a GSMP with the 

following restriction: All the cycles in the process are NSM or REG cycles. 

 

Note that, although these restrictions are strong, previous work 

[42],[44],[11],[20],[65] imposed the so-called “enabling restriction” which implies that only 

regenerative and NM cycles are allowed, so NSM cycles were not allowed, this in addition to 

the fact that only one non-exponentially distributed event could be active at any given time. 

Figure 3 and Figure 10 show examples of NRGSMPs. The NRGSMP in Figure 10 has only 

regenerative cycles, yet it does not satisfy the “enabling restriction”, in other words it is not 

an EGSMP. The next Theorem describes properties of traces in an NRGSMP. 

 

4.2.2. Algorithm overview 

To transform a GSMP ),,,,,,( 0 KAFsSG �Ε=  into an SMP we need to transform 

every non-regenerative state s  in G  into a regenerative state. To be able to transform s  into 

regenerative, we will assume that we know the time l elapsed since the GSMP started 

running until state s  was entered.  

Let s  be a non-regenerative state in G ; for the sake of simplicity, assume that 

}{)( esA =  and φ=)(sK . To transform s  into a regenerative state, we need to find the 

residual lifetime for events that are active in s , or in other words, the probability that event 

e  will occur within x  time units from entering s  given that the GSMP has been running for 

l  time units when state s  was entered, denoted by Re ( , )( )lAv s e s x . 

Let us assume that we know the single regenerative trace that was followed to reach 

s : sssT m
ee m = →→= −11 ...1  and the times ix  spent in each of the states is  for all 
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},...,1{ mi ∈ : ),...,,( 1 >< mxxT . then we can easily calculate the “conditional probability that 

e  will occur in x  time units after entering s ”. We call this probability distribution the 

residual time of event e  in state s  given  ),...,,( 1 >< mxxT  given that the GSMP has been 

running for l  time units when state s  was entered, and denote it by 

1Re ( , , ( , ,..., ))l
ms e s T x x< > . Note that 1 ... ml x x≥ + +  (and 1 ... ml x x= + +  if 1 0s s= ). 

If the single regenerative trace T  that was followed to reach s  is known but not the 

time spent in the different states in the trace, then the “probability that e  will occur in x  

time units after entering s  given T  was followed and given that the GSMP has been running 

for l  time units  when state s  was entered” is denoted by Re ( , , )( )ls e s T x  . Assume for 

simplicity that '' eT s s= → , then Re ( , , )( )ls e s T x  can be calculated from the distribution of 

the residual time of the events in state 's  as follows: 

'
0

( ( ') ' | )Re ( , , )( ) ( [ ', ' ] | ( ') ' )
'

l
l

s
P s x Ts e s T x P e x x x s x T

dx
ς ς== + = ∧∫  

Where '[ ', ' ]se x x x+  is the fact that event e occurs in the interval [ ', ' ]x x x+  since entering 's , 

and T  stands for the fact that transition T  occurred to reach state s . We will prove in 

Theorem 4.6 that the above formulae is a function of the distribution of the residual time of 

the events in state 's . 

Consider for example State 1 in Figure 3, note that event a  is active in this state,. 

Note also that this state can be reached through infinitely many single regenerative traces 

}|)12(10{ 11 Ν∈→→→==Γ nT nsrdn  where n indicates the number of times cycle 

1 2 1r s→ →  is executed, Note that every trace 1
nT  in 1Γ  will give a different value for 

1Re ( ,1, )l ns a T .  

Now, assume that the single regenerative trace that was followed to reach s  belongs 

to a set of single regenerative traces sΓ , then the “probability that e  will occur in x  time 

units after entering s  given that a trace in sΓ  was followed and given that the GSMP has 
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been running for l  time units when state s  was entered” is denoted by Re ( , , )( )l
sAv s e s xΓ . 

Note that Re ( , , )l
sAv s e s Γ  is the average over { Re ( , , )ls e s T , sT Γ∈ } taking into 

consideration the different probabilities of the regenerative traces in sΓ , in other words, 

Re ( , , )l
sAv s e s Γ = ( ) Re ( , , )

s

l

T

P T s e s T
∈Γ
∑  where )(TP  is the probability that the regenerative 

trace T  occurs given that a trace from the set sΓ  will occur. 

If sΛ  is the set of all single regenerative traces leading to s , let s∇  be the set of all 

regenerative states that may lead to state s , and for every sr ∈∇ , let srT Λ⊆  be the set of 

all traces that start with state r  and lead to state s  ( r sT ⊆ Λ ), then 

Re ( , , )( )l
sAv s e s xΛ  

= Re ( , , )( )
s

s

lr
r

r r
r

P Av s e s T x
P∈∇

∈∇

∑ ∑
  

Where rP  is the probability of being in state r  given that the GSMP has been running for a 

sufficiently long time, and 

s

r

r
r

P
P

∈∇
∑

 is the probability rP  normalized over the set of 

regenerative states s∇ , and Re ( , , )l
rAv s e s T  is as defined earlier.  

Note: In Section 4.3.4, we will calculate Re ( , , )l
rAv s e s T  as a function of l  and x . 

However, throughout this thesis, and in transforming the GSMP into an SMP, we will 

assume that the GSMP is in steady state, in other words, we will only consider the case 

where l = ∞  as we will be extracting performance measures assuming steady state. In that 

case, Re ( , , )l
rAv s e s T  will be denoted by Re ( , , )rAv s e s T . 
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The questions that come to mind now are how and under what restrictions can we 

calculate ),,(Re ssesAv Λ ? As discussed earlier, ),,(Re ssesAv Λ =
Re ( , , )( )

s

s

r r
r

r
r

P Av s e s T x

P
∈∇

∈∇

∑
∑

, 

but rP  is a function of the SSP of state r , which is not always possible to get.  

We will prove in Section 4.3.4 that we can calculate ),,(Re ssesAv Λ  in the 

following three cases: 

1. If }{Ts =Λ , in other words if ),,(Re ssesAv Λ = ),,(Re Tses .  

2. If all traces in sΛ  start with the same regenerative state r  (i.e. all the traces travel 

from r  to s ), then let N  be the sub-process of G  with state space NS  formed from 

the states belonging to sΛ -{ r }, and its transitions are the transitions between the 

states in NS . Then if for all ",' rr  in NS  the following is satisfied 

i. if "': rrt f→  belongs to N , then )'(rKf ∈  and  

ii. if )'()"( rArKe ∩∈  then )'(rKe ∈  and,  

iii. )()'()'( rArKrA ⊂−  

then N  is called an embedded semi-Markov process; ESMP, intuitively, the points 

above mean that the sub process N  is an SMP. In such case, all events, say f , that 

are initialized in r  and are active in s , ),,(Re ssfsAv Λ  will be calculated using the 

quantity lim ( ( ) | (0) )x sP s x r→∞ ∧ Λ  where ( ( ) | (0) )sP s x r ∧ Λ  is the probability of 

being in state s  at time x  given we entered state r  at time 0 and given that sΛ  was 

followed from r  to s . The value of ))0(|)(( srxsP Λ∧  will be calculated using the 

fact that N  is an SMP. This will be presented in details in Section 4.4.2. 
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3. A combination of the above, i.e. sΛ  is of the form: 

sΛ = m

m

m

m

s
sn

s
sn

s
s

s
s

s
s

s
s NTNTNT

1

1

2

5

4

4

3

3

2

2

1
*...** 2211 −

−

−
 where: 

a. 1s  is regenerative  

b. k

j

s
siT  is a path, from js to ks  and  

c. iN  is an ESMP 

d. k

j

s
siN *  is the set of traces from js to ks  belonging to iN   

Such a set sΛ  will be called a single-AvRes set and will be defined in Section 4.3. 

The average residual distributions for the events in state s  where sΛ  is of the form 

specified under point (3) are calculated as follows: 

� We first calculate the average residual distribution for all events in 2

11
s
sT  sequentially 

(starting from 1s ), thus making all the states in 2

11
s
sT  regenerative 

� The next step would be to calculate the average residual distributions for all active 

events in the states of 1N  using the average residual distributions of the events in 2s  

that were calculated in the previous step  

� We continue with 4

32
s
sT , and so on …. 

Consider again }|)12(10{ 11 Ν∈→→→==Γ nT nsrdn  of Figure 3. We will see in 

Section 4.4 that 121 →→ sr  satisfies condition (2) above, and as a result we will 

calculate ),1,(Re 1ΓasAv . 

Now, let sΓ  be the set of all single regenerative traces leading to s  (recall that these 

traces have exactly one regenerative state). The conditions set on the cycles of the GSMP 
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will allow us to partition the set of regenerative traces sΓ : { Iii ∈Γ , }, such that each iΓ  is a 

single-AvRes set, i.e. a set where we will be able to calculate ),,(Re isesAv Γ  for each Ii ∈ . 

Now given Iii ∈Γ , , we transform G  into a GSMP sG  by splitting (or unfolding) state s  

into several states Iisi ∈,  such that each is  is only reached through the traces with postfixes 

in iΓ . The algorithm in all its details will be presented in Section 4.4. Then, after splitting 

every non-regenerative state as described, the resulting process 'G  and G  are shown to be 

structurally bisimilar (refer to Definition 9 in Section 4.3). The process 'G  will be called 

Hidden Markov Regenerative Process (HMRP) and will be presented in Section 4.3. 

The last step is to calculate ),,(Re iisesAv Γ  for each Ii ∈ , and assign it to )(eF
is . 

The resulting GSMP would s-simulate G . This simulation implies that the probability of 

leaving state s  within a certain time after reaching it, given that we reached s  through a 

single regenerative trace in iΓ , is preserved.  

So given the NRGSMP G , assume that },...,{ 1 lssL =  is the set of states that need to 

be transformed into regenerative states. As described above, we need two steps to transform 

it into an SMP: 

1. We will first transform G  into what we call a Hidden Markov regenerative process 

(HMRP) 'G  while preserving structural bisimulation. 

2. The next step is to calculate ),(Re isesAv . The states is  can then become 

regenerative by assigning to events e  in is  the distribution ),(Re isesAv . After 

transforming all non-regenerative states of 'G  into regenerative ones, we obtain an 

SMP "G  that s-simulates the original one. We will see in Section 4.3 how to get 

steady state probabilities of G  from those of "G  . 

 



 64 

4.3. Definitions, Illustrations and Preliminary 

Results 

In this section, we review a concept from stochastic systems: structural bisimulation. 

And we introduce some new concepts: residual time, single-AvRes set of traces, hidden 

Markov regenerative process, steady-state simulation, embedded SMP, and in-borders of an 

embedded SMP. 

 

4.3.1. General Definitions and Results 

Definition 4.5: Complete sub-GSMP, in-border, embedded SMP 

Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP,  

• A complete sub-GSMP of G  is a GSMP with no starting state: 

),',,,,'( KAFSM �Ε=  where SS ⊂'  and ' ( ' ')S E S= ∩ × ×� � , in other words, 

'�  is the biggest subset of �  linking all states in 'S . A state r  is said to be an in-

border of M  if 'SSr −∈ , and if there exists a transition: sr e→  for some 'Ss ∈  

(note that components , , ,E F A  and K  are not equal to the components in the 

original GSMP G , in fact these are their restriction to the state set 'S , but we use the 

same notation for simplicity). 

• An embedded semi-Markov process (ESMP) M  of G , ),',,,,'( KAFSM �Ε= , is a 

complete sub-GSMP of G  such that: 

1. If ( ')K S = ∪
''

)'(
Ss

sK
∈

 is the set of all events initialized in the states belonging to the 

ESMP, then for all '' Ss ∈ , and for all ∈e ( ')K S , either )'(sKe ∈  or ( ')e A s∉   

2. )"()"()'()'( sKsAsKsA −=−  for all '",' Sss ∈ , and 
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3. 'S  is the maximal set of states with the above properties. 

• Let ),',,,,'( KAFSM �Ε=  be an ESMP, and let ''0 Ss ∈ , then the ESMP of 0's  is 

the ESMP M  having 0's  as the starting state. Note that the state space of 'M  

becomes the set of states that are reachable from 0's , in other words, 

),",,,,',"(' 0 KAFsSM �Ε=  where "S  is the set of states that belong to 'S  and that 

are reachable from 0's , and "�  is a set of all possible transitions from '�  linking 

states in "S .  

 

We note the following: 

- An ESMP =M ),',,,,'( KAFS �Ε , when taken as a separate entity is a semi-

Markov process: If r  is an in-border of M , then an event e  that is initialized 

in r  might be active in a state s  of M  but not initialized in it, i.e. 

)()( sKsAe −∈ , then, from point (2) above, e  should never be initialized in 

any state of the ESMP, and should never occur inside the ESMP, so M  

satisfies the properties of an SMP.  

- An ESMP could be trivial, i.e. consisting of only one state. 

- From the above definition, we deduce that if a state 's S∈ is regenerative, then 

all states in 'S  are regenerative 
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Figure 7. Nest 

 

Figure 12(a) shows an ESMP with its in-border 0-0 corresponding to the GSMP 

described in Figure 9.  

Consider the part of a GSMP shown in Figure 7: We assume that ( ) { , , }K r a b c= , 

1( ) { }K s g= , 2( ) { , }K s f j= , 3( ) { }K s h= , 4( ) {}K s = , 5( ) { }K s q=  and 6( ) { }K s k= . We also 

assume that ( ) ( ) {}A r K r− = , 1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A s K s A s K s A s K s A s K s− = − = − = −   

{ , }b c=  and that when events b  or c  occur in states 1 2 3, ,s s s  or 4s  then they lead to a state 

outside ESMP M. And similarly, we assume that 

5 5 6 6 7 7( ) ( ) ( ) ( ) ( ) ( ) { }A s K s A s K s A s K s a− = − = − =  and when event a  occurs in state 5s  or 

6s  or 7s  then it leads to a state outside N. With the above assumptions in mind, we deduce 

 
    f 
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that we have two ESMPs: ESMP M  is composed of four states: },,,{ 4321 ssss , and its in-

border is r . And ESMP N  is composed of three states 5s , 6s  and 7s  and has the same in-

border. The ESMP of state 1s  and the ESMP of state 2s  are both composed of the three 

states },,{ 421 sss , and the ESMP of state 3s  is composed of two states },{ 43 ss . 

 

We will see later that given an ESMP and its in-border, then once its in-border is 

transformed into a regenerative state, the residual distributions for the events in all the states 

of the ESMP can be calculated using the semi-Markovian properties of the ESMP. This will 

be explained in detail in Subsection 4.3.4. 

 

Definition 4.6: Nest of a state 

Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, and let Ss ∈ . We define a nest of s  as the 

process ),",,,,},{"( KAFEssSN �∪= , where ),',,,,'( KAFSM �Ε=  is an ESMP with 

in-border s , '" SS ⊆  is the set of all states from 'S  that are reachable from s , and "�  is the 

set of all possible transitions from �  linking the states of N : 

" ( " { } " { })S s E S s= ∩ ∪ × × ∪� � . If s  is not the in-border of any nest, then the nest of s  is 

the sub-process composed of one state s . 

Note that the nest of a trivial ESMP is composed of two states only. 

Figure 7 depicts two nests of a state r , one is composed of four states },,,{ 421 sssr , 

and the other is composed of states },,,{ 765 sssr .  

We note that, a nest ),,,,,,( KAFErSN �=  of a state r  is an SMP. In fact, an event 

e ( )A r∈  might be active in all states in S  but not initialized in these states, i.e. 

)()( sKsAe
Ss

−∈
∈
∩ , however, e  is never initialized in any state of the nest, and does not 

occur in the nest, so the nest satisfies the properties of an SMP. 
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Note: if ),,,,,,( 0 KAFsSG �Ε=  is a GSMP, and ),',,,,'( KAFSN �Ε=  is an ESMP of 

G , and 1r  is an in-border for N , then if we let )( 1rN  be the process whose traces are of the 

form tT  where ': 1 srt →  is any trace from 1r  to a state '' Ss ∈ , and T  is a trace in N  

starting in state 's , then )( 1rN  is a nest of 1r . 

 

Lemma 4.1. 

1. Every near semi-Markovian cycle is part of an ESMP. 

2.  Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, then the set of all ESMPs in G  are 

distinct. Moreover, every non-regenerative state belongs to exactly one ESMP. 

3. Let 'M = )',',',',','( KAFS �Ε  be an ESMP with in-border 0's , in a GSMP 

),,,,,,( 0 KAFsSG �Ε= . If sst e→0':  and '':' '
0 sst e→  belong to 'M , then 

either  

• 'tt =  or  

• e  and 'e  have an exponentially distributed lifetime or 

• e  and 'e  are not active in any state of 'M . 

Proof.  

• Point 1: Straightforward from the definition of a semi-Markovian cycle 

• Point 2: Let M = ),,,,,,( 0 KAFsS MM �Ε  and N = 0( , ' , ', ', ', , ')N NS s E F A K→  be 

two ESMPs in G , assume that a state s  belongs to both ESMPs, then we deduce that 

( ) ( ) '( ) '( )A s K s A s K s− = − =  ( ') ( ') '( ") '( ")A s K s A s K s− = − for all ' Ms S∈  and 

" Ns S∈ , and. Hence the states in NM SS ∪  should form an ESMP because of 

property (3) in Definition 4.5. 
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• Point 3 is a result of the restriction on ESMPs: )"()"()'()'( sKsAsKsA −=−  for all 

∈",' ss 'S . 

( 

Theorem 4.1. Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, and for any Ssi ∈  let 

=
isM ),,,,,,( KAFsS iii �Ε  be the ESMP of state is . Then we have the following 

properties:  

o Given two states Sss ji ∈, , if ij Ss ∈ , then ij SS ⊆ , and if 
isM  is strongly 

connected (i.e. there exists a path between any two states of 
isM ) then ij SS = . 

o There exists a subset SS ⊂' , such that the set }'|{ SsM isi
∈  has the following 

properties: 

1.  φ=∩ ji SS  for all 'i js s S≠ ∈  and  

2. for all Ssi ∈ , iS hS⊆ for some 'hs S∈ .  

The set }'|{ SsM isi
∈  will be called maximal set of connected ESMP parts. 

Proof. Straightforward. 

( 

If we divide each of the 
isM ’s in the set }',{ SsM isi

∈  in the theorem above into 

several sub-ESMP’s },{
iii ss

j
s

j MMM ⊆  where each is
jM  is strongly connected, then the set 

{ : ', }
i i i

j j
s i s sM s S M M∈ ⊆  will be called maximal strongly connected set of ESMP parts. 
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Definition 4.7: Residual lifetime and average residual lifetime 

Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP and let ),(sAe ∈  Ss ∈ . The following definition 

assumes that the GSMP has been running for l  time units when state s  was entered. 

• The residual lifetime of e  in s  after a given execution sequence ),...,,( 1 ><= mxxTEx  

has occurred, written 1Re ( , , ( , ,..., ))( )l
ms e s T x x x< >  (where Re s  is short for Residual), is 

the probability that event e  will occur in x  time units after entering s  given 

),...,,( 1 >< mxxT  was followed. 

• The residual lifetime of e  in s  after a given regenerative trace T  had occurred (the 

timings associated with T  are not known) , written Re ( , , )ls e s T , is the time distribution for 

event e  in state s  given that the state was entered through the regenerative trace T .  

• Let }|{ IiTi ∈ , where I  is a set of integers, be a set of regenerative traces leading to s , 

and let )( iTP  be the probability that the regenerative trace iT  occurred given that a trace 

from the set }|{ IiTi ∈  will occur. Then we define: 

1. the average residual time of event e  in s  given that a regenerative trace from the set 

}|{ IiTi ∈  had occurred, written Re ( , ,{ | })l
iAv s e s T i I∈ , as the time distribution for 

event e  in state s  given that a trace in }|{ IiTi ∈  just occurred. In other words, 

Re ( , ,{ | })( )l
iAv s e s T i I x∈  is the probability that event e  will occur within x  time 

units after reaching s  given that s  was reached by following a trace in }|{ IiTi ∈ . 

Note that, Re ( , ,{ | }) ( ) Re ( , , )l l
i i i

i I

Av s e s T i I P T s e s T
∈

∈ = ∑ . If }|{ IiTi ∈  is the set of 

all possible regenerative traces leading to s , we write Re ( , )lAv s e s  instead of 

Re ( , ,{ | })l
iAv s e s T i I∈ . 

2. Re ( , ,{ | })( ', )l
iAv s e s T i I x x∈  as the probability that event e  will occur in the 

interval ],'[ xx  where x  and 'x  are relative times in respect to the time l  when state 
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s  was entered, and given that s  was reached by following a trace in }|{ IiTi ∈ . In 

other words,  

Re ( , ,{ | })( ', )l
iAv s e s T i I x x∈ = 

     Re ( , ,{ | })( ) Re ( , ,{ | })( ')l l
i iAv s e s T i I x Av s e s T i I x∈ − ∈  

3. Re ( , , )lAv s e s T , where T  is a trace that leads to state s , to be equal to 

),,(Re ΘsesAv  where Θ  is the set of all possible regenerative traces that have T  as 

a postfix. If Θ  contains only one trace, then Re ( , , )lAv s e s Θ = Re ( , , )ls e s Θ . 

 As mentioned in the introduction, unless otherwise mentioned, we assume throughout 

this chapter that the GSMP has been running for a sufficiently long time. In that case, we 

assume that l → ∞  and omit the suffix l  from the notation of the residual time distributions. 

Lemma 4.2. Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, and let Ss ∈ . Let 21 ,TT  be two 

traces from 0s  to s  such that 1T  and 2T  have the same postfix T , where T  is a regenerative 

trace, then ),,(Re),,(Re),,(Re 21 TsesTsesTses ==   

( 

The next definition presents the single-AvRes set of traces, it is a set of traces Γ  

between two states s  and 's  for which ),',(Re ΓsesAv  has a single calculable value through 

the use of analytical means and this is the reason for its name.  

  

Definition 4.8: Single-AvRes set of traces. 

Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP.  Let n
eee sssT n→→→= −121 ...21  be a path 

of G (recall that a path is a simple trace, i.e. a trace with no cycles in it), and we write 

1+→= i
e

ii sst i . Then the single-AvRes set of traces for path T , written AvRT , is defined as 

follows: 
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1. For ni ≠ , we define iE  to be the nest of is  for which ii Es ∈+1 , if any; if no 

such nest exists, iE  is assumed to be composed of the single state is .  

2. Writing 
iES  for the set of states of iE  and 

iE� for the set of traces in iE , let 

M  be the sub-GSMP whose states are )(
1 iE

n

i
S

=
∪ , and whose transitions are 

i

n
t

1

1

−
∪ )(

1 iE

n
�∪∪ , then the set of traces in M  from 1s  to ns  is called a single-

AvRes set for path T  and is denoted by AvRT . 

 

 

 

 

 

Figure 8. An example of a single-AvRes-set 

 

 Figure 8 shows an example of a single-AvRes-set of traces for path 

srrrrrT →→→→→= 4321 . The set of all traces in the figure from state r  to state s  is 

a single-AvRes-set. The same set of traces is also the single-AvRes-set for path 

srrrrrrT →→→→→→= 46321 . 

The following definition presents a structural bisimulation equivalence between 

GSMPs, which was introduced in [29]. This bisimulation will be needed in the proofs of 

Section 4.4. It will become obvious when we formally define the s-simulation that structural 

bisimulation implies s-simulation, while the reverse is not true. 

 

ESMP N 

 
     r        r1             r2     r3          r4            s 
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Definition 4.9: Structural bisimulation 

Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',,','(' 0 KAFsSG �Ε= be two GSMPs.  

We say that G  is structurally bisimilar to 'G  if there exists a relation 'SSR ×⊆ , such that 

0 0( , ' )s s R∈  and whenever ( , )s r R∈  the following conditions hold: 

1. for all Ss ∈' , 'ss e→  there exists a state '' Sr ∈  such that 'rr e→ , and 

( ', ')s r R∈  

2. for all '' Sr ∈ , 'rr e→  there exists a state Ss ∈'  such that 'ss e→  and 

( ', ')s r R∈ ; 

3. )()( rKsK =  

Figure 9 shows a GSMP, note that states 0-0, 3-3, 4-5 and 5-4 are regenerative (note 

that transition d is immediate). We will later see that the GSMP of Figure 3 is structurally 

bisimilar to the GSMP shown in Figure 9. The relation that establishes the simulation is: 

every state i-j of Figure 9 corresponds to state j in Figure 3. 

 It can be easily shown that if two GSMPs ),,,,,,( 0 KAFsSG �Ε=  and 

)',',',',',','(' 0 KAFsSG �Ε=  are structurally bisimilar. And if },{ Jjj ∈∆=∆  is the 

partition of states 'S  induced by the bissimulation relation, and if 1( ) { ,..., }j nR s r r= ∆ =  for 

some s S∈  and j J∈ , then '
0 0

0

( ( ) / (0)) ( ( ) / ' (0))
n

G G
i

i

P s x s P r x s
=

= ∑ . For more information on 

structural bisimulation the reader is referred to [31],[32],[30]. 
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4.3.2. Properties of NRGSMP. 

Theorem 4.2. Let ),,,,,,( 0 KAFsSG �Ε=  be an NRGSMP, and Ss ∈ . Let 

},...,,{ 21 ns TTT=Γ  be the set of all regenerative paths leading to s  that contain exactly one 

regenerative state (the starting state). Then: 

1. the set AvR
n

AvRAvRAvR
s TTT ∪∪∪=Γ ...21  has the property: 

),(Re),,(Re sesAvsesAv AvR
s =Γ . 

2. For all },...,1{, nji ∈  either AvR
j

AvR
i TT =  or φ=∩ AvR

j
AvR

i TT  

Proof.  

• The proof of point 1 is based on the fact that if T  is any path from 0s  to s , then T  

has a postfix iT  from the set },...,,{ 21 ns TTT=Γ , and hence 

),,(Re),,(Re AvR
i

AvR TsesAvTsesAv = .  

• Point 2: Assume that there exists a trace AvR
j

AvR
i TTT ∩∈ , then since AvR

iTT ∈  we 

deduce from Definition 4.8 that AvR
i

AvR TT = , and similarly, AvR
j

AvR TT = . 

( 

In the next subsection, we will introduce the hidden Markov regenerative process. It 

is needed as an intermediate step in the transformation of an NRGSMP into an SMP.  

 

4.3.3. HMRP Definition and Properties 

A hidden Markov regenerative process (HMRP) is given this name because it can be 

transformed into a Markov regenerative process: As we will see in this section, for every 

state s in a HMRP, if sΛ  is the set of all regenerative traces leading to s that contain only one 
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regenerative state, then sΛ  is a single-AvRes set, and as a consequence, we will be able to 

calculate ),(Re sesAv  for all )(sAe ∈  (refer to Section 4.2). Then given ),(Re sesAv  for all 

)(sAe ∈ , we can transform the state s  into a regenerative one by having all events )(sAe ∈  

initialized in state s  according to the distribution ))(,(Re))(( xsesAvxeFs = . 

In this sub-section, we will present the properties of an HMRP, and we will start with 

their definition. Then in the next section we will present the algorithm to transform an 

NRGSMP into an HMRP, and then an HMRP into an SMP. 

Definition 4.10. HMRP, defining subtrace of a state 

A hidden Markov regenerative process, HMRP, is an NRGSMP such that, for every state s , 

if T  is a regenerative path from some state r  to s , such that the only regenerative state of T  

is r , then all traces leading to s  have a trace in AvRT  as a postfix. The path T  is called a 

defining subtrace for state s . 

Figure 9 shows a HMRP, note that states 0-0, 3-3, 4-5 and 5-4 are regenerative. The 

relation that establishes the simulation is: every state i-j of Figure 9 corresponds to state j in 

Figure 3. 

Figure 10 shows another example of an HMRP. The HMRP represents the failure and 

repair for a machine with two processors. One processor can be working at a time, the other 

remains idle until the working processor fails (modeled by f ). When one processor fails it 

undergoes regular repair (modeled by r ). If both processors fail, the machine undergoes 

major repair (modeled by m ). Every state is annotated with two letters (representing the two 

processors) from the set {W,I,F} where W stands for working , I stands for idle and F stands 

for failed (refer to Figure 10). Note that the HMRP depicted in Figure 10 may not satisfy the 

enabling restriction because f  and r , both, may not be exponentially distributed. 
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Figure 9. An HMRP 

 

 

 

 

 

 

Figure 10. Example of an HMRP. 
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We will next examine the properties of an HMRP in detail. 

Theorem 4.3. Let ),,,,,,( 0 KAFsSG �Ε=  be an HMRP. Let T  and 'T  be two regenerative 

paths leading to a state s . If r  and 'r  are the last regenerative states that T  and 'T  pass 

through respectively, then 'rr = . 

Proof. Let rT  be the postfix of trace T  starting from r , we know from Definition 4.10 that 

trace 'T  has a trace in AvR
rT  as a postfix. Moreover all states belonging to the set of traces 

AvR
rT aside from r  are non-regenerative (see Definition 4.8), hence the last regenerative state 

in 'T  is r . 

( 

Corollary 4.1. Let ),,,,,,( 0 KAFsSG �Ε= be an HMRP. Let T  be any regenerative path 

leading to a state s . Let 'T  be the postfix of T , such that 'T  has only one regenerative state, 

then: 

o ),,(Re AvRTsesAv = )',,(Re AvRTsesAv  and 

o  ),,(Re),(Re AvRTsesAvsesAv =  

Proof.  

o The first point is due to the fact that a regenerative trace is memoryless. 

o Since every path leading to s  has a postfix in AvRT ' , and since all traces in AvRT '  are 

regenerative then )',,(Re),(Re AvRTsesAvsesAv = . 

( 

 

Corollary 4.2. Let },...,{ 1 nTT  be the set of defining traces for state s , then we have that:  
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 AvR
j

AvR
i TT =  for any },...,1{, nji ∈  

Proof. This corollary is a direct consequence of Theorem 4.3 

( 

 

Theorem 4.4. Let ),,,,,,( 0 KAFsSG �Ε=  be an HMRP. Let Ss ∈ , and let sT  be a 

defining trace for state s  such that sT  travels from state 1
1r  to state s . Then the set of traces 

AvR
sT  is of the form: s

r
n

mmm
r
r

nr
r

n
mn

m

m
nn rNTrNTrNT )*)((...)*)(()*)((
1
3

2
2

2
1
2

1
1

1
222111  where 

mmmms TTTTTTTTT ''...'' 112211 −−= , in
iiii rrrT →→→= ...21 , and )( in

ii rN  is the nest of in
ir  

that contains all states belonging to iT ' , and 
1

1)*)(( +i
in

i

i r
r

n
ii rN  are the set of all traces in )( in

ii rN  

that start with state in
ir  and end with state 1

1+ir . 

Proof. The proof is straightforward from Definition 4.8. 

( 

 

Corollary 4.3: Let ),,,,,,( 0 KAFsSG �Ε=  be an HMRP, let Ss ∈  be a state in a nest mN  

of r , let T  be a path from r  to s , 

1. Every trace from 0s  to s  passes through r  

2. If r  is regenerative, then T  is a defining subtrace for state s  

Proof. To understand Point 1, we note that, from Theorem 4.4, every regenerative trace 

leading to s  has a postfix of the form s
rmm rNT )*)(( . Point 2 is a direct consequence of Point 

1. 

( 
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Theorem 4.5. Let ),,,,,,( 0 KAFsSG �Ε=  be an HMRP, let Ss ∈  and let 

ssssT ms =→→= ...21  be a defining subtrace for s . We note that: 

is sssT
i

→→= ...21  is a defining subtrace for is .  

Now define iT  as follows: iss TTT
i

=  and let )',,,',,,(' 0 KAFsSG �Ε=  be the HMRP where 

'F  and 'K  are defined as follows: for all }{ isSr −∈ : )()(' rKrK =  and for all 

)(rKe ∈ : )()(' eFeF rr = , )()(' ii sAsK =  and ),(Re)( AvR
sis ii

TsesAveF =  for all 

)()( ii sKsAe −∈ . 

Then: 

2- The defining trace for s  in 'G  is iT , and 

3- ),,(Re),,(Re ' AvR
i

GAvR
s

G TsesAvTsesAv =  

Proof. The proof is straightforward. 

( 

 

So, to sum up, given a state s  in G , the average residual time for every active event 

e  in state s  can be obtained from a defining trace sT  for state s : ),,(Re AvR
sTsesAv . Hence, 

if we can find a way to calculate ),,(Re AvR
sTsesAv  were AvR

sT  has the form specified in 

Theorem 4.4 then s  could be transformed into a regenerative state. Theorem 4.5 tells us that 

the residual time distributions for the events of one state can be calculated from the residual 

times of the events of another state. In sub-Section 4.3.4, we will present the method used to 

calculate ),,(Re AvR
sTsesAv . 
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4.3.4 Properties of Average Residual Times 

In this section, we do not assume that the GSMP is in steady state. The purpose is to 

present some properties of the Re lAv s . We will first prove that if 1t  is a transition in a 

GSMP G  from states 1s  to 2s , then 2 1Re ( , , )( )lAv s e s t x , where l  is the time state s  was 

entered, can be calculated from the average residual time distributions of events in 1s . Then 

we will prove that, given a nest N  of a state 1r , then for any Ns ∈ , 
11Re ( , , ( ) *)l s
rAv s e s N r  

can be calculated from the residual times for events in 1r  and from the steady state 

probability of state s  relative to an extended SMP 'N  which is obtained from N  with some 

additional states and transitions. In Section 4.4, we will explain how we can calculate 

Re ( , )( )lAv s e s x  for any state s  in an HMRP G  using the two results described in this 

section.  

First, we present some notations that will be used throughout this section: 

• ( | )P A T  is the probability that event A  occurs given that trace T  will occur 

next. 

• )|( ATP  is the probability that trace T  will be followed, given that event A  

had taken place.  

• s↓  means that we are in state s  

• ]',')[( xxxse +  means that event e  occurs in the interval ]','[ xxx +  counting 

from the time we entered state s . 

( 
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Figure 11. Two consecutive states 

 

In the next theorem, given two consecutive states 1s  and 2s  and an event 0g  that is 

active in both states (Figure 11), we will show how to calculate the distribution of the 

residual lifetime of 0g  from the distribution of the residual lifetimes of the events in 1( )A s . 

To explain the result informally, note that if we are in state 2s  after following 

trace 1
1 2

es s→ , then 0g  had been active for 1( )sς  time units since reaching state 1s , so the 

lifetime of 0g  has been shortened by 1( )sς  time units. (Note that 1( )sς [0, ]l∈  because there 

is a limit l  on the time that the process has been running for). In fact, we will show below 

that the probability that 0g  will expire within x  time units from entering state 2s  given that 

trace 1
1 2

es s→  had just occurred is: 

0 2 1 2Re ( , , )( )elAv s g s s s x→ = 0 1 1 1 2

0

( ( )[ ', ' ] ( ) ' | ) '
'

l eP g s x x x s x s s dx
dx
ς+ ∧ = →

∫ i.e. it 

is equal to the probability that 1( ) 's xς =  and that 0g  expires from state 1s  in the interval 

[ ', ']x x x+ , where ' [0, ]x l∈ . 

Refer to Figure 11 for a better understanding of the theorem. 

Theorem 4.6. Let 1t  be a transition in a GSMP G  from states 1s  to 2s  with 211
1 sst e→= . 

Assume that , and },...,,,{)( 1101 nggegsA = , then  

0 2 1Re ( , , )( )lAv s g s t x =  

 
            s1      e1                  s2 
       {e1,g1…gn}    {g1…gn} 
 
 
     g0       g1…..gn                   g0                      g1…..gn 
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0 1 0 1

0 10

Re ( , )( ') Re ( , )( ')
1 Re ( , )( ')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫       

    

 

1 1
1

0

1 1
1

00

Re ( , )( ') (1 Re ( , )( '))
' '

Re ( , )( ") (1 Re ( , )( ")) "
'

l n
l

i
i

l l n
l

i
i

dAv s e s x Av s g s x
dx dx

dAv s e s x Av s g s x dx
dx

=

=

−

−

∏

∏∫
 

Proof. In the proof below, we assume that the process is in state 1s . 

0 2 1Re ( , , )( )lAv s g s t x = )|],0)[(( 120 txsgP = 1 0 2 1

0

( ( ) ') ( )[0, ] | ) '
'

l P s x g s x t dx
dx

ς = ∧
∫  

= 1 0 1 1

0

( ( ) ') ( )[ ', ' ] | )
'

'

l P s x g s x x x t
dx

dx
ς = ∧ +

∫  

Applying the formulae )|()|()|( CBPCBAPCBAP ∧=∧  we get 

1 1
0 1 1 1

0

( ( ) ' | )( ( )[ ', ' ] | ( ) ') '
'

l P s x tP g s x x x t s x dx
dx

ςς =+ ∧ =∫
 

Applying the formulae ( )( | )
( )

P A BP A B
P B

∧= , we get:  

0 1 1 1 1

1 10

( ( )[ ', ' ] | ) ( ( ) ' | ) '
( ( ) ') | ) '

l P g s x x x t P s x t dx
P s x t dx

ς
ς

+ =
=∫  

= 0 1 0 1

0 10

Re ( , )( ') Re ( , )( ')
1 Re ( , )( ')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫ 1 1( ( ) ' | ) '

'
P s x t dx

dx
ς =  

Now applying the formulae ( )( | )
( )

P A BP A B
P B

∧= on the second term we get: 

0 1 0 1

0 10

Re ( , )( ') Re ( , )( ')
1 Re ( , )( ')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫ 1 1 1

1 1

( ( ) ' | ) '
( | ) '

P s x t s dx
P t s dx

ς = ∧ ↓
↓
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= 0 1 0 1

0 10

Re ( , )( ') Re ( , )( ')
1 Re ( , )( ')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫       

   

1 1
1

0

1 1
1

00

Re ( , )( ') (1 Re ( , )( '))
' '

Re ( , )( ") (1 Re ( , )( ")) "
'

l n
l

i
i

l l n
l

i
i

dAv s e s x Av s g s x
dx dx

dAv s e s x Av s g s x dx
dx

=

=

−

−

∏

∏∫
 

( 

 

Now, let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, assume that for all Ss ∈ , if )(sAf ∈  

and f  has an exponentially distributed lifetime, then )(sKf ∈ . Now, let )( 1rN  be a nest for 

state 1r  in G , let 'S  be the state space of )( 1rN , and let s }{' 1rS −∈ . Then for all 

)()( sKsAe −∈ , we want to calculate
11Re ( , , ( ( )*) )l s
rAv s e s N r . Note that since 

)()( sKsAe −∈  then 1( )e A r∈  and 
1' { }

( )
r S r

e K r
∈ −

∉ ∪ . If  1r  is regenerative, i.e. if 1( )e K r∈ , 

then once we reach state s , event e  would be active from the time we entered 1r . Hence, to 

calculate ))*)((,,(Re
11
s
rrNsesAv , we need to subtract from the distribution of event e  the 

amount of time taken to reach s  from 1r . In other words: 

11Re ( , , ( ( )*) )l s
rAv s e s N r = 11 1

0

( ( )[ ', ' ] ( ) ' | ( )*) )
'

'

sl
rP e s x x x r s x N r

dx
dx

ς+ ∧ → =
∫

 

Where 1( ) 'r s xς → =  represents the fact that state s  is entered after 'x  time units of entering 

1r . 

Formally, this can be done as follows: 

Let }',...','{ 21 meee = )(
}{' 1

rK
rSr −∈

∪  and let },...,,,{ 21 leeee = )(
}{' 1

rA
rSr −∈

∪ )(
}{' 1

rK
rSr −∈

∪− , i.e. 

1 2{ , , ,... }ve e e e )( 1rA∈ . We can assume without loss of generality that φ=∩ )'()( rKrK  for 

all }{'' 1rSrr −∈≠ . Let ig  be the average residual distribution for ie  in 1r  where {1,..., }i v∈  
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and let if  be the time distributions for ie'  in the state where they are initialized, for 

},...,1{ mi ∈ .  

We need to find 
11Re ( , , ( ( )*) ))l s
rAv s e s N r , where ))*)((

11
s
rrN  represents all traces in 

)( 1rN  starting with 1r  and ending in s . We recall from the definition of ESMPs that since 

)()( sKsAe −∈  then )(rKe ∉  for all }{' 1rSr −∈ . Now, assume that the average residual for 

all events in state 1r  are known, i.e. the distributions ig  where {1,..., }i v∈  are known, in 

other words we assume that 1r  was transformed into a regenerative state, then if we entered 

state s  after 'x  time units of entering 1r , then 
11Re ( , , ( ( )*) ))( )l s
rAv s e s N r x  (which is the 

probability that event e  occurs in s  within x  time units of entering s ), is defined as: 

11Re ( , , ( ( )*) ))( )l s
rAv s e s N r x = 11 1

0

( ( ) ' | ( )* )
( ) '

'

sl
rP r s x N r

P e dx
dx

ς → =
∫   (1) 

where 1( ) 'r s xς → =  represents the fact that state s  is entered after 'x  time units of entering 

1r , and )(eP  is the probability that e  occurs between 'x  and 'xx +  time units since entering 

1r  given that e  does not occur before 'x . So )(eP = 1 1

1

Re ( , )( ' ) Re ( , )( ')
1 Re ( , )( ')

l l

l

Av s e r x x Av s e r x
Av s e r x

+ −
−

 

And if we apply the rule 
)|(

)|()|(
BCP

BCAPCBAP ∧=∧  to the first term of Equation (1), we 

get: 

11 1( ( ) ' | ( )* )
'

s
rP r s x N r

dx
ς → =

= 

 1

1

1 1 1

1 1

(( ( ) ') ( )* | ) 1
' ( ( )* | )

s
r

s
r

P r s x N r r
dx P N r r

ς → = ∧ ↓
↓

   (2) 

 Before we proceed, let 
→

)( 1rN  be the semi-Markov process formed from )( 1rN  with 

the addition of all missing transitions out of any state in )( 1rN  that is governed by an event 
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from }',...,','{ 21 meee  and the states they lead to, i.e. all transitions that lead you outside 

)( 1rN  and that are governed by events initialized inside )( 1rN . The states added to 
→

)( 1rN  are 

made into absorbing states with respect to 
→

)( 1rN , so the probability of being in one of these 

states equals the probability of getting out of )( 1rN  on a transition from the set 

}',...','{ 21 meee . Denote by aS  the set of absorbing states of 
→

)( 1rN  that do not belong to 

)( 1rN . 

Now, denote by  

• 1E ]',0[ x  the fact that events 1 2{ , ,... }ve e e do not occur between ]',0[ x  since entering 

1r , then ])',0[( 1 xEP =
1
(1 ( '))

v

ii
g x

=
Π −  and  

• 2E ]',0[ x  the fact that no state in the set aS  is visited in the interval ]',0[ x  since 

entering 1r  given fact 1E . ])',0[( 2 xEP  is a function of the total time spent in a state 

in the set aS  in the interval ]',0[ x  relative to the SMP 
→

)( 1rN . 

])',0[( 2 xEP = ∑
∈

→

−
aSr

rN
r xL

x
)'(

'
11 )( 1 . 

• ]',0[3 xE  the fact that we are in state s  after 'x  time units since entering 1r , given 

that ]',0[1 xE , and ]',0[2 xE . Hence ])',0[( 3 xEP  is the transient state probability for 

state s  relative to SMP )( 1rN =. )'()( 1 xrN
sπ  

 Now, the left term of Equation [3],  

11 1 1( ( ) ' ( )* | )
'

s
rP r s x N r r

dx
ς → = ∧ ↓

= (P {events 1 2{ , ,... }ve e e do not occur between ]',0[ x  relative 

to the time 1r  was entered} ∧  {no state from the set aS  is visited in the interval 

]',0[ x } ∧ 1{ ( ' ) | ( ))}s x l r l↓ +
'

1
dx
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Now applying the formulae: )|()|()|()|( DBACPDABPDAPDCBAP ∧∧∧=∧∧ , we 

get: 

11 1 1( ( ) ' ( )* | )
'

s
rP r s x N r r

dx
ς → = ∧ ↓

 

= (P {events 1 2{ , ,... }ve e e do not occur between ]',0[ x  relative to the time 1r  was entered} ∧  

{no state from the set aS  is visited in the interval ]',0[ x } 1( ' ) | ( ))s x l r l∧ ↓ +
'

1
dx

 

=
'

])',0[(
])',0[(])',0[( 3

21 dx
xEdP

xEPxEP  

=
1
(1 [ ( ') (0)])

v

i ii
g x g

=
Π − − [ ∑

∈

→

−
aSr

rN
r xL

x
)'(

'
11 )( 1 ]

'
)'()( 1

dx
xd rN

sπ
 

 

And the bottom of the right term of Equation (2) is 

11 1( ( )* | )s
rP N r r↓ = 11 1 1

0

( ( ) ' ( )* | )
'

'

sl
rP r s x N r r

dx
dx

ς → = ∧ ↓
∫

 

=
0

l

∫ {
1
(1 [ ( ') (0)])

v

i ii
g x g

=
Π − − [ ∑

∈

→

−
aSr

rN
r xL

x
)'(

'
11 )( 1 ]

'
)'()( 1

dx
xd rN

sπ
} 'dx  

 From the above arguments, we conclude the following Theorem: 

 

Theorem 4.7. Let G  be a GSMP, let )( 1rN  be a nest for 1r  in G . We denote by S  the set of 

states of )( 1rN , let }{ 1rSs −∈ , let 1 2{ , ,... }ve e e = )()(
}{}{ 11

rKrA
rSrrSr −∈−∈

∪−∪  and let 

}',...,'{ 1 mee = )(
}{ 1

rK
rSr −∈

∪ . Let ig  be the time distribution for ie  where {1,..., }i v∈  and let 

if  be the time distributions for ie'  where },...,1{ mi ∈ . Let 
→

)( 1rN  be the process formed from 



 87 

)( 1rN  with the addition of all transitions governed by events }',...,'{ 1 mee  and their 

corresponding next states. And by aS  set of absorbing states of 
→

)( 1rN  that do not belong to 

)( 1rN . 

 Then for all )()( sKsAe −∈ : 

11Re ( , , ( ( )*) )l s
rAv s e s N r )(x = 

1
1

1
1

( )
( )

1
1 1

( )
( ) 10

1
0

( ')1(1 ( '))[1 ( ')]
' ' Re ( , )( ' ) Re ( , )( ') '

1 Re ( , )( ')( ")1(1 ( "))[1 ( ")] "
" "

a

a

N rv
N r s

i rl l li
r S

l lN rv
N r s

i ri
r S

d xg x L x
x dx Av s e r x x Av s e r x dx

Av s e r xd xg x L x dx
x dx

π

π

→

→

=
∈

=
∈

Π − −
+ −

−
Π − −

∑
∫

∑∫
 

where )'()( 1 xrN
sπ  is the transient state probability for state s  relative to the SMP )( 1rN  and 

∑
∈

→

aSr

rN
r xL )'()( 1 is the total time spent in the states of the set aS  in the interval ]',0[ x  relative to 

the SMP 
→

)( 1rN . 

( 

 Note that both theorems apply to the steady state case by taking l → ∞ . 

 

4.3.5. Transient and Steady-State Simulations: Definitions and 

Properties. 

In this section, we will present the definition of s-simulation, and we will prove that if 

an NRGSMP s-simulates another, then the steady state probabilities of the latter can be 

deduced from the former. As a generalization of s-simulation, we will present another 

simulation called transient state simulation or t-simulation as a separate definition, then we 

will prove that if an NRGSMP t-simulates another, then the transient state probability of the 
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latter can be deduced from the former. Properties of both simulations will be given in two 

separate theorems. 

Definition 4.11: Steady-state simulation 

Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',,','(' 0 KAFsSG �Ε= be two NRGSMPs.  

We say that 'G  steady-state simulates (or s-simulates) G  if there exists a partition 

{ , 1,...,| |}j j S∆ = ∆ ∈  of the states in 'S , and a bijection ∆→SR :  such that ∆∈}'{ 0s  and 

}'{)( 00 ssR =  and for all regenerative states r S∈ , we have that ( ) { '}R s s=  for some state 

' 's S∈ . Moreover, for every state Ss ∈1  if }',...,'{)(
1111 nsssR =∆=  then: 

1. If ∈→ 21 ss e � , then for each },...,1{ 1ni ∈  there exists a state )(' 2
2 sRs i ∈  and 

a transition ∈→ 2'' i
e

i ss '� , such that if )( 1sKe ∈  then )'(' isKe ∈  and  

)(')( '1
eFeF

iss = , and inversely, 

2. For each },...,1{ 1ni ∈  if ∈→ 2'' i
e

i ss '�  then there exists a state 2s  with 

)(' 2
2 sRs i ∈  and a transition ∈→ 21 ss e � .  

3. For 1{1,..., }i n∈ , let ''
isΓ  be the set of all single regenerative traces leading to 'is  

in 'G , then we have that 1
1 ' 'Re ( , , ( ' )) Re ( , ' , ' )

i is i sAv s e s R Av s e s− Γ = Γ  for all 

)( 1sAe ∈ . 

 

To illustrate the above definition, assume that 'G  s-simulates G  through a partition 

∆ . Let )",",",",},'{,{/' 0 KAFEsG �∆=∆  be the GSMP such that, for all ∆∈∆∆ 21, : 

21 ∆→∆ e  iff for all 11 ∆∈s  and for all 22 ∆∈s  we have 21 ss e→ , then from a 

functional point of view (i.e. if we neglect the timing constraints), G  and ∆/'G  would be 

identical. On the other hand, we have from Points 1 and 2 that for every Ss ∈  if )(' sRs ∈  

and if ''
isΓ  is the set of all single regenerative traces leading to 's  then )'()( sKsK ⊆ , and 
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from Point 3 that if )()'( sKsKe −∈ , then e  has the same average residual distribution in 

both states s  and 's  given that we reached s  through a trace from the set 1
'( ' )
isR− Γ . 

Note that if ),,,,,,( 0 KAFsSG �Ε=  s-simulates )',',',',,','(' 0 KAFsSG �Ε=  and 

if ))(()(' 1 rRKrK −= for all 'Sr ∈ , then G  is structurally bisimilar to 'G  

 

Now we present some properties of the steady-state simulation, among which the 

property which states that if a GSMP steady-state simulates another one, then the steady state 

probabilities of the latter could be deduced from the steady state probabilities of the former.  

Theorem 4.8. Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',',','(' 0 KAFsSG �Ε= be two 

GSMPs such that 'G  s-simulates G . Let },{ Jjj ∈∆=∆  be the partition of states 'S  and 

∆→SR :  be the correspondence that establishes the steady-state simulation. Now let s S∈ , 

and assume that 1( ) { ,..., }nR s r r= ∈∆ , and let '
ir

Γ  be the set of all single regenerative traces 

leading to ir  in 'G , and assume that 1( ' )
ii rR−Γ = Γ  then we have that: 

1. '( | ) ( )G G
i is rς ςΓ =  where ( | )G

isς Γ  is the distribution of the sojourn time in state s  

at equilibrium given that a trace from iΓ  was followed. 

2. If 'it  is a transition out of state ir  in 'G  and if 1( ' )it R t−= , then '( | ) ( ' )G G
i it tπ πΓ =  

where ( | )G
itπ Γ  is the probability at equilibrium that transition t  occurs from state s  

given that a trace from iΓ  was followed to reach state s . 

3. '

1

( ) ( )
n

G G
i

i

s rπ π
=

= ∑ .  

Proof. We prove the four point one by one: 
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1.  To prove this point, it is enough to observe that ( | )G
isς Γ  is a function of the 

residual lifetimes of the active events in state s  knowing that a trace from iΓ  was 

followed to reach s .  

2.  Similarly, to prove this point, it is enough to observe that ( | )G
itπ Γ  is a function of 

the residual lifetimes of the active events in state s  knowing that a trace from iΓ  was 

followed to reach s .  

3.  To prove this point, let 0" ( ', ' , , ", ', ', ")G S s F A K= Ε �  be the GSMP that is 

isomorphic to 'G  from a functional point of view, with 1"( ) ( ( ))K r K R r−=  and 

1 ( )
" ( ) ( )r R r

F e F e−= . In other words, G  and "G  are structurally bisimilar. Then it is 

enough to prove that  

a. "

1

( ) ( )
n

G G
i

i

s rπ π
=

= ∑  and  

b. " '( ) ( )G G
i ir rπ π=  

Property (a) is a direct consequence of structural bissimulation. 

Property (b): Let 1{ ,..., }mv v  be the set of all states from which ir  is directly accessible 

as follows: je
j iv r→  for all {1,..., }j m∈ . Then, the probability of being in state ir  

at time x  is equal to the probability of having entered one of the jv  at time 

' "x x x− −  where ' "x x+  is between 0 and x , and then moving to state ir  after 

spending "x  time units in jv .and staying in ir  for at least 'x  time units, hence, in 

both GSMPs: 

0( ( ) | ' (0)iP r x s =  
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' "'
0

10 0

' " '

( ) { }

( ( ' ") | ' (0) ( Re ( , , "))
'

[1 ( Re ( , , "))]( ( ) ') " '
j j

x x xx x m
j j j

j

x x x x x
j i

e A v e

dP v x x x s d Av s e v x
dx dx

Av s e v x r x dx dxζ

− −

=

− − −

∈ −

− −

− ≥

∑∫ ∫
∏

 

Where '( )x x
irζ −  is the soujourn time in state ir  given that state ir  was entered at time 

'x x− , hence  

0lim ( ( ) | ' (0) ( )i ix
P r x s rπ

→∞
= =  

'
0

10 0

( ) { }

( ( ' ") | ' (0) ( Re ( , , "))
lim( )

'

[1 ( Re ( , , "))]( ( ) ') " '
j j

x m
j j j

xj

j i
e A v e

dP v x x x s d Av s e v x
dx dx

Av s e v x r x dx dxζ

∞

→∞=

∈ −

− −

− ≥

∑∫ ∫
∏

 

But the average residual times are the same in both GSMPs, hence the steady state 

probabilities of consecutive states are related by the same formulae in both GSMPs. And 

hence they both have the same SSP. 

( 

 In what follows, we will generalize s-simulation by removing the assumption that the 

GSMP is in steady state. Then we will prove that if 'G  t-simulates G , then the transient 

state probability of G  could be obtained from that of 'G . The reason for the generalization 

is only to show how the equivalence generalizes to transient state, and the nice properties 

that one gets from t-simulation; but this is not relevant to the rest of the thesis, as only steady 

state properties will be considered. 

 

Definition 4.11(2): Transient state simulation 

Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',,','(' 0 KAFsSG �Ε= be two NRGSMPs. We say 

that 'G  transient-state simulates (or t-simulates) G  if  
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1. 'G  steady-state simulates G  and, 

2. if },{ Ss jj ∈∆=∆  and ∆→SR :  are the partition and the bijection that establish the 

steady-state simulation, then for any Ss ∈1 , if }',...,'{)(
1111 nsssR =∆= , and if ''

isΓ  

is the set of all single regenerative traces leading to a state 'is  in 'G , then, given that 

we entered states 1s  and 'is  after l  time units of the start of the running of the 

system, then we have that 1
1 ' 'Re ( , , ( ' )) Re ( , ' , ' )

i i

l l
s i sAv s e s R Av s e s− Γ = Γ  for all 

)( 1sAe ∈ . 

 

In the next theorem, we will present the properties of the t-simulation. 

Theorem 4.8(2). Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',',','(' 0 KAFsSG �Ε= be two 

GSMPs such that 'G  t-simulates G . Let },{ Jjj ∈∆=∆  be the partition of states 'S  and 

∆→SR :  be the correspondence that establishes the transient state simulation. For any 

s S∈ , if 1( ) { ,..., }nR s r r= ∈∆ , then '
0 0

0

( ( ) / (0)) ( ( ) / ' (0))
n

G G
i

i

P s x s P r x s
=

= ∑ .  

Proof. The proof is done in two steps: 

1. Let 0" ( ', ' , ', ", ', ', ")G S s F A K= Ε �  be the GSMP such that  1"( ) ( ( ))K r K R r−=  and 

1 ( )
" ( ) ( )r R r

F e F e−=  for all '( )e A r∈ . In other words, "G  and G  are structurally 

bisimilar, then we have that "
0 0

0

( ( ) / (0)) ( ( ) / ' (0))
n

G G
i

i

P s x s P r x s
=

= ∑ . So it is enough to 

prove that for all r  in 'S , ' "
0 0( ( ) / ' (0)) ( ( ) / ' (0))G GP r x s P r x s= . This will be done in 

the next step. 

2. Let 1{ ,..., }mv v  be the set of all states from which r  is directly accessible as follows 

ie
iv r→  for all {1,..., }i m∈ . Then, the probability of entering state r  at time x  is 

equal to the probability of having entered one of the  'iv  at time 'x  where 'x  is 
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between 0 and x ,  and then moving to state r  after spending x - 'x  time units in 'iv . 

Hence: 

'
0( ( ) | ' (0)GdP r x s

dx
=  

' ' '
0

10

' '

( ) { }

( ( ') | ' (0) ( Re ( , , '))
'

[1 ( Re ( , , ')) ] '
i i

x G x Gm
i i i

i

x G
i

e A v e

dP v x s d Av s e v x x
dx dx

Av s e v x x dx
=

∈ −

−

− −

∑∫
∏

 

(Note that ' '

( ) { }

[1 ( Re ( , , ')) ]
i i

x G
i

e A v e

Av s e v x x
∈ −

− −∏  represent the fact that events other 

than ie  that are active in iv , occur after ie ) 

But ' '( Re ( , , '))x G
iAv s e v x x− = ' "( Re ( , , '))x G

iAv s e v x x−  for all ( )ie A v∈ , hence they 

both have the same set of equations, and hence the same transient probability. 

( 

 Note that, if an NRGSMP was transformed into an HMRP, and if all the states of the 

HMRP were transformed into regenerative states by assigning them their average residual 

distributions as a function of l , In other words, if for every state s , and every event 

( )e A s∈ , we set  ( ) Re ( , )( )l
sF e Av s e s x=  which is a function of the time state s  was 

entered: l , then the HMRP becomes a non-homogeneous semi-Markov process . We will not 

go into the specifics of this transformation as we are focusing on the steady state case. 

However, for more information on non-homogeneous semi-Markov process, the reader is 

referred to [58],[59]. 
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4.4. From NRGSMP to SMP 

In this section, we present the algorithms that transform an NRGSMP into an SMP. 

In Subsection 4.4.1 we present the algorithm that transforms the NRGSMP into an HMRP, 

then in Subsection 4.4.2 we present the algorithm that transforms the obtained HMRP into an 

SMP. An application will then be presented in Subsection 4.4.3. 

 

4.4.1. Algorithm 1: NRGSMP to HMRP 

In this Section, we will present an algorithm that transforms a NRGSMP into an 

HMRP such that the HMRP is structurally bisimilar to the NRGSMP (Theorem 4.9). In what 

follows we will adopt the following two assumptions: 

• The NRGSMP is connected (in other words every state is reachable from the 

starting state). 

• We assume that the regenerative states are not part of any non-trivial ESMP. 

For simplifying the description of the algorithm, we will say in this section 

that each regenerative state is a reg-ESMP, that is, a trivial ESMP that 

consists of a single state, namely the regenerative state in question. 

 

4.4.1.1. Overview 

We will start first with the following definition: 

Definition 4.12: Execution tree, leaf node 

• An execution tree of a GSMP G  is a tree (graph with no cycles) that 

characterizes all possible execution paths that could be followed during the 

execution of G . The nodes of the tree represent states in G , and the arcs (also 

called transitions) connecting the nodes represent transitions between states in G . 
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In an execution tree, the root node corresponds to the starting state, and the 

number of transitions out of a node is equal to the number of transitions out of the 

corresponding state. An execution tree could be infinite. 

• A leaf node in an execution tree is a node with no outgoing transitions. 

 

The algorithm that transforms an NRGSMP ),,,,,,( 0 KAFsSG �Ε=  into an HMRP 

'G  works by constructing part of a “special execution tree” for the NRGSMP. Each node of 

the tree actually consists of copies of one or more state of G, such that all states in the same 

node belong to a reachable part of an ESMP. The nodes of this tree therefore represent a sub-

ESMPs (i.e. every node is composed of a set of states and a set of transitions linking these 

states). For each transition between nodes 1n  and 2n , the transition is actually an arc 

between a particular state of 1n  to a particular state of 2n . We develop the tree by going 

down the tree until a leaf node is a reg-ESMP of G (i.e. it consists the copy of a single 

regenerative state of G) such that, this state is already represented by another node within the 

tree so far developed. The scenario is the following: 

1. The root node of the tree is a reg-ESMP which is a copy of the starting state of the 

NRGSMP. At this point, the only leaf node is the root node. 

2. For every leaf node n , do the following: 

(a) If n  is a reg-ESMP and this reg-ESPM is already represented by another node 'n  in 

the tree built so far, then we stop expanding this node (because the reg-ESMPs of G  

will be presented by another node in the HMRP), and nodes 'n  and n  are considered 

equivalent, and will be merged at the end. Otherwise, 

(b) for each copy of state s  in the ESMP of node n , we do the following: 

Let },...,{ 1 nNN  be the set of all ESMP in G  having s  as the in-border. Let iN '  be a 

copy of the sub-ESMP of iN  formed from the states of iN   that are reachable from 
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s . Then we create n  nodes }',...,'{ 1 nNN , add them to the tree by creating arcs out of 

state s  of n  to the proper states in the sub-ESMPs }',...,'{ 1 nNN .  

Note that, if the ESMP that forms node n  contains copies of two states, say s and s’, 

such that the same sub-ESMP is reachable from both states, then two different nodes 

are created for the same sub-ESMP, one accessible from s, and the other from s’. 

3. The last step would be to merge the leaf nodes that satisfied condition (a) with their 

equivalent nodes. Equivalent nodes are represent the same reg-ESMP. 

 

 Before presenting the different functions used in the algorithm, we need the following 

Corollary: 

Corollary 4.4. Let G  be an NRGSMP, and let 'G  be the HMRP obtained by applying the 

algorithm described above. The finiteness of the HMRP 'G  is guaranteed from the properties 

of G . 

Proof. Let H  be the tree obtained from the above algorithm without the last step 3, i.e. the 

tree whose nodes are sub-ESMPs, and define a relation 'R  over the states of 'G  as follows: 

''ssR  if s  and 's  belong to the same node in the tree H , assume that 'R  partitions the states 

of 'G  into the sets: },...{ 1 nSS . Then the following facts are straightforward: 

1. For all },...,1{ ni ∈ , let iM  be the set of all states in G  that are associated with the 

states in iS . Then || iM = || iS . 

2. Let C be a regenerative cycle in G . Let B  be any branch in H . Let },...,{ 0 lnn  be the 

set of nodes in B . Let Γ  be the set of all possible paths: LTTTT ...10= , where iT . is a 

trace inside node in . Then C is represented at most once in any trace of Γ . 

3. If 'G  is infinite, then there should exist a state s  of G  that is represented infinitely 

many times in 'G . Now, we know that 'G  has a finite branching factor (number of 
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states accessible from a given state through one transition). Hence there exists a path 

T  in 'G  containing infinitely many states that represent s , say ....2211 rTrTT =  where 

all ir s are associated with state s . Let m  be the number of REG cycles that s  

belongs to in G , then from point (2) above, we conclude that each cycle is 

represented at most once in trace T . That means that there exists a sub-trace of T : 

='T 221 rTr , where 'T  represents the execution of an NSM cycle C of G . But states of 

an NSM cycle belong to the same ESMP, i.e. 21 'rRr  should be and. 21 rr =  . 

( 

 

4.4.1.2. Algorithm 1 

The algorithm is composed of four major and six minor functions. 

Major Functions:  

a. GET-ESMP: This function finds all ESMPs belonging to the NRGSMP, and 

identifies the in-borders for each ESMP.  

b. BUILD-TREE: This function takes the NRGSMP as input and creates the 

TREE by calling the functions below. 

c. ADD-NEST: This function takes a node n , then for each state s  belonging to 

the sub-ESMP forming this node, it finds the nests of s  },...,{ 1 mMM  then it 

creates a new node for each sub-ESMP in the nests, and adds it to the tree 

with a transition from state s  to the appropriate states in the sub-ESMP. 

d. MERGE-REG: This function takes the partial TREE as input and merges all 

nodes that represent the same reg-ESMP. 

 Before presenting the minor functions, we will introduce the data types. 
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Data Types 

• },...,{ 0 heeE =  is a set of events labels in the given NRGSMP.  

• EL  is a list of elements of type E . 

• A State is a class with the following fields:



























→ �:
:
:[]

,:
,:

esListofStatESMP
esListofStatNEST

ELA
ELK

, where 

each entry in []NEST points to a set of states of an ESMP that have this state 

as one of its in-borders, the field ESMP  is a list of states representing the 

ESMP to which this state belongs, and �  is an array of transitions, i.e. an 

array of elements of type Trans  described below. 

• A transition Trans  is a class with the following fields: 














States
States
Ee

:
:'

,:
 . 

• A Node is a class with the following fields: 



























→

→

,:
,:

,:][

:
:

NodeeqNode
Nodeparent

S

sListofTran
eListofStatM

tt � , where M  

represents all the states of the sub-ESMP that forms the node, and →  is a list 

of all the transitions between the states of the sub-ESMP, ][St→  represents 

an array of transitions out of each state of the node to the states of the other 

nodes, so ][st→  is the array whose entries are of type Arc  described below, 

eqNode  represents the node to which this node is equivalent (if any), parent 

represents a pointer to the parent of the current node.  
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• An Arc  is a class with the following fields 



























Noden
Noden
States
States
Ee

:'
:
:
:'

,:

, it represents a 

transitions between two states each in a different node. 

• A ListofState is a list of elements of type State 

• A ListofNode is a list of elements of type Node 

 

Minor Functions: 

a. Function CREATE-NODE( ):,:,: NodenStateseListofStatS : void, creates a 

new node for the tree, the new node represents the sub-ESMP whose states 

are the set of states from S  that are reachable from s , and its parent in the 

subtree is node n . 

b. Function CREATE-ARC( )',,',, nnrrt  void, creates a new arc between states r  

and 'r  of nodes n  and 'n , respectively, the new Arc represents transition t . 

c. Function BELONGS-TREE( ): Noder : boolean, takes a node r  representing a 

reg-ESMP as input. Its purpose is to check whether the ESMP represented by 

node r  is represented in the TREE by another node say 'r , then we set 

r.eqNode= 'r  meaning that r  and 'r  are equivalent and should be merged, 

using the function MERGE below.  

d. Function CREATE-NEST ( NodenStateseListofStatS :,:,: ): Node, takes a 

set of states that represent the states of an ESMP and one of its in-borders s  

belonging to node n , and creates a node out of all states in the ESMP that are 

reachable from s  and attaches the nest to the tree by creating all the possible 

arcs between s  and the states of the newly created node. 
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e. Function IS-REG-ESMP( ): Noden  boolean, takes a node as input and checks 

whether the node represents a reg-ESMP. 

f. Function MERGE ( ):, Nodenr : void, takes two nodes that represent the same 

reg-ESMP and merges them together making them one node: all arcs leading 

to the state of r  are redirected to lead the state of n . 

g. Function ADD ),( NΨ : void takes a set Ψ  and an element N  and adds it to 

the set. 

h. Function EXTRACT ),( NΨ : void, takes a set Ψ  and an element N  and 

extracts it from the set . 

The minor functions will not be developed as they are straightforward. 

 

Global Variables 

• 0s  of type State represents the given NRGSMP, every state in this structure 

(including the starting state) is connected through transitions to a set of other 

states representing the states that are immediately accessible from this state. 

• 0n  of type Node represents the HMRP built so far. 

• Ω  represents the nodes in the tree that need to be further expanded. 

• Σ  contains all the nodes in the tree that will not be expanded anymore. 

 

4.4.1.3. Definition of the major functions 

Function GET-ESMP( )�������
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Function BUILD-TREE ( 0s : State): Node 
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�������-�	�������������������������	��� �� 0s ��	�����������������	����.���� 0n ��
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Function ADD-NESTs ( ListofNodeNoden :,,: ΣΩ ): void 

N ������1  

�������
�������!�	����� s ���� Mn. ��

� �271��������1�

� �������

  =N 3��'��$�����/ nsiNESTs ,],[. 01 

  8
�/8�$���$����/ )N 0����  8
�/9�:4���$����/ )N 0 

� � � '&&� ),( NΣ �

� � ��	���

� � � '&&� ),( NΩ 1�

� � 1+= ii 1�

� ;����� nulliNEST =][ �

�

Function MERGE-REG ( 0n :Node):void 
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Theorem 4.9. Let ),,,,,,( 0 KAFsSG �Ε=  be an NRGSMP and let 

)',',',',',','(' 0 KAFsSG �Ε=  be the GSMP obtained from G  by applying the above 

algorithm. Then  

1. 'G  is an HMRP and 

2. G and 'G  are  structurally bisimilar. 

Proof. 

To prove that the resulting process is an HMRP, consider the partial tree built by the 

algorithm. Every node in the tree has exactly one path leading to it. And on this path, each 

node is an ESMP. Therefore the set of all traces leading to a certain state within a certain 

node is such that each trace has the form nTTT ...21  where each iT  is a trace within a sub-

ESMP on the path along the tree.  

To prove Point 2, let R  be the following relation: 

For s S∈ , ( )R s  is the set of all states from 'S  that are created in the algorithm as 

representing state s . Then for all ( )r R s∈ , s  and r  have the same active events, and these 

events lead to states that are related through R . Moreover, '( ) ( )K r K s=  and ' ( ) ( )r sF e F e=  

for all ( )e K s∈ . 
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( 

Figure 9 shows the HMRP obtained by applying the algorithm to the NRGSMP 

shown in Figure 3. The second digit in the state names in Figure 9 represent the 

corresponding state in the original NRGSMP. 

 

4.4.2. HMRP to SMP 

 

4.4.2.1. Overview 

Given an HMRP ),,,,,,( 0 KAFsSG �Ε= , we would like to transform G  into an 

SMP, or in other words, we would like to transform every non-regenerative state in G  to 

become a regenerative one. We use the following procedure: 

1. For every non-regenerative state s  in the HMRP such that AvR
sT  is a path 

srrrT n
AvR

s =→→→= ...10 , we transform s  to become regenerative as follows: 

we first transform 0r  to become regenerative, then 1r  and so on (Theorem 4.6). 

2. For every non-regenerative state s  in the HMRP such that AvR
sT  is a nest 

AvR
sT s

rri r
rN )*)((= , we transform every state in the nest to become regenerative 

using the theory of semi-Markov processes (Theorem 4.7) 

3. We repeat Steps 1 and 2 until all states are regenerative. 

To understand why the above steps actually transform every state in the HMRP to 

become regenerative, let us consider a non-regenerative state s  of the original HMRP G . s  

will become regenerative by assigning: ))(,(Re))(( xsesAvxeFs =  for all )()( sKsAe −∈ . 

From Theorem 4.3 and 4.4, we know that if sT  is a regenerative path with only one 

regenerative state leading to state s then ),,(Re),(Re AvR
sTsesAvsesAv =  and AvR

sT  is of the 
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form: s
r

n
mmm

r
r

nr
r

n
mn

m

m
nn rNTrNTrNT )*)((...)*)(()*)((
1
3

2
2

2
1
2

1
1

1
222111  where, in

iiii rrrT →→→= ...21  are 

paths, )( in
ii rN  are nests and 

1
1)*)(( +i
in

i

i r
r

n
ii rN  are set of  traces belonging to iN . Let us apply the 

steps above to the HMRP and focus on its impact on state s : 

• Step 1 transforms every state in the path 1T  to become regenerative, starting 

from state 1
1r , then state 2

1r , until state 1
1
nr  (note that 1

1r  is already 

regenerative). 

• Step 2 transforms all states in 1N  to become regenerative. Note that the in-

border 1
1

1 −nr  was already transformed to be regenerative in the previous step. 

• Next we repeat step 2 on path 2T . (Note that 1
2r  was already transformed to 

become regenerative in the previous step). 

• And so on … until s  becomes regenerative. 

 

4.4.2.2. Algorithm 2 

Traverse the HMRP G  and transform every state s  to become regenerative (starting 

from the starting state) as follows: 

• If s  is not part of any nest, i.e. if every trace to s  has a postfix sst e→': , we 

transform s  to become regenerative using Theorem 4.6 (note that 's should have 

been transformed into a regenerative state in previous steps). 

• If s  is part of a nest s
rii i

rN )*)(( , we transform every state in the nest to become 

regenerative using Theorem 4.7 (note that ir  should have been transformed into a 

regenerative state in previous steps). 

The SMP obtained would have the same states as the HMRP, and it s-simulate the HMRP, 

the relation that establishes the s-simulation is the identity relation. 
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Theorem 4.10. Let ),,,,,,( 0 KAFsSG �Ε=  be a NRGSMP and let 

)',',',',',','(' 0 KAFsSG �Ε=  be the HMRP obtained from G  by applying Algorithm 1. 

And let )",',",',','(" 0 KFsSG �Ε=  be an SMP obtained from 'G  by applying Algorithm 2. 

Then "G  s-simulates G .  

Proof. The proof is easily deduced from the way we constructed the SMP. 

( 

4.4.3. Application 

As an application, consider State 1-1 in Figure 9. We will attempt to find 

)11,(Re −asAv . Note that 11−T = 0-0 � 1-1 is the defining trace for state 1-1, the ESMP to 

which state 1-1 belongs is )3322)1122(11 −→−→−→−→− frnsr , and 

AvRT 11− = nsrd )1122(1100{ −→−→−→− | n any integer}. So from Theorem 4.2, 

)11,(Re −asAv = ),11,(Re 11
AvRTasAv −− . Note that AvRT 11−  is composed of one nest 

)00( −N  (shown in Figure 12 (a)). So to find ),11,(Re 11
AvRTasAv −−  we can apply Theorem 

4.7. Note that the SMP )00( −
→
N  is shown in Figure 12 (b), (recall that )00( −

→
N  is formed 

by adding the missing transitions governed by the events from (1 1) (2 2)K K− ∪ − ). 

We have that: ),11,(Re 11
AvRTasAv −− = 1 1

0 0Re ( ,1 1, (0 0)* )Ave s a N −
−− −  

And with a straightforward application of Theorem 4.7 we get: 

1 1
0 0Re ( ,1 1, (0 0)* )Ave s a N −

−− − = 

∫
∫

∞

∞ −
−

−
−

−

−
−

−
−

−

→

→
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'
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−
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The final step would be to set ))((11 xaF − = ))(,11,(Re 11 xTasAv AvR
−− . 

 

 

 

 

 

 

 

 

 

 

 

           a. SMP )00( −N          b. SMP )00( −
→
N  

Figure 12. SMPs )00( −N  and )00( −
→
N  

 

4.5. Practical Limitations 

 

4.5.1. Space Complexity 

Let ),,,,,,( 0 KAFsSG �Ε=  be an NRGSMP. Assume that all ESMPs in G  are strongly 

connected, and let },...,,{ 21 qMMM  be the set of strongly connected ESMPs in G . (Note 

that if the ESMPs are not strongly connected then we take the strongly connected ESMP 

parts; refer to Theorem 4.1, and the analysis would only be slightly different). Let 
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)',",',',',','(" 0 KAFsSG �Ε=  be the HMRP obtained by applying Algorithm 1. Let 

)',',',',',','(' 0 KAFsSG �Ε=  be the HMRP obtained from G  by applying Algorithm 1, but 

instead of executing the function MERGE-REG ( Σ ) at the end, we delete all regenerative 

states in the set Σ  (refer to Section 4.4). Then 'G  has the same number of states as "G , but 

'G  has no regenerative cycles. Let R  be the s-simulation from G  to "G . We would like to 

determine |'| S .  For that, we will consider 'G  rather than "G  as the absence of regenerative 

cycles in 'G  renders it easier to work with. 

We need the following notation: 

1. t  is the maximum number of transitions out of a state in the HMRP (or NRGSMP), 

that do not lead to a regenerative state, we call it the branching factor 

2. m  is the maximum number of states among the ESMPs of G , if G  has no ESMPs 

then 1=m . 

3. RS  is the set of regenerative states in G  

4. SMPS  is the set of states in G  such that 1|.| >ESMPs   

5. remS  are the remaining states in G : remS ∪−= SMPSS ( )RS  

6. nS =||  is the number of states in G  

 

Lemma 4.3. We define a relation 'R  on the states of 'G as follows: 

''ssR  if )(', iMRss ∈  for some },...,1{ hi ∈ . Then 'R  partitions the set 'S  into distinct 

subsets '/' RS . We divide the set '/' RS  into two distinct subsets '/'1 RS  and '/'2 RS  where 

'/'1 RS  contains all sets containing exactly one state (i.e. all sets from '/' RS  that consist of 

only one element). Let )'/'(' 1
1

1 RSRS −= . Then 

o |'| 1S = '/'| 1 RS | 
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o |'/'| 2 RS  is equal to the number of ESMPs in the HMRP 'G , in other words, every 

state in |'/'| 2 RS  represents an ESMP from the set },...,,{ 21 hMMM  

o |'| S < |'/'||'/'| 21 RSmRS + =. |'/'||'| 21 RSmS + . 

Proof. Straightforward 

( 

Lemma 4.4. Let )/',/'( RRSH �= be a labeled transition system, where RS /'  is defined as 

above and for all ∈→ ': sst � , ∈→ RsRst /'/: '� , then H  is a tree. 

Proof. Note that because of our assumption about ESMPs, the tree H is the tree of nodes that 

we built in Algorithm 1. 

( 

Now, we divide the set },...,,{ 21 qMMM  into two subsets, say },...,,{ 21 hMMM  and 

1{ ,..., }h qM M+ , such that all the in-borders of the ESMPs in },...,,{ 21 hMMM  are 

regenerative. 

We would like to determine the number of states in RS /' , and for that we assume 

that the branching factor for H  is 't , the number of leaf nodes to be l  (i.e. the number of 

different branches in the tree),  

 

Lemma 4.5. The tree defined in Lemma 4.4 has the following properties: 

o )(||)( hqS rem

mtl −+<  

o ||)|(|'1
remR SlSS +<   

o hShqlRS R ||)(/'2 +−=  
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Proof. The proof could be deduced from the following observations: 

o Every state in RS  is represented only once in the set 1'S . 

o Let s  be a state in remS , then s  is represented at most once in a branch of H  

(otherwise if it is represented twice, then there would be an execution of a non-

regenerative cycle from G , but s  is not part of any ESMP, a contradiction) 

o Let iM  be an ESMP in 1{ ,..., }h qM M+ , then iM  is represented by at most one state in 

every branch of H  and once per regenerative state i.e. by a total of lS R +|| times. 

(recall that iM  is strongly connected). 

o Let iM  be an ESMP in },...,,{ 21 hMMM , then iM  is represented at most once per 

regenerative state (i.e. by a total of || RS  times.). 

( 

From the above theorem, we conclude that |/'| RS < ||))(|(| )(|| remhqSR SmtS
rem −++  

and  =RS /'2 )()( )(|| hqmt hqS rem
−−+ + hS R ||  and  

++= −+ ||))(|(| )(|| remhqSR
T SmtSn

rem ]||)()[( )(|| hShqmtm RhqS rem

+−−+  

))](|)(|)[( )(|| hqmSmtOn remhqS
T

rem
−+= −+  

Theorem 4.11. If )',',',',',','(' 0 KAFsSG �Ε= implements the enabling restriction then  

o φ=remS  and  

o hq =  

Idea behind the Proof. Let 'Ss ∈  be a non-regenerative state, then )(sA  would consist of 

one non-exponentially distributed event, say g , and several exponentially distributed ones, 

say vee ,...,1 , so state s  has 1+v  transitions out of it corresponding to events vee ,...,1  and g , 
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to states 11 ,,..., +vv sss  respectively. And the sub-GSMP formed by s  and vss ,...,1  and the 

transitions vee ,...,1  is an SMP. Note that if vee ,...,1  is empty, then for any state r  such that s  

is accessible from r  by one transition, ESMPs ∈  of r . Point 2 is straightforward. 

( 

Note however that if φ=remS  and hq = , then the NRGSMP need not implement the 

enabling restriction, an example is depicted in Figure 10. 

Now if || remS  = 0 , i.e. if all states are either regenerative or belong to a non-trivial 

ESMP, then ))]()()[( )( hqmmtOn hq
T −= − , so  if hq −  is small, i.e. if the number of ESMP’s 

with at least one non-regenerative in-border is small (say 2), then this method would have an 

acceptable space limitation. Now, if 0|| =remS  and hq = , then 

|)|( R
T SmhOn = = |)||(| RR SSSO − .  

For the example in Figure 10, 1=mt  and 0== qh , hence =Tn |||| remR SS + n=  

 

4.5.2. Time Complexity 

We define the basic operations as: 

• equality checking, 

• assignment statements, 

• unions and subtractions of two sets, and 

• additions and subtractions of two integers. 

The complexity of the basic operations is assumed to be a fixed constant (we use the 

value 1). Moreover, we assume that the integral calculation involves the evaluation of an 
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expression a large number of times. We call this number c . The evaluation of the expression 

has its own complexity which must be taken into account. 

The time complexity will be presented for each algorithm in the following: 

Algorithm1 : In this algorithm, the total number of nodes that we create is Tn . We first 

execute function GET-ESMP. Then for every node that we create, we execute function 

ADD-NEST. Then after creating all the nodes, we call function MERGE-REG. So if we 

denote by A , B  and C  the complexities of ADD-NEST, MERGE-REG and GET-ESMPs  

respectively, the total complexity of Algorithm 1 would be: 

CBAA ++=1               (1)  

where 

• A : ADD-NEST calls CREATE-NEST, whose complexity is m , a maximum of mt  

times, and function BELONGS-TREE , whose complexity is Tn , a maximum of t  

times, so its total complexity is )( 2
TT tmntnA +=  

• :B MERGE-REG executes MERGE, which has a complexity of t , || Σ  times. But 

|| Σ  is less than the total leaf nodes in the tree, i.e. )(||)(|| hqS rem
mt −+<Σ  and 

)(||)(|| hqS rem
mtttB −+<Σ= . 

• C : GET-ESMP, this function has a complexity of TnC 4= as each of the steps 1, 2, 3 

and 5 has a complexity of Tn  

Note that many of the functions are not referred to here as they have a complexity of 1. 

Equation (1) then becomes: 

=1A )( 2
TT tmntn +  + )(||)( hqS rem

mtt −+  + Tn4  

= )( 2
TtnO  
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Algorithm2 : This algorithm involves the following computations: 

1. For every )(sNi , determine )(sNi

→
: note that we have a maximum of t  transitions out 

of a state, so if in  is the number of states in the nest )(sNi  then the complexity for 

determining )(sNi

→
 is: )(

1
∑

=

j

i
itnO .  

2. For every )( ii sN determine the steady state probability for )( ii sN  and the expected 

time spent in an absorbing state of 
→

)( ii sN  for a given interval. If we have j nests 

)( ii sN  such that )( ii sN  has in  states and 
→

)( ii sN  have say in'  states, for all 

},...,1{ ji ∈  then the complexity for the this step is less than 

)2()'2'( 3

1

3

1

3 cmOncnO
j

i

j

i =+ ∑∑ .  

3. For every state, applying Theorem 4.6 or 4.7: the complexity of this step is )2( TcnO  

So the total complexity for Algorithm 2 is:  

(O + )(
1

∑
=

j

i
itn )2( 3cm+ )2( Tcn+ )22( 3

TcncmO +=  

To summarize, the total time complexity for Algorithms 1 and 2 would be 

= (O 2
Ttn ))22( 3

Tcncm ++  

Now, If || remS = 0 , then the time complexity becomes (O 2
Ttn ))22( 3

Tcncm ++  where 

))]()()[( )( hqmmtOn hq
T −= − . 

And if φ=remS  and hq = , then the time complexity becomes 

|)|||22||||( 32 RR SSSccmSSStO −++−  



 114 

 

4.6. Conclusion 

In the literature, there are two main methods that attempt to analyze GSMPs: the 

regenerative and the supplementary variable methods. Both methods can be applied to a 

subset of GSMPs, those that implement the “enabling restriction” meaning that only one 

non-exponentially distributed clock can be active at any given time. GSMPs with the 

enabling restriction can only have regenerative or Markovian cycles. To calculate the steady 

state probabilities of the different states of a GSMP, with the above restriction, at time t , the 

regenerative method has a worst case of )|(| 2SO  space complexity and )|(| 4SO time 

complexity [40]. The method of supplementary variables has a worst case of ≈ 2( | | )gO q S  

time complexity and )|||||(| 2∑∑
∈∈

++
GG Tg

g

Tg

gE SScSO  space complexity where ES  is the set 

of states in which only exponential transitions are enabled, gS  is the set of states in which 

the non-exponential transition g  is enabled, c  denotes the time for integral calculation, and 

gq  the absolute maximum diagonal entry for gQ  (refer to chapter 3) [40].  

In this chapter, we presented an algorithm for finding an analytical solution for a 

subset of GSMPs. In this subset we allow non-exponentially distributed events to be 

initialized anytime, but we impose a restriction on the type of cycles in the GSMPs: they all 

have to be near semi-Markovian or regenerative cycles. The time and space complexity of 

the algorithm presented in this chapter is exponential in the number of states in the set remS , 

i.e. states that are neither regenerative nor belong to a non-trivial ESMP, and in the number 

of maximal strongly connected ESMPs )( hq −  that have at least one non-regenerative in-

border. But, when applied to GSMPs whose states either belong to an ESMP with 

regenerative in-border or are regenerative, the algorithm becomes |)||(| RR SSSO −  in space 

complexity, where RS  is the set of regenerative states, and )||2||2( 223 ScStcmO ++ in 

time complexity, where m  is the maximum number of states of the ESMPs and t  is the 

branching factor of the NRGSMP. 
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The exponential factor in the complexity of the algorithm limits its real applicability 

to GSMPs with a small number of states in the set remS , and a small value of hq − , this set 

of processes contains GSMPs that were  not covered by previous methods. 
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Chapter 5: Time Preserving Simplification for 

GSMPs 

 

 

 

 

 

 

5.1. Introduction 

In this chapter, we explore a method to reduce the time and space complexities of the 

algorithm presented in the previous chapter. Given an GSMP ),,,,,,( 0 KAFsSG �Ε= , we 

will delete states in the GSMP G  while preserving the passage of time distribution between 

pairs of non-deleted states.  

So given a GSMP G , and assume we deleted n states out of G , say },...,,{ 21 nsss  

and let )',',',',',,'(' 0 KAFsSG �Ε=  be the resulting GSMP, where −= SS ' },...,,{ 21 nsss . 

Now let ', ss  be any two states in 'S , then the passage of time distribution between s  and 's  

in 'G  would be equal to the passage of time distribution between s  and 's  in G . However, 

the sojourn time in the states of the set 'S  (and hence the TSP) may not be preserved , in 

fact, all the states that have an outgoing transition to a state in the set },...,,{ 21 nsss , will 

have a different TSP in G  and 'G , while for all other states the TSP is preserved. So if we 
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are interested in the TSP of a subset "S  of states in the GSMP G , then we can use the 

simplification presented in this chapter to delete all states that satisfy the above two 

conditions and that are not directly accessible from the set "S . 

The passage of time equivalence is not new, it was introduced by Bradley in [14] in 

the context of SMPs. So we use the same definition and extend it in the context of GSMPs. 

The definitions of equivalences are presented in the next section, followed by the 

simplification steps, then the algorithm is presented and finally the complexity of the 

algorithm is discussed with some concluding remarks. 

 

5.2. Definition of Equivalences 

Definition 5.1: Passage-time equivalence  

Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',',','(' 0 KAFsSG �Ε= be two GSMPs. Let 

S⊆Σ and '' S⊆Σ  be of the same cardinality. We say that G  and 'G  are passage-time 

equivalent over Σ  and 'Σ , written '~
',
GG

ΣΣ
, if there exists a one-to-one correspondence 

between Σ  and 'Σ : ': Σ→Σf  such that 0s ∈Σ , 0' 's ∈Σ , and 0 0( ) 'f s s= , and if Σ∈', ss  

then the passage-time distribution from s  to 's  in G  is identical to the passage-time 

distribution from )(sf  to )'(sf  in 'G . 

 

Before presenting the next definition we introduce the notation ))0(|)(( 0sxsP  that 

stands for the probability of being in state s  at time x  given that we were in state 0s  at time 

0 (in other words, it is the TSP for state s  at time x ) 

 

Definition 5.2: Transient state equivalence 
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Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',',','(' 0 KAFsSG �Ε= be two GSMPs. Let 

S⊆Σ and '' S⊆Σ  be of the same cardinality. We say that G  and 'G  are transient state 

equivalent over Σ  and 'Σ , written '
',
GG

ΣΣ
≈ , if there exists a one-to-one correspondence 

between Σ  and 'Σ  ': Σ→Σf  such that if Σ∈s  then ))0(|)(( 0sxsP = ))0('|))((( 0sxsfP . 

 

5.3. Simplification Technique 

Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, we can delete any state s  from the GSMP 

provided s  has the following properties: 

1. s  belongs to an ESMP M , and 

2. for every in-border 0's  of M , 0's  is not directly connected to s , i.e. there exists no 

transition between 0's  and s , and  

3. )(sK  is a singleton: }{)( 2fsK = , i.e. there exists only one outgoing transitions from 

state s  relative to the ESMP M , and for all 's M∈ , if ' es s→ , then ( ') { }K s e= , 

and 

4.  for all Sr ∈ , if r  is directly connected to s  and if i
e ss i→  for some Ssi ∈  and 

( )ie K s∉ , then i
e sr i→  

Note that after deleting a state s , following the algorithm presented later in the chapter, 

the distribution of time to travel between non-deleted states, as well as the transient state 

probabilities for all states that are not directly connected to s  would be preserved, while the 

TSP for the states that are directly connected to s  increases as these states share among them 

the TSP of state s  (refer to Theorem 6.2). We consider the following two scenarios: 

1. Assume we are interested in a performance study that involves the SSP of a set 

S⊆Σ  of states in G , for example, if we are interested in the probability of 
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failure, then Σ  should contain all the states that represent failure in steady state. 

Then we can delete all states in the set Σ−S  that satisfy the above four 

conditions and that are not directly accessible from states in the set Σ  (i.e. there 

exists no transition from a state in Σ  to any deleted state). The aim of state 

deletion is the facilitation of the performance analysis by having a smaller state 

space. The simplified GSMP )',',',',',','(' 0 KAFsSG �Ε=  would then be 

transient state equivalent to G , '
,

GG
ΣΣ

≈ , and as a result, the set of states Σ  would 

preserve their TSP and hence their SSP. 

2. Alternatively, if we are interested in a performance study that involves the 

distribution of time to travel between the states of a set S⊆Σ , for example, if we 

are interested in the distribution of time until a failure occurs then Σ  would 

contain the starting and the fail states, then we delete all states in the set Σ−S  

that satisfy the four conditions above. The simplified GSMP 

)',',',',',','(' 0 KAFsSG �Ε=  would then be passage-time equivalent to G , 

'~
,

GG
ΣΣ

. 

 

To illustrate, for any ESMP M  of G  with state space SSE ⊆ , such that 

φ≠Σ−∩ )(SSE , let )()(},...,{ 1 sKsAee n −=  for all ESs ∈ . If there exists a state that 

)( Σ−∩∈ SSs E  that satisfies the four conditions above, then we apply the sequential 

reduction described below to s  (note that if we are interested in a scenario similar to 

scenario 1 above, then s  should not be directly accessible from any state in Σ ): 

Sequential Reduction ( 21,tt ):  Given two sequential transitions to and from state s : 

srt f→= 1
1  and '2

2 rst f→=  (refer to Figure 13), we would like to aggregate 1t and 2t  

so as to form a single transition. Note that 2( ) { }K s f= . Assume for simplicity of 

presentation that }{)()( 1esKsA =− . To delete state s  in Figure 13, we create a new event 

21 ff , which is the concatenation of the two events governing transitions 1t and 2t , then we 
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set }{)( 21 ffrK = , and }{}()()(' 121 fffrArA −∪=  and assign to event 21 ff  the following 

distribution: 

 

 

 

 

 

 

 

Figure 13. Sequential reduction 

 

')')((
'

)')((
))((' 2

0

1
21 dxxxfF

dx
xfdF

xffF r
r

r −= ∫
∞

. We note that ))((' 21 xffF r  is the 

convolution of the distributions associated with events 1f  and 2f , and for that reason, the 

distribution of time needed to travel from state r  to state 'r  would be preserved. 

Note that, after the deletion of state s , the sojourn time for state r  changes. In fact, 

given we are in state r , if trace 1f 2f  occurs in G  and 'G , then the elapsed time since 

entering state r  until trace 1f 2f  occurs is divided among states r  and s  in G , while in 'G  

the total time is spent in state r . In other words, part of the TSP of state s  is taken by state 

r , that part is: ))0(|)(( 10 tsxsPG ∧  , i.e. the probability of being in state s  at time t  given 

that we reached state s  by following transition 1t  is now part of the TSP of state r .  

f1 

f2 

       f1f2 

   

         r         r 
    
                                               
   e1             
              e1             
        s 
           e1        
  s1       s1 
                  
         r’         r’ 
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5.3.1. Illustration 

To illustrate the above transformation consider the two semi-Markov processes shown 

below, where: 

• t1, t’1 and t3 are exponentially distributed transitions with rate equal to λ. 

• t2 and t4 are both exponentially distributed with rate µ. 

• t’2 is the following Erlang distribution: ( ) 1 x xF x e xeµ µµ− −= − −  (in other words, it is 

the convolution of 2 exponential distributions with rate µ). 

 

We say that a transition takes x time units to occur if the clock associated with the transition 

lives for a total of x time units (since it is initialized until it expires). In the Figures below we 

have two SMPs, so clocks that do not expire when we move to a new state are disabled. 

 

 

 

 

 

 

 

 

 

 

We will prove that 1 1( ( ) | (0)) ( ' ( ) | '(0))dP s x r dP s x r
dx dx

= . 

 

Note that, for the SMP on the left, entering state s1 at time x  when the process was in state r 

at time 0, means that 

1. either transition t1 took exactly x  time units to occur, and transition t2 did not occur 

in the interval [0, x ]. Or 

2. transitions t2 occurred out of state r followed by transition t3 and both transitions 

combined took exactly x  time units (so if transition t2 took exactly x’ time units to 

t2 

t4 

       t’2 

   

         r         r’ 
    
                                               
   t1             
              t’1             
        s 
           t3        
  s1       s’1 
                  
         q         q’ 
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occur then that means that transition t1 did not occur in [0,x’]. It also means that 

transition t3 took exactly x-x’ time units to occur and that transition t4 did not occur in 

[0,x-x’].  

 

For the SMP on the right, entering state s’1 at time x  means that transition t’1 took exactly x  

time units to occur, and transition t’2 did not occur in the interval [0, x ]. 

 

Hence, 

• 1( ( ) | (0))dP s x r
dx

= (probability that transition 1t  takes exactly x  time units to occur 

while transition 2t  takes more that x  time units)/d x  +(probability that transition 2t  

takes exactly 'x  time units to occur while transition 1t  takes more that x ’ time units, 

and transition 3t  takes 'x x−  time units to occur while transition 4t  takes more than 

'x x− , for some 'x  in [0, x ])/d x  

' ' ( ') ( ')

0

( ) ( )

0

( ) ( ')

'

xx x x x x x x x

x
x x

e e e e e e dx

e e dx

λ µ µ λ λ µ

λ µ λ µ

λ µ λ

λ λµ

− − − − − − − −

− + − +

= +

= +

∫

∫
 

( ) ( )x xe xeλ µ λ µλ µλ− + − += +  

 

 

• 1( ' ( ) | '(0))dP s x r
dx

= (probability that transition 1't  takes exactly x  time units to occur 

while transition 2't  takes more that x  time units)/d x . 

( ) ( )

( )x x x

x x

e e xe

e xe

λ µ µ

λ µ λ µ

λ µ
λ µλ

− − −

− + − +

= +

= +
 

Hence these probabilities are preserved. 
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5.3.2. Overall Algorithm 

The algorithm takes as input a GSMP ),,,,,,( 0 KAFsSG �Ε=  and a state s 

satisfying the three conditions of the previous section. It then outputs a 

GSMP )',',',',',},{(' 0 KAFssSG �Ε−= . 

We assume we have the same data structure as in the previous chapter. 

 

#��
���������/0������

�������
�������!������ 21tt ��������	��	������������	�������

��=;���8':$��&;3�84�/ 21,tt 01��

4������������	�����������1�

�����

 

Theorem 5.1. Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP and let 

),',,',,},{(' 0 KAFssSG �Ε−= be the GSMP obtained by applying the algorithm above to a 

state s S∈ , let },...,{' 1 mssS =  be the set of states S∈  that are directly connected to s  in G  

then  

1. '~
}{},{
GG

sSsS −−
, and 

2. '
','
GG

SSSS −−
≈  

Proof.  
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For the proof of (1), consider the particular case of Figure 13, then we need to prove that 
1 2( '( ) | (0) ')f fP r x r r s r∧ → →  and 1

1 1( ( ) | (0) )eP s x r r s∧ →  are preserved after the 

transformation. Here 1 2( '( ) | (0) ')f fP r x r r s r∧ → →  is the probability of being in state 

'r  at time x , counting from when the system entered state r , and that trace 
1 2 'f fr s r→ →  was followed to move from r  to 'r . 

• In both GSMPs, 1 2( '( ) | (0) ')f fP r x r r s r∧ → →  is a function of: 

o  the ability of 2f  (preceded by 1f ) to occur at some time 'x ∈ [0, ]x (i.e. a 

function of the distribution 1 2' ( )rF f f ), and  

o on the distribution of the soujourn time in state 'r  ( ( ')rζ  has to be 'x x≥ − ), 

and  

o on the probability that the clock of event 1e  expires after more than 'x  time 

units (counting from when state r was entered). 

Note that all these probabilities are the same in both GSMPs 

• In the GSMP of the left of Figure 13, 1
1 1( ( ) | (0) )eP s x r r s∧ →  is a function of  

o the ability of 1e  to occur either before 1f  does, or after 1f  and before 2f . In 

other words, 1e  has to occur at any time before the combined event 1 2f f  

occurs. I.e. the clock associated with event 1e  needs to expire at some time 

'x ∈ [0, ]x  while that of the combined event, (i.e. the clock whose distribution 

is 1 2' ( )rF f f ) has to expire after 'x . 

 

To prove point (2), assume for simplicity that state s  is only directly accessible from a state 

r S∈ , then for all { '}v S S∈ − ,  
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0( ( ) | (0))P v x s  

= 0( ( ') | (0)P r x s ∧ without visiting )s ( ( ) | ( '))P v x r x  

Note that 0( ( ') | (0)P r x s ∧ without visiting )s  is unchanged between G  and 'G . Moreover, 

we can deduce from point (1) above that ( ( ) | ( '))P v x r x  is also unchanged. 

( 

 

Theorem 5.2. Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP and let 

),',,',,},{(' 0 KAFssSG �Ε−=  be the GSMP obtained by applying the algorithm above 

to a state s S∈ , let },...,{ 1 mss  be the set of states S∈  that are directly connected to s  in G  

then  

))0(|)(())0(|)(())0(|)(( 000
'

i
G

i
G

i
G tsxsPsxsPsxsP ∧+=   

where ))0(|)(( 0 i
G tsxsP ∧  is the probability of being in s  at time x  given that we were in 

0s  at time 0, and that we followed a path ending with transition it  to reach s . 

Proof. Assume that ' 'i if f
i is s s→ →  is a trace in G , where ' ( )if K s= , then this would 

be transformed into the following trace in 'G : ' 'i if f
i is s→ . Note that ( ' ( ) | (0))i iP s x s  is 

preserved, and hence the time until we reach state 'is  from state is  is preserved. Hence the 

time process G  spends in s  given that trace  ' 'i if f
i is s s→ →  will occur is added to the 

time spent in is  after the deletion of state s . 

( 
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5.3.3. Complexity 

Let ),,,,,,( 0 KAFsSG �Ε=  be a GSMP, let ),,,,,',( 0 KAFsSM E �Ε=  be an 

ESMP of G . The time required to delete one state ESs ∈  in the GSMP such that 

)()(},...,{ 1 sKsAee n −=  is || EScn  (where c represents the complexity for integral 

calculation) in the worst case, i.e. if every state in the ESMP is connected to state s .  

Given an NRGSMP that we want to analyze by transforming it to an SMP, then 

applying the simplification algorithm to some of its states is very useful in decreasing the 

complexity of the transformation. In fact, deleting one state from an ESMP in the NRGSMP, 

leads to an HMRP with as much as ||)(|| remhqS St
rem −+  fewer states, (refer to Section 4.5 ). 

Note however that, to be able to delete a state from the NRGSMP, the state needs to satisfy 

the four restrictions stated in Section 5.3. And that the performance measures that are 

preserved are the ones that depend only on the SSPs of the states that are not directly 

connected to the deleted states. 
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Chapter 6: Mean Passage-Time Equivalence 

for SMPs  

 

 

 

 

 

 

6.1. Introduction 

In this chapter we introduce an equivalence: “mean passage time equivalence” and a 

state simplification technique for SMPs. The simplification technique allows us to delete 

states from the SMP while preserving the average of the passage-time distribution between 

pairs of non-deleted states. As far as we are aware, the only existing simplification in the 

context of semi-Markov processes was introduced by Bradley in 2002 [14]. In his paper, 

Bradley introduced a simplification technique that preserves the exact passage-time 

distributions between pairs of non-deleted states; this in stochastic terms is a very strong 

equivalence, the two models under comparison should have strong similarity. In this chapter, 

the equivalence is less restrictive; processes would still be equivalent if they have the same 

average of passage time distribution between states rather than exact distributions; and the 

simplification procedure requires less time as its steps are straightforward. This equivalence 

is useful when the user is only interested in mean passage-time delays and not actual 
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distributions. The “mean-passage time equivalence” preserves all performance measures 

that depend on mean passage time such as reliability and availability. So if we are interested 

in such measures, the simplification technique would help us reduce the size of the SMP and 

hence the complexity for the performance evaluation procedure. The simplification technique 

also preserves the SSP of a subset of the non-deleted states: these are the states that do not 

directly lead to a deleted state (through one transition). 

 

This chapter is structured as follows: we first define the equivalence, then we present 

the simplification steps, then the whole technique is justified and presented formally, and 

finally, we study the effects of the simplification on our original NRGSMP, and discuss 

some of the performance aspects that are preserved. 

 

6.2. Equivalence Definition 

Recall that a semi-Markov process G  is a tuple ),,,,,( 0 KFsSG �Ε= , (note that 

)()( sKsA =  for all Ss ∈ , and that’s why A  was omitted). Informally, two semi-Markov 

processes M and N are mean-passage time equivalent if the passage-time distributions 

between states of M (or a subset of states of M) have the same mean as a certain reordering 

of passage time distributions between states of N (or a subset of states of N), formally: 

Definition 6.1: Mean passage-time equivalence 

Let G= ),,,,,( 0 KFsS �Ε and G’= )',',',',','( 0 KFsS �Ε  be two SMPs. Let M⊆ S and N⊆ S’ 

be of the same cardinality: | | | |M N= . Let *G  be the SMP obtained from G  by applying the 

algorithm in Section 6.3.2. repeatedly on the set of states S M− . Similarly, Let '*G  be the 

SMP obtained from 'G  by applying the algorithm in Section 6.3.2. repeatedly on the set of 

states 'S N− . Then we say that G and G’ are mean passage-time equivalent over M and N, 

written G
NM ,

≡ G’, if *G  and '*G  are isomorphic up to state relabelling. 
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Definition 6.2: Steady state equivalence 

Let ),,,,,,( 0 KAFsSG �Ε=  and )',',',',',','(' 0 KAFsSG �Ε= be two GSMPs. Let 

S⊆Σ and '' S⊆Σ  be of the same cardinality. We say that G  and 'G  are steady state 

equivalent over Σ  and 'Σ , written 
, '

'G G
Σ Σ
≅ , if there exists a one-to-one correspondence 

between Σ  and 'Σ  ': Σ→Σf  such that if Σ∈s  then ( )sπ = ( ( ))f sπ . 

 For more information, refer to [14]. 

 

6.3. Simplification Technique 

In this section, we follow the same steps as in [14]. The only difference is that we are 

interested in preserving the mean and not the actual distributions. 

 

6.3.1. Basic Reduction Steps 

Given an SMP G= ),,,,,( 0 KFsS �Ε and a set of states M in S, we would like to 

delete all states in the set (S-M) such that the resulting SMP G’= )',',',',',( 0 KFsM �Ε   is 

mean passage-time equivalent over M , i.e. G
MM ,

≡ G’. 

For every transition ': sst →  we designate by the tuple ),( pa  the mean of the 

passage-time distribution, a , for transition t  and the transition probability, p , respectively. 

We call the tuple ),( pa  the coordinates for transition t . In what follows, we will first 

present the basic algorithm steps, how and when these steps are used will be detailed later. 

We denote by et.  the event associated with transition t . 
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Sequential Reduction ),( 21 tt : Given two sequential transitions 1t  and 2t  (refer to 

Figure 14), we would like to delete them so as to form a single transition 3t  such that 

etet .. 13 = et .2 ; note that the event et .1 et .2  is the concatenation of the events et .1  and et .2 . 

So if ),( 11 pa  and ),( 22 pa  are the coordinates for transitions 1t  and 2t , respectively, then 

(a,p)= ),( 2121 ppaa +  are the coordinates for transition 3t  (note that a is actually the mean of 

the distribution calculated in Section 5.3,  see also [14]). 

 

 

 

 

 

Figure 14. Average sequential reduction 

Alternate Reduction ),( 21 tt : The sequential reduction step might create more than 

one transition, say 1t  and 2t , having the same starting and ending states, and governed by the 

same event, i.e. etet .. 21 = , the scenario is shown in Figure 15. Therefore an alternate 

reduction step may be necessary. Given two alternate transitions 1t  and 2t  with etet .. 21 = , 

we would like to delete them so as to form a single transition 3t . So if ),( 11 pa  and ),( 22 pa  

are the coordinates for transitions 1t  and 2t , respectively, then (a,p)= ),( 212211 ppapap ++  

are the coordinates for transition 3t (note that a is actually the mean of the distribution 

calculated in [14]). 

 

 

t1 

t2 

t3 



 131 

 

 

 

 

Figure 15. Alternate reduction 

 

Cycle Reduction )(t : The sequential reduction step might create a state with a transition 

to itself. Therefore a cycle reduction step may be necessary. For this step, we assume that 

transition t  is internal, in other words et.  is not visible to the users, or is visible but of no 

importance to our performance study (for example, if we are interested in MTTF then the 

only transition we would like to monitor is the fail transition, and all other transitions could 

be considered as internal or not visible). Given a cycle transition t , and q non-cyclic 

transitions ( q ∈ Ν , the set of positive integers) 1t , 2t ,…, qt , out of the same state (refer to 

Figure 16), we would like to eliminate transition t . Assume that ),( pa , ),( 11 pa , 

),( 22 pa ,…, ),( qq pa  are the coordinates for the transitions t , 1t , 2t ,…, qt   respectively. To 

eliminate the self-cycle, we propose the following steps: 

1. Change the coordinates of transitions 1t , 2t ,…, qt  so as to reflect  the average time 

spent going around the cycle. Since the probability of doing the cycle is p , then the 

average time spent doing the cycle over and over is 

0 1 2
2

1

0 2 ....
(1 )

i

i

pp ap ap a ip a
p

∞

=

+ + + = =
−∑ , (for more information, check [14]). 

2. Renormalize the probabilities for transitions 1t , 2t ,…, qt . This is done by dividing 

their probabilities by p−1 . 

t1 t2 

t3 
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So (a’,p’)= )
1

,
)1(

( 2 p
p

p
paa i

i −−
+  becomes the new coordinate for transition it , qi ,...,1∈ . 

We note that a’ is actually the mean of the distribution calculated in [14]. 

 

 

 

 

Figure 16. Cycle removal 

 

 In the next subsection, we present an algorithm to remove a state from an SMP while 

preserving the mean passage time equivalence over the non-deleted states. The algorithm 

removes one state at a time, in other words, given an ),,,,,,( 0 KAFsSG �Ε=  and a set of 

states M  such that the set of states S M−  are to be deleted. Then we use the algorithm 

below to delete the states in S M−  one by one. It is not difficult to note that the order of 

state deletion does not affect the final SMP G’.(refer to [14])  

 Note that the algorithm is intended to delete states according to the user specification, 

in other words, the user specifies the states that are not of interest to a particular performance 

study, then these states are deleted. This will be explained in more details in Chapter 7.  

 

6.3.2. Algorithm 

The algorithm takes as input an SMP G and a state s to be deleted. It outputs an SMP 

G’. 

Variables: Φ  is a set of paths of length 2, Ψ is a set of transitions. 

t1 tq t1 tq 

t 
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Algorithm: 

φ=Ψ 1�

Φ 2�����	����
�����	��
��������%�����������	��	������ ������	����1��

STEP1:��

�������
�����
������� 21tt �∈ Φ ��


�������������������	�����	� 1t ����� 2t ����
������������	������ t ��	��������	�<��������

����
����1�

Φ 2Φ $> 21tt ?1�

Ψ 2Ψ }{t∪ 1�

;����� φ=Φ ��

STEP2: 

5���������������������������������	�����	� 21 , tt ∈ Ψ ������ etet .. 21 = ��


������� ���� ���� ����	�����	� 1t � ���� 2t � ��� 
���� ���� ����	������ t � �	���� ���� ����
��

����
����1�

Ψ 2@Ψ },{}]{ 21 ttt −∪ 1�

STEP3: 

5������������	���	��
������ t ���� Ψ ��������������� et. ������	�
��	����������������

�����������	��
�������	��������
!
�������
�����	��� 1�

Ψ 2@Ψ }{t− A1�

4������������	�����������
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End Algorithm. *** should not be at beginning of page 

 

Theorem 6.1. Let ),,,,,,( 0 KAFsSG �Ε=  be an SMP and let 

),',,',,},{(' 0 KAFssSG �Ε−=  be the SMP obtained by applying the algorithm above to a 

state s S∈ , s S∈ , let },...,{' 1 mssS =  be the set of states S∈  that are directly connected to 

s  in G  then  

'
}{},{
GG

sSsS −−
≡ , and 

', '

'
S S S S

G G
− −

≅  

Proof. Straightforward. 

( 

 

6.4. Complexity 

We have defined an equivalence over semi-Markov processes which is based on state 

simplification. The time complexity to delete one state in the SMP is 

321
2 ])2)(1[()1( xccxnncn +−−−+−  in the worst case, i.e. if the SMP is heavily connected, 

where x  is the number of cycles generated from the sequential reduction step (Step1) and: 

• 1
2)1( cn −  is the time required to do Step 1 of the algorithm with 1c  being the time 

needed to calculate the mean and probability of a newly formed transition (i.e. the 

time needed to calculate (a,p)). 

• 2])2)(1[( cxnn −−−  is the time required to do Step 2 of the algorithm with 

])2)(1[( xnn −−−  being the number of alternate transitions and 2c  being the time 

needed to calculate the mean and probability of a newly formed transition. 
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• 3xc  is the time required to do Step 3 of the algorithm, with x  being the number of 

self-loops and 3c  being the time needed to calculate the mean and probability of a 

newly formed transition.  

If we assume that 1c = 2c = 3c  then algorithm complexity becomes: 

2
1[( 1) ( 1)( 2)]c n n n− + − −  

Note that, contrary to [14], the time to calculate the average distribution and probability 

of the newly created transitions, i.e. 1c  and 2c  and 3c  is negligible compared to the time 

needed to get the actual time distributions for these transitions since the latter involves 

integral calculations. So the overall complexity is 2)(nO  

 

6.5. Effects on the Original NRGSMP 

Let ),,,,,,( 0 KAFsSG �Ε=  be an NRGSMP, and let )",',",',','(" 0 KFsSG �Ε=  

be the SMP obtained from G  following Algorithms 1 and 2 of Chapter 4. Then we have that 

"G  s-simulates G . Let },{ Jjj ∈∆=∆  and ∆→SR :  be the partition of states ( ∆='S ) and 

the correspondence that together establish the transient state simulation. Let Ss ∈ , and let 

))('/"),('/',",','),('( 0 sRSKsRSFssRSN −−Ε−= �  be the SMP obtained from "G  by 

deleting from 'S  all states in the set )(sR  following the above algorithm. let },...,{' 1 mssS =  

be the set of states S∈  that lead directly to s  in G . Then we have the following lemma: 

Lemma 6.1. Let ' 's S S∈ − , then "

( ') ( ')

( ') ( ) ( )G G N

r R s r R s

s r rπ π π
∈ ∈

= =∑ ∑  

Proof. Straightforward. 

( 
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So, to facilitate performance analysis for NRGSMPs, we identify in G  the set Φ  of 

all states that are not key to our performance analysis and that are not directly accessible 

form our states of interest. Then we delete from "G  all states in )(ΦR , where R  is the 

relation described in the lemma above, and we do our analysis on the reduced SMP.  

The performance measures in G  that could be deduced from the reduced SMP are all 

the measures that depend on the steady state probability of some of the states such as 

probability of failure. 
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Chapter 7: Illustrations and Applications  

 

 

 

 

 

 

In this Chapter, we discuss the issue of how to check whether a GSMP satisfies the 

properties of an NRGSMP. Then, we present a case study illustrating the transformation 

presented in Chapter 4. However, we start first with a simple example to show the reader 

how the different chapters fit together. 

 

7.1. A Simple Example 

 In this section, we present to the reader the big picture: how everything fits together. 

We introduce an example of an NRGSMP, and explain the performance measures that we 

need to extract from the process. Then we apply the simplification procedure presented in 

Chapter 5 to the states in the NRGSMP that satisfy the conditions stated in Chapter 5. The 

next step would be to transform the simplified NRGSMP into an SMP following the 

algorithms presented in Chapter 4. Then, the resulting SMP is simplified by deleting some of 

its states following the algorithm presented in Chapter 6. 
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We consider the model of a machine that receives requests and services them over 

and over again. The machine can service one request at a time, and requests are generated 

when the machine is not in service. The request generation is modeled by event r . Request 

servicing is a two phase procedure, in the first phase the service is done by a component of 

the machine that is failure prone, however, the second phase of service is assumed never to 

fail. The service is modeled by the consecutive events 1s  and 2s , both have a generally 

distributed lifetime duration. The machine keeps working for a constant period of time and 

then undergoes tune-up. If the machine is servicing a request when tune-up is due, the 

machine aborts the current service to undergo the tune-up. The interval between two 

consecutive tune-ups is constant and is modeled by event a . The tune-up process is 

generally distributed and is modeled by event u . In the first service phase, the machine can 

fail, at that time it has to undergo repair, the failure and repair are modeled by events f  and 

p , respectively; they both have generally distributed lifetimes. If the machine fails and is 

repaired, it reinitializes event a  (note that a  might have a different lifetime distribution in 

state 4 and 0, because the tune-up time after a repair is not so urgent). The model is depicted 

in Figure 17. Transition d is immediate. 

 

Figure 17. Example of an NRGSMP 
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We assume that the measure that we are interested in is probability of failure, so the 

states that should not be deleted are the fail state, the starting state, and state 4, i.e. states in 

the set {=Σ 0,3,4} 

 

7.1.1. NRGSMP Simplification 

 As explained in the previous section, we need to delete all states apart from states in 

the set {=Σ 0, 3,4}. Figure 18 shows the only ESMP in the NRGSMP G  of Figure 17.  

 

 

 

 

 

 

Figure 18. ESMP 

Note that the only state that satisfies conditions 1, 2, 3, and 4 of Section 5.3 is State 

2’. Therefore, this is the only state we can delete using the method described in Chapter 5. 

To delete State 2’, we aggregate transitions: '22 1→s  and 1'2 2→s  to form a single 

transition 12 →s  where 21sss = , and the distribution associated with event s  is the 

convolution of the distributions associated with events 1s  and 2s . The resulting NRGSMP is 

shown in Figure 3. 
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7.1.2. NRGSMP to HMRP and then to SMP 

The next step would be to transform the simplified NRGSMP 'G  into an HMRP and 

then into an SMP "G . The transformations were discussed in Chapter 4, the resulting SMP is 

shown in Figure 9, and the distributions can be calculated following Algorithm 2 of Chapter 

4. For the remaining of this chapter, we assume that R  is the relation that establishes the s-

simulation between 'G  and "G  and we denote by i
em  the mean time of the distribution of an 

event e  in state i and i
ep  the probability that the transition governed by event e  occurs out 

of state i. We omit i whenever the state we are referring to is obvious. 

 

7.1.3. SMP Simplification 

As discussed earlier, the measure of interest in this chapter is the probability of 

failure, so the events that are of interest to us are the ones associated with failure i.e. f. All 

other events are not important and can be assumed to be internal or not visible to the users, 

usually denoted by τ . The states we identified to be of interest in 'G  are {=Σ 0,3,4}, so for 

"G , the states of interest would then be ( ) {0 0,3 3,5 4}R Σ = − − − , so all the states outside 

this set, i.e. the states {1 1,2 2,4 5,6 2,7 1}− − − − −  can be deleted. We will illustrate the SMP 

simplification by deleting one of the states in the set {1 1,2 2,4 5,6 2,7 1}− − − − −  which is 

state 1-1. For that purpose we consider the sub-SMP that contains the states that are directly 

connected to state 1-1, the sub-SMP that we consider is shown Figure 19. Note that we 

renamed event a out of state 2-2 as a’ so that each transition would have a unique event 

name, this makes the presentation easier. 
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Figure 19. The sub-SMP 

 

As mentioned earlier, all events aside from f are internal transitions (τ ), however, in 

what follows, we choose to show the events so that the reader keeps track of the 

simplifications done and understands what each transition stands for. For that reason, we use 

the following notation: 

• 'ee : stands for the event on the transition resulting from the sequential reduction of 

two transition whose events are e  and 'e   respectively. 

• 'e e+ :stands for the event on the transition resulting from the alternate reduction of 

two transition whose events are e  and 'e   respectively. 
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• '( )ee : given a transition t out of a state say s , with event e , and a self cycle t’ (from 

s  to itself) whose event is 'e , then we denote by '( )ee  the new event on transition t 

obtained after the removal of the self cycle. 

Figure 20 shows two steps in the deletion of state 1-1. Figure 20(a), is obtained after 

performing Step1 of the algorithm in Section 6.3.2. Transition ( ')srsa a+ is the result of 

merging the alternate transitions: sa  and 'a  following by the removal on the self cycle in 

state 2-2.  

 To illustrate, we will calculate the mean time of the distributions and the transition 

probabilities for Figure 20 in terms of the previous ones (Figure 19): 

 

Figure 20. Deletion of State 1-1 
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In Figure 20 (a):  

dr d rm m m= + , dr d rP P P= ×  and 

da d am m m= + , da d aP P P= ×  and 

sa s am m m= + , sa s aP P P= ×  and 

sr s rm m m= + , sr s rP P P= ×  

In Figure 20 (b): 

' ' 2( ')
( )

(1 )
sr

sr
sa sa a a srsa a

sr

Pm P m P m m
P+

= + +
−

, '
( ') 1

sr
a sa

sa a
sr

P PP
P+

+=
−

 note that to obtain these 

formulas, we need to combine transitions 'a  and sa  using alternate reduction, the 

coordinates of the new transition are: ' ' '( , )sa sa a a a saP m P m P P+ +  then we apply the cycle 

removal step to obtain the coordinates for ( ')srsa a+  above. 

The cycle removal changes the coordinated for f as well as follows: 

2(1 )
sr

sr
f srf

sr

Pm m m
P

= +
−

, 
1

sr
f

f
sr

P
P

P
=

−
 

 

7.2. Properties of NRGSMPs 

To check whether a GSMP ),,,,,,( 0 KAFsSG �Ε=  is an NRGSMP, we need to 

find all the cycles in the GSMP and check whether each of the cycles satisfies the conditions 

set on the cycles of an NRGSMP. Checking the type of the cycles could be done in parallel 

with finding the cycles by recording the value of ( ) ( )A s K s−  for all states on the cycle and 
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checking whether every transition 'es s→  on the cycle satisfies the condition ( )e K s∈ . So 

the problem boils down to finding all the cycles in the NRGSMP. 

 A number of algorithms for finding the cycles of a directed graph are based on the 

backtracking strategy [81]. These algorithms are bounded by (| | ( 1))O S E C+ + , where | |S  

is the number of vertices (states) in the graph, E  is the number of edges ( | |E = � ), and C  is 

the number of cycles in the graph. 

 In [66] the authors designed a novel algorithm to find the cycles in a directed graph, 

the algorithm is bounded by ( )O E  which is a big improvement from the previously known 

algorithms. 

 In the next section, we will present a class of systems known as software rejuvenation 

models. 

 

7.3. Case Study 

 

7.3.1. Software Rejuvenation 

Many software systems run for long periods of time, “some of the faults causes them 

to age due to the error conditions that accrue with time and load” [80]. These accumulated 

error conditions cause degradation in the system’s performance and eventually lead to failure 

[80]. In [74] the authors cite the example of the progressive depletion of the operating 

system’s resources such as free memory available due to software errors such as “memory 

leaks and incomplete cleanup of resources after use”.  For more examples, the reader is 

referred to [1],[5]. 

A well-known preventative approach to counteract software aging is referred to as 

software rejuvenation. Software rejuvenation is a low cost approach that involves stopping 

the running system periodically and restarting it after cleaning its internal state [74]. 
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Cleaning the internal state involves several approaches such as: garbage collection, re-

initialization of internal data structures, and flushing the internal tables of the operating 

system [80]. 

 An optimal schedule for software rejuvenation increases the system’s availability by 

reducing the system’s failure, and hence reduces the amount of repairs needed. However, 

setting an optimal schedule is not an easy task [74]. To be able to set an optimal schedule, 

one needs to define a good model for the system that adequately represents the systems 

components and failure rates. 

Several models have been proposed in literature to find an optimal rejuvenation 

schedule. In [57], Huang et al. describe a basic model in which the degradation of the system 

is a two step process. Originally the system is in a clean state where no failure is possible, 

then, after a random amount of time, the system moves to a failure-prone state. From that 

state two actions are possible: a complete failure with return to the clean state after repair, or 

rejuvenation with return to the clean state. In [37], the process is modeled as a CTMC and its 

steady state availability is calculated. In [36], Dohi et al. extend this basic model by 

assigning any type of distributions to the events, thus making the model an SMP. In [35], 

Dohi et al. use a modification of the basic model: after repair from failure, the system moves 

to the rejuvenation state. The reason behind the modification is that after failure, a system 

would be restarted and cleaned. Analysis of the availability of the modified semi-Markov 

model is given in [35]. In [39], Garg et al. introduced the concept of periodic rejuvenation 

into the basic model (with deterministic interval between successive rejuvenation). The new 

model is represented using a Markov regenerative process satisfying the enabling restriction. 

The model is shown in Figure 21 where 

• State 0 is the clean state  

• State 1 is the failure prone state 

• State 2 and State 4 are the rejuvenation states 

• State 3 is the failure state. 
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• The distribution associated with event m represents the interval between 

successive rejuvenations, and the occurrence of event m indicates the end of 

that interval. The rejuvenation and the repair procedures are both modeled by 

the same event label r: note, however, that repair and rejuvenation need not 

have the same time distribution associated with them; in other words, 

2 3( ) ( )F r F r≠ . The aging of the system is modeled by event a, and the failure 

of the system is modeled by event f. We assume that the rejuvenation after 

failure takes a longer duration.  

• Note that the only non-regenerative state is State 1 as the time until 

rejuvenation is initialized in State 0.  

 

In all the rejuvenation models cited above, it is assumed that state change from the 

clean state to the failure prone state is observable [69]. Given this assumption, it makes sense 

to assume that the user would be able to observe the cause of deterioration of the system in 

the failure prone state. Such observation leads to more efficiency during the repair phase. 

And both assumptions justify the need to model the aging of the system and the failure of the 

system as two separate events. 

The model was analyzed in [39] using the method of Markov regenerative processes. 

Then the same model, with no restrictions on the distributions governing its events (i.e. not 

satisfying the enabling restriction) was analyzed in [35],[36] by transforming it into a 3 state 

semi-Markov process by merging states 0 and 1 and also states 4 and 2. The disadvantages of 

this method is that some measures of interest can not be computed from the reduced semi-

Markov process such as the proportion of time the state is in the failure prone state versus the 

clean state: 
0

1

π
π

.  
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Figure 21. Periodic rejuvenation 

 

In the subsection 7.3.3, we will extend the periodic rejuvenation model presented 

above to a random rejuvenation model, i.e. to a model where the time until rejuvenation is a 

random variable that is not periodic, and then we will apply the method presented in Chapter 

4 of the thesis on the new model, and calculate its steady state probability. Moreover, in the 

next sub-section, 7.3.2, we will extend the periodic rejuvenation model by considering a 

periodic rejuvenation of a system with a backup unit.  

 

7.3.2. Extension of the Periodic Rejuvenation Model  

 

In this sub-section, we consider the periodic rejuvenation of a system that has a 

backup unit. We assume that rejuvenation includes the process of preventative maintenance, 

i.e. replacing any worn-out parts.  
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In our model, the main system is rejuvenated periodically and after a failure. Once in 

rejuvenation, the backup unit replaces the main unit. The backup unit undergoes rejuvenation 

after each failure and minor rejuvenation every time it replaces the main unit for a period of 

time. Minor rejuvenation is assumed to be an immediate action and is not modeled for that 

reason (otherwise, one could assume that the aging of the main unit is a longer procedure 

than the minor rejuvenation). We assume that we have one rejuvenation facility, in other 

words, if both units are due for rejuvenation, then the rejuvenation has to be done 

sequentially, one after the other.  

 

 

Figure 22. Periodic rejuvenation with backup unit 

  

Originally, the main unit is in clean state where no failure is possible and the backup 

unit is idle, then, after a random amount of time the main unit moves to a failure prone state. 
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If failure occurs from that state, then the main unit undergoes rejuvenation and the backup 

unit starts working. While in working state, the backup unit could fail, once failed the backup 

unit moves to a down state and waits until the rejuvenation facility becomes available. The 

backup unit could be in three modes: idle (I), working (W), down (D), or under rejuvenation 

(R). Periodic rejuvenation and rejuvenation after failure are modeled by event r, however, 

the distribution associated with the rejuvenation after a failure is different than that 

associated with the periodic rejuvenation (because of the repair component). Note that, the 

most undesirable state is when the system is under rejuvenation and the backup unit fails, in 

that case, both units would not be working. As soon as one of the units is rejuvenated, the 

system starts running again. 

The model is shown in Figure 22, the labels inside every state are composed of two 

letters separated by a coma, the first indicate the status of the main system and the second 

indicates the status of the backup unit: 

• I, W, D, M and R : stand for idle, working, down, rejuvenation and repair 

respectively. MR stands for rejuvenation or repair. 

• 0 stands for clean state and 1 stands for failure prone state. 

• The distribution associated with event m represents the interval between 

successive rejuvenations, and the occurrence of event m indicates the end of 

that interval. The same event labels r1, and r2 represent the rejuvenation and 

the repair procedures for the main unit and the backup unit, respectively. Note 

however that repair and rejuvenation need not have the same time distribution 

associated with them. The aging of the main unit is modeled by event a, and 

the failure of the main unit and the backup unit is modeled by events f1 and f2, 

respectively.  

Note that states 1,I; 1I’; MR,D; 0,I; I,R; and D,R are the non-regenerative states. 

Moreover, all the cycles in the model are regenerative cycles; hence the above model is an 

NRGSMP. We will demonstrate in sub-section 7.3.4 how to transform the NRGSMP into an 

HMRP. 
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7.3.3. Analysis of the Periodic Rejuvenation Model 

 

Here we consider the example in Figure 21 above. As discussed before, the process is 

an HMRP with one non-regenerative state: State 1. To transform the process into an SMP, 

we need to find Re ( ,1)( )Av s m x . Then we can find the steady state probability of the 

resulting SMP by calculating the SSP of the embedded Markov chain and the mean time 

spent in each state of the SMP (refer to Chapter 2).   

We denote by ( )iF e  the distribution of event e  from state i , and denote by [ ]ijP P=  

the transition probabilities for the embedded Markov chain. Then P  has the following form: 

01 01

12 12

0 0 0 1
0 0 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

P P
P P

− 
 − 
 
 
 
  

  

where  0
01 0

0

( )( )(1 ( )( ))dF a xP F m x dx
dx

∞

= −∫  and 1
12 1

0

( )( )(1 ( )( ))dF m xP F f x dx
dx

∞

= −∫ , (note that 

1( )( )F m x = Re ( ,1)( )Av s m x ). 

 Now, Re ( ,1)( ) Re ( ,1,0 1)( )aAv s m x Av s m x= → , hence, from Theorem 4.6, we 

have that  

Re ( ,1)( )Av s m x = 0 0

00

( )( ') ( )( ')
1 ( )( ')

F m x x F m x
F m x

∞ + −
−∫

0
0

0
0

0

( )( ') (1 ( )( '))
' '

( )( ") (1 ( )( ")) "
"

dF a x F m x
dx dx

dF a x F m x dx
dx

∞

−

−∫
= 
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0
0 0

010

( )( ')[ ( )( ') ( )( ')]
' '

dF a xF m x x F m x
dx dx

P

∞ + −
∫  

The steady state probability vector of the embedded Markov chain: 0 1 2 3 4[ , , , , ]π π π π π π=  

satisfies the following equations: 

4

0
j i ij

i

Pπ π
=

= ∑ for {0,1, 2,3,4}j ∈  and 
4

0

1i
i

π
=

=∑ , which yields the following: 

[ ]0 01 0 01 12 0 01 12 0 01 0, , , (1 ) , (1 )P P P P P Pπ π π π π π= − − . Applying 
4

0

1i
i

π
=

=∑ , we get 

0
01

1
2 P

π =
+

 hence: 

01 01 12 01 12 01
01 01 01 01 01

1 1 1 1 1, , , (1 ) , (1 )
2 2 2 2 2

P P P P P P
P P P P P

π
 

= − − + + + + + 
 

 To calculate the steady state probability of the SMP, it remains to find the mean 

waiting time in every state of the process denoted by iM , {0,1,2,3, 4}i ∈ . Recall from 

Section 2.3.2.1 that 
4

0

( )i ij ij
j

M P E T
=

= ∑ , (recall that ( )ijE T  is the expected sojourn time in 

state i  knowing that state j  will be visited next) hence we get the following equations: 

0 01 0 04 0( ( )) ( ( ))M P E F a P E F m= +   

1M = 12 1 13 1( ( )) ( ( ))P E F m P E F f+  

2 2( ( ))M E F r=  

3 3( ( ))M E F c=  

4 4( ( ))M E F r=  
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In rejuvenation studies, the aim is usually to determine the best rejuvenation schedule, 

and that could be done by testing different distributions and checking which one is the best in 

terms of minimizing the probability of failure of the system and the overhead caused by 

rejuvenation. The probability of being in the fail state F , is calculated as follows: 

3 3
4

0
i i

i

MF
M

π

π
=

=
∑

. And the overhead caused by the rejuvenation could be be minimized by 

minimizing the expected instantaneous rejuvenation cost in steady state: C, which can be 

calculated as follows: 4 4 2 2
4

0

( )

i i
i

c M MC
M

π π

π
=

+=
∑

, where c is the cost of rejuvenation per unit 

of time. 

The above analysis applies to any type of distribution. We chose to illustrate these 

results with the following distributions: The aging of the system modeled by event a , it is 

assumed to have the Weibull distribution. The Weibull distribution is often used in the field 

of life analysis to model the aging of a system. The Weibull distribution is characterized by a 

parameter k  which represents the aging rate. We assume here that 2k = . The distribution is 

given by: 
2

0 ( )( ) 1 xF a x e−= − , and the distribution is represented in the figure below 
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rejuvenation the same distribution as the aging which is the Weibull distribution with 

parameter 2k = . So 
2

0 ( )( ) 1 xF m x e−= − , and calculate the effect of such a schedule on the 

probability of failure in the system as well the expected rejuvenation cost. 

The failure of the system is modeled by event f . Once we reach State 1, the system fails 

after a fixed period of time. 1

1 1
( )( )

0 1
x

F f x
x

≥
=  <

. 

2 ( )( )F r x , 4 ( )( )F r x , and 3 ( )( )F r x  have means equal to 
1

90
, 

1
90

 and 
1

60
 respectively, 

meaning that the periodic rejuvenation has a mean of 
1
3

 of a day, and the rejuvenation after 

failure has a mean of 
1
2

 a day (note from the steady state formulas above that these 

distributions affect the result only through their means). 

 

With the above distributions, we get the following: 

01
1
2

P = , and hence 04
1
2

P =  

1( )( ) Re ( ,1)( )F m x Av s m x= =
2 2 2' ' ( ' )
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x x xx e dx
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− − += − ∫  

2 2' (1 ')
13 1

0
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2

x xP F m x e dx
∞
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2 2' (1 ')

0

1 ' '
2

x xx e dx
∞
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2 2 2 2' (1 ') ' (1 ')

0 0
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2 22 1 1, , , ,
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x x x xx e dx x e dx
π

∞ ∞
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− + 
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 
 

∫ ∫
 

Also, the mean waiting times in every state can be calculated as follows: 
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0 01 0 04 0( ( )) ( ( ))M P E F a P E F m= +  
1

'2

0

' 'xx e dx
∞

−= ∫  

2 2 2 2' (1 ') ' (1 ')
1 12 1 13 1

0 0

1 1( ( )) ( ( )) ' ' ' '
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∞ ∞
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90
M = , 3

1
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1

90
M =  

Finally, the probability of being in the fail state F  is calculated as follows: 

Now let Γ =
4

0
i i

i

M π
=
∑ , then  

 Γ
2 2 2 2

1
' ' (1 ') ' (1 ')2

0 0 0

2 1 1 1' ' ' ' ' '
5 5 2 2
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i
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=
∑
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Moreover, the expected instantaneous rejuvenation cost in steady state 

4 4 2 2
4

0

( ) 2
135000

i i
i

c M M cC
M

π π

π
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+= =
Γ∑
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7.3.4. Analysis of the Periodic Rejuvenation with B ack-up 

Model 

 

To understand how our NRGSMP model will be transformed into an HMRP, we need 

to identify, for each non-regenerative state s , the set of single regenerative states sΓ  that 

lead to it. Then we need to divide the set sΓ  into subsets of traces 1{ ,..., }m
s sδ δ  such that each 

subset i
sδ , is a single-AvRes set. Recall that, the number of subsets obtained, m , is equal to 

the number of copies of the non-regenerative state s  in the HMRP (as explained in Chapter 

4). Among the states in Figure 22, the only states that have more than one single regenerative 

state leading to them are state 1,I and state MR,D. These traces are: 1,IΓ ={(0, 1, )aI I→ , 

2(0, 0, ' 1, )}r aR I I→ →  and ,MR DΓ = 2{( , , )fR W MR D→ , 2( , , )}fM W MR D→ , (note 

that the sets ,MR DΓ  and 1,IΓ  are finite because we do not have near semi-Markovian cycles in 

the NRGSMP). Now each of trace in 1,IΓ  is a single-AvRes set, and similarly, each trace in 

,MR DΓ  is a single-AvRes set. Hence to transform the model into an HMRP, we need to create 

two copies of state 1,I one accessible through trace 0, 1,aI I→  and the other accessible 

through trace 20, 0, ' 1,r aR I I→ → . Similarly, we need to create two copies of state 

MR,D one accessible through trace  2, ,fR W MR D→  and the other accessible through 

trace 2, ,fM W MR D→ . The HMRP is shown in Figure 23.  
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Figure 23. HMRP for the periodic rejuvenation with back-up. 

 

 To transform the non-regenerative states in the HMRP into regenerative we need to 

find the average residual distributions of the active events in the non-regenerative state as 

was illustrated in the previous sub-section. 
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Chapter 8: Conclusion and Future Directions 

 

 

 

 

 

 

 

In the literature, there are two main methods that attempt to analyze GSMPs: the 

regenerative and the supplementary variable methods. Both methods can be applied to a 

subset of GSMPs, those that implement the “enabling restriction” meaning that only one 

non-exponentially distributed clock can be active at a given time. Imposing this restriction 

leads to algorithms with reasonable costs. Going beyond the restriction is one of the most 

challenging open issues in the field. Other methods exist that deal with GSMPs with special 

type of distributions such as the continuous phase type distribution or deterministic event 

durations; for such GSMPs, efficient numerical analysis can be found [8],[42].  

The contributions of this thesis are the following:  

• We extended the class of solvable GSMPs by allowing several generally 

distributed events to be enabled at any time. However, we imposed the 

restriction that every cycle 121
11 ... ssssC nn e

n
ee →→→= −  in the GSMP 

must either be near semi-Markovian (NSM) or regenerative (REG) (see 
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Definition 4.3). GSMPs whose cycles are either NSM or REG are referred to as 

near-regenerative generalized semi-Markov processes, NRGSMP, the concepts 

of NRGSMP is introduced in Chapter 4 of the thesis. NRGSMPs are more 

general than the GSMP’s implementing the enabling restriction (EGSMPs). In 

fact, among other restrictions, the only cycles allowed in a EGSMP are either 

regenerative or near-Markovian. However, as discussed in Chapter 7, an 

important class of GSMP’s is not covered by NRGSMPs; examples are the 

queuing networks G/G/1 of size ≥n 3. The method presented to solve the steady 

state probabilities for NRGSMPs consists of an algorithm that transforms the 

NRGSMP into a semi-Markov process (SMP) while preserving steady-state 

simulation, a simulation that enables us to determine the steady state probability 

of the NRGSMP from that of the SMP constructed. The time and space 

complexities of the algorithm presented in this thesis are exponential in the 

number of states in the set remS , i.e. states that are neither regenerative nor 

belong to an embedded semi-Markov process (ESMP, where an ESMP is a sub-

process which is a semi-Markov process), and in the number of strongly 

connected ESMPs )( hq − , (i.e. the number of embedded strongly connected 

semi-Markov processes) that have at least one non-regenerative in-border 

(Definition 4.5). But, when applied to GSMPs whose states either belong to an 

ESMP with regenerative in-border or are regenerative, the algorithm becomes 

|)||(| RR SSSO −  in space complexity, where RS  is the set of regenerative 

states, and )||2||2( 223 ScStcmO ++  in time complexity, where m  is the 

maximum number of states of the ESMPs and t  is the branching factor of the 

NRGSMP, (refer to Section 4.5). The regenerative method has )|(| 2SO  space 

complexity and )|(| 4SO time complexity [45]. The method of supplementary 

variable has approximately 2( | | )gO q S   time complexity and 

)|||||(| 2∑∑
∈∈

++
GG Tg

g

Tg

gE SScSO  space complexity where ES  is the set of states 

in which only exponential transitions are enabled, gS  is the set of states in 

which the non-exponential transition g  is enabled, and c  denotes the time for 
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integral calculation [45]. The exponential factor in the complexity of our 

algorithm limits its real applicability to the subset of GSMPs with a small 

number of states in the set remS , and a small value of hq − , However, this 

subset contains all GSMPs satisfying the enabling restriction.  

• The method described in the point above could generate semi-Markov processes 

with big state spaces. For that reason, we introduced a method to remove states 

from the original NRGSMP while preserving the distribution of time needed to 

travel between non-deleted states and also preserving the transient state 

probabilities for a subset of the states. This method works on any GSMP and 

works by deleting states that, among other restrictions, belong to an embedded 

semi-Markov process M . The time required to delete one state ESs ∈ , (where 

ES  is the state space of M ) from the GSMP such that )()(},...,{ 1 sKsAee n −=  

is || EScn  in the worst case, where c represents the complexity of integral 

calculation). However, this simplification of the GSMP is worth doing, since 

deleting one state from the biggest ESMP in the NRGSMP, leads to an SMP 

with as much as ||)(|| remhqS St
rem −+  fewer states. 

•  Another algorithm with the aim of dealing with the state space explosion of the 

resulting SMP was presented. This simplification technique for semi-Markov 

processes is based on Bradley’s simplification algorithm [14], the only 

difference is that we are interested in preserving the mean of the passage-time 

distributions between non-deleted states rather than actual distributions. In fact, 

the technique deletes states from the SMP while preserving the average time to 

travel between non-deleted states, or what we call mean passage time 

equivalence. The method could delete any state in the SMP. The measures that 

are preserved are the performance measures that depend on the mean time to 

travel between the states of the SMP, such as MTTF, availability and reliability. 

The cost of deleting one state by following this technique is 2|)(| SO . 
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As future work, we would like to: 

• Explore ways to further reduce the space complexity of the algorithm that 

transforms a GSMP into an SMP, and to generalize it to cover a broader 

subclass of GSMP’s. We are currently trying to do this by generalizing the 

sAvRe  set to contain structures other than paths and ESMPs. The first thing 

we would like to explore is to add embedded EGSMPs to the sAvRe  set, 

which are sub-processes in the GSMP that, when taken as a separate entity, 

become GSMPs implementing the enabling restriction. This would generalize 

our method as it would allow more structures to be integrated in the GSMP. 

• Another possibility we could explore is the generalizing of our method 

through the use of recursive approximation for the residual times that can not 

be solved analytically. 

• We would like also to explore the transient-state simulation further by 

transforming the NRGSMP into a non-homogeneous semi-Markov process. 

And checking the complexity of finding the transient state probabilities of the 

NRGSMP from those of the resulting non-homogeneous semi-Markov 

process. 

• Finally we would like to translate the restrictions that make an NRGSMP to 

the field of stochastic Petri-nets. This problem, besides having merit by itself 

could help us find more realistic examples of NRGSMPs. 
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