

Approaches to Analysis and Simplification of

non-Markovian System Models

Fida Kamal Dankar

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the Ph.D. degree in Computer Science

School of Information Technology and Engineering (SITE)

Faculty of Engineering

University of Ottawa

© Fida Dankar, Ottawa, Canada, 2008

 II

Abstract

 In this thesis, we present an algorithm to transform a subset of generalized semi-

Markov processes into semi-Markov processes. The transformation preserves steady-state

simulation, a simulation that allows us to retrieve the steady state probability of the

generalized semi-Markov process from that of the transformed process. The method

presented could generate semi-Markov processes with big state spaces, for that reason we

introduce a two state simplification techniques. The first one deals with the state space

explosion problem by deleting states from the original generalized semi-Markov process.

The aim of this technique is to generate semi-Markov processes with smaller state space. The

technique deletes states from the generalized semi-Markov process while preserving the

distribution of time needed to travel between non-deleted states; the technique also preserves

the transient state probabilities of a subset of the states in the process. The other technique

deals with the state space explosion problem at the level of semi-Markov processes. It works

by deleting states from the semi-Markov processes while preserving the average time to

travel between non-deleted states, or what we call mean passage-time equivalence, the

technique also preserves the steady state probabilities of a subset of the states in the process.

 III

Table of Contents

���������	�
��
���

ABSTRACT..II

TABLE OF CONTENTS... III

LIST OF FIGURES ..VII

LIST OF ABBREVIATIONS.. IX

ACKNOWLEDGMENTACKNOWLEDGMENTACKNOWLEDGMENTACKNOWLEDGMENT... XI

CHAPTER 1. INTRODUCTION ..1

1.1. MOTIVATION ...1

1.2. THESIS CONTRIBUTIONS ..5

1.3. OUTLINE OF THE THESIS ..6

CHAPTER 2: PERFORMANCE MODELING...8

2.1. INTRODUCTION ..8

2.2. MODELS ..9

 IV

2.3. STOCHASTIC MODELS ...11

2.3.1. Exponential Models...14

2.3.2. Non Exponential Models ...17

2.3.2.1. Semi-Markov processes and generalized semi-Markov processes18

A. SMP definition. ..19

B. Embedded Markov chain..20

C. Example of an SMP..21

D. Transient and steady probabilities for semi-Markov models22

2.3.2.2. Generalized semi-Markov process ...24

A. Formal definition and examples ...24

B. Transient and steady state probabilities for GSMPs...27

2.4. QUEUING MODELS ..29

2.4.1. Introduction...29

2.4.2. Single Queues..29

2.4.3. Networks of Queues...31

2.4.5. Product Form Queuing Networks ...32

2.4.5. Expressiveness...33

2.4.6. Queuing Networks: Pros and Cons...33

2.5. PETRI NETS ...33

2.5.1. General Notions ..34

2.5.2. Petri Nets: Pros and Cons...36

2.6. PROCESS ALGEBRAS..37

2.6.1. PEPA ...38

2.6.2. Non-Markovian Process Algebras ..40

2.6.3. Process Algebras: Pros and Cons...41

CHAPTER 3: NON-MARKOVIAN ANALYSIS43

3.1. ANALYSIS APPROACHES FOR NON-MARKOVIAN MODELS ...43

3.2. METHOD OF SUPPLEMENTARY VARIABLES ...44

3.3. METHOD OF EMBEDDED REGENERATIVE PROCESSES ..46

3.4. CONTINUOUS PHASE TYPE DISTRIBUTION ...49

3.5. CONTRIBUTIONS OUTLINE ...49

 V

CHAPTER 4: A DEEPER LOOK INTO NON-MARKOVIAN ANALYSI S52

4.1. INTRODUCTION ..52

4.2. PRELIMINARY DEFINITIONS AND ALGORITHM OVERVIEW ..55

4.2.1. Preliminary definitions..56

4.2.2. Algorithm overview ...58

4.3. DEFINITIONS, ILLUSTRATIONS AND PRELIMINARY RESULTS ...64

4.3.1. General Definitions and Results ...64

4.3.2. Properties of NRGSMP. ..74

4.3.3. HMRP Definition and Properties..74

4.3.4 Properties of Average Residual Times...80

4.3.5. Transient and Steady-State Simulations: Definitions and Properties...................87

4.4. FROM NRGSMP TO SMP..94

4.4.1. Algorithm 1: NRGSMP to HMRP ...94

4.4.1.1. Overview ..94

4.4.1.2. Algorithm 1...97

4.4.1.3. Definition of the major functions ...100

4.4.2. HMRP to SMP...104

4.4.2.1. Overview ..104

4.4.2.2. Algorithm 2...105

4.4.3. Application ..106

4.5. PRACTICAL LIMITATIONS ..107

4.5.1. Space Complexity ..107

4.5.2. Time Complexity..111

4.6. CONCLUSION ...114

CHAPTER 5: TIME PRESERVING SIMPLIFICATION FOR GSMPS116

5.1. INTRODUCTION ..116

5.2. DEFINITION OF EQUIVALENCES ...117

5.3. SIMPLIFICATION TECHNIQUE ...118

5.3.1. Illustration...121

5.3.2. Overall Algorithm ...123

 VI

5.3.3. Complexity...126

CHAPTER 6: MEAN PASSAGE-TIME EQUIVALENCE FOR SMPS127

6.1. INTRODUCTION ..127

6.2. EQUIVALENCE DEFINITION ..128

6.3. SIMPLIFICATION TECHNIQUE ...129

6.3.1. Basic Reduction Steps ...129

6.3.2. Algorithm...132

6.4. COMPLEXITY ...134

6.5. EFFECTS ON THE ORIGINAL NRGSMP ..135

CHAPTER 7: ILLUSTRATIONS AND APPLICATIONS137

7.1. A SIMPLE EXAMPLE ..137

7.1.1. NRGSMP Simplification..139

7.1.2. NRGSMP to HMRP and then to SMP ...140

7.1.3. SMP Simplification..140

7.2. PROPERTIES OF NRGSMPS ...143

7.3. CASE STUDY..144

7.3.1. Software Rejuvenation ..144

7.3.2. Extension of the Periodic Rejuvenation Model ...147

7.3.3. Analysis of the Periodic Rejuvenation Model ...150

7.3.4. Analysis of the Periodic Rejuvenation with Back-up Model155

CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS157

REFERENCES..161

 VII

List of Figures

Figure 1. Concurrent events ..4

Figure 2. An example of a semi-Markov process ...22

Figure 3. Example of a GSMP ..26

Figure 4. G/G/1/ ..27

Figure 5. Two GSMPs...55

Figure 6. Part of a GSMP..57

Figure 7. Nest ..66

Figure 8. An example of a single-AvRes-set ..72

Figure 9. An HMRP ..76

Figure 10. Example of an HMRP..76

Figure 11. Two consecutive states ..81

Figure 12. SMPs)00(−N and)00(−
→
N ...107

Figure 13. Sequential reduction ..120

Figure 14. Average sequential reduction ..130

Figure 15. Alternate reduction ..131

Figure 16. Cycle removal ..132

 VIII

Figure 17. Example of an NRGSMP...138

Figure 18. ESMP...139

Figure 19. The sub-SMP ...141

Figure 20. Deletion of State 1-1 ..142

Figure 21. Periodic rejuvenation ...147

Figure 22. Periodic rejuvenation with backup unit ...148

Figure 23. HMRP for the periodic rejuvenation with back-up. ..156

 IX

List of Abbreviations

AvRes Average Residual distribution

CTMC Continuous Time Markov Chain

DES Discrete Event Simulation

EGSMP Enabling restriction Generalized Semi-Markov

 Process

ESMP Embedded Semi-Markov Process

GSMP Generalized Semi-Markov Process

HMRP Hidden Markov Regenerative Process

MRGP Markov ReGenerative Process

MTTA Mean Time To Absorption

MTTF Mean Time To Failure

 X

MTTR Mean Time To Repair

NM Near-Markovian

NRGSMP Near Regenerative Generalized Semi-Markov

 Process

NSM Near Semi-Markovian

PE Performance Engineering

REG Regenerative

SMP Semi Markov Process

SPA Stochastic Process Algebra

SPN Stochastic Petri-Nets

SSP Steady State Probability

s-simulation steady state simulation

t-simulation transient state simulation

TSP Transient State Probability

 XI

AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgment

 I would like to express my deep gratitude to my supervisor Gregor v. Bochmann, who spent

many hours reading my writings and initiating great discussions. I learned a lot from his analytical

skills, and I greatly benefited from his unbounded imagination and his capacity to make every idea

more comprehensible through an example, no matter how abstract the idea is. I would like to thank

Professor Stefan Haar for his time in discussing and providing feedback on my work. And I would

like to also thank my thesis committee for their valuable feedback, especially Professor Joost-Pieter

Katoen and Professor Dorina Petriu.

Great thanks to my family. Pour la personne la plus chère à mon cœur, ma mère Najah Ghomrawi

pour tous ses sacrifices aux cours des années, pour son amour et pour m'avoir appris d’aimer à

apprendre. To my dearest husband Wissam Elcheikh Ali for his love, his patience, his unstoppable

 XII

encouragement, and for assuming more family responsibility so I would have more time to work. To

my two dearest kids Ibrahim and Ahmed who taught me how to balance work and family life, and who

showed me the importance of play. To my dear sisters Sana, Mayssoun, Gazoie, Samar and Hala,

to my nieces and nephews with whom I share a deep affection. I love you all. Also big thanks to my

sister in law Hiba and my mother in law Oum Kassem for their help and for never saying no when I

needed them.

 And finally to my dear dad Kamal Dankar I would like to dedicate these two sentences in

the language he likes and masters:

����������	
�����
����������������������
���

������� �
!

Translation: To the person who encouraged me to continue and to achieve… To my pride…To my

dear dad Kamal Dankar.

�

 XIII

"�#���$%$& ��'

To My To My To My To My deardeardeardear WissamWissamWissamWissam

 1

Chapter 1. Introduction

1.1. Motivation

 Performance engineering (PE) covers modeling, analysis and synthesis of systems.

Temporal behavior of real systems is measured and modeled, characteristic performance

measures are then defined and measured [16],[52],[71],[76],[82]. The general scenario is as

follows:

- The environment generates requests; these are known as the workload to the

system: The workload represents the sum of all needed activities and services

such as type of activities and frequency of requests.

- The system consists of one or more components trying to satisfy these requests.

- An optimal system structure is reached if the system fulfills all requirements

concerning the quality of service such as liveness, throughput and response time.

The steps to achieve PE are:

 2

- Workload characterization and system parameter specification,

- Modeling,

- Analysis, which involves extracting performance measures from the model using

methods of statistics, stochastic processes, or simulation.

 For more details about the above steps refer to [76].

 In this thesis, we focus mainly on modeling. In general, we have two main modeling

categories: hard real-time and soft real-time systems:

- Hard real-time systems need deterministic timing models because actions take

place at distinct time instants or within fixed time intervals. Examples of hard real

time systems are avionic systems and robots. Properties of interest in such

systems include safety and liveness. Typical modeling techniques are: timed

automata [4], timed Petri nets, timed process algebra.

- Soft real-time systems need stochastic timing models due to contention, faults,

and random service strategies. Examples include time sharing computers and

telephone systems. Properties of interest in such systems include: throughput,

utilization, and delays. Randomly varying time delays are captured by stochastic

processes or by high-level models such as stochastic Petri-Nets (SPN), queuing

networks or stochastic process algebras (SPA) whose underlying process is a

stochastic process. To extract performance parameters from SPN and SPA, we

need to generate the underlying stochastic process and analyze it.

 The stochastic processes that are mostly studied in the literature for performance and

dependability purposes are in increasing order of expressivity: Continuous-Time Markov

Chains (CTMC) [25], Semi-Markov Processes (SMP) [25],[56],[59], and Generalized Semi-

Markov Processes (GSMP) [67]. The difference between them lies in the set of instants in

the process life that satisfy the Markov property, A stochastic process satisfies the Markov

property at time instant t , if the conditional probability distribution of the states of the

process after time instant t is conditionally independent of the states of the process before

 3

time t (path of the process), given its state at time t . For CTMCs this property holds at

every instant of the process life, for SMPs the property holds at the instants of state change

only, and for GSMPs, the property may never hold.

 Because of the holding of the Markovian property at all instants of the process life,

CTMCs can only represent activities with an exponentially distributed duration [19]. The

only candidates for representing systems with generally distributed, not necessarily

exponential, event durations are SMPs and GSMPs. SMPs and GSMPs are state automata

whose transitions are triggered by the occurrence of stochastically timed events. A set of

active events)(sA is associated with each state s of the automaton. Each event has an

associated generally distributed lifetime. If in a state s the life of an active event e

terminates, one says that event e occurs, and the automata moves to another state. Active

events of a state compete to trigger the next transition.

SMPs are not suitable for representing event concurrency, as explained in the

following example:

 Example 1: Consider two concurrent events e and e’ running in parallel; event e has a

deterministic duration of 1 time unit, and event e’ has a geometrically distributed duration

with parameter 0.1. The situation is represented in Figure 1. Each state is annotated with a set

of events; these are the events that become active once we enter the state (i.e. they are

assigned a lifetime according to their distribution once we enter the state, we also say that the

events are initialized in that state). In state 0 of the system shown in Figure 1, both events e

and e’ are initialized; the system stays in state 0 until the lifetime of one of the events

terminates. At that point, the event occurs, and a transition labeled with the event takes the

process to a new state. If event e occurs first, we move to state 2, the sojourn time in state 2

(which is determined by the residual lifetime of event e’) is not given, it rather depends on

the time spent in state 0. Hence the above process is not Markovian at the point we enter

state 2. So even the simplest case of two concurrent activities can not be represented by an

SMP. The example above is in fact a GSMP.

 4

 e e’

 e e’

 1
 2

 3

 0
 e,e’

Figure 1. Concurrent events

 The Transient State Probability of a stochastic process (TSP) is the probability of

being in a given state of the process at a given time, And the steady state probability (SSP) is

the probability of being in a given state of the process at equilibrium, i.e. after the system hs

been in operation for a pretty long time. The TSPs and SSPs are everything we need to know

to be able to extract key performance and dependability measures from a process; for that

reason, finding the TSPs and/or SSPs is referred to as “solving the process”.

 In Markov processes (CTMC, SMP), the calculation of the transient and steady state

probabilities is possible through a straightforward application of linear algebra

[15],[27],[73],[78].

 The absence of the Markov property in GSMPs renders the solution of these systems

a tedious task. Since events associated with computer and communication systems may be

concurrent and have a distribution of general nature [61], the modeler needs to be provided

with tools for quantitative analysis of performance and dependability in GSMPs. The

existing approaches that dealt with this problem are limited in applicability to processes

whose general events (i.e. non-exponentially distributed events) are mutually exclusive,

referred to as EGSMPs.

 5

1.2. Thesis Contributions

As mentioned above, existing approaches that analyze GSMPs are limited in

applicability to EGSMPs. In fact, imposing this restriction (the mutual exclusivity of the non-

exponential distributions) leads to algorithms with reasonable costs while going beyong the

restriction is one of the most challenging open issues in the field.

In this thesis, we will define a technique that relaxes the above restriction by allowing

several non-exponentially distributed events to be enabled at any time; however, we impose

a restriction on the type of cycles allowed; the GSMPs with the cycle restrictions will be

referred to as near-regenerative semi-Markov Processes, NRGSMPs. The NRGSMP’s will

be presented in Chapter 3, and formally defined in Chapter 4.

In Chapter 4, we will show that the set of EGSMPs is a subset of the set of

NRGSMPs; moreover, we it will be proved that the models shown in Figure 3, Figure 10, as

well as the software rejuvenation models presented in Section 7.3 are all examples of

NRGSMP’s that are not EGSMPs. We will also characterize the subset of GSMPs that are

not NRGSMPs.

In finding the steady state probability of the NRGSMP’s, we will present an

algorithm that transforms the NRGSMP into a semi-Markov process (SMP) with a bigger

state space. The transformation preserves steady-state simulation, which allows us to

determine the steady state probability of the NRGSMP from that of the SMP constructed.

One of the drawbacks of this method is the big state space of the SMP created. In fact, the

largeness of the state space is one of the main obstacles that the modeler faces when

analyzing a stochastic model, it is known as state space explosion.

 On the level of stochastic processes, several approaches have been introduced to deal

with the issue of state space explosion. Several techniques could be applied to overcome this

problem, such as state lumping, approximation methods by state truncation (aggregation), or

bounding methods [9],[62],[78]. All these methods simplify the process on the state level by

reducing the number of states. Other methods work by exploring properties of the model

such as equivalence and partition, then reducing the state space [62],[78], but they are limited

 6

in applicability as the model needs to have certain properties. In this thesis, to overcome the

size of the SMP created, we will introduce two algorithms:

• The first algorithm deletes certain states of the original GSMP while preserving the

distribution of time to travel between non-deleted states. As will be seen in Chapter 5, the

technique is limited in applicability to very particular states. The passage of time

equivalence is not new, it was introduced by Bradley in [14] in the context of SMPs. So

we use the same definition and extend it in the context of GSMPs. As far as we are

aware, no similar simplification exists on the level of GSMP’s

• The second algorithm deletes certain states of the resulting semi-Markov process, while

preserving the mean passage-time between non-deleted states. As far as we are aware, the

only existing simplification in the context of semi-Markov processes was introduced by

Bradley in 2002 [14]. In his paper, Bradley introduced a simplification technique that

preserves the exact passage-time distributions between pairs of non-deleted states; this in

stochastic terms is a very strong equivalence, the two models under comparison should

have strong similarity. In this chapter, the equivalence is less restrictive; processes would

still be equivalent if they have the same average of passage time distribution between

states rather than exact distributions; and the simplification procedure requires less time

as its steps are straightforward. This equivalence is useful when the user is only

interested in mean passage-time delays and not actual distributions. The “mean-passage

time equivalence” preserves all performance measures that depend on mean passage time

such as reliability and availability. So if we are interested in such measures, the

simplification technique would help us reduce the size of the SMP and hence the

complexity for the performance evaluation procedure.

1.3. Outline of the thesis

 In the next two chapters, some background information will be provided: Chapter 2

introduces the different performance models and the advantages and disadvantages of

modeling with each of them, and Chapter 3 introduces the two main existing methods for the

 7

numerical analysis of generalized semi-Markov processes: the method of supplementary

variables and the method of embedded regenerative process. These methods provide a

solution for a subset of GSMPs, the retriction being that at most one non-exponentially

distributed clock can be enabled at any given time. Aside from being a severe restriction, the

main problem with these methods is that it is hard to check whether a GSMP is part of this

subset using static analysis. As a result, more restrictive conditions are set on the subset of

solvable GSMPs to make the subset checkable using static analysis.

Chapters 4 to 6 introduce the results of this thesis: Chapter 4 introduces a new

technique for the numerical analysis of generalized semi-Markov processes and compares it

with previous methods. The new technique transforms a GSMP into an SMP, and calculates

the steady state probabilities of the GSMP from that of the SMP created. This new method

provides a solution for the steady state probability of a wider class of GSMPs, moreover, it is

easy to check whether a GSMP is a subset of this class or not as will be dicussed in Chapter

7.

Chapter 5 introduces a method to remove states from GSMPs while preserving the

distribution of time needed to travel between non-deleted states and the transient and steady

state probabilities for a subset of the states of the automata is preserved as well. Chapter 6

deals with the issue of state space explosion of the SMP created; it deals with the problem by

introducing a new simplification technique for semi-Markov processes. The technique

deletes states from the SMP while preserving the average time to travel between non-deleted

states, or what we call average delay simplification equivalence, the equivalence is shown to

preserve measures that depend on the mean time to travel between states, examples of such

measures are mean time to failure and mean time to repair. The technique also preserves the

SSPs of a subset of the states of the automata. The whole picture becomes clearer with an

application and a case study presented in Chapter 7. And finally, Chapter 8 provides our

conclusions and suggestions for future research directions.

 8

Chapter 2: Performance modeling

2.1. Introduction

 Performance, dependability and performability techniques provide a method to study

the behavior of computer and communication systems. Performance refers to the response

time as seen by the users. Responsiveness determines a system’s effectiveness and as a

consequence affects the productivity of the users [7],[76]. Dependability modeling covers

failure and repair related aspects of system behavior. Performance and dependability

techniques are vital to most hardware and software systems. Software systems that perform

customer service functions, such as ticket reservation systems and ATM banking systems

must provide rapid responses to satisfy the customers. Hard real-time systems, such as flight

control systems, must meet their response-time requirements to prevent disasters. If an

automated flight-control system does not provide a rapid response, the airplane depending on

it could crash.

Performance and dependability analysis can be studied separately, but sometimes, a

measure that takes into account their interactions and trade-offs, or what is known as

performability analysis, is needed. In fact, fault-tolerant systems are designed to guarantee

 9

continuity of service even in the presence of component failure [82],[47]. However, the

performance of the system will be reduced in the presence of failure. For example, a system

may operate as long as one of two components is operational, however, the system is

assumed to deliver a higher performance when both components are operational.

Performability analysis aims to capture the performance of the system in the presence and

absence of failure and the interaction between the failure-repair behavior. For a survey of

techniques and tools that can be used in reliability and performability analysis refer to [82].

To ensure that a system meets performance and reliability goals, performance has

become an essential part of the software development process [77],[83].

2.2. Models

 To evaluate the system or component during the development process for their

performance, dependability and performability, a software designer has several options:

“make an educated guess based on his past experience, build prototypes and make

measurements, use discrete event simulation to model the system, or construct analytical

models of the system” [47].

 Assessing a prototype is not always possible during the implementation phase.

Moreover it might not be possible to assure whether a prototype meets a performance,

dependability or performability criteria, for example a system with high reliability might take

months before it fails [72].

 Discrete event simulation (DES) is commonly used in practice. Many software tools

are available that could help in the construction and execution of DES models. However,

simulation models are generally expensive to define because this involves writing and

debugging a complex computer program. Moreover, they can be expensive to parameterize,

because a highly detailed model typically requires a large number of parameters. And finally

they are expensive to evaluate because running a simulation requires substantial

computational resources, especially if narrow confidence intervals are desired [53],[47].

 10

 Analytical modeling is a cost effective alternatives for DES. They are the main focus

of our research. Analytical modeling is based on constructing a model and analyzing it. A

model is an abstract representation of the system; it is used to capture the essential

characteristics of the system so that its performance can be reproduced; it should include

sufficient information to make us understand the actual system’s behavior [54], and such

characteristics could be fault-tolerance, contention for resources, concurrency and

synchronization…. A software designer has a wide range of different types of models to

choose from. These models could be divided into two main categories:

a) Queuing models, such as product form queuing networks [48], can represent contention

for resources. However they can not model failure, synchronization or concurrency.

b) Stochastic models, such as stochastic Processes [19],[62],[78], stochastic Petri-nets,

(SPN), [24],[23],[60] and stochastic process algebras, (SPA), [46],[50],[54], can model

interactions between system components. They are also known as state space models [47].

 The stochastic processes that are mostly studied in the literature for performance and

dependability purposes are, in increasing order of expressiveness, continuous-time Markov

chains (CTMC), semi-Markov processes (SMP), and generalized semi-Markov processes

(GSMP). The difference between them lies in the set of instants in the process life that satisfy

the Markov property. A stochastic process satisfies the Markov property at the current time

instant if the conditional probability distribution of the future states of the process, given the

present state and all past states, depends only upon the present state and not on any past

states; for more details refer to [19].

For CTMCs the Markov property holds at every instant of the process life, for SMPs

the property holds at the instants of state change only, and for GSMPs, the property may

never hold.

 Because of the holding of the Markovian property at all instants of the process life,

CTMCs are shown to only represent activities with an exponentially distributed duration

[19]. The only candidates for representing systems with generally distributed activity

durations are SMPs and GSMPs.

 11

 Although the state space models provide flexibility for modeling dependability,

performance and performability, the state space of these models can be very large; in fact

their state space grows much faster than the increase in system components. To deal with this

issue, many high level specification techniques, such as stochastic Petri nets, and stochastic

process algebras were introduced. These are higher level representations of stochastic

processes. When the underlying stochastic process is a CTMC, the CTMC can be obtained

automatically from these higher level models, moreover, effective methods for its solution

are available [47].

In the remaining of this chapter, we will introduce CTMCs, SMPs and GSMPs; the

information is taken from [53] and more details could be found in [12],[76]. Examples will

be provided for all the state-based models. We will then introduce queuing models, Petri nets

and process algebras; more details could be found in [12],[29],[54],[60],[23].

2.3. Stochastic Models

 As discussed earlier, the state-based model, such as CTMCs, SPNs, and SPAs are all

based on the notion of stochastic processes, so, in this section, we will present the stochastic

processes that are mostly used in the context of performance modeling, and these are

CTMCs, SMPs, and GSMPs. We start first by presenting some notions that are common to

these three types of processes; for that purpose, any stochastic process that is a CTMC, an

SMP or a GSMP will be referred to as a Markov-Like-Stochastic Process or MLSP.

 An MLSP X is a state automata whose transitions are triggered by the occurrence of

stochastically timed events associated with the occupied state. We denote by X(t) the state of

the process at time t. Only continuous time models will be considered, in other words t takes

its values from the set of positive real numbers. An MLSP is said to be irreducible if all

states can be reached from all other states, by following the transitions of the process. An

irreducible MLSP is also known as strongly connected.

 12

 Let X be an MLSP with finite state space S={1,2,…,n} and let j be the starting state,

in other words, X(0)=j, let Pij(t) = P{X(t) = i| X(0)=j} denote the probability of the process

being in state i at time t given that the process was in j at time 0, then the row vector P(t) =

[P1j(t), P2j(t),…,Pnj(t)] represents the transient state probability vector of the process. The

steady-state probability (SSP) vector is π=(π1,…, πn)=limt→∞P(t). Note that limt→∞P(t) may

not exist, in which case the SSP would not exist, the conditions under which the SSP of the

process exists will be presented later in this chapter.

 In addition to transient state probabilities, “cumulative probabilities” can be useful

sometimes. These are denoted by L and are given by

L(t)=∫0tP(u)du;

L(t)={L1(t),…,Ln(t)}, where Li(t) denotes the “expected total time the process spends in state i

during the interval [0,t)”.

 With these definitions, many interesting performance dependability and

performability measures can be defined by assigning rewards to states or to transitions

between states of the process to form what is known as a reward model (RM). In this section

we consider state-based rewards only, the results are taken from [47],[54]. Let ri be the

reward rate assigned to state i. Then, the random variable Z(t)=rX(t) is “the instantaneous

reward rate of the RM at time t”. The reward that is accumulated over the interval [0,t) is

given by

Y(t)=∫0t Z(u)du)=∫0t rX(u)du

Various measures can be defined from the random variables: X(t), Z(t), and Y(t). A useful

example is “the expected instantaneous reward rate” which is defined as follows:

E[Z(t)]=Σi∈SriPij(t)

And “the expected reward rate in steady state” is:

E[Z(∞)]=Σi∈Sriπi

 13

And “the expected accumulated reward” is:

E[Y(t)]=Σi∈SriLi(t)

 Some models can have states that do not have any outgoing transitions, these states

are called absorbing states. In these models, the system would be in one of these absorbing

state at equilibrium [68], and the limit as t→∞ of the expected accumulated reward is called

the expected accumulated reward until absorption

E[Y(∞)]=Σi∈SriLi(∞)

Given the RM framework the next question is: what are the appropriate reward rate

assignments?” We will answer this question in the context of dependability analysis with two

target measures: availability and reliability. For information on reward assignment for

performability measures, the reader is referred to [47],[69].

 Availability : availability measures the probability of a system going to an

undesirable state, such as failure or service interruption. Availability is used for systems that

tolerate interruption in service. In such systems failure is usually recoverable.

 The simplest and most used availability measure is “the steady state availability”: It

describes the probability of the system being in one of the desirable states at steady state. The

availability is obtained by assigning a reward rate 1 to the desirable states and a reward rate 0

to down states

A=∑s∈S rsπs.

The mean time to failure or MTTF is another availability measure, it is related to A as

follows:

A=MTTF/(MTTF+MTTR)

where MTTR is the average time spent in the fail state.

 14

 Reliability : reliability is the measure of uninterrupted service over a period of time.

Reliability is used for systems that do not tolerate down times, such as flight control systems.

 The simplest and most used reliability measure is also the mean time to failure,

however, the failure here is unrecoverable, and so MTTF is the same as mean time to

absorption (or MTTA). MTTF is again obtained by giving a reward rate of 1 to the up states

and reward rate 0 to the down states. MTTF would then be given by

E[Y(∞)]=Σi∈SriLi(∞)

 So from the above we conclude that to obtain a complete description of a Markov-

like-stochastic process, we need to find the transient state probabilities of the MLSP.

However, it is often difficult to obtain such solutions [68], Moreover, in many practical

situations one needs to know the behaviour of the system in steady state, in other words, one

needs to know the behavior of the system when it reaches an equilibrium state, a state it

reaches after being in operation for a sufficiently long time [68]. For that reason, it is

necessary to know the conditions for the existence of these probabilities. This will be

discussed across this section. When such limit exists, the system is said to reach equilibrium

or steady state, and then problem translates to finding the steady state probabilities. The

calculation of TSPs or SSPs is referred to as finding the solution for the process.

In the remainder of this section, we will present the different types of Markov-like-

stochastic processes; we start first by presenting the exponential model: continuous-time-

Markov chains.

2.3.1. Exponential Models

 Models with exponentially distributed holding times have been extensively studied

[2],[25],[54],[60]. In this sub-section, we will present CTMCs and their properties, we start

first by defining a poisson process.

 15

2.3.1.1. Continuous-time Markov chains

A Poisson process is a counting process in which interarrival time of successive

jumps are independently and identically distributed exponential random variables. For

more details refer to [19].

A CTMC is an MLSP; each state in the automaton is associated with several Poisson

processes. A transition between any two states of the automaton is governed by the jump

of one of the Poisson processes associated with the occupied state. The different Poisson

processes associated with a state compete to trigger the next transition. The distribution

of the time spent in a state of a CTMC, or what is known as the soujourn time in the

state, is shown to be exponentially distributed [19].

Formally, a Continuous time Markov chains X (CTMC) is made up of the tuple 0(, ,)S s q

where

1. S is a nonempty set of states,

2. 0s S∈ is the starting state,

3. :q S S× → ℜ (where ℜ is the set of real numbers). For i j S≠ ∈ , ijq is called

the instantaneous transition rate from state i to state j . It is the parameter of the

exponential distribution of the sojourn time in state i , given that the next state to be

visited is j , in other words, it is the parameter of the distribution of the interarrival

time of the Poisson process associated with the transition from i to j . iq is called

the exit rate for state i , and it is the parameter of the exponential distribution of the

sojourn time in state i . In other words: i ij
i j S

q q
≠ ∈

= ∑ , and ii iq q= − . For more details

refer to [19]. The matrix []ijq is denoted by Q .

 16

 Continuous-time Markov chains with small state space are commonly represented as

a state transition diagram. Each state is represented by a node. Possible transitions between

the different states are represented through arcs. The arcs are labelled by the parameters of

the exponential distributions governing the transitions: ijq .

 For more details and for examples of CTMCs refer to [12],[19],[25],[68],[78].

2.3.1.2. Deriving the steady state probabilities for continuous-time Markov models

 Let X be a CTMC. Recall that Pij(t) = P{X(t) = i| X(0)=j} is the transient state

probability for state i , and that P(t) = [P1j(t), P2j(t),…,Pnj(t)] represents the transient state

probability vector of the CTMC. Then

• The transient behavior of the CTMC can be described by the Kolmogorov

differential equation [19]: dP(t)/dt=P(t)Q given P(0), where P(0) represents the

initial probability vector (at time t = 0).

• The steady-state probability vector π=(π1,…, πn)=limt→∞P(t) satisfies: πQ=0 and

Σnπi=1 [19].

Theorem 2.1. A steady state probability distribution exists for every finite and strongly

connected continuous-time Markov Chain (irreducible). [68]

(

 The different methods for steady state calculation are:

1. The direct methods which are numerical methods that compute solutions to

mathematical problems in a fixed number of operations [78].

 17

2. The iterative methods, which are the mostly used methods, begin from some

initial approximation and produce a sequence of intermediate results, which are

expected to eventually converge to the solution of the problem [78].

3. Other methods include: projection Methods, decompositional methods …[78].

 The complexity of the methods above lies between 2.7(2)O n , and)(3nO . In fact it is

)
3

(
3nO in most of the methods.

2.3.2. Non Exponential Models

 As explained in the previous section, because of their memoryless properties, CTMCs

can be easily analyzed through straightforward application of numerical analysis. And that is

the reason behind the popularity of the exponential distribution. However, the exponential

assumption is not always realistic [34],[25],[41]. The following list, taken from [61],

contains few examples of events that can not be modeled using exponential distributions.

- If only the minimum and maximum of some quantity is known and more

information is not available, the uniform distribution would be a good choice.

- File transmission times in the internet and file sizes on a host give evidence of

heavy-tail distributions.

- The Weibull distribution is common in reliability, since it has an age-dependent

failure rate.

- Clock cycles in computers are fixed, i.e. they have deterministic distributions.

- Repair times and scheduled maintenance intervals have often a fixed length.

 So the above list proves the need for models with non-exponential distributions, in

fact the focus on non-exponential distributions has flourished in the past 20 years in the area

 18

of SPN [43],[23],[55],[63],[64] and SPA [13],[18],[33],[51],[79]. If we allow transitions to

be delayed by non-exponential distributions, the Markov property need not hold anymore,

the future behavior of the process might depend on a distribution that was started in the past

and has not triggered a transition yet. A stochastic process that allows non-exponential

transitions and has the Markov property at the time of state change is the semi-Markov

process. In a semi-Markov process, all distributions that govern transitions are initialized

every time we enter a state; as a result, we do not need to memorize the lifespan of

distributions from past states.

In the next sub-section, we will informally present GSMPs and SMPs. Formal

definitions and illustrations will then follow.

2.3.2.1. Semi-Markov processes and generalized semi-Markov processes

A generalized semi-Markov process (GSMP) is a state automaton whose transitions

are triggered by the occurrence of stochastically timed events associated with the occupied

state. A set of active events)(sA is associated with each state s of the automaton, these

events compete to trigger the next transition. Each of these events has its own distribution for

determining the next state. At each transition to a state s , a set)(sK of new events will be

scheduled. For each of these new events, a clock indicating the time when the event is

scheduled to occur is set (according to the random distribution associated with the event). If

an event e’ occurs causing a transition from state s to state 's , and if another event e was

active in state s , then e is either associated with the next state (i.e.)'(sAe ∈), and its clock

continues to run; or e is not associated with the next state 's , in that case, it is abandoned (or

we say aborted), i.e. its associated lifetime is discarded and it is considered inactive. A

transition between two states is labeled by an event e and a set of events E that are aborted,

written 'ss E
e→ . This means that if the clock of event e expires (or we say simply if event

e occurs) in s then the process aborts the events in E and moves to state 's . Only one

transition out of s should be labeled with a given event e (determinism). The active events in

state 's would then be)'()()()'(sKEesAsA +∪−= . The events in the set)()(EesA ∪−

 19

keep their residual lifetime, while events in)'(sK are assigned a lifetime according to their

distributions (initialized). Note that we need not represent the set of aborted events E because

they can be deduced from the functions A and K .

SMPs are GSMPs with the property that K(s)=A(s) for all s. In other words, all active

events in a state are initialized once we reach the state. Because of this restriction, SMPs

satisfy the Markov property at the time of state change.

A. SMP definition.

Definition 2.1: Semi-Markov processes.

A Semi-Markov Process (SMP) [25],[68] G is made up of the tuple

),,,,,(0 KFsSG �Ε= where

• S is a nonempty finite set of states including the initial state 0s ,

• Ε is the set of events,

•)(: Ε℘→ finSK is the event setting function which represents all the events that

are initialized when we reach a state (note that these are the only active events in

the state).

• For every Ss ∈ , the function])1,0[()(: →ℜ→sKFs assigns the event

distribution functions such that for all e in)(sK , ()() 0sF e x = for 0<x and

lim ()() 1x sF e x→∞ = . (As mentioned before, the distribution of an event depends

on the state it was initialized in)

• S S⊆ ×Ε×� is the set of edges where 'ss
e

� means that if event e occurs first in

s then the process moves to state 's . Note that the process is deterministic, in

other words, if 1(, ,)s e s ∈� and 2(, ,)s e s ∈� then 1 2s s= .

 20

 An SMP with finite states can be represented as a labeled transition system (refer to

Figure 2). Every state s is annotated with a set of events inside brackets, these are the events

that are active in that state ()(sK). Transitions out of a state are annotated with an event, say

e, meaning that the transition takes place when event e occurs, the distribution governing the

transition is given by))((xeFs . The numbers inside the state are labels that identify the state.

 Let),,,,,(0 KFsSG �Ε= be an SMP, let , 's s S∈ such that 'es s→ , then:

• The conditional probability of moving out of state s to state 's , given that

the process is currently in state s , is calculated as follows:

'
()0

()()
(1 ()())s

ss s
f K s

dF e x
p F f x dx

dx

∞

∈

= −∏∫ , i.e. it is the probability that event e

occurs first from state s . For the different states in S , these probabilities

form a Matrix '[]ssp referred to as the embedded Markov chain.

• Let sS be the set of all states that are directly accessible from s , in other

words, sS is the set of all states { r S∈ , such that res r→ }. Then, the

mean waiting time in state s , sM , is calculated as follows:

()
s

s sr sr
r S

M p E T
∈

= ∑ where srT is the conditional waiting time in state s given

that the next state to be visited is r , and ()srE T is the expected value of srT .

For more information on the above definitions and derivations, the reader is referred to [68].

B. Embedded Markov chain

 In this sub-section, we will briefly describe the embedded Markov chain, for more

background, the reader is referred to [25],[59],[68].

 21

Let),,,,,(0 KFsSG �Ε= be an SMP, let , 's s S∈ such that 'es s→ . As pointed

out in the previous sub-section, the conditional probability of going from state s to state 's :

'
()0

()()
(1 ()())s

ss s
f K s

dF e x
p F f x dx

dx

∞

∈

= −∏∫ .

For the different states in S , '[]ssp form a matrix for the embedded discrete-time

Markov chain, or simply the embedded Markov chain. The embedded Markov chain

describes the probability of moving between the states of the process without regard to the

sojourn time in the different states of the process. In other words, it refers to the state of the

process at the n+1 transition given its state at the nth transition; regardless of the time of

occurrence of these transitions (we consider here the case where this probability is

independent of n). The probability 'ssp is also denoted by ('(1) | ())P s n s n+ ('(1) | (0))P s s= .

Now, the conditional probability of moving to state s at the nth transition, given that the

chain started from state 0s , is denoted by 0(() | (0))P s n s .

 For any s S∈ , the steady state probability of state s , sπ , is probability of being in

state s in steady state, i.e. 0lim (() | (0))s n P s n sπ →∞= . The steady state probability of the

embedded Markov chain is determined using the following equations:

s r rs
r S

pπ π
∈

= ∑ and 1s
s S

π
∈

=∑

Theorem 2.2. A steady state probability distribution exists for every finite, irreducible, and

ergodic [68] discrete-time Markov chain.

C. Example of an SMP.

 Example 2. The following example is taken from [25]: A system has two identical

devices, each of the devices may fail independently of the other with constant failure rate

� >0, in other words, the time until a failure occurs is exponentially distributed with

 22

parameter � . The failure is modeled by event f. State 1 represents the normal mode of

operation, both units are working (see Figure 2). Upon failure of one device, the process

moves to state 3, and the service is suspended for a random amount of time, during which the

faulty device is identified, the identification of the faulty device is modeled by event I. The

distribution � (t) associated with event I according to which the system moves into the next

state (state 2) is of general nature.

 We assume that no failure can occur in State 3. Subsequently (in State 2), the

working unit resumes service while the faulty one undergoes repair. The repair rate � is

constant, and repair is modeled by event R. State 4 stands for "both units down", and it can

be entered or exited only through State 2. The failure rate in State 1 is 2� because both

devices are up, and similarly the repair rate in State 4 is 2� (assuming independent failure

times).

Figure 2. An example of a semi-Markov process

D. Transient and steady probabilities for semi-Markov models

 Semi-Markov processes are heavily used in this thesis; the results of Chapter 4 rely

on the transient state probability theory for SMPs. Hence, in this sub-section, we will outline

 State1
 {f}

 State3

 State4
 {R}

 State2
 {R,f}

R

 I f R f

 23

the different methods for determining the transient and steady state probabilities for semi-

Markov processes, and their complexities.

 Let {X(t), t >= 0} be an SMP, and assume that, jX =)0(, recall that Pij(t) = P{X(t) =

i| X(0)=j} is the transient state probability of the process for state i, and that P(t) = [P1j(t),

P2j(t),…,Pnj(t)] represents the transient state probability. The steady state probability can be

obtained from the formulae: π=(π1,…, πn)=limt→∞P(t). A different, but equivalent, definition

for steady state probabilities was presented in [27]; the definition considers the proportion of

time spent in every state of the SMP:

 ∫∞→=
t

ijti dxxP
t 0

)(1limπ (1)

 The different methods for determining the TSP of an arbitrary n-state SMP include

the following:

1. Cox and Miller [27] derive a matrix technique for solving the TSPs of a two-state

semi-Markov process. The technique extends directly to arbitrary number of

states.

2. In Bradley [15], a different method is presented. It concentrates on finding the

TSP of a two-state semi-Markov process. Then the method is generalized to cover

an arbitrary state process. The generalization is achieved by reducing a general n-

state process into two states using the process of stochastic aggregation;’ for more

details, refer to [14].

3. In Pyke [73] a different method is presented. It provides a formula for calculating

the vector matrix P(t) from its Laplace transform. As in Bradley’s method above,

this method concentrates on finding the TSP for two-state processes; the result is

then generalized in the same way as in [15] to an arbitrary state process.

In all the three methods, SSPs are derived from TSPs using formula (1) above. Another

direct method to obtain the SSP is illustrated in the theorem below:

 24

Theorem 2.3. Let),,,,,(0 KFsSG �Ε= be an SMP with finite state space. Let P be the

transition matrix for the embedded Markov chain of G . Let { }s s SV v ∈= be the probability

vector that is the solution of the equation V VP= . Then, if V exists, and if the mean waiting

time in state s , sM < ∞ for all s S∈ , then the steady state probabilities exist and can be

calculated as follows: s s
s

r r
r S

v M
v M

π

∈

=
∑

.

 The complexity of the methods above is dominated by the inversion of an nn ×

matrix, where n is the number of states in the SMP. The inversion of an nn × matrix is

possible through several different methods [84], the complexity of the procedure (finding the

TSP or SSP) for the different methods is between)(376.2nO and)(3nO .

 As discussed in the first Chapter, SMPs are not suitable for representing event

concurrency. Hence the need for more general models such as generalized semi-Markov

processes.

2.3.2.2. Generalized semi-Markov process

 In the next sub-section, we formally define generalized semi-Markov processes and

present their properties.

A. Formal definition and examples

Definition 2.2: Generalized semi-Markov processes.

A GSMP is a tuple),,,,,,(0 KAFsSG �Ε= where:

• S is a nonempty set of states including the initial state 0s ,

• Ε is the set of events,

 25

•)(: Ε℘→ finSK is the event setting function which represents all the events that

are initialized when we reach a state. Note that, because of their memoryless

property, all active events in a state s that have an exponentially distributed

lifetime are assumed to be initialized in s (i.e. they are assumed to belong to

)(sK)

• For every Ss ∈ , the function])1,0[()(: →ℜ→sKFs is an s-dependant function

that assigns the event distribution functions such that for all e in)(sK ,

()() 0sF e x = for 0<x and lim ()() 1x sF e x→∞ = . (As mentioned before, the

distribution of an event depends on the state it was initialized in).

•)(: Ε℘→ finSA is the set of events that are active in a state, note that)()(sAsK ⊆

for all Ss ∈ .

• S S⊆ ×Ε×� is the set of edges where 'ss
e

� means that if event e occurs first in

s then the process moves to state 's . Note that the process is deterministic, in

other words, if 1(, ,)s e s ∈� and 2(, ,)s e s ∈� then 1 2s s= .

 A GSMP is depicted as a labeled transition system, as shown in

Figure 3. Every state s is annotated with a set of events inside brackets, these are the events

that are initialized in that state ()(sK). Transitions out of a state are annotated with an event,

say e, meaning that the transition takes place when event e occurs. The numbers inside the

state are labels that identify the state.

 Example 3. We consider the model of a machine that receives requests and services

them. The machine can service one request at a time, and requests are generated when the

machine is not in service. The request generation is modeled by event r and servicing a

request is modeled by event s , both have a generally distributed lifetime duration. The

machine keeps working for a constant period of time then undergoes tune-up. If the machine

is servicing a request when tune-up is due, the machine aborts the current service to undergo

 26

the tune-up. The interval between two consecutive tune-ups is constant and is modeled by

event a . The tune-up process is generally distributed and is modeled by event u . While in

service, the machine can fail, at that time it has to undergo repair, the failure and repair are

modeled by events f and p , respectively, they both have generally distributed lifetimes. If

the machine fails and is repaired, it reinitializes event a , Transition d is immediate. Note

that a might have a different lifetime distributions in state 4 and 0, because the tune-up time

after a repair is not so urgent. The model is depicted in Figure 3.

Now, we present another example of a GSMP:

 Example 4 (refer to [61]): Consider a G/G/1 queue of size 3. The arrival and the

service are represented by a and s respectively. The number inside a state represents the

state label as well as the number of customers inside the system (number of customers

waiting+ number of customers in service). Refer to Figure 4.

Figure 3. Example of a GSMP

2
{s,f}

0
 {a,d}

3
{p}

5
{u}

 a
 a

r

1
{r}

d

 u

s

f

 p

 4
{a,d}

d

 27

Figure 4. G/G/1/

B. Transient and steady state probabilities for GSMPs

 Transient State Probabilities: as explained in Chapter 1, finding the TSPs for

GSMPs is difficult because of the absence of the Markov property. In the next chapter, we

will present the different methods available to analytically find the transient state

probabilities of GSMPs.

 Steady state Probabilities: once the TSPs are calculated, the SSPs are derived from

TSPs using Formulae (1) in Section 2.3.2.1.C. However, for a subclass of GSMPs, referred

to as insensitive GSMPs [67],[75], the steady state probability can be derived through a

simple application of numerical analysis. Insensitivity results were originally presented by

Matthes in [67].

Definition 2.3: Insensitive GSMPs.

A stochastic process is said to be insensitive if its steady state distribution depends only on

the mean of the random variables representing residence time in the states of the process.

 Matthes showed the following result [67]:

Theorem 2.4. Given a GSMP),,,,,,(0 KAFsSG �Ε= , the following two statements are

equivalent:

 0
{a}

1
{a,s}

 3

 0’

 1’

 2’
 { a,s}

 2
 {a}

 a s a s a s

 a a a

 s s

 28

1. The process is insensitive to the events of E . That is, the distributions of the

lifetimes of the events of E may be replaced by any other distribution with the

same mean.

2. When all events of E are assumed to be exponentially distributed, the flux (i.e.

the instantaneous rate) out of each state due to the occurrence of an event of E is

equal to the flux into that state due to the activation of that event.

(

 So if a GSMP),,,,,,(0 KAFsSG �Ε= is insensitive to the events in E , and if

),,,',,,(' 0 KAFsSG �Ε= is the GSMP obtained from G by replacing the distributions

associated with events in E with the exponential distributions having the same mean - in

other words)(eFs and)(' eF s have the same mean for all Ee∈ , and)(' eF s are

exponential distributions - then G and 'G have the same steady state probabilities.

 Conditions for insensitivity have been investigated by several researchers in the

context of SPN. In [34], authors investigated the notion of insensitivity when the stochastic

model underlying the SPN is an SMP. In [3],[49], the authors investigated insensitivity in the

context of GSMPs, the restrictions presented identify a class of allowed general distributions

along with some restrictions on the concurrently enabled transitions that result in an

insensitive GSMP. Clark et al. translate these restrictions to the context of SPA [22].

 29

2.4. Queuing Models

2.4.1. Introduction

 Queues have been studied by mathematicians for more than 100 years [48], and the

first applications they looked at were in telephone exchanges. Queues became popular with

computer scientists about four decades ago, at which time, they came to the realisation that

single queues, and networks of queues could be used as models to study the performance of

computer systems. Recently, the growth in computer systems’ models resulted in models that

can not be expressed using queuing networks. However many people still view performance

analysis as the synonym of queuing theory.

2.4.2. Single Queues

 In single queues, customers arrive at a service facility where one or more servers are

waiting to service these customers. Servers are usually assumed to be indistinguishable in

terms of the service they can provide. If a customer cannot gain access to a server it must

wait in a queue, until a server becomes ready. Upon completion of the service request, a

customer departs from the facility, the next customer is then selected from the queue

according to a predefined service discipline.

 The following items are required in the study of queuing models:

 Arrival Pattern of Customers: servicing of customers depends on the distribution

function of the inter-arrival times. Inter-arrival times are usually assumed to be exponentially

distributed, i.e. they correspond to a random arrival with a large customer population.

However, this scenario need not be always true.

 Service Time Distribution: is the time that a server spends servicing a customer. The

distribution function of the service time is usually assumed to be exponential.

 30

 Number of Servers: If one server is available, the service facility can only serve one

customer at a time; other customers have to wait in the queue until the server is available; the

next customer is chosen depending on the service discipline. If infinitely many servers are

available, then customers never wait for service and the queue is always empty. If a fixed

number of servers (usually denoted c) are available, then arriving customers wait in the

queue only if the number of customer in the facility exceeds c

 Queue Capacity: Customers who cannot receive service wait in the queue for a server

to become available. The number of customers waiting may grow, depending on the inter-

arrival and service distributions. If the queue has a finite capacity c, then it may become full.

In this case, any additional customer is turned away and lost.

 Service Discipline: When several customers are waiting for service, a discipline for

selecting the next customer must be provided. Some of the commonly used disciplines are:

• FCFS first come first serve (or FIFO first in first out).

• LCFS last come first serve (or LIFO last in first out).

• PRI priority. The assignment of priorities to customers according to the service

they require

2.4.2.1. Solving single queues

 If inter-arrival time and service time are exponential, then the queue can be

modelled as a continuous-time Markov chain [53]. However, the SSP of the underlying

continuous-time Markov chain can be obtained through simple application of linear algebra

(it is a function of the arrival time, the service time and the size of the queue). Hence

common performance measures can be obtained through simple application of linear algebra

without referring to the underlying CTMC and without the need to solve it. Examples of such

measures are: mean number of customers in the queue, mean service time and the probability

of the system being idle.

 31

 If inter-arrival time and/ or service time are non-exponential, then the queue can

be modelled as a generalized semi-Markov process. Solutions of these queues are available

(without referring to the underlying GSMP) for the case where either the service time or the

arrival time is non-exponential. For more details refer to [12],[25],[68].

2.4.3. Networks of Queues

 If we view a computer as a set of devices, and customers (or requests) move from one

device to the other sequentially, then we can model the system as a queuing network. Each

device is represented by a separate queue or service centre. Customers in the network

correspond to the users in the whole system. A customer may move from one service centre

to another in the system, the pattern in which customers move around is predefined. Each

service centre is a single queue, however, its characteristics (arrival, service time,…) are not

independent of the other service centres within the network.

 A queuing network is characterized by: the network topology, the characteristics of

each service centre, and by its customers. If the network is closed, i.e. if external arrivals are

not allowed, then the number of customers inside the network is fixed an must be known. If

the network is open, then the arrival process to each service centre is needed.

 A queuing network is represented as a directed graph, nodes represent service

centres, arcs represent the paths customers can take when moving between service centers.

The state of the network is defined by the number of customers in each service centre.

The analysis of a network of queues is based on the analysis of the underlying

stochastic process. The underlying stochastic process is usually a CTMC. The state of the

process includes the number of customers in each service center [6].

For a closed network, the state of the underlying process grows exponentially relative

to the number of service centers and the number of customers in the network, for an open

network, the number of states in the underlying process is infinite. For that reason, extracting

performance measures from a network of queues is not always possible. However, for a

 32

subclass of queuing networks, referred to as product form queuing networks straightforward

means of extracting performance measures have been found [6].

2.4.5. Product Form Queuing Networks

 The term “product form” represents the fact that the steady state probability of the

queuing network can be derived as the product of the steady state distributions of each of the

service centres that make up the network. In other words, once the different service centres

reach equilibrium they behave independently of each other; for more information refer to

[48],[53].

Recall that the state of a single service facility can be characterized by the number of

customers currently in the system. In a queuing network the state of the system is

characterized by the number of customers waiting at each of the service centres. This is

usually represented as a tuple.

Product form solution for a network of queues holds under certain assumptions.

These assumptions are defined on the Markov process underlying the network. The precise

characterization of product form queuing networks is not easy, for that reason, conditions

that are sufficient to ensure product form have been derived; an example is the quasi-

reversibility of every service centre: quasi-reversibility states that the current state of a

service centre, the past departures and the future arrivals are independent. For more

information, refer to [6].

Under the assumption of a product form queuing network, using the already

established formula for individual queues, the steady state probability of the network can be

obtained without the need to develop the underlying process.

 33

2.4.5. Expressiveness

 Some aspects of computer and communication systems can not be represented by

queuing networks. Some of these aspects are listed below. Ways for providing solutions for

systems with such aspects remain topics for research.

 Simultaneous resource possession: In a computer system a job may be using more

than one resource in the system simultaneously. A solution for this problem is to use Layered

Queuing Networks [85].

 Bulk arrivals: the arrival rate between customers is not always independent,

examples are bulk arrivals (i.e. arrivals that occur in batches).

2.4.6. Queuing Networks: Pros and Cons

 Queuing models can be constructed, and evaluated relatively easily [12]. The

behavior of each service is expressed based on the six characteristics of Kendall’s notation

[12]. However, the expressivity of queuing networks is limited. Queuing networks cannot

represent systems in which more than one resource must be simultaneously retained, or

systems in which there is internal concurrency. Some work has been done to remedy these

cases, but its applicability is still limited [53],[85].

2.5. Petri Nets

 In this section, we will briefly present the notion of Petri nets; for more information

and for examples refer to [23],[60].

 34

2.5.1. General Notions

Petri nets provide a graphical notation for the formal description of the dynamic

behaviour of systems. They are particularly well suited to systems which exhibit

concurrency, synchronization, mutual exclusion and conflict. The primitives of the notation

are the following:

• PLACES are used to represent conditions or local system states, e.g. a place

may relate to one phase in the behaviour of a particular component.

• TRANSITIONS are used to describe events that occur in the system; these

will usually result in a modification to the system state. The occurrence of the

event in the system is represented by the firing of the corresponding transition

in the Petri net.

• TOKENS are identity-less markers that reside in places. The presence of a

token in a place indicates that the corresponding condition or local state holds.

• ARCS specify the relationships between local states or conditions (places)

and events (transitions). An arc from a place to a transition is termed an input

arc. This indicates the local state in which the event can occur. An arc to a

place from a transition is termed an output arc. This indicates the local

transformations which will be induced by the event. Tokens move between

places according to the firing rules imposed by the transitions.

A transition can fire when each of the places connected to it has at least one token;

when it fires, the transition removes a token from each of these places and deposits a token in

each of the places it is connected to by output arcs. This is called the firing rule. Sometimes a

transition will require an input place to contain two or more tokens before it can fire. In this

case, rather than draw more than one arc between the place and the transition, we denote the

multiplicity of the arc by a small number written next to the arc. Similarly for output arcs.

The state of the system combines information about all the local states. Since each local state

is represented by the number of tokens present in a particular place, the state of the system is

 35

represented by a tuple, with one entry for each place, and the value of the entries denoting

the number of tokens in that place. This is termed a marking of the net.

A Petri net consisting of places and transitions linked by arcs is incomplete if it does

not also have tokens in some places. The initial placing of tokens is called the initial

marking, this represents the starting state of the system.

Starting from an initial marking and following the firing rule we can progress through

the states of the model. Continuing in this way, recording all the states we see and stopping

only when we can reach no states that we have not already seen, we obtain all the possible

states of the model. This is called the reachability set; it is the set of all possible markings

that a net may exhibit, starting from the initial marking and following the firing rules.

Different initial markings might lead to different reachability sets. This is why the initial

marking is an important part of the model definition. If we record all possible states and all

possible transitions between those states, we obtain the reachability graph. This is a graph in

which the nodes are the reachable markings and the arcs between nodes represent the

possible transition firings which may move the model from one marking to the other.

If we wish to extract timing information from a model we must represent timing

information about the system in the model when it is constructed. In the case of Petri nets

there has been a variety of suggestions of how to introduce timing information into Petri net

notation.

If we consider the reachability graph of a Petri net model it resembles the state

transition diagram of a Markov-like process. Stochastic Petri Nets (SPN) formalise this

intuitive correspondence. Given a Petri net model (complete with initial marking): we

associate a state in the Markov process with every marking in the reachability graph of the

Petri net; we associate an event, or transition, in the Markov process with each firing of a

transition in the Petri net which causes the corresponding change of marking. Since an

exponentially distributed delay is associated with each event in a Markov process, and

transitions in the Petri net correspond to events, in an SPN model an exponentially

distributed delay is associated with each transition in the net structure. Thus each transition

 36

in an SPN has a firing rate which is the parameter of the corresponding exponential

distribution, and transitions are sometimes termed timed transitions.

Non-exponentially distributed delays are added to a PN in the same way, the

resulting process is referred to as non-Markovian Petri net, for more information refer to

[34],[38],[23].

One of the advantages of SPN models is the straightforward correspondence between

the reachability graph of the SPN and the state transition diagram of the Markov-like process

it generates.

2.5.2. Petri Nets: Pros and Cons

• The time required to model construction is often greatly reduced compared with

Markov-like processes. However some additional skill is required to learn the

notation and semantics of the nets [53].

• Solution of the Petri net is obtained by generating the underlying Markov-like

Process (the reachability graph of the Petri net is generated and then the Markov-like

process). In the case of SPN, deriving the Markov process is a straightforward task.

Once the Markov Process is generated, the solution proceeds numerically. So

deriving performance is handled the same way as in the Markov process case.

However the identification of states of interest could be easier using the Petri net.

• State space explosion and problem size are the major problem in steady state

distribution of the underlying process. Extensive research has been dedicated to

finding efficient approaches to dealing with the problem [9].

 37

2.6. Process Algebras

In this section we consider another class of performance modelling paradigms:-

stochastic extensions of process algebras. Like queuing networks and stochastic Petri nets,

these formal languages can be regarded as high level model specification languages for low-

level stochastic models. As we will see, the development of stochastic process algebras, or

SPA, has been very similar to that of SPN: in both cases an untimed formalism, used for

studying the correct functional behaviour of systems, is extended by associating generally

distributed delays with actions and reachability analysis is used to construct a corresponding

stochastic process. The advantages of SPAs are that they incorporate the attractive features

of process algebras and thus bring to the area of performance modelling several attributes

which are not offered by the existing formalisms. Perhaps the most important feature is the

compositionality which is inherent in the models and can be exploited during their analysis.

Several stochastic process algebras have appeared in the literature but they are all broadly

similar. Here we will concentrate on PEPA (Performance Evaluation Process Algebra [54]).

Process algebras are abstract languages used for the specification and design of

concurrent systems. The most widely used process algebras are Milner's Calculus of

Communicating Systems (CCS) and Hoare's Communicating Sequential Processes (CSP)

and the SPAs take inspiration from both these formalisms. Models in CCS and CSP have

been used extensively to establish the correct behaviour of complex systems by deriving

qualitative properties such as freedom from deadlock or livelock.

In the process algebra approach, systems are modelled as collections of entities,

called agents, which execute atomic actions. These actions are the building blocks of the

language and they are used to describe sequential behaviours which may run concurrently,

and synchronizations or communications between them.

In CCS two agents communicate when one performs an action, a say, while the other

performs the complementary action a. The resulting communication action is regarded as an

internal action that is invisible to the environment. Agents may proceed with their internal

 38

actions simultaneously but it is important to note that the semantics given to the language

imposes an interleaving on such concurrent behaviour, i.e. it is not possible for two actions to

occur simultaneously. The grammar of the language makes it possible to construct an agent

which has a designated first action (prefix); has a choice over alternatives (choice); or has

concurrent possibilities (composition).

The communication mechanism is different in CSP as there is no notion of

complementary actions: this is a major distinction between CCS and CSP. In CSP two agents

communicate by simultaneously executing actions with the same label. Since during the

communication the joint action remains visible to the environment, it can be reused by other

concurrent processes so that more than two processes can be involved in the communication.

This is the communication mechanism adopted in the SPA languages and in Lotos.

2.6.1. PEPA

According to Hillston [53], “Process algebras offer several attractive features which

are not necessarily available in existing performance modelling paradigms. The most

important of these are compositionality, the ability to model a system as the interaction of its

subsystems, formality, giving a precise meaning to all terms in the language, and abstraction,

the ability to build up complex models from detailed components but disregarding internal

behaviour when it is appropriate to do so. Queuing networks offer compositionality but not

formality; SPN and GSPN offer formality but not compositionality; neither queuing

networks nor Petri nets offer abstraction mechanisms”.

PEPA extends classical process algebra by associating a random variable,

representing duration, with every action. These random variables are assumed to be

exponentially distributed and this leads to a clear relationship between the process algebra

model and a Markov process.

PEPA models are described as interactions of components. Each component can perform

a set of actions: an action a is described as a pair (e,r), where e is the type of the action and r

 39

is the parameter of the exponential distribution governing its duration. Whenever a process P

can perform an action, an instance of a given probability distribution is sampled: the

resulting number specifies how long it will take to complete the action. A small set of

constructors is used to build up complex behaviour from simpler behaviour. The constructors

are: sequential composition (prefix), choice, synchronization (cooperation) and abstraction

(hiding). We explain each of them below, in terms of a extremely simple model of a web

based information system.

• Prefix (.): A component may have purely sequential behaviour, repeatedly

undertaking one activity after another and eventually returning to the beginning of its

behaviour.

• Choice (+): A choice between two possible behaviours is represented as the sum of

the possibilities. A race condition is assumed to govern the behaviour of

simultaneously enabled actions and the continuous nature of the probability

distributions ensures that the actions cannot occur simultaneously. Thus a sum will

behave as either one summand or the other. When an action has more than one

possible outcome, e.g. the display action in the browser, it is represented by a choice

of separate actions, one for each possible outcome. The rates of these actions are

chosen to reflect their relative probabilities (decomposition principle).

Note that in a GSPN we would represent this situation by a single timed transition to

represent the display action, which when it fired enabled two immediate transitions

with weights p1 and p2 to reflect the different possible outcomes.

• Cooperation P∞LQ: The cooperation constructor represents a parallel composition

between P and Q for all the actions not in the set L. Actions in this set L require the

simultaneous involvement of both components. The resulting action, a shared action,

will have the same type as the two contributory actions and a rate reflecting the rate

of the action in the slowest participating component. Note that this means that the rate

of a passive action will become the rate of the action it cooperates with.

 40

• Abstraction (/): It is often convenient to hide some actions, making them private to

the component or components involved. The duration of the actions is unaffected, but

their type becomes hidden, appearing instead as the unknown type τ.

 The formality of the process algebra approach allows us to assign a precise meaning

to every language expression. This implies that once we have a language description of a

given system its behavior can be deduced automatically. The meaning, or semantics, of a

PEPA expression is provided by a formal semantics, in the structured operational style,

which associates a labeled transition system with every expression in the language. This

form of directed graph shows the possible evolutions of the model.

2.6.2. Non-Markovian Process Algebras

The algebra we discussed above have the property that delays are governed by

exponential distributions. In this section we will briefly discuss how arbitrary, nonMarkovian

probability distributions can be represented in process algebras. The information is taken

from [61].

Because of the memoryless property of the exponential distribution, the parallel

composition of two exponentially distributed events can be incorporated into an interleaved

setting, i.e.

a ∞φ b = a.b + b.a

If we allow actions to be delayed by arbitrary distributions, the above law becomes

invalid, in other words, if an action a has arbitrary distribution F and an action b has arbitrary

distribution G then:

a ∞φ b ≠ a.b + b.a

 41

In fact, after the delay imposed by F, the residual lifetime of G has to be computed in order

to correctly determine the remaining delay before b occurs (refer to Figure 1). To overcome

this, the idea is to make a distinction between three activities: (i) starting a delay, (ii)

finishing a delay, and (iii) the occurrence of immediate actions. This separation has been

brought up by D’Argenio, Katoen and Brinksma [29],[33], they denote their process algebra

by ♠. A similar distinction has been made in GSMPA [17].

For more information and for a complete characterization of the algebra, refer to

[29],[33],[61].

Once arbitrary probability distributions are allowed, the underlying stochastic process

does not have to satisfy the Markov property. It can be shown [17],[61] that the underlying

stochastic process is in fact a generalized semi-Markov process (GSMP) (for the case of

deterministic process algebras).

2.6.3. Process Algebras: Pros and Cons

• The time required for model construction is often greatly reduced over Markov-like

processes. The component-based approach greatly simplifies the task of model

construction.

• Basic performance measures could be derived from the solution of the underlying

stochastic process without detailed knowledge of the algebra. Generation of the

underlying process is formally defined based on the operational semantics of the

language. For the case of Markov processes, tools exist to do this automatically

[53],[54], and deriving performance is handled the same way as in the Markov

process case. However, the identification of states of interest could be easier using the

process algebra.

• Stochastic process algebra models bring several attractive features to performance

modeling, among these is the compositional structure of these models. It not only aids

 42

model construction (by focusing on one component of the model at a time rather than

the whole model) but could also be exploited during model solution [54],[61].

• State space explosion and problem size are the major problem in the calculation of

steady state distribution of the underlying process. Extensive research has been

dedicated to finding efficient approaches to dealing with the problem [9].

 43

Chapter 3: Non-Markovian Analysis

3.1. Analysis Approaches for non-Markovian Models

 With the aim of providing the modeler with more general models, various models

have been discussed in the literature. In [28] Cumani presented a model in which every

transition is assigned a PH [70] distributed firing time. The steady state and transient state

solution for such models was also presented. In [3] the authors presented a model in which

exponential and deterministic firing times are allowed with the restriction that at most one

deterministic transition can be active at any time. Only the steady state solution was

presented in [3]. The transient state probability of these models by the method of embedded

regenerative process was then presented in [21]. The method of embedded regenerative

process was then extended in [20] to cover any general distribution (not only deterministic)

with the restriction that at most one non-exponential distribution could be active at any time

(the enabling restriction). In [44], German et al. derived the steady state probabilities of the

same model using another method, the method of supplementary variables [26]. The method

was then generalized to the transient state analysis in [45].

 44

In what follows we give a brief review for each of these approaches: the method of

embedded variables, the method of embedded regenerative process, and the method of

continuous phase type distribution PH, more information can be found in [8],[40],[45],[65].

3.2. Method of Supplementary Variables

 The method of supplementary variables is well known in queuing literature [26]. It

was originally proposed in the context of non-Markovian processes by German et al. in

[42],[44], then more general execution policies were discussed in [43]. The method of

supplementary variables has been applied to GSMPs),,,,,,(0 KAFsSG �Ε= with the

property that, in each state, at most one enabled event (active event) can have a non-

exponential distribution, while all other enabled events are exponentially distributed, a

property known as the enabling restriction.

 Let)(ta be the age of the only enabled non-exponential event at time t , if any. The

enabling restriction implies that if)(tX is the state of the GSMP G at time t , then the new

process formed from)(tX and the supplementary variable)(ta , i.e.))(),((tatX , satisfies

the memoryless property. The new process has an uncountable state space ℜ×S [44] (ℜ is

the set of non-negative real numbers), it can be analyzed using the method of supplementary

variables as discussed in [44]. The solution approach is hereby briefly summarized following

the concepts in [45]:

 If },...,{ 1 ngg is the set of non-exponentially distributed events, then the state space

S can be partitioned into 1+n disjoint sets: }}1,...,1{,{ +∈ niS i where },...,1{, niSi ∈ is the

set of states in which event ig is active, and 1+nS is the set of states in which no general

transition is enabled. Note that such a partition exists because at most one ig can be active at

any point in time. The probability of being in state s at time t is })({Pr)(stXobts ==Π . If

},...,1{, niSs i ∈∈ , and if the distribution associated with event ig is)(xFi then we define

 45

the instantaneous age rate),(xths as the conditional firing rate of ig at time x when we are

in s at time t, given that ig does not fire before time x:

dx
dxxtaxstXob

xths
))(,)((Pr

),(
+≤<=

=
)(1

1
xFi−

where))(,)((Pr dxxtaxstXob +≤<= is the probability that ig will expire when its age is

between x and dxx + , and
)(1

1
xFi−

 is the probability that ig does not fire in the interval

],0[x . And we define),(),(xthxth s
g
s

i = if iSs ∈ and 0 otherwise, and the vector

>∈=< i
g
s

g Ssxthxth ii),,(),(.

The state transitions of the stochastic process are given by the following matrices:

• Matrix igQ is defined over the set ii SS × where the entry ',
',

ssQ
ssg i ≠ , is the rate

of transition from state s (in which the general transition g is active) to state 's

provided that the transition is exponential. While
ssgiQ

,
 is the negative sum of all

rates of exponential state transitions out of state s .

• Matrix ∆ whose entry ',ss∆ is the probability of moving from state s to state 's

upon the firing of a general transition ig , i.e. {Pr', obss =∆ the next state is |'s the

current marking is s and transition ig fires}.

 With the above definitions, the age rate vector can be described by the following

differential equation:

gggg Qxthxth
x

xth
t

),(),(),(=
∂
∂+

∂
∂ (1)

The transient state probability vector)(tΠ can be calculated in partitioned form from the age

rate vector using the following facts:

 46

The different ways to reach a state in 1+nS are:

(i) By the firing of an exponential transition which results in a state in 1+nS .

(ii) By the firing of a general transition which results in a state in 1+nS .

(iii) By the disabling of a general transition which results in a state in 1+nS .

And the different ways to reach a state in iS are:

(i) By the firing of an exponential transition which results in a state in iS .

(ii) By the firing of a general transition jg which results in a state in iS .

(iii) By the firing of an exponential transition which disables the active general

transition jg and results in a state in iS (i.e. event ig is enabled).

 The complete system of equations is presented in [40]. A numerical analysis of the

equation system is possible by discretization. The method of supplementary variable has a

worst case of 2

1

(| |)i

n
g

i
i

O c tq S
=
∑ time complexity and 2

1
1 1

(| | | | | |)
n n

n i i
i i

O S c S S+
= =

+ +∑ ∑ space

complexity where c denotes the time for integral calculation, and igq is the absolute

maximum diagonal entry for igQ . For more information, refer to [40].

3.3. Method of Embedded Regenerative Processes

This technique applies to Markov regenerative processes, MRGP. An MRGP is a

GSMP with infinitely many regeneration points, i.e. points where the process satisfies the

memoryless property. Because of this property, the analysis of a MRGP can be split into

independent sub-problems given by sub-processes starting and ending at a regeneration

 47

point. Following this method, transient analysis for systems satisfying the enabling

restriction is described in [11],[20],[65].

Definition 3.1: Markov renewal sequence [62]

A Markov renewal sequence is defined as the sequence of pairs of random variables

),(nnX θ (usually iX represents the state of the process that was entered at time iθ) for

which the following properties hold:

 ==≤−= −−++ },,....,,,,|,{ 001111 θθθθθ XXiXxjXP nnnnnnn

 }|,{ 011 iXxjXP =≤= θ

 According to the above definition, the current state of the process alone determines

probabilistically the next state and the duration of time in the current state.

Given a stochastic process)(xY , if a Markov renewal sequence),(nnX θ is embedded in

)(xY , i.e. if the behavior of)(xY between instants nθ and 1+nθ is of any kind, but at 1+nθ

)(11 ++ = nn YX θ , then)(xY is called a Markov regenerative process.

Definition 3.2: MRGP [62]

A stochastic process)(xY is said to be a Markov regenerative process, MRGP, if there exists

an embedded Markov renewal sequence),(nnX θ such that

 }|)({},0),(|)({ iXjxYPiXuuYjxYP nnnnn ==+==≤≤=+ θθθ

 }|)({ 0 iXjxYP ===

So MRGPs behave like a Markov process relative to instants nθ , these instants are

known as regeneration instants. But between these instants, the process can evolve in any

 48

way. From an intuitive point of view, it can be said that there are instants ,...,...,, 10 nθθθ

between which the behavior of the process is not affected by its previous history. Moreover,

each of the cycles can be studied as if the point of regeneration from which the process is

examined where 00 =θ .

As described in [62] two quantities are capable of describing the evolution of the

MRGP are defined:

• The local kernel)(tE :)|')(()(01' sXtstYPtEss =>∧== θ describes the

evolution of the process between two regeneration instants, and

• the global kernel)(tK :)|')(()(01' sXtstXPtK ss =≤∧== θ describes the

evolution of the process at the regeneration instants themselves.

So if)]([)(' tVtV ss= = }])0(|')({[Pr sYstYob == denotes the transition probability of the

MRGP, then the transient state probabilities can be obtained by solving the following

equation [45]:

∑∫ −+=
r

t

rssrssss xtVxdKtEtV
0

''')()()()((1)

Or its Laplace transform domain [40]

)()]([)(~1~~ xExKIxV −−= (2)

A solution can be obtained by numerically integrating equation (1), or by a

combination of numeric and symbolic computation for equation (2). In both cases, the

complexity of the solution of the above equation limits the applicability of this technique to

MRGPs implementing the enabling restriction [40],[45]. With MRGPs implementing the

enabling restriction, the regenerative method has)|(| 2SO space complexity and

)|(| 4SO time complexity in the worst case [40].

 49

3.4. Continuous Phase Type Distribution

This technique consists of approximating general distributions by a series/parallel

combination of exponential distributions, thus transforming the process into a Markovian

one.

An interesting class of distributions that serves this purpose are the PH distributions

[70]. PH distributions can be defined as “the distributions of absorption time in a CTMC

with a single absorption state” [8]. PH distributions can approximate any distribution

arbitrarily close. Many tools are available to find the PH distribution that approximates any

given general distribution. After approximating all distributions of events in the process

using PH distributions, the process is expanded into a CTMC. The expansion algorithm can

be performed automatically by a computer program. Exact results are obtained only when the

firing times of the original process are PH-distributed. For recent updates on this method

refer to [8].

3.5. Contributions Outline

The first two methods presented in this chapter deal with the case where events with

non-exponentially distributed durations are mutually exclusive. Imposing this restriction

leads to algorithms with reasonable costs while going beyond the restriction is one of the

most challenging open issues in the field [10],[38],[41],[55]. However for events with

deterministic durations, efficient numerical analysis can be found [42]. For a comparison of

these approaches refer to [40],[45]. The continuous phase type distribution technique is not

restricted to Markov regenerative processes, however, exact results are only obtained when

all firing times of the original process are PH-distributed.

 In this thesis, we will extend the class of solvable GSMPs by allowing several generally

distributed events to be enabled at any time. However, we impose the restriction that every

cycle 121
11 ... ssssC nn e

n
ee →→→= − in the GSMP must either be near semi-Markovian

or regenerative. These properties are defined as follows:

 50

1. cycle C is near semi-Markovian (NSM), if every state is in the cycle has the

property that given any event g that starts its lifetime in a state js of C , if g is

active in is then g restarts its lifetime in is . Intuitively, when taken as a separate

entity from the GSMP, C becomes a semi-Markovian process. An NSM cycle is

called near Markovian (NM), if all the events activated inside the cycle (i.e. the

set of events
1

() ()
n

i
i

K C K s
=

= ∪) have exponentially distributed delays. Formally,

C is NSM iff for all is C∈ , if (() (; ())i jg A s j i g A s∈ ∧ ∃ ≠ ∈ then ()ig K s∈

2. Cycle C is regenerative (REG), if there exists a regenerative state is in the cycle

(i.e. the GSMP satisfies the Markovian property at the time state is is entered).

Formally, there exists is C∈ , such that () ()i iA s K s= .

 GSMPs whose cycles are either NSM or REG are referred to as near-regenerative

generalized semi-Markov processes, NRGSMP. NRGSMPs are more general than the

GSMP’s implementing the enabling restriction which we will abbreviate as EGSMPs. In

fact, among other restrictions, the only cycles allowed in a EGSMP are either regenerative or

near-Markovian. However, an important class of GSMP’s is not covered by NRGSMPs; an

example is the queue G/G/1 of size 3 shown in Figure 4. Note that the cycle

2'12 →→ as is neither regenerative nor near semi-Markovian. In fact, all GSMPs with

at least one cycle satisfying both points below:

• The cycle has no regenerative states, and

• There exists a transition 'es s→ such that ()e K s∉

are not NRGSMPs, and the cycle 2'12 →→ as of Figure 4 satisfies both of these points.

NRGSMPs will be formally defined in Chapter 4 .

In finding the steady state probabilities for NRGSMPs, we will present an algorithm

to transform the NRGSMP into a semi-Markov process (SMP) while preserving steady-state

simulation, which enables us to determine the steady state probability of the NRGSMP from

 51

that of the SMP constructed. The algorithm will be presented in full details in Chapter 4. The

chapter will also include a comparison between the different methods.

The method described above could generate semi-Markov processes with large state

spaces. For that reason, Chapter 5 introduces a method to remove states from GSMPs while

preserving the distribution of time needed to travel between non-deleted states and preserves

the transient state probabilities for a subset of the states of the automata as well. Chapter 6

deals with the issue of state space explosion of the SMP created; it deals with the problem by

introducing a new simplification technique for semi-Markov processes. The technique

deletes states from the SMP while preserving the average time to travel between non-deleted

states, or what we call mean passage-time equivalence. Chapter 7 presents an application for

Chapters 4,5 and 6, a case study, and presents the procedure needed to determine whether a

GSMP is an NRGSMP. Finally, Chapter 8 provides our conclusions and suggestions for

future research directions.

 52

Chapter 4: A Deeper Look into Non-Markovian

Analysis

4.1. Introduction

 In this chapter, we will present a new class of processes: Near-Regenerative GSMP’s or

NRGSMP. The NRGSMP’s extend the class of solvable GSMPs by allowing several events

with a generally distributed lifetime to be enabled at the same time. However, they satisfy the

restriction that every cycle 121
11 ... ssssC nn e

n
ee →→→= − must either be near semi-

Markovian (NSM) or regenerative (REG), recall from Section 3.5 that

1. cycle C is near semi-Markovian (NSM), if every state is in the cycle has

the property that given any event g that starts its lifetime in a state js of C ,

if g is active in is then g restarts its lifetime in is . Intuitively, when taken

as a separate entity from the GSMP, C becomes a semi-Markovian process.

An NSM cycle is called near Markovian (NM), if all the events activated

 53

inside the cycle (i.e. the set of events
1

() ()
n

i
i

K C K s
=

= ∪) have exponentially

distributed delays. Formally, C is NSM iff for all is C∈ , if

(() (; ())i jg A s j i g A s∈ ∧ ∃ ≠ ∈ then ()ig K s∈

2. Cycle C is regenerative (REG), if there exists a regenerative state is in the

cycle (i.e. the GSMP satisfies the Markovian property at the time state is is

entered). Formally, there exists is C∈ , such that () ()i iA s K s= .

 These properties will be formally defined in the next section.

For finding the steady state probabilities for NRGSMPs, we will present an algorithm

to transform the NRGSMP into a semi-Markov process (SMP) while preserving steady-state

simulation, a simulation that enables us to determine the steady state probabilities of the

NRGSMP from that of the SMP constructed. To transform the NRGSMP G into such an

SMP 'G we need to calculate, for every state s , the distribution of the remaining lifetime of

every active event e of s given that G has been running for a sufficiently long time. We

call this distribution the “average residual lifetime distribution” and we denote it by

Re (,)Av s e s . We call the distribution “average residual lifetime distribution” because it is

the expected distribution of event e in state s regardless of the trace followed to reach state

s . To explain the transformation and the equivalence informally, let s be a non-regenerative

state in G, and let Γ be the set of all traces in G from the starting state 0s to s . Note that Γ

could be infinite. We construct 'G as follows:

• We divide Γ into distinct subsets },...,{ 21 nΓΓΓ such that each iΓ has the following

property:

o if we reach state s by following a trace from iΓ , the average residual lifetime

for the active events of s can be calculated (Note that given two traces T and

'T in iΓ , Re (, ,)Av s e s T may not be equal to Re (, , ')Av s e s T . However,

given that a trace from iΓ was followed to reach state s , then the average

 54

residual lifetime for the active events in state s , which is the expected

distribution associated with the active events in s can be calculated). We will

see in Section 4.3 how such iΓ ’s look like.

• Then we create n copies of state s : { nss ,...,1 } one for each subset iΓ . We say that

state s is split into n states. And we modify the GSMP G such that every set of

traces iΓ leads to state is , i.e. the set of traces from the starting state 0s to is

becomes iΓ . (Note that this step might involve splitting states other than s). The

active event e in is is then assigned a distribution equal to Re (,)iAv s e s . We

identify the modified process as 'G .

 Based on the above construction, it will be shown that 'G steady-state simulates (or s-

simulates) G . One of the properties of the simulation is that, given G and 'G have been

running for a sufficiently long time, the distribution of the sojourn time in state s in G ,

denoted by ()G sζ , is equal to
' '

'1

1

() ()

()

G Gn
i i

n
Gi

j
j

P s s

P s

ζ
=

=

∑
∑

, where '()G
iP s is the probability of being

in state is in 'G and ' ()G
isζ is the sojourn time in state is in 'G .

 Another property of the s-simulation is that if a GSMP s-simulates another, then the two

GSMPs are bisimulation equivalent from a functional point of view, i.e. if we neglect the

time distributions associated with the events and consider only the order of events labels, the

two GSMPs become bisimulation equivalent.

 To illustrate this, we consider the two GSMPs G and 'G depicted in Figure 5. We

consider the following relation R : ,',',' 1
331100 RssRssRss and 2

33 'Rss (i.e. state 3s was split

into two states 1
3's and 2

3's) . Note that the two GSMP’s are bisimulation equivalent from a

functional point of view.

While the algorithm presented in this chapter provides a theoretical solution for all

NRGSMP’s, its applicability is restricted because of its exponential time and space

complexities. However, we have identified a subset of NRGSMPs for which the algorithm

 55

has)(2nO space complexity and a polynomial time complexity. This subset contains all the

EGSMP’s, and exceeds them to include a subset of the NRGSMPs that are not EGSMPs

(refer to Figure 10 in Section 4.3.3).

(a) GSMP G (b)GSMP G’

Figure 5. Two GSMPs

The algorithm for transforming an NRGSMP into an SMP works by transforming all

non-regenerative states into regenerative states by splitting states as required. The algorithm

will be presented in Section 4.4 after defining NRGSMPs and explaining the intuition behind

the transformation in Section 4.2. Some needed definitions and preliminary results will be

presented in Section 4.3. And finally, the complexity of the algorithm is discussed in Section

4.5.

4.2. Preliminary Definitions and Algorithm Overview

 In this section, we present the formal definition for NRGSMPs followed by the

algorithm overview. We start first with some preliminary definitions.

 s0
{e,f,g}

s1
{e,h}

 s3

g

f

e

h

f

s’0
{e,f,g}

s’1
{e,h}

s’1

3

 s’2

3

g

f

e

f

h

f

 56

4.2.1. Preliminary definitions

Definition 4.1: Regenerative state

A regenerative state s in a GSMP is a state with the property:)()(sKsA = .

Definition 4.2: Trace, regenerative trace, single regenerative trace, simple trace, path,

execution sequence and cycle

Let),,,,,,(0 KAFsSG �Ε= be a GSMP. Assume that the set of transitions � contains n

transitions denoted by ntt ,...,1

• A trace of G is a finite sequence of transitions ,...,
21 ii tt such that transition

jit leads

to a state from which transition
1+jit is possible (has a non-zero probability).

• A regenerative trace of G is a trace ,...,
21 ii tt such that

1i
t is a transition out of a

regenerative state.

• A single regenerative trace of G is a regenerative trace that contains exactly one

regenerative state.

• A simple trace, also referred to as path, is a trace with no cycles (i.e. no state appears

twice in the trace)

• An execution sequence Ex is a tuple of the form 1(, ,...,)nEx T x x= < > where

11
1 2... nee

nT s s s−= → → is a regenerative trace and ix is the time spent in state is ,

or what is known as sojourn time in state is denoted by ()isς for all {1,..., }i n∈ .

• An n-cycle in a GSMP is a trace of the form 121
11 ... ssssT nn e

n
ee →→→= −

where ji ss ≠ for ji ≠ , , {1,..., }i j n∈ .

 57

Definition 4.3: Near-Markovian, near Semi-Markovian, and regenerative cycles

An n-cycle 121
121 ... ssssc nn e

n
eee →→→→= − in a GSMP is said to be:

• Near semi-Markovian (or NSM), if

(a) All events on the cycle, i.e. 1{ ,..., }ne e , are initialized just before they are executed,

formally,)(jj sKe ∈ for all },...,1{ nj ∈ and

(b) If a non-cycle event g (i.e. g 1{ ,..., }ne e∉) is initialized in some state in the cycle, then

this event can only be active in a state on the cycle provided it is initialized there.

Formally if there exists a state is , {1,..., }i n∈ , such that ()ig K s∈ and 1{ ,..., }ng e e∉

then (){1,..., }, () ()j jj n g A s g K s∀ ∈ ∈ ⇒ ∈

• Regenerative (REG), if at least one of its states is a regenerative state.

• An NSM cycle is called near-Markovian (NM) if all events in },...,1{),(nisK i ∈ are

exponentially distributed.

An example of a near semi-Markovian cycle is shown in Figure 6. If seee ,",', were

exponentially distributed (in all states they are initialized in) then the cycle becomes near-

Markovian.

Figure 6. Part of a GSMP

0
{e,f,f}’

1
 {s,e}

2
 {s,e’}

3
{e,e”}

f’

e”

e e’

 f e f s f s f e

 58

Definition 4.4: NRGSMP

A near-regenerative generalized semi-Markov process, NRGSMP, is a GSMP with the

following restriction: All the cycles in the process are NSM or REG cycles.

Note that, although these restrictions are strong, previous work

[42],[44],[11],[20],[65] imposed the so-called “enabling restriction” which implies that only

regenerative and NM cycles are allowed, so NSM cycles were not allowed, this in addition to

the fact that only one non-exponentially distributed event could be active at any given time.

Figure 3 and Figure 10 show examples of NRGSMPs. The NRGSMP in Figure 10 has only

regenerative cycles, yet it does not satisfy the “enabling restriction”, in other words it is not

an EGSMP. The next Theorem describes properties of traces in an NRGSMP.

4.2.2. Algorithm overview

To transform a GSMP),,,,,,(0 KAFsSG �Ε= into an SMP we need to transform

every non-regenerative state s in G into a regenerative state. To be able to transform s into

regenerative, we will assume that we know the time l elapsed since the GSMP started

running until state s was entered.

Let s be a non-regenerative state in G ; for the sake of simplicity, assume that

}{)(esA = and φ=)(sK . To transform s into a regenerative state, we need to find the

residual lifetime for events that are active in s , or in other words, the probability that event

e will occur within x time units from entering s given that the GSMP has been running for

l time units when state s was entered, denoted by Re (,)()lAv s e s x .

Let us assume that we know the single regenerative trace that was followed to reach

s : sssT m
ee m = →→= −11 ...1 and the times ix spent in each of the states is for all

 59

},...,1{ mi ∈ :),...,,(1 >< mxxT . then we can easily calculate the “conditional probability that

e will occur in x time units after entering s ”. We call this probability distribution the

residual time of event e in state s given),...,,(1 >< mxxT given that the GSMP has been

running for l time units when state s was entered, and denote it by

1Re (, , (, ,...,))l
ms e s T x x< > . Note that 1 ... ml x x≥ + + (and 1 ... ml x x= + + if 1 0s s=).

If the single regenerative trace T that was followed to reach s is known but not the

time spent in the different states in the trace, then the “probability that e will occur in x

time units after entering s given T was followed and given that the GSMP has been running

for l time units when state s was entered” is denoted by Re (, ,)()ls e s T x . Assume for

simplicity that '' eT s s= → , then Re (, ,)()ls e s T x can be calculated from the distribution of

the residual time of the events in state 's as follows:

'
0

((') ' |)Re (, ,)() ([', '] | (') ')
'

l
l

s
P s x Ts e s T x P e x x x s x T

dx
ς ς== + = ∧∫

Where '[', ']se x x x+ is the fact that event e occurs in the interval [', ']x x x+ since entering 's ,

and T stands for the fact that transition T occurred to reach state s . We will prove in

Theorem 4.6 that the above formulae is a function of the distribution of the residual time of

the events in state 's .

Consider for example State 1 in Figure 3, note that event a is active in this state,.

Note also that this state can be reached through infinitely many single regenerative traces

}|)12(10{ 11 Ν∈→→→==Γ nT nsrdn where n indicates the number of times cycle

1 2 1r s→ → is executed, Note that every trace 1
nT in 1Γ will give a different value for

1Re (,1,)l ns a T .

Now, assume that the single regenerative trace that was followed to reach s belongs

to a set of single regenerative traces sΓ , then the “probability that e will occur in x time

units after entering s given that a trace in sΓ was followed and given that the GSMP has

 60

been running for l time units when state s was entered” is denoted by Re (, ,)()l
sAv s e s xΓ .

Note that Re (, ,)l
sAv s e s Γ is the average over { Re (, ,)ls e s T , sT Γ∈ } taking into

consideration the different probabilities of the regenerative traces in sΓ , in other words,

Re (, ,)l
sAv s e s Γ = () Re (, ,)

s

l

T

P T s e s T
∈Γ
∑ where)(TP is the probability that the regenerative

trace T occurs given that a trace from the set sΓ will occur.

If sΛ is the set of all single regenerative traces leading to s , let s∇ be the set of all

regenerative states that may lead to state s , and for every sr ∈∇ , let srT Λ⊆ be the set of

all traces that start with state r and lead to state s (r sT ⊆ Λ), then

Re (, ,)()l
sAv s e s xΛ

= Re (, ,)()
s

s

lr
r

r r
r

P Av s e s T x
P∈∇

∈∇

∑ ∑

Where rP is the probability of being in state r given that the GSMP has been running for a

sufficiently long time, and

s

r

r
r

P
P

∈∇
∑

 is the probability rP normalized over the set of

regenerative states s∇ , and Re (, ,)l
rAv s e s T is as defined earlier.

Note: In Section 4.3.4, we will calculate Re (, ,)l
rAv s e s T as a function of l and x .

However, throughout this thesis, and in transforming the GSMP into an SMP, we will

assume that the GSMP is in steady state, in other words, we will only consider the case

where l = ∞ as we will be extracting performance measures assuming steady state. In that

case, Re (, ,)l
rAv s e s T will be denoted by Re (, ,)rAv s e s T .

 61

The questions that come to mind now are how and under what restrictions can we

calculate),,(Re ssesAv Λ ? As discussed earlier,),,(Re ssesAv Λ =
Re (, ,)()

s

s

r r
r

r
r

P Av s e s T x

P
∈∇

∈∇

∑
∑

,

but rP is a function of the SSP of state r , which is not always possible to get.

We will prove in Section 4.3.4 that we can calculate),,(Re ssesAv Λ in the

following three cases:

1. If }{Ts =Λ , in other words if),,(Re ssesAv Λ =),,(Re Tses .

2. If all traces in sΛ start with the same regenerative state r (i.e. all the traces travel

from r to s), then let N be the sub-process of G with state space NS formed from

the states belonging to sΛ -{ r }, and its transitions are the transitions between the

states in NS . Then if for all ",' rr in NS the following is satisfied

i. if "': rrt f→ belongs to N , then)'(rKf ∈ and

ii. if)'()"(rArKe ∩∈ then)'(rKe ∈ and,

iii.)()'()'(rArKrA ⊂−

then N is called an embedded semi-Markov process; ESMP, intuitively, the points

above mean that the sub process N is an SMP. In such case, all events, say f , that

are initialized in r and are active in s ,),,(Re ssfsAv Λ will be calculated using the

quantity lim (() | (0))x sP s x r→∞ ∧ Λ where (() | (0))sP s x r ∧ Λ is the probability of

being in state s at time x given we entered state r at time 0 and given that sΛ was

followed from r to s . The value of))0(|)((srxsP Λ∧ will be calculated using the

fact that N is an SMP. This will be presented in details in Section 4.4.2.

 62

3. A combination of the above, i.e. sΛ is of the form:

sΛ = m

m

m

m

s
sn

s
sn

s
s

s
s

s
s

s
s NTNTNT

1

1

2

5

4

4

3

3

2

2

1
*...** 2211 −

−

−
 where:

a. 1s is regenerative

b. k

j

s
siT is a path, from js to ks and

c. iN is an ESMP

d. k

j

s
siN * is the set of traces from js to ks belonging to iN

Such a set sΛ will be called a single-AvRes set and will be defined in Section 4.3.

The average residual distributions for the events in state s where sΛ is of the form

specified under point (3) are calculated as follows:

� We first calculate the average residual distribution for all events in 2

11
s
sT sequentially

(starting from 1s), thus making all the states in 2

11
s
sT regenerative

� The next step would be to calculate the average residual distributions for all active

events in the states of 1N using the average residual distributions of the events in 2s

that were calculated in the previous step

� We continue with 4

32
s
sT , and so on ….

Consider again }|)12(10{ 11 Ν∈→→→==Γ nT nsrdn of Figure 3. We will see in

Section 4.4 that 121 →→ sr satisfies condition (2) above, and as a result we will

calculate),1,(Re 1ΓasAv .

Now, let sΓ be the set of all single regenerative traces leading to s (recall that these

traces have exactly one regenerative state). The conditions set on the cycles of the GSMP

 63

will allow us to partition the set of regenerative traces sΓ : { Iii ∈Γ , }, such that each iΓ is a

single-AvRes set, i.e. a set where we will be able to calculate),,(Re isesAv Γ for each Ii ∈ .

Now given Iii ∈Γ , , we transform G into a GSMP sG by splitting (or unfolding) state s

into several states Iisi ∈, such that each is is only reached through the traces with postfixes

in iΓ . The algorithm in all its details will be presented in Section 4.4. Then, after splitting

every non-regenerative state as described, the resulting process 'G and G are shown to be

structurally bisimilar (refer to Definition 9 in Section 4.3). The process 'G will be called

Hidden Markov Regenerative Process (HMRP) and will be presented in Section 4.3.

The last step is to calculate),,(Re iisesAv Γ for each Ii ∈ , and assign it to)(eF
is .

The resulting GSMP would s-simulate G . This simulation implies that the probability of

leaving state s within a certain time after reaching it, given that we reached s through a

single regenerative trace in iΓ , is preserved.

So given the NRGSMP G , assume that },...,{ 1 lssL = is the set of states that need to

be transformed into regenerative states. As described above, we need two steps to transform

it into an SMP:

1. We will first transform G into what we call a Hidden Markov regenerative process

(HMRP) 'G while preserving structural bisimulation.

2. The next step is to calculate),(Re isesAv . The states is can then become

regenerative by assigning to events e in is the distribution),(Re isesAv . After

transforming all non-regenerative states of 'G into regenerative ones, we obtain an

SMP "G that s-simulates the original one. We will see in Section 4.3 how to get

steady state probabilities of G from those of "G .

 64

4.3. Definitions, Illustrations and Preliminary

Results

In this section, we review a concept from stochastic systems: structural bisimulation.

And we introduce some new concepts: residual time, single-AvRes set of traces, hidden

Markov regenerative process, steady-state simulation, embedded SMP, and in-borders of an

embedded SMP.

4.3.1. General Definitions and Results

Definition 4.5: Complete sub-GSMP, in-border, embedded SMP

Let),,,,,,(0 KAFsSG �Ε= be a GSMP,

• A complete sub-GSMP of G is a GSMP with no starting state:

),',,,,'(KAFSM �Ε= where SS ⊂' and ' (' ')S E S= ∩ × ×� � , in other words,

'� is the biggest subset of � linking all states in 'S . A state r is said to be an in-

border of M if 'SSr −∈ , and if there exists a transition: sr e→ for some 'Ss ∈

(note that components , , ,E F A and K are not equal to the components in the

original GSMP G , in fact these are their restriction to the state set 'S , but we use the

same notation for simplicity).

• An embedded semi-Markov process (ESMP) M of G ,),',,,,'(KAFSM �Ε= , is a

complete sub-GSMP of G such that:

1. If (')K S = ∪
''

)'(
Ss

sK
∈

 is the set of all events initialized in the states belonging to the

ESMP, then for all '' Ss ∈ , and for all ∈e (')K S , either)'(sKe ∈ or (')e A s∉

2.)"()"()'()'(sKsAsKsA −=− for all '",' Sss ∈ , and

 65

3. 'S is the maximal set of states with the above properties.

• Let),',,,,'(KAFSM �Ε= be an ESMP, and let ''0 Ss ∈ , then the ESMP of 0's is

the ESMP M having 0's as the starting state. Note that the state space of 'M

becomes the set of states that are reachable from 0's , in other words,

),",,,,',"(' 0 KAFsSM �Ε= where "S is the set of states that belong to 'S and that

are reachable from 0's , and "� is a set of all possible transitions from '� linking

states in "S .

We note the following:

- An ESMP =M),',,,,'(KAFS �Ε , when taken as a separate entity is a semi-

Markov process: If r is an in-border of M , then an event e that is initialized

in r might be active in a state s of M but not initialized in it, i.e.

)()(sKsAe −∈ , then, from point (2) above, e should never be initialized in

any state of the ESMP, and should never occur inside the ESMP, so M

satisfies the properties of an SMP.

- An ESMP could be trivial, i.e. consisting of only one state.

- From the above definition, we deduce that if a state 's S∈ is regenerative, then

all states in 'S are regenerative

 66

Figure 7. Nest

Figure 12(a) shows an ESMP with its in-border 0-0 corresponding to the GSMP

described in Figure 9.

Consider the part of a GSMP shown in Figure 7: We assume that () { , , }K r a b c= ,

1() { }K s g= , 2() { , }K s f j= , 3() { }K s h= , 4() {}K s = , 5() { }K s q= and 6() { }K s k= . We also

assume that () () {}A r K r− = , 1 1 2 2 3 3 4 4() () () () () () () ()A s K s A s K s A s K s A s K s− = − = − = −

{ , }b c= and that when events b or c occur in states 1 2 3, ,s s s or 4s then they lead to a state

outside ESMP M. And similarly, we assume that

5 5 6 6 7 7() () () () () () { }A s K s A s K s A s K s a− = − = − = and when event a occurs in state 5s or

6s or 7s then it leads to a state outside N. With the above assumptions in mind, we deduce

 f

 s1 g s2

r a j

 h
 s3 s4

 b ESMP M

 k

 s5 s6
 q
 ESMP N

c s7

 67

that we have two ESMPs: ESMP M is composed of four states: },,,{ 4321 ssss , and its in-

border is r . And ESMP N is composed of three states 5s , 6s and 7s and has the same in-

border. The ESMP of state 1s and the ESMP of state 2s are both composed of the three

states },,{ 421 sss , and the ESMP of state 3s is composed of two states },{ 43 ss .

We will see later that given an ESMP and its in-border, then once its in-border is

transformed into a regenerative state, the residual distributions for the events in all the states

of the ESMP can be calculated using the semi-Markovian properties of the ESMP. This will

be explained in detail in Subsection 4.3.4.

Definition 4.6: Nest of a state

Let),,,,,,(0 KAFsSG �Ε= be a GSMP, and let Ss ∈ . We define a nest of s as the

process),",,,,},{"(KAFEssSN �∪= , where),',,,,'(KAFSM �Ε= is an ESMP with

in-border s , '" SS ⊆ is the set of all states from 'S that are reachable from s , and "� is the

set of all possible transitions from � linking the states of N :

" (" { } " { })S s E S s= ∩ ∪ × × ∪� � . If s is not the in-border of any nest, then the nest of s is

the sub-process composed of one state s .

Note that the nest of a trivial ESMP is composed of two states only.

Figure 7 depicts two nests of a state r , one is composed of four states },,,{ 421 sssr ,

and the other is composed of states },,,{ 765 sssr .

We note that, a nest),,,,,,(KAFErSN �= of a state r is an SMP. In fact, an event

e ()A r∈ might be active in all states in S but not initialized in these states, i.e.

)()(sKsAe
Ss

−∈
∈
∩ , however, e is never initialized in any state of the nest, and does not

occur in the nest, so the nest satisfies the properties of an SMP.

 68

Note: if),,,,,,(0 KAFsSG �Ε= is a GSMP, and),',,,,'(KAFSN �Ε= is an ESMP of

G , and 1r is an in-border for N , then if we let)(1rN be the process whose traces are of the

form tT where ': 1 srt → is any trace from 1r to a state '' Ss ∈ , and T is a trace in N

starting in state 's , then)(1rN is a nest of 1r .

Lemma 4.1.

1. Every near semi-Markovian cycle is part of an ESMP.

2. Let),,,,,,(0 KAFsSG �Ε= be a GSMP, then the set of all ESMPs in G are

distinct. Moreover, every non-regenerative state belongs to exactly one ESMP.

3. Let 'M =)',',',',','(KAFS �Ε be an ESMP with in-border 0's , in a GSMP

),,,,,,(0 KAFsSG �Ε= . If sst e→0': and '':' '
0 sst e→ belong to 'M , then

either

• 'tt = or

• e and 'e have an exponentially distributed lifetime or

• e and 'e are not active in any state of 'M .

Proof.

• Point 1: Straightforward from the definition of a semi-Markovian cycle

• Point 2: Let M =),,,,,,(0 KAFsS MM �Ε and N = 0(, ' , ', ', ', , ')N NS s E F A K→ be

two ESMPs in G , assume that a state s belongs to both ESMPs, then we deduce that

() () '() '()A s K s A s K s− = − = (') (') '(") '(")A s K s A s K s− = − for all ' Ms S∈ and

" Ns S∈ , and. Hence the states in NM SS ∪ should form an ESMP because of

property (3) in Definition 4.5.

 69

• Point 3 is a result of the restriction on ESMPs:)"()"()'()'(sKsAsKsA −=− for all

∈",' ss 'S .

(

Theorem 4.1. Let),,,,,,(0 KAFsSG �Ε= be a GSMP, and for any Ssi ∈ let

=
isM),,,,,,(KAFsS iii �Ε be the ESMP of state is . Then we have the following

properties:

o Given two states Sss ji ∈, , if ij Ss ∈ , then ij SS ⊆ , and if
isM is strongly

connected (i.e. there exists a path between any two states of
isM) then ij SS = .

o There exists a subset SS ⊂' , such that the set }'|{ SsM isi
∈ has the following

properties:

1. φ=∩ ji SS for all 'i js s S≠ ∈ and

2. for all Ssi ∈ , iS hS⊆ for some 'hs S∈ .

The set }'|{ SsM isi
∈ will be called maximal set of connected ESMP parts.

Proof. Straightforward.

(

If we divide each of the
isM ’s in the set }',{ SsM isi

∈ in the theorem above into

several sub-ESMP’s },{
iii ss

j
s

j MMM ⊆ where each is
jM is strongly connected, then the set

{ : ', }
i i i

j j
s i s sM s S M M∈ ⊆ will be called maximal strongly connected set of ESMP parts.

 70

Definition 4.7: Residual lifetime and average residual lifetime

Let),,,,,,(0 KAFsSG �Ε= be a GSMP and let),(sAe ∈ Ss ∈ . The following definition

assumes that the GSMP has been running for l time units when state s was entered.

• The residual lifetime of e in s after a given execution sequence),...,,(1 ><= mxxTEx

has occurred, written 1Re (, , (, ,...,))()l
ms e s T x x x< > (where Re s is short for Residual), is

the probability that event e will occur in x time units after entering s given

),...,,(1 >< mxxT was followed.

• The residual lifetime of e in s after a given regenerative trace T had occurred (the

timings associated with T are not known) , written Re (, ,)ls e s T , is the time distribution for

event e in state s given that the state was entered through the regenerative trace T .

• Let }|{ IiTi ∈ , where I is a set of integers, be a set of regenerative traces leading to s ,

and let)(iTP be the probability that the regenerative trace iT occurred given that a trace

from the set }|{ IiTi ∈ will occur. Then we define:

1. the average residual time of event e in s given that a regenerative trace from the set

}|{ IiTi ∈ had occurred, written Re (, ,{ | })l
iAv s e s T i I∈ , as the time distribution for

event e in state s given that a trace in }|{ IiTi ∈ just occurred. In other words,

Re (, ,{ | })()l
iAv s e s T i I x∈ is the probability that event e will occur within x time

units after reaching s given that s was reached by following a trace in }|{ IiTi ∈ .

Note that, Re (, ,{ | }) () Re (, ,)l l
i i i

i I

Av s e s T i I P T s e s T
∈

∈ = ∑ . If }|{ IiTi ∈ is the set of

all possible regenerative traces leading to s , we write Re (,)lAv s e s instead of

Re (, ,{ | })l
iAv s e s T i I∈ .

2. Re (, ,{ | })(',)l
iAv s e s T i I x x∈ as the probability that event e will occur in the

interval],'[xx where x and 'x are relative times in respect to the time l when state

 71

s was entered, and given that s was reached by following a trace in }|{ IiTi ∈ . In

other words,

Re (, ,{ | })(',)l
iAv s e s T i I x x∈ =

 Re (, ,{ | })() Re (, ,{ | })(')l l
i iAv s e s T i I x Av s e s T i I x∈ − ∈

3. Re (, ,)lAv s e s T , where T is a trace that leads to state s , to be equal to

),,(Re ΘsesAv where Θ is the set of all possible regenerative traces that have T as

a postfix. If Θ contains only one trace, then Re (, ,)lAv s e s Θ = Re (, ,)ls e s Θ .

 As mentioned in the introduction, unless otherwise mentioned, we assume throughout

this chapter that the GSMP has been running for a sufficiently long time. In that case, we

assume that l → ∞ and omit the suffix l from the notation of the residual time distributions.

Lemma 4.2. Let),,,,,,(0 KAFsSG �Ε= be a GSMP, and let Ss ∈ . Let 21 ,TT be two

traces from 0s to s such that 1T and 2T have the same postfix T , where T is a regenerative

trace, then),,(Re),,(Re),,(Re 21 TsesTsesTses ==

(

The next definition presents the single-AvRes set of traces, it is a set of traces Γ

between two states s and 's for which),',(Re ΓsesAv has a single calculable value through

the use of analytical means and this is the reason for its name.

Definition 4.8: Single-AvRes set of traces.

Let),,,,,,(0 KAFsSG �Ε= be a GSMP. Let n
eee sssT n→→→= −121 ...21 be a path

of G (recall that a path is a simple trace, i.e. a trace with no cycles in it), and we write

1+→= i
e

ii sst i . Then the single-AvRes set of traces for path T , written AvRT , is defined as

follows:

 72

1. For ni ≠ , we define iE to be the nest of is for which ii Es ∈+1 , if any; if no

such nest exists, iE is assumed to be composed of the single state is .

2. Writing
iES for the set of states of iE and

iE� for the set of traces in iE , let

M be the sub-GSMP whose states are)(
1 iE

n

i
S

=
∪ , and whose transitions are

i

n
t

1

1

−
∪)(

1 iE

n
�∪∪ , then the set of traces in M from 1s to ns is called a single-

AvRes set for path T and is denoted by AvRT .

Figure 8. An example of a single-AvRes-set

 Figure 8 shows an example of a single-AvRes-set of traces for path

srrrrrT →→→→→= 4321 . The set of all traces in the figure from state r to state s is

a single-AvRes-set. The same set of traces is also the single-AvRes-set for path

srrrrrrT →→→→→→= 46321 .

The following definition presents a structural bisimulation equivalence between

GSMPs, which was introduced in [29]. This bisimulation will be needed in the proofs of

Section 4.4. It will become obvious when we formally define the s-simulation that structural

bisimulation implies s-simulation, while the reverse is not true.

ESMP N

 r r1 r2 r3 r4 s

 r5 r6
 ESMP M

 73

Definition 4.9: Structural bisimulation

Let),,,,,,(0 KAFsSG �Ε= and)',',',',,','(' 0 KAFsSG �Ε= be two GSMPs.

We say that G is structurally bisimilar to 'G if there exists a relation 'SSR ×⊆ , such that

0 0(, ')s s R∈ and whenever (,)s r R∈ the following conditions hold:

1. for all Ss ∈' , 'ss e→ there exists a state '' Sr ∈ such that 'rr e→ , and

(', ')s r R∈

2. for all '' Sr ∈ , 'rr e→ there exists a state Ss ∈' such that 'ss e→ and

(', ')s r R∈ ;

3.)()(rKsK =

Figure 9 shows a GSMP, note that states 0-0, 3-3, 4-5 and 5-4 are regenerative (note

that transition d is immediate). We will later see that the GSMP of Figure 3 is structurally

bisimilar to the GSMP shown in Figure 9. The relation that establishes the simulation is:

every state i-j of Figure 9 corresponds to state j in Figure 3.

 It can be easily shown that if two GSMPs),,,,,,(0 KAFsSG �Ε= and

)',',',',',','(' 0 KAFsSG �Ε= are structurally bisimilar. And if },{ Jjj ∈∆=∆ is the

partition of states 'S induced by the bissimulation relation, and if 1() { ,..., }j nR s r r= ∆ = for

some s S∈ and j J∈ , then '
0 0

0

(() / (0)) (() / ' (0))
n

G G
i

i

P s x s P r x s
=

= ∑ . For more information on

structural bisimulation the reader is referred to [31],[32],[30].

 74

4.3.2. Properties of NRGSMP.

Theorem 4.2. Let),,,,,,(0 KAFsSG �Ε= be an NRGSMP, and Ss ∈ . Let

},...,,{ 21 ns TTT=Γ be the set of all regenerative paths leading to s that contain exactly one

regenerative state (the starting state). Then:

1. the set AvR
n

AvRAvRAvR
s TTT ∪∪∪=Γ ...21 has the property:

),(Re),,(Re sesAvsesAv AvR
s =Γ .

2. For all },...,1{, nji ∈ either AvR
j

AvR
i TT = or φ=∩ AvR

j
AvR

i TT

Proof.

• The proof of point 1 is based on the fact that if T is any path from 0s to s , then T

has a postfix iT from the set },...,,{ 21 ns TTT=Γ , and hence

),,(Re),,(Re AvR
i

AvR TsesAvTsesAv = .

• Point 2: Assume that there exists a trace AvR
j

AvR
i TTT ∩∈ , then since AvR

iTT ∈ we

deduce from Definition 4.8 that AvR
i

AvR TT = , and similarly, AvR
j

AvR TT = .

(

In the next subsection, we will introduce the hidden Markov regenerative process. It

is needed as an intermediate step in the transformation of an NRGSMP into an SMP.

4.3.3. HMRP Definition and Properties

A hidden Markov regenerative process (HMRP) is given this name because it can be

transformed into a Markov regenerative process: As we will see in this section, for every

state s in a HMRP, if sΛ is the set of all regenerative traces leading to s that contain only one

 75

regenerative state, then sΛ is a single-AvRes set, and as a consequence, we will be able to

calculate),(Re sesAv for all)(sAe ∈ (refer to Section 4.2). Then given),(Re sesAv for all

)(sAe ∈ , we can transform the state s into a regenerative one by having all events)(sAe ∈

initialized in state s according to the distribution))(,(Re))((xsesAvxeFs = .

In this sub-section, we will present the properties of an HMRP, and we will start with

their definition. Then in the next section we will present the algorithm to transform an

NRGSMP into an HMRP, and then an HMRP into an SMP.

Definition 4.10. HMRP, defining subtrace of a state

A hidden Markov regenerative process, HMRP, is an NRGSMP such that, for every state s ,

if T is a regenerative path from some state r to s , such that the only regenerative state of T

is r , then all traces leading to s have a trace in AvRT as a postfix. The path T is called a

defining subtrace for state s .

Figure 9 shows a HMRP, note that states 0-0, 3-3, 4-5 and 5-4 are regenerative. The

relation that establishes the simulation is: every state i-j of Figure 9 corresponds to state j in

Figure 3.

Figure 10 shows another example of an HMRP. The HMRP represents the failure and

repair for a machine with two processors. One processor can be working at a time, the other

remains idle until the working processor fails (modeled by f). When one processor fails it

undergoes regular repair (modeled by r). If both processors fail, the machine undergoes

major repair (modeled by m). Every state is annotated with two letters (representing the two

processors) from the set {W,I,F} where W stands for working , I stands for idle and F stands

for failed (refer to Figure 10). Note that the HMRP depicted in Figure 10 may not satisfy the

enabling restriction because f and r , both, may not be exponentially distributed.

 76

Figure 9. An HMRP

Figure 10. Example of an HMRP.

2-2
{s,f}

0-0
{a,d}

3-3
{p}

4-5
{u}

 a

a

 r

1-1
{r}

 d

u

 s

f

p

 5-4
 {a,d}

 d

6-2
{s,f}

7-1
{r}

 a
a

s r

 f

FF
{m}

 WI
 {f}

WF
{r,f}

WI

m

f

f FW
{r,f}

f

IW

 f

 r

f

 r

 77

We will next examine the properties of an HMRP in detail.

Theorem 4.3. Let),,,,,,(0 KAFsSG �Ε= be an HMRP. Let T and 'T be two regenerative

paths leading to a state s . If r and 'r are the last regenerative states that T and 'T pass

through respectively, then 'rr = .

Proof. Let rT be the postfix of trace T starting from r , we know from Definition 4.10 that

trace 'T has a trace in AvR
rT as a postfix. Moreover all states belonging to the set of traces

AvR
rT aside from r are non-regenerative (see Definition 4.8), hence the last regenerative state

in 'T is r .

(

Corollary 4.1. Let),,,,,,(0 KAFsSG �Ε= be an HMRP. Let T be any regenerative path

leading to a state s . Let 'T be the postfix of T , such that 'T has only one regenerative state,

then:

o),,(Re AvRTsesAv =)',,(Re AvRTsesAv and

o),,(Re),(Re AvRTsesAvsesAv =

Proof.

o The first point is due to the fact that a regenerative trace is memoryless.

o Since every path leading to s has a postfix in AvRT ' , and since all traces in AvRT ' are

regenerative then)',,(Re),(Re AvRTsesAvsesAv = .

(

Corollary 4.2. Let },...,{ 1 nTT be the set of defining traces for state s , then we have that:

 78

 AvR
j

AvR
i TT = for any },...,1{, nji ∈

Proof. This corollary is a direct consequence of Theorem 4.3

(

Theorem 4.4. Let),,,,,,(0 KAFsSG �Ε= be an HMRP. Let Ss ∈ , and let sT be a

defining trace for state s such that sT travels from state 1
1r to state s . Then the set of traces

AvR
sT is of the form: s

r
n

mmm
r
r

nr
r

n
mn

m

m
nn rNTrNTrNT)*)((...)*)(()*)((
1
3

2
2

2
1
2

1
1

1
222111 where

mmmms TTTTTTTTT ''...'' 112211 −−= , in
iiii rrrT →→→= ...21 , and)(in

ii rN is the nest of in
ir

that contains all states belonging to iT ' , and
1

1)*)((+i
in

i

i r
r

n
ii rN are the set of all traces in)(in

ii rN

that start with state in
ir and end with state 1

1+ir .

Proof. The proof is straightforward from Definition 4.8.

(

Corollary 4.3: Let),,,,,,(0 KAFsSG �Ε= be an HMRP, let Ss ∈ be a state in a nest mN

of r , let T be a path from r to s ,

1. Every trace from 0s to s passes through r

2. If r is regenerative, then T is a defining subtrace for state s

Proof. To understand Point 1, we note that, from Theorem 4.4, every regenerative trace

leading to s has a postfix of the form s
rmm rNT)*)((. Point 2 is a direct consequence of Point

1.

(

 79

Theorem 4.5. Let),,,,,,(0 KAFsSG �Ε= be an HMRP, let Ss ∈ and let

ssssT ms =→→= ...21 be a defining subtrace for s . We note that:

is sssT
i

→→= ...21 is a defining subtrace for is .

Now define iT as follows: iss TTT
i

= and let)',,,',,,(' 0 KAFsSG �Ε= be the HMRP where

'F and 'K are defined as follows: for all }{ isSr −∈ :)()(' rKrK = and for all

)(rKe ∈ :)()(' eFeF rr = ,)()(' ii sAsK = and),(Re)(AvR
sis ii

TsesAveF = for all

)()(ii sKsAe −∈ .

Then:

2- The defining trace for s in 'G is iT , and

3-),,(Re),,(Re ' AvR
i

GAvR
s

G TsesAvTsesAv =

Proof. The proof is straightforward.

(

So, to sum up, given a state s in G , the average residual time for every active event

e in state s can be obtained from a defining trace sT for state s :),,(Re AvR
sTsesAv . Hence,

if we can find a way to calculate),,(Re AvR
sTsesAv were AvR

sT has the form specified in

Theorem 4.4 then s could be transformed into a regenerative state. Theorem 4.5 tells us that

the residual time distributions for the events of one state can be calculated from the residual

times of the events of another state. In sub-Section 4.3.4, we will present the method used to

calculate),,(Re AvR
sTsesAv .

 80

4.3.4 Properties of Average Residual Times

In this section, we do not assume that the GSMP is in steady state. The purpose is to

present some properties of the Re lAv s . We will first prove that if 1t is a transition in a

GSMP G from states 1s to 2s , then 2 1Re (, ,)()lAv s e s t x , where l is the time state s was

entered, can be calculated from the average residual time distributions of events in 1s . Then

we will prove that, given a nest N of a state 1r , then for any Ns ∈ ,
11Re (, , () *)l s
rAv s e s N r

can be calculated from the residual times for events in 1r and from the steady state

probability of state s relative to an extended SMP 'N which is obtained from N with some

additional states and transitions. In Section 4.4, we will explain how we can calculate

Re (,)()lAv s e s x for any state s in an HMRP G using the two results described in this

section.

First, we present some notations that will be used throughout this section:

• (|)P A T is the probability that event A occurs given that trace T will occur

next.

•)|(ATP is the probability that trace T will be followed, given that event A

had taken place.

• s↓ means that we are in state s

•]',')[(xxxse + means that event e occurs in the interval]','[xxx + counting

from the time we entered state s .

(

 81

Figure 11. Two consecutive states

In the next theorem, given two consecutive states 1s and 2s and an event 0g that is

active in both states (Figure 11), we will show how to calculate the distribution of the

residual lifetime of 0g from the distribution of the residual lifetimes of the events in 1()A s .

To explain the result informally, note that if we are in state 2s after following

trace 1
1 2

es s→ , then 0g had been active for 1()sς time units since reaching state 1s , so the

lifetime of 0g has been shortened by 1()sς time units. (Note that 1()sς [0,]l∈ because there

is a limit l on the time that the process has been running for). In fact, we will show below

that the probability that 0g will expire within x time units from entering state 2s given that

trace 1
1 2

es s→ had just occurred is:

0 2 1 2Re (, ,)()elAv s g s s s x→ = 0 1 1 1 2

0

(()[', '] () ' |) '
'

l eP g s x x x s x s s dx
dx
ς+ ∧ = →

∫ i.e. it

is equal to the probability that 1() 's xς = and that 0g expires from state 1s in the interval

[', ']x x x+ , where ' [0,]x l∈ .

Refer to Figure 11 for a better understanding of the theorem.

Theorem 4.6. Let 1t be a transition in a GSMP G from states 1s to 2s with 211
1 sst e→= .

Assume that , and },...,,,{)(1101 nggegsA = , then

0 2 1Re (, ,)()lAv s g s t x =

 s1 e1 s2
 {e1,g1…gn} {g1…gn}

 g0 g1…..gn g0 g1…..gn

 82

0 1 0 1

0 10

Re (,)(') Re (,)(')
1 Re (,)(')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫

1 1
1

0

1 1
1

00

Re (,)(') (1 Re (,)('))
' '

Re (,)(") (1 Re (,)(")) "
'

l n
l

i
i

l l n
l

i
i

dAv s e s x Av s g s x
dx dx

dAv s e s x Av s g s x dx
dx

=

=

−

−

∏

∏∫

Proof. In the proof below, we assume that the process is in state 1s .

0 2 1Re (, ,)()lAv s g s t x =)|],0)[((120 txsgP = 1 0 2 1

0

(() ') ()[0,] |) '
'

l P s x g s x t dx
dx

ς = ∧
∫

= 1 0 1 1

0

(() ') ()[', '] |)
'

'

l P s x g s x x x t
dx

dx
ς = ∧ +

∫

Applying the formulae)|()|()|(CBPCBAPCBAP ∧=∧ we get

1 1
0 1 1 1

0

(() ' |)(()[', '] | () ') '
'

l P s x tP g s x x x t s x dx
dx

ςς =+ ∧ =∫

Applying the formulae ()(|)
()

P A BP A B
P B

∧= , we get:

0 1 1 1 1

1 10

(()[', '] |) (() ' |) '
(() ') |) '

l P g s x x x t P s x t dx
P s x t dx

ς
ς

+ =
=∫

= 0 1 0 1

0 10

Re (,)(') Re (,)(')
1 Re (,)(')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫ 1 1(() ' |) '

'
P s x t dx

dx
ς =

Now applying the formulae ()(|)
()

P A BP A B
P B

∧= on the second term we get:

0 1 0 1

0 10

Re (,)(') Re (,)(')
1 Re (,)(')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫ 1 1 1

1 1

(() ' |) '
(|) '

P s x t s dx
P t s dx

ς = ∧ ↓
↓

 83

= 0 1 0 1

0 10

Re (,)(') Re (,)(')
1 Re (,)(')

l l l

l

Av s g s x x Av s g s x
Av s g s x

+ −
−∫

1 1
1

0

1 1
1

00

Re (,)(') (1 Re (,)('))
' '

Re (,)(") (1 Re (,)(")) "
'

l n
l

i
i

l l n
l

i
i

dAv s e s x Av s g s x
dx dx

dAv s e s x Av s g s x dx
dx

=

=

−

−

∏

∏∫

(

Now, let),,,,,,(0 KAFsSG �Ε= be a GSMP, assume that for all Ss ∈ , if)(sAf ∈

and f has an exponentially distributed lifetime, then)(sKf ∈ . Now, let)(1rN be a nest for

state 1r in G , let 'S be the state space of)(1rN , and let s }{' 1rS −∈ . Then for all

)()(sKsAe −∈ , we want to calculate
11Re (, , (()*))l s
rAv s e s N r . Note that since

)()(sKsAe −∈ then 1()e A r∈ and
1' { }

()
r S r

e K r
∈ −

∉ ∪ . If 1r is regenerative, i.e. if 1()e K r∈ ,

then once we reach state s , event e would be active from the time we entered 1r . Hence, to

calculate))*)((,,(Re
11
s
rrNsesAv , we need to subtract from the distribution of event e the

amount of time taken to reach s from 1r . In other words:

11Re (, , (()*))l s
rAv s e s N r = 11 1

0

(()[', '] () ' | ()*))
'

'

sl
rP e s x x x r s x N r

dx
dx

ς+ ∧ → =
∫

Where 1() 'r s xς → = represents the fact that state s is entered after 'x time units of entering

1r .

Formally, this can be done as follows:

Let }',...','{ 21 meee =)(
}{' 1

rK
rSr −∈

∪ and let },...,,,{ 21 leeee =)(
}{' 1

rA
rSr −∈

∪)(
}{' 1

rK
rSr −∈

∪− , i.e.

1 2{ , , ,... }ve e e e)(1rA∈ . We can assume without loss of generality that φ=∩)'()(rKrK for

all }{'' 1rSrr −∈≠ . Let ig be the average residual distribution for ie in 1r where {1,..., }i v∈

 84

and let if be the time distributions for ie' in the state where they are initialized, for

},...,1{ mi ∈ .

We need to find
11Re (, , (()*)))l s
rAv s e s N r , where))*)((

11
s
rrN represents all traces in

)(1rN starting with 1r and ending in s . We recall from the definition of ESMPs that since

)()(sKsAe −∈ then)(rKe ∉ for all }{' 1rSr −∈ . Now, assume that the average residual for

all events in state 1r are known, i.e. the distributions ig where {1,..., }i v∈ are known, in

other words we assume that 1r was transformed into a regenerative state, then if we entered

state s after 'x time units of entering 1r , then
11Re (, , (()*)))()l s
rAv s e s N r x (which is the

probability that event e occurs in s within x time units of entering s), is defined as:

11Re (, , (()*)))()l s
rAv s e s N r x = 11 1

0

(() ' | ()*)
() '

'

sl
rP r s x N r

P e dx
dx

ς → =
∫ (1)

where 1() 'r s xς → = represents the fact that state s is entered after 'x time units of entering

1r , and)(eP is the probability that e occurs between 'x and 'xx + time units since entering

1r given that e does not occur before 'x . So)(eP = 1 1

1

Re (,)(') Re (,)(')
1 Re (,)(')

l l

l

Av s e r x x Av s e r x
Av s e r x

+ −
−

And if we apply the rule
)|(

)|()|(
BCP

BCAPCBAP ∧=∧ to the first term of Equation (1), we

get:

11 1(() ' | ()*)
'

s
rP r s x N r

dx
ς → =

=

 1

1

1 1 1

1 1

((() ') ()* |) 1
' (()* |)

s
r

s
r

P r s x N r r
dx P N r r

ς → = ∧ ↓
↓

 (2)

 Before we proceed, let
→

)(1rN be the semi-Markov process formed from)(1rN with

the addition of all missing transitions out of any state in)(1rN that is governed by an event

 85

from }',...,','{ 21 meee and the states they lead to, i.e. all transitions that lead you outside

)(1rN and that are governed by events initialized inside)(1rN . The states added to
→

)(1rN are

made into absorbing states with respect to
→

)(1rN , so the probability of being in one of these

states equals the probability of getting out of)(1rN on a transition from the set

}',...','{ 21 meee . Denote by aS the set of absorbing states of
→

)(1rN that do not belong to

)(1rN .

Now, denote by

• 1E]',0[x the fact that events 1 2{ , ,... }ve e e do not occur between]',0[x since entering

1r , then])',0[(1 xEP =
1
(1 ('))

v

ii
g x

=
Π − and

• 2E]',0[x the fact that no state in the set aS is visited in the interval]',0[x since

entering 1r given fact 1E .])',0[(2 xEP is a function of the total time spent in a state

in the set aS in the interval]',0[x relative to the SMP
→

)(1rN .

])',0[(2 xEP = ∑
∈

→

−
aSr

rN
r xL

x
)'(

'
11)(1 .

•]',0[3 xE the fact that we are in state s after 'x time units since entering 1r , given

that]',0[1 xE , and]',0[2 xE . Hence])',0[(3 xEP is the transient state probability for

state s relative to SMP)(1rN =.)'()(1 xrN
sπ

 Now, the left term of Equation [3],

11 1 1(() ' ()* |)
'

s
rP r s x N r r

dx
ς → = ∧ ↓

= (P {events 1 2{ , ,... }ve e e do not occur between]',0[x relative

to the time 1r was entered} ∧ {no state from the set aS is visited in the interval

]',0[x } ∧ 1{ (') | ())}s x l r l↓ +
'

1
dx

 86

Now applying the formulae:)|()|()|()|(DBACPDABPDAPDCBAP ∧∧∧=∧∧ , we

get:

11 1 1(() ' ()* |)
'

s
rP r s x N r r

dx
ς → = ∧ ↓

= (P {events 1 2{ , ,... }ve e e do not occur between]',0[x relative to the time 1r was entered} ∧

{no state from the set aS is visited in the interval]',0[x } 1(') | ())s x l r l∧ ↓ +
'

1
dx

=
'

])',0[(
])',0[(])',0[(3

21 dx
xEdP

xEPxEP

=
1
(1 [(') (0)])

v

i ii
g x g

=
Π − − [∑

∈

→

−
aSr

rN
r xL

x
)'(

'
11)(1]

'
)'()(1

dx
xd rN

sπ

And the bottom of the right term of Equation (2) is

11 1(()* |)s
rP N r r↓ = 11 1 1

0

(() ' ()* |)
'

'

sl
rP r s x N r r

dx
dx

ς → = ∧ ↓
∫

=
0

l

∫ {
1
(1 [(') (0)])

v

i ii
g x g

=
Π − − [∑

∈

→

−
aSr

rN
r xL

x
)'(

'
11)(1]

'
)'()(1

dx
xd rN

sπ
} 'dx

 From the above arguments, we conclude the following Theorem:

Theorem 4.7. Let G be a GSMP, let)(1rN be a nest for 1r in G . We denote by S the set of

states of)(1rN , let }{ 1rSs −∈ , let 1 2{ , ,... }ve e e =)()(
}{}{ 11

rKrA
rSrrSr −∈−∈

∪−∪ and let

}',...,'{ 1 mee =)(
}{ 1

rK
rSr −∈

∪ . Let ig be the time distribution for ie where {1,..., }i v∈ and let

if be the time distributions for ie' where },...,1{ mi ∈ . Let
→

)(1rN be the process formed from

 87

)(1rN with the addition of all transitions governed by events }',...,'{ 1 mee and their

corresponding next states. And by aS set of absorbing states of
→

)(1rN that do not belong to

)(1rN .

 Then for all)()(sKsAe −∈ :

11Re (, , (()*))l s
rAv s e s N r)(x =

1
1

1
1

()
()

1
1 1

()
() 10

1
0

(')1(1 ('))[1 (')]
' ' Re (,)(') Re (,)(') '

1 Re (,)(')(")1(1 ("))[1 (")] "
" "

a

a

N rv
N r s

i rl l li
r S

l lN rv
N r s

i ri
r S

d xg x L x
x dx Av s e r x x Av s e r x dx

Av s e r xd xg x L x dx
x dx

π

π

→

→

=
∈

=
∈

Π − −
+ −

−
Π − −

∑
∫

∑∫

where)'()(1 xrN
sπ is the transient state probability for state s relative to the SMP)(1rN and

∑
∈

→

aSr

rN
r xL)'()(1 is the total time spent in the states of the set aS in the interval]',0[x relative to

the SMP
→

)(1rN .

(

 Note that both theorems apply to the steady state case by taking l → ∞ .

4.3.5. Transient and Steady-State Simulations: Definitions and

Properties.

In this section, we will present the definition of s-simulation, and we will prove that if

an NRGSMP s-simulates another, then the steady state probabilities of the latter can be

deduced from the former. As a generalization of s-simulation, we will present another

simulation called transient state simulation or t-simulation as a separate definition, then we

will prove that if an NRGSMP t-simulates another, then the transient state probability of the

 88

latter can be deduced from the former. Properties of both simulations will be given in two

separate theorems.

Definition 4.11: Steady-state simulation

Let),,,,,,(0 KAFsSG �Ε= and)',',',',,','(' 0 KAFsSG �Ε= be two NRGSMPs.

We say that 'G steady-state simulates (or s-simulates) G if there exists a partition

{ , 1,...,| |}j j S∆ = ∆ ∈ of the states in 'S , and a bijection ∆→SR : such that ∆∈}'{ 0s and

}'{)(00 ssR = and for all regenerative states r S∈ , we have that () { '}R s s= for some state

' 's S∈ . Moreover, for every state Ss ∈1 if }',...,'{)(
1111 nsssR =∆= then:

1. If ∈→ 21 ss e � , then for each },...,1{ 1ni ∈ there exists a state)(' 2
2 sRs i ∈ and

a transition ∈→ 2'' i
e

i ss '� , such that if)(1sKe ∈ then)'(' isKe ∈ and

)(')('1
eFeF

iss = , and inversely,

2. For each },...,1{ 1ni ∈ if ∈→ 2'' i
e

i ss '� then there exists a state 2s with

)(' 2
2 sRs i ∈ and a transition ∈→ 21 ss e � .

3. For 1{1,..., }i n∈ , let ''
isΓ be the set of all single regenerative traces leading to 'is

in 'G , then we have that 1
1 ' 'Re (, , (')) Re (, ' , ')

i is i sAv s e s R Av s e s− Γ = Γ for all

)(1sAe ∈ .

To illustrate the above definition, assume that 'G s-simulates G through a partition

∆ . Let)",",",",},'{,{/' 0 KAFEsG �∆=∆ be the GSMP such that, for all ∆∈∆∆ 21, :

21 ∆→∆ e iff for all 11 ∆∈s and for all 22 ∆∈s we have 21 ss e→ , then from a

functional point of view (i.e. if we neglect the timing constraints), G and ∆/'G would be

identical. On the other hand, we have from Points 1 and 2 that for every Ss ∈ if)(' sRs ∈

and if ''
isΓ is the set of all single regenerative traces leading to 's then)'()(sKsK ⊆ , and

 89

from Point 3 that if)()'(sKsKe −∈ , then e has the same average residual distribution in

both states s and 's given that we reached s through a trace from the set 1
'(')
isR− Γ .

Note that if),,,,,,(0 KAFsSG �Ε= s-simulates)',',',',,','(' 0 KAFsSG �Ε= and

if))(()(' 1 rRKrK −= for all 'Sr ∈ , then G is structurally bisimilar to 'G

Now we present some properties of the steady-state simulation, among which the

property which states that if a GSMP steady-state simulates another one, then the steady state

probabilities of the latter could be deduced from the steady state probabilities of the former.

Theorem 4.8. Let),,,,,,(0 KAFsSG �Ε= and)',',',',',','(' 0 KAFsSG �Ε= be two

GSMPs such that 'G s-simulates G . Let },{ Jjj ∈∆=∆ be the partition of states 'S and

∆→SR : be the correspondence that establishes the steady-state simulation. Now let s S∈ ,

and assume that 1() { ,..., }nR s r r= ∈∆ , and let '
ir

Γ be the set of all single regenerative traces

leading to ir in 'G , and assume that 1(')
ii rR−Γ = Γ then we have that:

1. '(|) ()G G
i is rς ςΓ = where (|)G

isς Γ is the distribution of the sojourn time in state s

at equilibrium given that a trace from iΓ was followed.

2. If 'it is a transition out of state ir in 'G and if 1(')it R t−= , then '(|) (')G G
i it tπ πΓ =

where (|)G
itπ Γ is the probability at equilibrium that transition t occurs from state s

given that a trace from iΓ was followed to reach state s .

3. '

1

() ()
n

G G
i

i

s rπ π
=

= ∑ .

Proof. We prove the four point one by one:

 90

1. To prove this point, it is enough to observe that (|)G
isς Γ is a function of the

residual lifetimes of the active events in state s knowing that a trace from iΓ was

followed to reach s .

2. Similarly, to prove this point, it is enough to observe that (|)G
itπ Γ is a function of

the residual lifetimes of the active events in state s knowing that a trace from iΓ was

followed to reach s .

3. To prove this point, let 0" (', ' , , ", ', ', ")G S s F A K= Ε � be the GSMP that is

isomorphic to 'G from a functional point of view, with 1"() (())K r K R r−= and

1 ()
" () ()r R r

F e F e−= . In other words, G and "G are structurally bisimilar. Then it is

enough to prove that

a. "

1

() ()
n

G G
i

i

s rπ π
=

= ∑ and

b. " '() ()G G
i ir rπ π=

Property (a) is a direct consequence of structural bissimulation.

Property (b): Let 1{ ,..., }mv v be the set of all states from which ir is directly accessible

as follows: je
j iv r→ for all {1,..., }j m∈ . Then, the probability of being in state ir

at time x is equal to the probability of having entered one of the jv at time

' "x x x− − where ' "x x+ is between 0 and x , and then moving to state ir after

spending "x time units in jv .and staying in ir for at least 'x time units, hence, in

both GSMPs:

0(() | ' (0)iP r x s =

 91

' "'
0

10 0

' " '

() { }

((' ") | ' (0) (Re (, , "))
'

[1 (Re (, , "))](() ') " '
j j

x x xx x m
j j j

j

x x x x x
j i

e A v e

dP v x x x s d Av s e v x
dx dx

Av s e v x r x dx dxζ

− −

=

− − −

∈ −

− −

− ≥

∑∫ ∫
∏

Where '()x x
irζ − is the soujourn time in state ir given that state ir was entered at time

'x x− , hence

0lim (() | ' (0) ()i ix
P r x s rπ

→∞
= =

'
0

10 0

() { }

((' ") | ' (0) (Re (, , "))
lim()

'

[1 (Re (, , "))](() ') " '
j j

x m
j j j

xj

j i
e A v e

dP v x x x s d Av s e v x
dx dx

Av s e v x r x dx dxζ

∞

→∞=

∈ −

− −

− ≥

∑∫ ∫
∏

But the average residual times are the same in both GSMPs, hence the steady state

probabilities of consecutive states are related by the same formulae in both GSMPs. And

hence they both have the same SSP.

(

 In what follows, we will generalize s-simulation by removing the assumption that the

GSMP is in steady state. Then we will prove that if 'G t-simulates G , then the transient

state probability of G could be obtained from that of 'G . The reason for the generalization

is only to show how the equivalence generalizes to transient state, and the nice properties

that one gets from t-simulation; but this is not relevant to the rest of the thesis, as only steady

state properties will be considered.

Definition 4.11(2): Transient state simulation

Let),,,,,,(0 KAFsSG �Ε= and)',',',',,','(' 0 KAFsSG �Ε= be two NRGSMPs. We say

that 'G transient-state simulates (or t-simulates) G if

 92

1. 'G steady-state simulates G and,

2. if },{ Ss jj ∈∆=∆ and ∆→SR : are the partition and the bijection that establish the

steady-state simulation, then for any Ss ∈1 , if }',...,'{)(
1111 nsssR =∆= , and if ''

isΓ

is the set of all single regenerative traces leading to a state 'is in 'G , then, given that

we entered states 1s and 'is after l time units of the start of the running of the

system, then we have that 1
1 ' 'Re (, , (')) Re (, ' , ')

i i

l l
s i sAv s e s R Av s e s− Γ = Γ for all

)(1sAe ∈ .

In the next theorem, we will present the properties of the t-simulation.

Theorem 4.8(2). Let),,,,,,(0 KAFsSG �Ε= and)',',',',',','(' 0 KAFsSG �Ε= be two

GSMPs such that 'G t-simulates G . Let },{ Jjj ∈∆=∆ be the partition of states 'S and

∆→SR : be the correspondence that establishes the transient state simulation. For any

s S∈ , if 1() { ,..., }nR s r r= ∈∆ , then '
0 0

0

(() / (0)) (() / ' (0))
n

G G
i

i

P s x s P r x s
=

= ∑ .

Proof. The proof is done in two steps:

1. Let 0" (', ' , ', ", ', ', ")G S s F A K= Ε � be the GSMP such that 1"() (())K r K R r−= and

1 ()
" () ()r R r

F e F e−= for all '()e A r∈ . In other words, "G and G are structurally

bisimilar, then we have that "
0 0

0

(() / (0)) (() / ' (0))
n

G G
i

i

P s x s P r x s
=

= ∑ . So it is enough to

prove that for all r in 'S , ' "
0 0(() / ' (0)) (() / ' (0))G GP r x s P r x s= . This will be done in

the next step.

2. Let 1{ ,..., }mv v be the set of all states from which r is directly accessible as follows

ie
iv r→ for all {1,..., }i m∈ . Then, the probability of entering state r at time x is

equal to the probability of having entered one of the 'iv at time 'x where 'x is

 93

between 0 and x , and then moving to state r after spending x - 'x time units in 'iv .

Hence:

'
0(() | ' (0)GdP r x s

dx
=

' ' '
0

10

' '

() { }

((') | ' (0) (Re (, , '))
'

[1 (Re (, , '))] '
i i

x G x Gm
i i i

i

x G
i

e A v e

dP v x s d Av s e v x x
dx dx

Av s e v x x dx
=

∈ −

−

− −

∑∫
∏

(Note that ' '

() { }

[1 (Re (, , '))]
i i

x G
i

e A v e

Av s e v x x
∈ −

− −∏ represent the fact that events other

than ie that are active in iv , occur after ie)

But ' '(Re (, , '))x G
iAv s e v x x− = ' "(Re (, , '))x G

iAv s e v x x− for all ()ie A v∈ , hence they

both have the same set of equations, and hence the same transient probability.

(

 Note that, if an NRGSMP was transformed into an HMRP, and if all the states of the

HMRP were transformed into regenerative states by assigning them their average residual

distributions as a function of l , In other words, if for every state s , and every event

()e A s∈ , we set () Re (,)()l
sF e Av s e s x= which is a function of the time state s was

entered: l , then the HMRP becomes a non-homogeneous semi-Markov process . We will not

go into the specifics of this transformation as we are focusing on the steady state case.

However, for more information on non-homogeneous semi-Markov process, the reader is

referred to [58],[59].

 94

4.4. From NRGSMP to SMP

In this section, we present the algorithms that transform an NRGSMP into an SMP.

In Subsection 4.4.1 we present the algorithm that transforms the NRGSMP into an HMRP,

then in Subsection 4.4.2 we present the algorithm that transforms the obtained HMRP into an

SMP. An application will then be presented in Subsection 4.4.3.

4.4.1. Algorithm 1: NRGSMP to HMRP

In this Section, we will present an algorithm that transforms a NRGSMP into an

HMRP such that the HMRP is structurally bisimilar to the NRGSMP (Theorem 4.9). In what

follows we will adopt the following two assumptions:

• The NRGSMP is connected (in other words every state is reachable from the

starting state).

• We assume that the regenerative states are not part of any non-trivial ESMP.

For simplifying the description of the algorithm, we will say in this section

that each regenerative state is a reg-ESMP, that is, a trivial ESMP that

consists of a single state, namely the regenerative state in question.

4.4.1.1. Overview

We will start first with the following definition:

Definition 4.12: Execution tree, leaf node

• An execution tree of a GSMP G is a tree (graph with no cycles) that

characterizes all possible execution paths that could be followed during the

execution of G . The nodes of the tree represent states in G , and the arcs (also

called transitions) connecting the nodes represent transitions between states in G .

 95

In an execution tree, the root node corresponds to the starting state, and the

number of transitions out of a node is equal to the number of transitions out of the

corresponding state. An execution tree could be infinite.

• A leaf node in an execution tree is a node with no outgoing transitions.

The algorithm that transforms an NRGSMP),,,,,,(0 KAFsSG �Ε= into an HMRP

'G works by constructing part of a “special execution tree” for the NRGSMP. Each node of

the tree actually consists of copies of one or more state of G, such that all states in the same

node belong to a reachable part of an ESMP. The nodes of this tree therefore represent a sub-

ESMPs (i.e. every node is composed of a set of states and a set of transitions linking these

states). For each transition between nodes 1n and 2n , the transition is actually an arc

between a particular state of 1n to a particular state of 2n . We develop the tree by going

down the tree until a leaf node is a reg-ESMP of G (i.e. it consists the copy of a single

regenerative state of G) such that, this state is already represented by another node within the

tree so far developed. The scenario is the following:

1. The root node of the tree is a reg-ESMP which is a copy of the starting state of the

NRGSMP. At this point, the only leaf node is the root node.

2. For every leaf node n , do the following:

(a) If n is a reg-ESMP and this reg-ESPM is already represented by another node 'n in

the tree built so far, then we stop expanding this node (because the reg-ESMPs of G

will be presented by another node in the HMRP), and nodes 'n and n are considered

equivalent, and will be merged at the end. Otherwise,

(b) for each copy of state s in the ESMP of node n , we do the following:

Let },...,{ 1 nNN be the set of all ESMP in G having s as the in-border. Let iN ' be a

copy of the sub-ESMP of iN formed from the states of iN that are reachable from

 96

s . Then we create n nodes }',...,'{ 1 nNN , add them to the tree by creating arcs out of

state s of n to the proper states in the sub-ESMPs }',...,'{ 1 nNN .

Note that, if the ESMP that forms node n contains copies of two states, say s and s’,

such that the same sub-ESMP is reachable from both states, then two different nodes

are created for the same sub-ESMP, one accessible from s, and the other from s’.

3. The last step would be to merge the leaf nodes that satisfied condition (a) with their

equivalent nodes. Equivalent nodes are represent the same reg-ESMP.

 Before presenting the different functions used in the algorithm, we need the following

Corollary:

Corollary 4.4. Let G be an NRGSMP, and let 'G be the HMRP obtained by applying the

algorithm described above. The finiteness of the HMRP 'G is guaranteed from the properties

of G .

Proof. Let H be the tree obtained from the above algorithm without the last step 3, i.e. the

tree whose nodes are sub-ESMPs, and define a relation 'R over the states of 'G as follows:

''ssR if s and 's belong to the same node in the tree H , assume that 'R partitions the states

of 'G into the sets: },...{ 1 nSS . Then the following facts are straightforward:

1. For all },...,1{ ni ∈ , let iM be the set of all states in G that are associated with the

states in iS . Then || iM = || iS .

2. Let C be a regenerative cycle in G . Let B be any branch in H . Let },...,{ 0 lnn be the

set of nodes in B . Let Γ be the set of all possible paths: LTTTT ...10= , where iT . is a

trace inside node in . Then C is represented at most once in any trace of Γ .

3. If 'G is infinite, then there should exist a state s of G that is represented infinitely

many times in 'G . Now, we know that 'G has a finite branching factor (number of

 97

states accessible from a given state through one transition). Hence there exists a path

T in 'G containing infinitely many states that represent s , say2211 rTrTT = where

all ir s are associated with state s . Let m be the number of REG cycles that s

belongs to in G , then from point (2) above, we conclude that each cycle is

represented at most once in trace T . That means that there exists a sub-trace of T :

='T 221 rTr , where 'T represents the execution of an NSM cycle C of G . But states of

an NSM cycle belong to the same ESMP, i.e. 21 'rRr should be and. 21 rr = .

(

4.4.1.2. Algorithm 1

The algorithm is composed of four major and six minor functions.

Major Functions:

a. GET-ESMP: This function finds all ESMPs belonging to the NRGSMP, and

identifies the in-borders for each ESMP.

b. BUILD-TREE: This function takes the NRGSMP as input and creates the

TREE by calling the functions below.

c. ADD-NEST: This function takes a node n , then for each state s belonging to

the sub-ESMP forming this node, it finds the nests of s },...,{ 1 mMM then it

creates a new node for each sub-ESMP in the nests, and adds it to the tree

with a transition from state s to the appropriate states in the sub-ESMP.

d. MERGE-REG: This function takes the partial TREE as input and merges all

nodes that represent the same reg-ESMP.

 Before presenting the minor functions, we will introduce the data types.

 98

Data Types

• },...,{ 0 heeE = is a set of events labels in the given NRGSMP.

• EL is a list of elements of type E .

• A State is a class with the following fields:



























→ �:
:
:[]

,:
,:

esListofStatESMP
esListofStatNEST

ELA
ELK

, where

each entry in []NEST points to a set of states of an ESMP that have this state

as one of its in-borders, the field ESMP is a list of states representing the

ESMP to which this state belongs, and � is an array of transitions, i.e. an

array of elements of type Trans described below.

• A transition Trans is a class with the following fields:














States
States
Ee

:
:'

,:
 .

• A Node is a class with the following fields:



























→

→

,:
,:

,:][

:
:

NodeeqNode
Nodeparent

S

sListofTran
eListofStatM

tt � , where M

represents all the states of the sub-ESMP that forms the node, and → is a list

of all the transitions between the states of the sub-ESMP,][St→ represents

an array of transitions out of each state of the node to the states of the other

nodes, so][st→ is the array whose entries are of type Arc described below,

eqNode represents the node to which this node is equivalent (if any), parent

represents a pointer to the parent of the current node.

 99

• An Arc is a class with the following fields



























Noden
Noden
States
States
Ee

:'
:
:
:'

,:

, it represents a

transitions between two states each in a different node.

• A ListofState is a list of elements of type State

• A ListofNode is a list of elements of type Node

Minor Functions:

a. Function CREATE-NODE():,:,: NodenStateseListofStatS : void, creates a

new node for the tree, the new node represents the sub-ESMP whose states

are the set of states from S that are reachable from s , and its parent in the

subtree is node n .

b. Function CREATE-ARC()',,',, nnrrt void, creates a new arc between states r

and 'r of nodes n and 'n , respectively, the new Arc represents transition t .

c. Function BELONGS-TREE(): Noder : boolean, takes a node r representing a

reg-ESMP as input. Its purpose is to check whether the ESMP represented by

node r is represented in the TREE by another node say 'r , then we set

r.eqNode= 'r meaning that r and 'r are equivalent and should be merged,

using the function MERGE below.

d. Function CREATE-NEST (NodenStateseListofStatS :,:,:): Node, takes a

set of states that represent the states of an ESMP and one of its in-borders s

belonging to node n , and creates a node out of all states in the ESMP that are

reachable from s and attaches the nest to the tree by creating all the possible

arcs between s and the states of the newly created node.

 100

e. Function IS-REG-ESMP(): Noden boolean, takes a node as input and checks

whether the node represents a reg-ESMP.

f. Function MERGE ():, Nodenr : void, takes two nodes that represent the same

reg-ESMP and merges them together making them one node: all arcs leading

to the state of r are redirected to lead the state of n .

g. Function ADD),(NΨ : void takes a set Ψ and an element N and adds it to

the set.

h. Function EXTRACT),(NΨ : void, takes a set Ψ and an element N and

extracts it from the set .

The minor functions will not be developed as they are straightforward.

Global Variables

• 0s of type State represents the given NRGSMP, every state in this structure

(including the starting state) is connected through transitions to a set of other

states representing the states that are immediately accessible from this state.

• 0n of type Node represents the HMRP built so far.

• Ω represents the nodes in the tree that need to be further expanded.

• Σ contains all the nodes in the tree that will not be expanded anymore.

4.4.1.3. Definition of the major functions

Function GET-ESMP()�������

 101

���	�
��
����������������	����������������	������	�� �	�����	�
��
�����	���
��	�
���������������	��������

������� 0s ������		���	�����
����
���������������
����	� ESMPs. ����� Nests. �
�������!�	����� s ��
�

������� 0s ����	��	������������������
���������	���	��

"� #�����������$�������������	����	����������� 0s �	���������������	����� �

%� &����������	����	���� S ������	��	��	� },...,,{ 21 nSSS �	�
�������
������� },...,1{ ni ∈ �����

������� iSss ∈', �)'()'()()(sKsAsKsA −=− ��'��� },...,,{ 21 nSSS �����������(�����

	��	��	���������	��������!���

)� &������ ��
�� 	��	��� �
� 	����	� iS � ��� ���� 	��� },...,,{ 21 nSSS � �����
������� 	��	��	�

},...,,{ 21 in
iiii SSS=Λ � 	�
�� ���� �
��� ���� ∈j

iS },...,,{ 21 in
iii SSS � �
� ∪

j
iSs

j
i sK

∈

=∆
'

)'(�

�����
��� ���� j
iSs ∈ � ����
��� ���� j

ie ∆∈ � �������)(sKe ∈ � ��� e � �	� ���
����� ��� s �� '���

},...,,{ 21 in
iii SSS �����������(�����	��	��	���������	��������!���������
��	����
�	����	�

j
iS ������	���	�����	����	��
����������

*� #�����
��	����� j
iSs ∈ ������� },...,1{ ni ∈ ����� },...,1{ inj ∈ ����	��� j

iSESMPs =. �

+� #������� },...,1{ ni ∈ ��������� },...,1{ inj ∈ ������������������$������	�
������������ j
iS �

	�!� },...,{ 1 hss �����
�����
�� },...,1{ hj ∈ �������� j
iS ������������!� NESTs j . ��

Function BUILD-TREE (0s : State): Node

,,����	�
��
�������-�	�������������������������	��� �� 0s ��	�����������������	����.���� 0n ��
��!��������

�	���������

���$����/01�

0n 23��'��$�4&��),,.(0 φφESMPs 01�

}{ 0n=Ω 1� φ=Σ 1�

 102

5����� Ω φ≠ �

� � �6��'3��/),nΩ 1�

� '&&$����),,(ΣΩn 1�

�����$����/ Σ 01�

�

Function ADD-NESTs (ListofNodeNoden :,,: ΣΩ): void

N ������1

�������
�������!�	����� s ���� Mn. ��

� �271��������1�

� �������

 =N 3��'��$�����/ nsiNESTs ,],[. 01

 8
�/8�$���$����/)N 0���� 8
�/9�:4���$����/)N 0

� � � '&&�),(NΣ �

� � ��	���

� � � '&&�),(NΩ 1�

� � 1+= ii 1�

� ;����� nulliNEST =][�

�

Function MERGE-REG (0n :Node):void

 103

5����� φ≠Σ �

� �6��'3�/ Σ,r 0�

������))(,(reqNoder 1�

,,����	�
��
�������-�	���������	��
����������� r ����� 'r �����������	�����<�������������	�

����
������	� ����� ����� ���� ����� �!� ������
����� ���� ����	������
������ ��� 'r � ��� �����

����
��!���� r ���

Theorem 4.9. Let),,,,,,(0 KAFsSG �Ε= be an NRGSMP and let

)',',',',',','(' 0 KAFsSG �Ε= be the GSMP obtained from G by applying the above

algorithm. Then

1. 'G is an HMRP and

2. G and 'G are structurally bisimilar.

Proof.

To prove that the resulting process is an HMRP, consider the partial tree built by the

algorithm. Every node in the tree has exactly one path leading to it. And on this path, each

node is an ESMP. Therefore the set of all traces leading to a certain state within a certain

node is such that each trace has the form nTTT ...21 where each iT is a trace within a sub-

ESMP on the path along the tree.

To prove Point 2, let R be the following relation:

For s S∈ , ()R s is the set of all states from 'S that are created in the algorithm as

representing state s . Then for all ()r R s∈ , s and r have the same active events, and these

events lead to states that are related through R . Moreover, '() ()K r K s= and ' () ()r sF e F e=

for all ()e K s∈ .

 104

(

Figure 9 shows the HMRP obtained by applying the algorithm to the NRGSMP

shown in Figure 3. The second digit in the state names in Figure 9 represent the

corresponding state in the original NRGSMP.

4.4.2. HMRP to SMP

4.4.2.1. Overview

Given an HMRP),,,,,,(0 KAFsSG �Ε= , we would like to transform G into an

SMP, or in other words, we would like to transform every non-regenerative state in G to

become a regenerative one. We use the following procedure:

1. For every non-regenerative state s in the HMRP such that AvR
sT is a path

srrrT n
AvR

s =→→→= ...10 , we transform s to become regenerative as follows:

we first transform 0r to become regenerative, then 1r and so on (Theorem 4.6).

2. For every non-regenerative state s in the HMRP such that AvR
sT is a nest

AvR
sT s

rri r
rN)*)((= , we transform every state in the nest to become regenerative

using the theory of semi-Markov processes (Theorem 4.7)

3. We repeat Steps 1 and 2 until all states are regenerative.

To understand why the above steps actually transform every state in the HMRP to

become regenerative, let us consider a non-regenerative state s of the original HMRP G . s

will become regenerative by assigning:))(,(Re))((xsesAvxeFs = for all)()(sKsAe −∈ .

From Theorem 4.3 and 4.4, we know that if sT is a regenerative path with only one

regenerative state leading to state s then),,(Re),(Re AvR
sTsesAvsesAv = and AvR

sT is of the

 105

form: s
r

n
mmm

r
r

nr
r

n
mn

m

m
nn rNTrNTrNT)*)((...)*)(()*)((
1
3

2
2

2
1
2

1
1

1
222111 where, in

iiii rrrT →→→= ...21 are

paths,)(in
ii rN are nests and

1
1)*)((+i
in

i

i r
r

n
ii rN are set of traces belonging to iN . Let us apply the

steps above to the HMRP and focus on its impact on state s :

• Step 1 transforms every state in the path 1T to become regenerative, starting

from state 1
1r , then state 2

1r , until state 1
1
nr (note that 1

1r is already

regenerative).

• Step 2 transforms all states in 1N to become regenerative. Note that the in-

border 1
1

1 −nr was already transformed to be regenerative in the previous step.

• Next we repeat step 2 on path 2T . (Note that 1
2r was already transformed to

become regenerative in the previous step).

• And so on … until s becomes regenerative.

4.4.2.2. Algorithm 2

Traverse the HMRP G and transform every state s to become regenerative (starting

from the starting state) as follows:

• If s is not part of any nest, i.e. if every trace to s has a postfix sst e→': , we

transform s to become regenerative using Theorem 4.6 (note that 's should have

been transformed into a regenerative state in previous steps).

• If s is part of a nest s
rii i

rN)*)((, we transform every state in the nest to become

regenerative using Theorem 4.7 (note that ir should have been transformed into a

regenerative state in previous steps).

The SMP obtained would have the same states as the HMRP, and it s-simulate the HMRP,

the relation that establishes the s-simulation is the identity relation.

 106

Theorem 4.10. Let),,,,,,(0 KAFsSG �Ε= be a NRGSMP and let

)',',',',',','(' 0 KAFsSG �Ε= be the HMRP obtained from G by applying Algorithm 1.

And let)",',",',','(" 0 KFsSG �Ε= be an SMP obtained from 'G by applying Algorithm 2.

Then "G s-simulates G .

Proof. The proof is easily deduced from the way we constructed the SMP.

(

4.4.3. Application

As an application, consider State 1-1 in Figure 9. We will attempt to find

)11,(Re −asAv . Note that 11−T = 0-0 � 1-1 is the defining trace for state 1-1, the ESMP to

which state 1-1 belongs is)3322)1122(11 −→−→−→−→− frnsr , and

AvRT 11− = nsrd)1122(1100{ −→−→−→− | n any integer}. So from Theorem 4.2,

)11,(Re −asAv =),11,(Re 11
AvRTasAv −− . Note that AvRT 11− is composed of one nest

)00(−N (shown in Figure 12 (a)). So to find),11,(Re 11
AvRTasAv −− we can apply Theorem

4.7. Note that the SMP)00(−
→
N is shown in Figure 12 (b), (recall that)00(−

→
N is formed

by adding the missing transitions governed by the events from (1 1) (2 2)K K− ∪ −).

We have that:),11,(Re 11
AvRTasAv −− = 1 1

0 0Re (,1 1, (0 0)*)Ave s a N −
−− −

And with a straightforward application of Theorem 4.7 we get:

1 1
0 0Re (,1 1, (0 0)*)Ave s a N −

−− − =

∫
∫

∞

∞ −
−

−
−

−

−
−

−
−

−

→

→

−−

−−

0

0

)00(
11

)00(
33

00

)00(
11

)00(
33

00

"
"

)"(
]

"
)"(

1))[")((1(

'
)'(

]
'

)'(
1))[')((1(

[

dx
dx

x
x

xL
xaF

dx
xd

x
xL

xaF

NN

NN

π

π

]
)')((1

)')(()')((

00

0000

xaF
xaFxxaF

−

−−

−
−+

'dx

 107

The final step would be to set))((11 xaF − =))(,11,(Re 11 xTasAv AvR
−− .

 a. SMP)00(−N b. SMP)00(−
→
N

Figure 12. SMPs)00(−N and)00(−
→
N

4.5. Practical Limitations

4.5.1. Space Complexity

Let),,,,,,(0 KAFsSG �Ε= be an NRGSMP. Assume that all ESMPs in G are strongly

connected, and let },...,,{ 21 qMMM be the set of strongly connected ESMPs in G . (Note

that if the ESMPs are not strongly connected then we take the strongly connected ESMP

parts; refer to Theorem 4.1, and the analysis would only be slightly different). Let

0-0

1-1

2-2

d

s r

3-3

f

0-0

1-1

2-2

d

s r

 108

)',",',',',','(" 0 KAFsSG �Ε= be the HMRP obtained by applying Algorithm 1. Let

)',',',',',','(' 0 KAFsSG �Ε= be the HMRP obtained from G by applying Algorithm 1, but

instead of executing the function MERGE-REG (Σ) at the end, we delete all regenerative

states in the set Σ (refer to Section 4.4). Then 'G has the same number of states as "G , but

'G has no regenerative cycles. Let R be the s-simulation from G to "G . We would like to

determine |'| S . For that, we will consider 'G rather than "G as the absence of regenerative

cycles in 'G renders it easier to work with.

We need the following notation:

1. t is the maximum number of transitions out of a state in the HMRP (or NRGSMP),

that do not lead to a regenerative state, we call it the branching factor

2. m is the maximum number of states among the ESMPs of G , if G has no ESMPs

then 1=m .

3. RS is the set of regenerative states in G

4. SMPS is the set of states in G such that 1|.| >ESMPs

5. remS are the remaining states in G : remS ∪−= SMPSS ()RS

6. nS =|| is the number of states in G

Lemma 4.3. We define a relation 'R on the states of 'G as follows:

''ssR if)(', iMRss ∈ for some },...,1{ hi ∈ . Then 'R partitions the set 'S into distinct

subsets '/' RS . We divide the set '/' RS into two distinct subsets '/'1 RS and '/'2 RS where

'/'1 RS contains all sets containing exactly one state (i.e. all sets from '/' RS that consist of

only one element). Let)'/'(' 1
1

1 RSRS −= . Then

o |'| 1S = '/'| 1 RS |

 109

o |'/'| 2 RS is equal to the number of ESMPs in the HMRP 'G , in other words, every

state in |'/'| 2 RS represents an ESMP from the set },...,,{ 21 hMMM

o |'| S < |'/'||'/'| 21 RSmRS + =. |'/'||'| 21 RSmS + .

Proof. Straightforward

(

Lemma 4.4. Let)/',/'(RRSH �= be a labeled transition system, where RS /' is defined as

above and for all ∈→ ': sst � , ∈→ RsRst /'/: '� , then H is a tree.

Proof. Note that because of our assumption about ESMPs, the tree H is the tree of nodes that

we built in Algorithm 1.

(

Now, we divide the set },...,,{ 21 qMMM into two subsets, say },...,,{ 21 hMMM and

1{ ,..., }h qM M+ , such that all the in-borders of the ESMPs in },...,,{ 21 hMMM are

regenerative.

We would like to determine the number of states in RS /' , and for that we assume

that the branching factor for H is 't , the number of leaf nodes to be l (i.e. the number of

different branches in the tree),

Lemma 4.5. The tree defined in Lemma 4.4 has the following properties:

o)(||)(hqS rem

mtl −+<

o ||)|(|'1
remR SlSS +<

o hShqlRS R ||)(/'2 +−=

 110

Proof. The proof could be deduced from the following observations:

o Every state in RS is represented only once in the set 1'S .

o Let s be a state in remS , then s is represented at most once in a branch of H

(otherwise if it is represented twice, then there would be an execution of a non-

regenerative cycle from G , but s is not part of any ESMP, a contradiction)

o Let iM be an ESMP in 1{ ,..., }h qM M+ , then iM is represented by at most one state in

every branch of H and once per regenerative state i.e. by a total of lS R +|| times.

(recall that iM is strongly connected).

o Let iM be an ESMP in },...,,{ 21 hMMM , then iM is represented at most once per

regenerative state (i.e. by a total of || RS times.).

(

From the above theorem, we conclude that |/'| RS < ||))(|(|)(|| remhqSR SmtS
rem −++

and =RS /'2)()()(|| hqmt hqS rem
−−+ + hS R || and

++= −+ ||))(|(|)(|| remhqSR
T SmtSn

rem]||)()[()(|| hShqmtm RhqS rem

+−−+

))](|)(|)[()(|| hqmSmtOn remhqS
T

rem
−+= −+

Theorem 4.11. If)',',',',',','(' 0 KAFsSG �Ε= implements the enabling restriction then

o φ=remS and

o hq =

Idea behind the Proof. Let 'Ss ∈ be a non-regenerative state, then)(sA would consist of

one non-exponentially distributed event, say g , and several exponentially distributed ones,

say vee ,...,1 , so state s has 1+v transitions out of it corresponding to events vee ,...,1 and g ,

 111

to states 11 ,,..., +vv sss respectively. And the sub-GSMP formed by s and vss ,...,1 and the

transitions vee ,...,1 is an SMP. Note that if vee ,...,1 is empty, then for any state r such that s

is accessible from r by one transition, ESMPs ∈ of r . Point 2 is straightforward.

(

Note however that if φ=remS and hq = , then the NRGSMP need not implement the

enabling restriction, an example is depicted in Figure 10.

Now if || remS = 0 , i.e. if all states are either regenerative or belong to a non-trivial

ESMP, then))]()()[()(hqmmtOn hq
T −= − , so if hq − is small, i.e. if the number of ESMP’s

with at least one non-regenerative in-border is small (say 2), then this method would have an

acceptable space limitation. Now, if 0|| =remS and hq = , then

|)|(R
T SmhOn = = |)||(| RR SSSO − .

For the example in Figure 10, 1=mt and 0== qh , hence =Tn |||| remR SS + n=

4.5.2. Time Complexity

We define the basic operations as:

• equality checking,

• assignment statements,

• unions and subtractions of two sets, and

• additions and subtractions of two integers.

The complexity of the basic operations is assumed to be a fixed constant (we use the

value 1). Moreover, we assume that the integral calculation involves the evaluation of an

 112

expression a large number of times. We call this number c . The evaluation of the expression

has its own complexity which must be taken into account.

The time complexity will be presented for each algorithm in the following:

Algorithm1 : In this algorithm, the total number of nodes that we create is Tn . We first

execute function GET-ESMP. Then for every node that we create, we execute function

ADD-NEST. Then after creating all the nodes, we call function MERGE-REG. So if we

denote by A , B and C the complexities of ADD-NEST, MERGE-REG and GET-ESMPs

respectively, the total complexity of Algorithm 1 would be:

CBAA ++=1 (1)

where

• A : ADD-NEST calls CREATE-NEST, whose complexity is m , a maximum of mt

times, and function BELONGS-TREE , whose complexity is Tn , a maximum of t

times, so its total complexity is)(2
TT tmntnA +=

• :B MERGE-REG executes MERGE, which has a complexity of t , || Σ times. But

|| Σ is less than the total leaf nodes in the tree, i.e.)(||)(|| hqS rem
mt −+<Σ and

)(||)(|| hqS rem
mtttB −+<Σ= .

• C : GET-ESMP, this function has a complexity of TnC 4= as each of the steps 1, 2, 3

and 5 has a complexity of Tn

Note that many of the functions are not referred to here as they have a complexity of 1.

Equation (1) then becomes:

=1A)(2
TT tmntn + +)(||)(hqS rem

mtt −+ + Tn4

=)(2
TtnO

 113

Algorithm2 : This algorithm involves the following computations:

1. For every)(sNi , determine)(sNi

→
: note that we have a maximum of t transitions out

of a state, so if in is the number of states in the nest)(sNi then the complexity for

determining)(sNi

→
 is:)(

1
∑

=

j

i
itnO .

2. For every)(ii sN determine the steady state probability for)(ii sN and the expected

time spent in an absorbing state of
→

)(ii sN for a given interval. If we have j nests

)(ii sN such that)(ii sN has in states and
→

)(ii sN have say in' states, for all

},...,1{ ji ∈ then the complexity for the this step is less than

)2()'2'(3

1

3

1

3 cmOncnO
j

i

j

i =+ ∑∑ .

3. For every state, applying Theorem 4.6 or 4.7: the complexity of this step is)2(TcnO

So the total complexity for Algorithm 2 is:

(O +)(
1

∑
=

j

i
itn)2(3cm+)2(Tcn+)22(3

TcncmO +=

To summarize, the total time complexity for Algorithms 1 and 2 would be

= (O 2
Ttn))22(3

Tcncm ++

Now, If || remS = 0 , then the time complexity becomes (O 2
Ttn))22(3

Tcncm ++ where

))]()()[()(hqmmtOn hq
T −= − .

And if φ=remS and hq = , then the time complexity becomes

|)|||22||||(32 RR SSSccmSSStO −++−

 114

4.6. Conclusion

In the literature, there are two main methods that attempt to analyze GSMPs: the

regenerative and the supplementary variable methods. Both methods can be applied to a

subset of GSMPs, those that implement the “enabling restriction” meaning that only one

non-exponentially distributed clock can be active at any given time. GSMPs with the

enabling restriction can only have regenerative or Markovian cycles. To calculate the steady

state probabilities of the different states of a GSMP, with the above restriction, at time t , the

regenerative method has a worst case of)|(| 2SO space complexity and)|(| 4SO time

complexity [40]. The method of supplementary variables has a worst case of ≈ 2(| |)gO q S

time complexity and)|||||(| 2∑∑
∈∈

++
GG Tg

g

Tg

gE SScSO space complexity where ES is the set

of states in which only exponential transitions are enabled, gS is the set of states in which

the non-exponential transition g is enabled, c denotes the time for integral calculation, and

gq the absolute maximum diagonal entry for gQ (refer to chapter 3) [40].

In this chapter, we presented an algorithm for finding an analytical solution for a

subset of GSMPs. In this subset we allow non-exponentially distributed events to be

initialized anytime, but we impose a restriction on the type of cycles in the GSMPs: they all

have to be near semi-Markovian or regenerative cycles. The time and space complexity of

the algorithm presented in this chapter is exponential in the number of states in the set remS ,

i.e. states that are neither regenerative nor belong to a non-trivial ESMP, and in the number

of maximal strongly connected ESMPs)(hq − that have at least one non-regenerative in-

border. But, when applied to GSMPs whose states either belong to an ESMP with

regenerative in-border or are regenerative, the algorithm becomes |)||(| RR SSSO − in space

complexity, where RS is the set of regenerative states, and)||2||2(223 ScStcmO ++ in

time complexity, where m is the maximum number of states of the ESMPs and t is the

branching factor of the NRGSMP.

 115

The exponential factor in the complexity of the algorithm limits its real applicability

to GSMPs with a small number of states in the set remS , and a small value of hq − , this set

of processes contains GSMPs that were not covered by previous methods.

 116

Chapter 5: Time Preserving Simplification for

GSMPs

5.1. Introduction

In this chapter, we explore a method to reduce the time and space complexities of the

algorithm presented in the previous chapter. Given an GSMP),,,,,,(0 KAFsSG �Ε= , we

will delete states in the GSMP G while preserving the passage of time distribution between

pairs of non-deleted states.

So given a GSMP G , and assume we deleted n states out of G , say },...,,{ 21 nsss

and let)',',',',',,'(' 0 KAFsSG �Ε= be the resulting GSMP, where −= SS ' },...,,{ 21 nsss .

Now let ', ss be any two states in 'S , then the passage of time distribution between s and 's

in 'G would be equal to the passage of time distribution between s and 's in G . However,

the sojourn time in the states of the set 'S (and hence the TSP) may not be preserved , in

fact, all the states that have an outgoing transition to a state in the set },...,,{ 21 nsss , will

have a different TSP in G and 'G , while for all other states the TSP is preserved. So if we

 117

are interested in the TSP of a subset "S of states in the GSMP G , then we can use the

simplification presented in this chapter to delete all states that satisfy the above two

conditions and that are not directly accessible from the set "S .

The passage of time equivalence is not new, it was introduced by Bradley in [14] in

the context of SMPs. So we use the same definition and extend it in the context of GSMPs.

The definitions of equivalences are presented in the next section, followed by the

simplification steps, then the algorithm is presented and finally the complexity of the

algorithm is discussed with some concluding remarks.

5.2. Definition of Equivalences

Definition 5.1: Passage-time equivalence

Let),,,,,,(0 KAFsSG �Ε= and)',',',',',','(' 0 KAFsSG �Ε= be two GSMPs. Let

S⊆Σ and '' S⊆Σ be of the same cardinality. We say that G and 'G are passage-time

equivalent over Σ and 'Σ , written '~
',
GG

ΣΣ
, if there exists a one-to-one correspondence

between Σ and 'Σ : ': Σ→Σf such that 0s ∈Σ , 0' 's ∈Σ , and 0 0() 'f s s= , and if Σ∈', ss

then the passage-time distribution from s to 's in G is identical to the passage-time

distribution from)(sf to)'(sf in 'G .

Before presenting the next definition we introduce the notation))0(|)((0sxsP that

stands for the probability of being in state s at time x given that we were in state 0s at time

0 (in other words, it is the TSP for state s at time x)

Definition 5.2: Transient state equivalence

 118

Let),,,,,,(0 KAFsSG �Ε= and)',',',',',','(' 0 KAFsSG �Ε= be two GSMPs. Let

S⊆Σ and '' S⊆Σ be of the same cardinality. We say that G and 'G are transient state

equivalent over Σ and 'Σ , written '
',
GG

ΣΣ
≈ , if there exists a one-to-one correspondence

between Σ and 'Σ ': Σ→Σf such that if Σ∈s then))0(|)((0sxsP =))0('|))(((0sxsfP .

5.3. Simplification Technique

Let),,,,,,(0 KAFsSG �Ε= be a GSMP, we can delete any state s from the GSMP

provided s has the following properties:

1. s belongs to an ESMP M , and

2. for every in-border 0's of M , 0's is not directly connected to s , i.e. there exists no

transition between 0's and s , and

3.)(sK is a singleton: }{)(2fsK = , i.e. there exists only one outgoing transitions from

state s relative to the ESMP M , and for all 's M∈ , if ' es s→ , then (') { }K s e= ,

and

4. for all Sr ∈ , if r is directly connected to s and if i
e ss i→ for some Ssi ∈ and

()ie K s∉ , then i
e sr i→

Note that after deleting a state s , following the algorithm presented later in the chapter,

the distribution of time to travel between non-deleted states, as well as the transient state

probabilities for all states that are not directly connected to s would be preserved, while the

TSP for the states that are directly connected to s increases as these states share among them

the TSP of state s (refer to Theorem 6.2). We consider the following two scenarios:

1. Assume we are interested in a performance study that involves the SSP of a set

S⊆Σ of states in G , for example, if we are interested in the probability of

 119

failure, then Σ should contain all the states that represent failure in steady state.

Then we can delete all states in the set Σ−S that satisfy the above four

conditions and that are not directly accessible from states in the set Σ (i.e. there

exists no transition from a state in Σ to any deleted state). The aim of state

deletion is the facilitation of the performance analysis by having a smaller state

space. The simplified GSMP)',',',',',','(' 0 KAFsSG �Ε= would then be

transient state equivalent to G , '
,

GG
ΣΣ

≈ , and as a result, the set of states Σ would

preserve their TSP and hence their SSP.

2. Alternatively, if we are interested in a performance study that involves the

distribution of time to travel between the states of a set S⊆Σ , for example, if we

are interested in the distribution of time until a failure occurs then Σ would

contain the starting and the fail states, then we delete all states in the set Σ−S

that satisfy the four conditions above. The simplified GSMP

)',',',',',','(' 0 KAFsSG �Ε= would then be passage-time equivalent to G ,

'~
,

GG
ΣΣ

.

To illustrate, for any ESMP M of G with state space SSE ⊆ , such that

φ≠Σ−∩)(SSE , let)()(},...,{ 1 sKsAee n −= for all ESs ∈ . If there exists a state that

)(Σ−∩∈ SSs E that satisfies the four conditions above, then we apply the sequential

reduction described below to s (note that if we are interested in a scenario similar to

scenario 1 above, then s should not be directly accessible from any state in Σ):

Sequential Reduction (21,tt): Given two sequential transitions to and from state s :

srt f→= 1
1 and '2

2 rst f→= (refer to Figure 13), we would like to aggregate 1t and 2t

so as to form a single transition. Note that 2() { }K s f= . Assume for simplicity of

presentation that }{)()(1esKsA =− . To delete state s in Figure 13, we create a new event

21 ff , which is the concatenation of the two events governing transitions 1t and 2t , then we

 120

set }{)(21 ffrK = , and }{}()()(' 121 fffrArA −∪= and assign to event 21 ff the following

distribution:

Figure 13. Sequential reduction

')')((
'

)')((
))((' 2

0

1
21 dxxxfF

dx
xfdF

xffF r
r

r −= ∫
∞

. We note that))((' 21 xffF r is the

convolution of the distributions associated with events 1f and 2f , and for that reason, the

distribution of time needed to travel from state r to state 'r would be preserved.

Note that, after the deletion of state s , the sojourn time for state r changes. In fact,

given we are in state r , if trace 1f 2f occurs in G and 'G , then the elapsed time since

entering state r until trace 1f 2f occurs is divided among states r and s in G , while in 'G

the total time is spent in state r . In other words, part of the TSP of state s is taken by state

r , that part is:))0(|)((10 tsxsPG ∧ , i.e. the probability of being in state s at time t given

that we reached state s by following transition 1t is now part of the TSP of state r .

f1

f2

 f1f2

 r r

 e1
 e1
 s
 e1
 s1 s1

 r’ r’

 121

5.3.1. Illustration

To illustrate the above transformation consider the two semi-Markov processes shown

below, where:

• t1, t’1 and t3 are exponentially distributed transitions with rate equal to λ.

• t2 and t4 are both exponentially distributed with rate µ.

• t’2 is the following Erlang distribution: () 1 x xF x e xeµ µµ− −= − − (in other words, it is

the convolution of 2 exponential distributions with rate µ).

We say that a transition takes x time units to occur if the clock associated with the transition

lives for a total of x time units (since it is initialized until it expires). In the Figures below we

have two SMPs, so clocks that do not expire when we move to a new state are disabled.

We will prove that 1 1(() | (0)) (' () | '(0))dP s x r dP s x r
dx dx

= .

Note that, for the SMP on the left, entering state s1 at time x when the process was in state r

at time 0, means that

1. either transition t1 took exactly x time units to occur, and transition t2 did not occur

in the interval [0, x]. Or

2. transitions t2 occurred out of state r followed by transition t3 and both transitions

combined took exactly x time units (so if transition t2 took exactly x’ time units to

t2

t4

 t’2

 r r’

 t1
 t’1
 s
 t3
 s1 s’1

 q q’

 122

occur then that means that transition t1 did not occur in [0,x’]. It also means that

transition t3 took exactly x-x’ time units to occur and that transition t4 did not occur in

[0,x-x’].

For the SMP on the right, entering state s’1 at time x means that transition t’1 took exactly x

time units to occur, and transition t’2 did not occur in the interval [0, x].

Hence,

• 1(() | (0))dP s x r
dx

= (probability that transition 1t takes exactly x time units to occur

while transition 2t takes more that x time units)/d x +(probability that transition 2t

takes exactly 'x time units to occur while transition 1t takes more that x ’ time units,

and transition 3t takes 'x x− time units to occur while transition 4t takes more than

'x x− , for some 'x in [0, x])/d x

' ' (') (')

0

() ()

0

() (')

'

xx x x x x x x x

x
x x

e e e e e e dx

e e dx

λ µ µ λ λ µ

λ µ λ µ

λ µ λ

λ λµ

− − − − − − − −

− + − +

= +

= +

∫

∫

() ()x xe xeλ µ λ µλ µλ− + − += +

• 1(' () | '(0))dP s x r
dx

= (probability that transition 1't takes exactly x time units to occur

while transition 2't takes more that x time units)/d x .

() ()

()x x x

x x

e e xe

e xe

λ µ µ

λ µ λ µ

λ µ
λ µλ

− − −

− + − +

= +

= +

Hence these probabilities are preserved.

 123

5.3.2. Overall Algorithm

The algorithm takes as input a GSMP),,,,,,(0 KAFsSG �Ε= and a state s

satisfying the three conditions of the previous section. It then outputs a

GSMP)',',',',',},{(' 0 KAFssSG �Ε−= .

We assume we have the same data structure as in the previous chapter.

#��
���������/0������

�������
�������!������ 21tt ��������	��	������������	�������

��=;���8':$��&;3�84�/ 21,tt 01��

4������������	�����������1�

�����

Theorem 5.1. Let),,,,,,(0 KAFsSG �Ε= be a GSMP and let

),',,',,},{(' 0 KAFssSG �Ε−= be the GSMP obtained by applying the algorithm above to a

state s S∈ , let },...,{' 1 mssS = be the set of states S∈ that are directly connected to s in G

then

1. '~
}{},{
GG

sSsS −−
, and

2. '
','
GG

SSSS −−
≈

Proof.

 124

For the proof of (1), consider the particular case of Figure 13, then we need to prove that
1 2('() | (0) ')f fP r x r r s r∧ → → and 1

1 1(() | (0))eP s x r r s∧ → are preserved after the

transformation. Here 1 2('() | (0) ')f fP r x r r s r∧ → → is the probability of being in state

'r at time x , counting from when the system entered state r , and that trace
1 2 'f fr s r→ → was followed to move from r to 'r .

• In both GSMPs, 1 2('() | (0) ')f fP r x r r s r∧ → → is a function of:

o the ability of 2f (preceded by 1f) to occur at some time 'x ∈ [0,]x (i.e. a

function of the distribution 1 2' ()rF f f), and

o on the distribution of the soujourn time in state 'r ((')rζ has to be 'x x≥ −),

and

o on the probability that the clock of event 1e expires after more than 'x time

units (counting from when state r was entered).

Note that all these probabilities are the same in both GSMPs

• In the GSMP of the left of Figure 13, 1
1 1(() | (0))eP s x r r s∧ → is a function of

o the ability of 1e to occur either before 1f does, or after 1f and before 2f . In

other words, 1e has to occur at any time before the combined event 1 2f f

occurs. I.e. the clock associated with event 1e needs to expire at some time

'x ∈ [0,]x while that of the combined event, (i.e. the clock whose distribution

is 1 2' ()rF f f) has to expire after 'x .

To prove point (2), assume for simplicity that state s is only directly accessible from a state

r S∈ , then for all { '}v S S∈ − ,

 125

0(() | (0))P v x s

= 0((') | (0)P r x s ∧ without visiting)s (() | ('))P v x r x

Note that 0((') | (0)P r x s ∧ without visiting)s is unchanged between G and 'G . Moreover,

we can deduce from point (1) above that (() | ('))P v x r x is also unchanged.

(

Theorem 5.2. Let),,,,,,(0 KAFsSG �Ε= be a GSMP and let

),',,',,},{(' 0 KAFssSG �Ε−= be the GSMP obtained by applying the algorithm above

to a state s S∈ , let },...,{ 1 mss be the set of states S∈ that are directly connected to s in G

then

))0(|)(())0(|)(())0(|)((000
'

i
G

i
G

i
G tsxsPsxsPsxsP ∧+=

where))0(|)((0 i
G tsxsP ∧ is the probability of being in s at time x given that we were in

0s at time 0, and that we followed a path ending with transition it to reach s .

Proof. Assume that ' 'i if f
i is s s→ → is a trace in G , where ' ()if K s= , then this would

be transformed into the following trace in 'G : ' 'i if f
i is s→ . Note that (' () | (0))i iP s x s is

preserved, and hence the time until we reach state 'is from state is is preserved. Hence the

time process G spends in s given that trace ' 'i if f
i is s s→ → will occur is added to the

time spent in is after the deletion of state s .

(

 126

5.3.3. Complexity

Let),,,,,,(0 KAFsSG �Ε= be a GSMP, let),,,,,',(0 KAFsSM E �Ε= be an

ESMP of G . The time required to delete one state ESs ∈ in the GSMP such that

)()(},...,{ 1 sKsAee n −= is || EScn (where c represents the complexity for integral

calculation) in the worst case, i.e. if every state in the ESMP is connected to state s .

Given an NRGSMP that we want to analyze by transforming it to an SMP, then

applying the simplification algorithm to some of its states is very useful in decreasing the

complexity of the transformation. In fact, deleting one state from an ESMP in the NRGSMP,

leads to an HMRP with as much as ||)(|| remhqS St
rem −+ fewer states, (refer to Section 4.5).

Note however that, to be able to delete a state from the NRGSMP, the state needs to satisfy

the four restrictions stated in Section 5.3. And that the performance measures that are

preserved are the ones that depend only on the SSPs of the states that are not directly

connected to the deleted states.

 127

Chapter 6: Mean Passage-Time Equivalence

for SMPs

6.1. Introduction

In this chapter we introduce an equivalence: “mean passage time equivalence” and a

state simplification technique for SMPs. The simplification technique allows us to delete

states from the SMP while preserving the average of the passage-time distribution between

pairs of non-deleted states. As far as we are aware, the only existing simplification in the

context of semi-Markov processes was introduced by Bradley in 2002 [14]. In his paper,

Bradley introduced a simplification technique that preserves the exact passage-time

distributions between pairs of non-deleted states; this in stochastic terms is a very strong

equivalence, the two models under comparison should have strong similarity. In this chapter,

the equivalence is less restrictive; processes would still be equivalent if they have the same

average of passage time distribution between states rather than exact distributions; and the

simplification procedure requires less time as its steps are straightforward. This equivalence

is useful when the user is only interested in mean passage-time delays and not actual

 128

distributions. The “mean-passage time equivalence” preserves all performance measures

that depend on mean passage time such as reliability and availability. So if we are interested

in such measures, the simplification technique would help us reduce the size of the SMP and

hence the complexity for the performance evaluation procedure. The simplification technique

also preserves the SSP of a subset of the non-deleted states: these are the states that do not

directly lead to a deleted state (through one transition).

This chapter is structured as follows: we first define the equivalence, then we present

the simplification steps, then the whole technique is justified and presented formally, and

finally, we study the effects of the simplification on our original NRGSMP, and discuss

some of the performance aspects that are preserved.

6.2. Equivalence Definition

Recall that a semi-Markov process G is a tuple),,,,,(0 KFsSG �Ε= , (note that

)()(sKsA = for all Ss ∈ , and that’s why A was omitted). Informally, two semi-Markov

processes M and N are mean-passage time equivalent if the passage-time distributions

between states of M (or a subset of states of M) have the same mean as a certain reordering

of passage time distributions between states of N (or a subset of states of N), formally:

Definition 6.1: Mean passage-time equivalence

Let G=),,,,,(0 KFsS �Ε and G’=)',',',',','(0 KFsS �Ε be two SMPs. Let M⊆ S and N⊆ S’

be of the same cardinality: | | | |M N= . Let *G be the SMP obtained from G by applying the

algorithm in Section 6.3.2. repeatedly on the set of states S M− . Similarly, Let '*G be the

SMP obtained from 'G by applying the algorithm in Section 6.3.2. repeatedly on the set of

states 'S N− . Then we say that G and G’ are mean passage-time equivalent over M and N,

written G
NM ,

≡ G’, if *G and '*G are isomorphic up to state relabelling.

 129

Definition 6.2: Steady state equivalence

Let),,,,,,(0 KAFsSG �Ε= and)',',',',',','(' 0 KAFsSG �Ε= be two GSMPs. Let

S⊆Σ and '' S⊆Σ be of the same cardinality. We say that G and 'G are steady state

equivalent over Σ and 'Σ , written
, '

'G G
Σ Σ
≅ , if there exists a one-to-one correspondence

between Σ and 'Σ ': Σ→Σf such that if Σ∈s then ()sπ = (())f sπ .

 For more information, refer to [14].

6.3. Simplification Technique

In this section, we follow the same steps as in [14]. The only difference is that we are

interested in preserving the mean and not the actual distributions.

6.3.1. Basic Reduction Steps

Given an SMP G=),,,,,(0 KFsS �Ε and a set of states M in S, we would like to

delete all states in the set (S-M) such that the resulting SMP G’=)',',',',',(0 KFsM �Ε is

mean passage-time equivalent over M , i.e. G
MM ,

≡ G’.

For every transition ': sst → we designate by the tuple),(pa the mean of the

passage-time distribution, a , for transition t and the transition probability, p , respectively.

We call the tuple),(pa the coordinates for transition t . In what follows, we will first

present the basic algorithm steps, how and when these steps are used will be detailed later.

We denote by et. the event associated with transition t .

 130

Sequential Reduction),(21 tt : Given two sequential transitions 1t and 2t (refer to

Figure 14), we would like to delete them so as to form a single transition 3t such that

etet .. 13 = et .2 ; note that the event et .1 et .2 is the concatenation of the events et .1 and et .2 .

So if),(11 pa and),(22 pa are the coordinates for transitions 1t and 2t , respectively, then

(a,p)=),(2121 ppaa + are the coordinates for transition 3t (note that a is actually the mean of

the distribution calculated in Section 5.3, see also [14]).

Figure 14. Average sequential reduction

Alternate Reduction),(21 tt : The sequential reduction step might create more than

one transition, say 1t and 2t , having the same starting and ending states, and governed by the

same event, i.e. etet .. 21 = , the scenario is shown in Figure 15. Therefore an alternate

reduction step may be necessary. Given two alternate transitions 1t and 2t with etet .. 21 = ,

we would like to delete them so as to form a single transition 3t . So if),(11 pa and),(22 pa

are the coordinates for transitions 1t and 2t , respectively, then (a,p)=),(212211 ppapap ++

are the coordinates for transition 3t (note that a is actually the mean of the distribution

calculated in [14]).

t1

t2

t3

 131

Figure 15. Alternate reduction

Cycle Reduction)(t : The sequential reduction step might create a state with a transition

to itself. Therefore a cycle reduction step may be necessary. For this step, we assume that

transition t is internal, in other words et. is not visible to the users, or is visible but of no

importance to our performance study (for example, if we are interested in MTTF then the

only transition we would like to monitor is the fail transition, and all other transitions could

be considered as internal or not visible). Given a cycle transition t , and q non-cyclic

transitions (q ∈ Ν , the set of positive integers) 1t , 2t ,…, qt , out of the same state (refer to

Figure 16), we would like to eliminate transition t . Assume that),(pa ,),(11 pa ,

),(22 pa ,…,),(qq pa are the coordinates for the transitions t , 1t , 2t ,…, qt respectively. To

eliminate the self-cycle, we propose the following steps:

1. Change the coordinates of transitions 1t , 2t ,…, qt so as to reflect the average time

spent going around the cycle. Since the probability of doing the cycle is p , then the

average time spent doing the cycle over and over is

0 1 2
2

1

0 2
(1)

i

i

pp ap ap a ip a
p

∞

=

+ + + = =
−∑ , (for more information, check [14]).

2. Renormalize the probabilities for transitions 1t , 2t ,…, qt . This is done by dividing

their probabilities by p−1 .

t1 t2

t3

 132

So (a’,p’)=)
1

,
)1(

(2 p
p

p
paa i

i −−
+ becomes the new coordinate for transition it , qi ,...,1∈ .

We note that a’ is actually the mean of the distribution calculated in [14].

Figure 16. Cycle removal

 In the next subsection, we present an algorithm to remove a state from an SMP while

preserving the mean passage time equivalence over the non-deleted states. The algorithm

removes one state at a time, in other words, given an),,,,,,(0 KAFsSG �Ε= and a set of

states M such that the set of states S M− are to be deleted. Then we use the algorithm

below to delete the states in S M− one by one. It is not difficult to note that the order of

state deletion does not affect the final SMP G’.(refer to [14])

 Note that the algorithm is intended to delete states according to the user specification,

in other words, the user specifies the states that are not of interest to a particular performance

study, then these states are deleted. This will be explained in more details in Chapter 7.

6.3.2. Algorithm

The algorithm takes as input an SMP G and a state s to be deleted. It outputs an SMP

G’.

Variables: Φ is a set of paths of length 2, Ψ is a set of transitions.

t1 tq t1 tq

t

 133

Algorithm:

φ=Ψ 1�

Φ 2�����	����
�����	��
��������%�����������	��	������ ������	����1��

STEP1:��

�������
�����
������� 21tt �∈ Φ ��

�������������������	�����	� 1t ����� 2t ����
������������	������ t ��	��������	�<��������

����
����1�

Φ 2Φ $> 21tt ?1�

Ψ 2Ψ }{t∪ 1�

;����� φ=Φ ��

STEP2:

5���������������������������������	�����	� 21 , tt ∈ Ψ ������ etet .. 21 = ��

������� ���� ���� ����	�����	� 1t � ���� 2t � ���
���� ���� ����	������ t � �	���� ���� ����
��

����
����1�

Ψ 2@Ψ },{}]{ 21 ttt −∪ 1�

STEP3:

5������������	���	��
������ t ���� Ψ ��������������� et. ������	�
��	����������������

�����������	��
�������	��������
!
�������
�����	��� 1�

Ψ 2@Ψ }{t− A1�

4������������	�����������

 134

End Algorithm. *** should not be at beginning of page

Theorem 6.1. Let),,,,,,(0 KAFsSG �Ε= be an SMP and let

),',,',,},{(' 0 KAFssSG �Ε−= be the SMP obtained by applying the algorithm above to a

state s S∈ , s S∈ , let },...,{' 1 mssS = be the set of states S∈ that are directly connected to

s in G then

'
}{},{
GG

sSsS −−
≡ , and

', '

'
S S S S

G G
− −

≅

Proof. Straightforward.

(

6.4. Complexity

We have defined an equivalence over semi-Markov processes which is based on state

simplification. The time complexity to delete one state in the SMP is

321
2])2)(1[()1(xccxnncn +−−−+− in the worst case, i.e. if the SMP is heavily connected,

where x is the number of cycles generated from the sequential reduction step (Step1) and:

• 1
2)1(cn − is the time required to do Step 1 of the algorithm with 1c being the time

needed to calculate the mean and probability of a newly formed transition (i.e. the

time needed to calculate (a,p)).

• 2])2)(1[(cxnn −−− is the time required to do Step 2 of the algorithm with

])2)(1[(xnn −−− being the number of alternate transitions and 2c being the time

needed to calculate the mean and probability of a newly formed transition.

 135

• 3xc is the time required to do Step 3 of the algorithm, with x being the number of

self-loops and 3c being the time needed to calculate the mean and probability of a

newly formed transition.

If we assume that 1c = 2c = 3c then algorithm complexity becomes:

2
1[(1) (1)(2)]c n n n− + − −

Note that, contrary to [14], the time to calculate the average distribution and probability

of the newly created transitions, i.e. 1c and 2c and 3c is negligible compared to the time

needed to get the actual time distributions for these transitions since the latter involves

integral calculations. So the overall complexity is 2)(nO

6.5. Effects on the Original NRGSMP

Let),,,,,,(0 KAFsSG �Ε= be an NRGSMP, and let)",',",',','(" 0 KFsSG �Ε=

be the SMP obtained from G following Algorithms 1 and 2 of Chapter 4. Then we have that

"G s-simulates G . Let },{ Jjj ∈∆=∆ and ∆→SR : be the partition of states (∆='S) and

the correspondence that together establish the transient state simulation. Let Ss ∈ , and let

))('/"),('/',",','),('(0 sRSKsRSFssRSN −−Ε−= � be the SMP obtained from "G by

deleting from 'S all states in the set)(sR following the above algorithm. let },...,{' 1 mssS =

be the set of states S∈ that lead directly to s in G . Then we have the following lemma:

Lemma 6.1. Let ' 's S S∈ − , then "

(') (')

(') () ()G G N

r R s r R s

s r rπ π π
∈ ∈

= =∑ ∑

Proof. Straightforward.

(

 136

So, to facilitate performance analysis for NRGSMPs, we identify in G the set Φ of

all states that are not key to our performance analysis and that are not directly accessible

form our states of interest. Then we delete from "G all states in)(ΦR , where R is the

relation described in the lemma above, and we do our analysis on the reduced SMP.

The performance measures in G that could be deduced from the reduced SMP are all

the measures that depend on the steady state probability of some of the states such as

probability of failure.

 137

Chapter 7: Illustrations and Applications

In this Chapter, we discuss the issue of how to check whether a GSMP satisfies the

properties of an NRGSMP. Then, we present a case study illustrating the transformation

presented in Chapter 4. However, we start first with a simple example to show the reader

how the different chapters fit together.

7.1. A Simple Example

 In this section, we present to the reader the big picture: how everything fits together.

We introduce an example of an NRGSMP, and explain the performance measures that we

need to extract from the process. Then we apply the simplification procedure presented in

Chapter 5 to the states in the NRGSMP that satisfy the conditions stated in Chapter 5. The

next step would be to transform the simplified NRGSMP into an SMP following the

algorithms presented in Chapter 4. Then, the resulting SMP is simplified by deleting some of

its states following the algorithm presented in Chapter 6.

 138

We consider the model of a machine that receives requests and services them over

and over again. The machine can service one request at a time, and requests are generated

when the machine is not in service. The request generation is modeled by event r . Request

servicing is a two phase procedure, in the first phase the service is done by a component of

the machine that is failure prone, however, the second phase of service is assumed never to

fail. The service is modeled by the consecutive events 1s and 2s , both have a generally

distributed lifetime duration. The machine keeps working for a constant period of time and

then undergoes tune-up. If the machine is servicing a request when tune-up is due, the

machine aborts the current service to undergo the tune-up. The interval between two

consecutive tune-ups is constant and is modeled by event a . The tune-up process is

generally distributed and is modeled by event u . In the first service phase, the machine can

fail, at that time it has to undergo repair, the failure and repair are modeled by events f and

p , respectively; they both have generally distributed lifetimes. If the machine fails and is

repaired, it reinitializes event a (note that a might have a different lifetime distribution in

state 4 and 0, because the tune-up time after a repair is not so urgent). The model is depicted

in Figure 17. Transition d is immediate.

Figure 17. Example of an NRGSMP

2
{s1,f}

 0
 {a,d}

3
{p}

5
{u}

 a

r 1
{r}

d

u

 s2

f

 p

 4
{a,d}

 d

a
 a

 s1

 2’
 {s2}

 139

We assume that the measure that we are interested in is probability of failure, so the

states that should not be deleted are the fail state, the starting state, and state 4, i.e. states in

the set {=Σ 0,3,4}

7.1.1. NRGSMP Simplification

 As explained in the previous section, we need to delete all states apart from states in

the set {=Σ 0, 3,4}. Figure 18 shows the only ESMP in the NRGSMP G of Figure 17.

Figure 18. ESMP

Note that the only state that satisfies conditions 1, 2, 3, and 4 of Section 5.3 is State

2’. Therefore, this is the only state we can delete using the method described in Chapter 5.

To delete State 2’, we aggregate transitions: '22 1→s and 1'2 2→s to form a single

transition 12 →s where 21sss = , and the distribution associated with event s is the

convolution of the distributions associated with events 1s and 2s . The resulting NRGSMP is

shown in Figure 3.

2
{s1,f}

r 1
{r}

 s2

 s1

 2’
 {s2}

 140

7.1.2. NRGSMP to HMRP and then to SMP

The next step would be to transform the simplified NRGSMP 'G into an HMRP and

then into an SMP "G . The transformations were discussed in Chapter 4, the resulting SMP is

shown in Figure 9, and the distributions can be calculated following Algorithm 2 of Chapter

4. For the remaining of this chapter, we assume that R is the relation that establishes the s-

simulation between 'G and "G and we denote by i
em the mean time of the distribution of an

event e in state i and i
ep the probability that the transition governed by event e occurs out

of state i. We omit i whenever the state we are referring to is obvious.

7.1.3. SMP Simplification

As discussed earlier, the measure of interest in this chapter is the probability of

failure, so the events that are of interest to us are the ones associated with failure i.e. f. All

other events are not important and can be assumed to be internal or not visible to the users,

usually denoted by τ . The states we identified to be of interest in 'G are {=Σ 0,3,4}, so for

"G , the states of interest would then be () {0 0,3 3,5 4}R Σ = − − − , so all the states outside

this set, i.e. the states {1 1,2 2,4 5,6 2,7 1}− − − − − can be deleted. We will illustrate the SMP

simplification by deleting one of the states in the set {1 1,2 2,4 5,6 2,7 1}− − − − − which is

state 1-1. For that purpose we consider the sub-SMP that contains the states that are directly

connected to state 1-1, the sub-SMP that we consider is shown Figure 19. Note that we

renamed event a out of state 2-2 as a’ so that each transition would have a unique event

name, this makes the presentation easier.

 141

Figure 19. The sub-SMP

As mentioned earlier, all events aside from f are internal transitions (τ), however, in

what follows, we choose to show the events so that the reader keeps track of the

simplifications done and understands what each transition stands for. For that reason, we use

the following notation:

• 'ee : stands for the event on the transition resulting from the sequential reduction of

two transition whose events are e and 'e respectively.

• 'e e+ :stands for the event on the transition resulting from the alternate reduction of

two transition whose events are e and 'e respectively.

2-2

0-0

3-3

4-5

 a

a’

 r

1-1

u

 s

f

 d

 142

• '()ee : given a transition t out of a state say s , with event e , and a self cycle t’ (from

s to itself) whose event is 'e , then we denote by '()ee the new event on transition t

obtained after the removal of the self cycle.

Figure 20 shows two steps in the deletion of state 1-1. Figure 20(a), is obtained after

performing Step1 of the algorithm in Section 6.3.2. Transition (')srsa a+ is the result of

merging the alternate transitions: sa and 'a following by the removal on the self cycle in

state 2-2.

 To illustrate, we will calculate the mean time of the distributions and the transition

probabilities for Figure 20 in terms of the previous ones (Figure 19):

Figure 20. Deletion of State 1-1

2-2

0-0

3-3

4-5

da

sa

a’

 dr

 sr

u

f

2-2

0-0

3-3

4-5

da

(')srsa a+

 dr

u

()srf

 (a) (b)

 143

In Figure 20 (a):

dr d rm m m= + , dr d rP P P= × and

da d am m m= + , da d aP P P= × and

sa s am m m= + , sa s aP P P= × and

sr s rm m m= + , sr s rP P P= ×

In Figure 20 (b):

' ' 2(')
()

(1)
sr

sr
sa sa a a srsa a

sr

Pm P m P m m
P+

= + +
−

, '
(') 1

sr
a sa

sa a
sr

P PP
P+

+=
−

 note that to obtain these

formulas, we need to combine transitions 'a and sa using alternate reduction, the

coordinates of the new transition are: ' ' '(,)sa sa a a a saP m P m P P+ + then we apply the cycle

removal step to obtain the coordinates for (')srsa a+ above.

The cycle removal changes the coordinated for f as well as follows:

2(1)
sr

sr
f srf

sr

Pm m m
P

= +
−

,
1

sr
f

f
sr

P
P

P
=

−

7.2. Properties of NRGSMPs

To check whether a GSMP),,,,,,(0 KAFsSG �Ε= is an NRGSMP, we need to

find all the cycles in the GSMP and check whether each of the cycles satisfies the conditions

set on the cycles of an NRGSMP. Checking the type of the cycles could be done in parallel

with finding the cycles by recording the value of () ()A s K s− for all states on the cycle and

 144

checking whether every transition 'es s→ on the cycle satisfies the condition ()e K s∈ . So

the problem boils down to finding all the cycles in the NRGSMP.

 A number of algorithms for finding the cycles of a directed graph are based on the

backtracking strategy [81]. These algorithms are bounded by (| | (1))O S E C+ + , where | |S

is the number of vertices (states) in the graph, E is the number of edges (| |E = �), and C is

the number of cycles in the graph.

 In [66] the authors designed a novel algorithm to find the cycles in a directed graph,

the algorithm is bounded by ()O E which is a big improvement from the previously known

algorithms.

 In the next section, we will present a class of systems known as software rejuvenation

models.

7.3. Case Study

7.3.1. Software Rejuvenation

Many software systems run for long periods of time, “some of the faults causes them

to age due to the error conditions that accrue with time and load” [80]. These accumulated

error conditions cause degradation in the system’s performance and eventually lead to failure

[80]. In [74] the authors cite the example of the progressive depletion of the operating

system’s resources such as free memory available due to software errors such as “memory

leaks and incomplete cleanup of resources after use”. For more examples, the reader is

referred to [1],[5].

A well-known preventative approach to counteract software aging is referred to as

software rejuvenation. Software rejuvenation is a low cost approach that involves stopping

the running system periodically and restarting it after cleaning its internal state [74].

 145

Cleaning the internal state involves several approaches such as: garbage collection, re-

initialization of internal data structures, and flushing the internal tables of the operating

system [80].

 An optimal schedule for software rejuvenation increases the system’s availability by

reducing the system’s failure, and hence reduces the amount of repairs needed. However,

setting an optimal schedule is not an easy task [74]. To be able to set an optimal schedule,

one needs to define a good model for the system that adequately represents the systems

components and failure rates.

Several models have been proposed in literature to find an optimal rejuvenation

schedule. In [57], Huang et al. describe a basic model in which the degradation of the system

is a two step process. Originally the system is in a clean state where no failure is possible,

then, after a random amount of time, the system moves to a failure-prone state. From that

state two actions are possible: a complete failure with return to the clean state after repair, or

rejuvenation with return to the clean state. In [37], the process is modeled as a CTMC and its

steady state availability is calculated. In [36], Dohi et al. extend this basic model by

assigning any type of distributions to the events, thus making the model an SMP. In [35],

Dohi et al. use a modification of the basic model: after repair from failure, the system moves

to the rejuvenation state. The reason behind the modification is that after failure, a system

would be restarted and cleaned. Analysis of the availability of the modified semi-Markov

model is given in [35]. In [39], Garg et al. introduced the concept of periodic rejuvenation

into the basic model (with deterministic interval between successive rejuvenation). The new

model is represented using a Markov regenerative process satisfying the enabling restriction.

The model is shown in Figure 21 where

• State 0 is the clean state

• State 1 is the failure prone state

• State 2 and State 4 are the rejuvenation states

• State 3 is the failure state.

 146

• The distribution associated with event m represents the interval between

successive rejuvenations, and the occurrence of event m indicates the end of

that interval. The rejuvenation and the repair procedures are both modeled by

the same event label r: note, however, that repair and rejuvenation need not

have the same time distribution associated with them; in other words,

2 3() ()F r F r≠ . The aging of the system is modeled by event a, and the failure

of the system is modeled by event f. We assume that the rejuvenation after

failure takes a longer duration.

• Note that the only non-regenerative state is State 1 as the time until

rejuvenation is initialized in State 0.

In all the rejuvenation models cited above, it is assumed that state change from the

clean state to the failure prone state is observable [69]. Given this assumption, it makes sense

to assume that the user would be able to observe the cause of deterioration of the system in

the failure prone state. Such observation leads to more efficiency during the repair phase.

And both assumptions justify the need to model the aging of the system and the failure of the

system as two separate events.

The model was analyzed in [39] using the method of Markov regenerative processes.

Then the same model, with no restrictions on the distributions governing its events (i.e. not

satisfying the enabling restriction) was analyzed in [35],[36] by transforming it into a 3 state

semi-Markov process by merging states 0 and 1 and also states 4 and 2. The disadvantages of

this method is that some measures of interest can not be computed from the reduced semi-

Markov process such as the proportion of time the state is in the failure prone state versus the

clean state:
0

1

π
π

.

 147

Figure 21. Periodic rejuvenation

In the subsection 7.3.3, we will extend the periodic rejuvenation model presented

above to a random rejuvenation model, i.e. to a model where the time until rejuvenation is a

random variable that is not periodic, and then we will apply the method presented in Chapter

4 of the thesis on the new model, and calculate its steady state probability. Moreover, in the

next sub-section, 7.3.2, we will extend the periodic rejuvenation model by considering a

periodic rejuvenation of a system with a backup unit.

7.3.2. Extension of the Periodic Rejuvenation Model

In this sub-section, we consider the periodic rejuvenation of a system that has a

backup unit. We assume that rejuvenation includes the process of preventative maintenance,

i.e. replacing any worn-out parts.

 0
Clean
 {m,a}

 4
Rejuvenation
 {r}

 2
Rejuvenation
 {r}

 3
Failure
 {r}

 1
Failure
prone
 {f}

 m r
 m

 a

 r r f

 148

In our model, the main system is rejuvenated periodically and after a failure. Once in

rejuvenation, the backup unit replaces the main unit. The backup unit undergoes rejuvenation

after each failure and minor rejuvenation every time it replaces the main unit for a period of

time. Minor rejuvenation is assumed to be an immediate action and is not modeled for that

reason (otherwise, one could assume that the aging of the main unit is a longer procedure

than the minor rejuvenation). We assume that we have one rejuvenation facility, in other

words, if both units are due for rejuvenation, then the rejuvenation has to be done

sequentially, one after the other.

Figure 22. Periodic rejuvenation with backup unit

Originally, the main unit is in clean state where no failure is possible and the backup

unit is idle, then, after a random amount of time the main unit moves to a failure prone state.

 1.I
 {f1}

 0,I
{m,a}

 D,R

 0,I’
 {m}

 1,R
 {f1}

 R,W
{r1,f2}

MR,D

 M,W
{r1,f2}

 1,I’
{m}

 0,R
{r2,a}

 m

 r1

 r1 a m m

 a f2 m
 f1
 r2

 r2 f2 r1 a

 f1

 f1 r2

 149

If failure occurs from that state, then the main unit undergoes rejuvenation and the backup

unit starts working. While in working state, the backup unit could fail, once failed the backup

unit moves to a down state and waits until the rejuvenation facility becomes available. The

backup unit could be in three modes: idle (I), working (W), down (D), or under rejuvenation

(R). Periodic rejuvenation and rejuvenation after failure are modeled by event r, however,

the distribution associated with the rejuvenation after a failure is different than that

associated with the periodic rejuvenation (because of the repair component). Note that, the

most undesirable state is when the system is under rejuvenation and the backup unit fails, in

that case, both units would not be working. As soon as one of the units is rejuvenated, the

system starts running again.

The model is shown in Figure 22, the labels inside every state are composed of two

letters separated by a coma, the first indicate the status of the main system and the second

indicates the status of the backup unit:

• I, W, D, M and R : stand for idle, working, down, rejuvenation and repair

respectively. MR stands for rejuvenation or repair.

• 0 stands for clean state and 1 stands for failure prone state.

• The distribution associated with event m represents the interval between

successive rejuvenations, and the occurrence of event m indicates the end of

that interval. The same event labels r1, and r2 represent the rejuvenation and

the repair procedures for the main unit and the backup unit, respectively. Note

however that repair and rejuvenation need not have the same time distribution

associated with them. The aging of the main unit is modeled by event a, and

the failure of the main unit and the backup unit is modeled by events f1 and f2,

respectively.

Note that states 1,I; 1I’; MR,D; 0,I; I,R; and D,R are the non-regenerative states.

Moreover, all the cycles in the model are regenerative cycles; hence the above model is an

NRGSMP. We will demonstrate in sub-section 7.3.4 how to transform the NRGSMP into an

HMRP.

 150

7.3.3. Analysis of the Periodic Rejuvenation Model

Here we consider the example in Figure 21 above. As discussed before, the process is

an HMRP with one non-regenerative state: State 1. To transform the process into an SMP,

we need to find Re (,1)()Av s m x . Then we can find the steady state probability of the

resulting SMP by calculating the SSP of the embedded Markov chain and the mean time

spent in each state of the SMP (refer to Chapter 2).

We denote by ()iF e the distribution of event e from state i , and denote by []ijP P=

the transition probabilities for the embedded Markov chain. Then P has the following form:

01 01

12 12

0 0 0 1
0 0 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

P P
P P

− 
 − 
 
 
 
  

where 0
01 0

0

()()(1 ()())dF a xP F m x dx
dx

∞

= −∫ and 1
12 1

0

()()(1 ()())dF m xP F f x dx
dx

∞

= −∫ , (note that

1()()F m x = Re (,1)()Av s m x).

 Now, Re (,1)() Re (,1,0 1)()aAv s m x Av s m x= → , hence, from Theorem 4.6, we

have that

Re (,1)()Av s m x = 0 0

00

()(') ()(')
1 ()(')

F m x x F m x
F m x

∞ + −
−∫

0
0

0
0

0

()(') (1 ()('))
' '

()(") (1 ()(")) "
"

dF a x F m x
dx dx

dF a x F m x dx
dx

∞

−

−∫
=

 151

0
0 0

010

()(')[()(') ()(')]
' '

dF a xF m x x F m x
dx dx

P

∞ + −
∫

The steady state probability vector of the embedded Markov chain: 0 1 2 3 4[, , , ,]π π π π π π=

satisfies the following equations:

4

0
j i ij

i

Pπ π
=

= ∑ for {0,1, 2,3,4}j ∈ and
4

0

1i
i

π
=

=∑ , which yields the following:

[]0 01 0 01 12 0 01 12 0 01 0, , , (1) , (1)P P P P P Pπ π π π π π= − − . Applying
4

0

1i
i

π
=

=∑ , we get

0
01

1
2 P

π =
+

 hence:

01 01 12 01 12 01
01 01 01 01 01

1 1 1 1 1, , , (1) , (1)
2 2 2 2 2

P P P P P P
P P P P P

π
 

= − − + + + + + 

 To calculate the steady state probability of the SMP, it remains to find the mean

waiting time in every state of the process denoted by iM , {0,1,2,3, 4}i ∈ . Recall from

Section 2.3.2.1 that
4

0

()i ij ij
j

M P E T
=

= ∑ , (recall that ()ijE T is the expected sojourn time in

state i knowing that state j will be visited next) hence we get the following equations:

0 01 0 04 0(()) (())M P E F a P E F m= +

1M = 12 1 13 1(()) (())P E F m P E F f+

2 2(())M E F r=

3 3(())M E F c=

4 4(())M E F r=

 152

In rejuvenation studies, the aim is usually to determine the best rejuvenation schedule,

and that could be done by testing different distributions and checking which one is the best in

terms of minimizing the probability of failure of the system and the overhead caused by

rejuvenation. The probability of being in the fail state F , is calculated as follows:

3 3
4

0
i i

i

MF
M

π

π
=

=
∑

. And the overhead caused by the rejuvenation could be be minimized by

minimizing the expected instantaneous rejuvenation cost in steady state: C, which can be

calculated as follows: 4 4 2 2
4

0

()

i i
i

c M MC
M

π π

π
=

+=
∑

, where c is the cost of rejuvenation per unit

of time.

The above analysis applies to any type of distribution. We chose to illustrate these

results with the following distributions: The aging of the system modeled by event a , it is

assumed to have the Weibull distribution. The Weibull distribution is often used in the field

of life analysis to model the aging of a system. The Weibull distribution is characterized by a

parameter k which represents the aging rate. We assume here that 2k = . The distribution is

given by:
2

0 ()() 1 xF a x e−= − , and the distribution is represented in the figure below

As mentioned before, to be able to determine the best rejuvenation schedule, we need to

test different distributions and to check which one is the best in terms of minimizing the

failure of the system and the overhead caused by rejuvenation. In this example, we will give

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

 153

rejuvenation the same distribution as the aging which is the Weibull distribution with

parameter 2k = . So
2

0 ()() 1 xF m x e−= − , and calculate the effect of such a schedule on the

probability of failure in the system as well the expected rejuvenation cost.

The failure of the system is modeled by event f . Once we reach State 1, the system fails

after a fixed period of time. 1

1 1
()()

0 1
x

F f x
x

≥
=  <

.

2 ()()F r x , 4 ()()F r x , and 3 ()()F r x have means equal to
1

90
,

1
90

 and
1

60
 respectively,

meaning that the periodic rejuvenation has a mean of
1
3

 of a day, and the rejuvenation after

failure has a mean of
1
2

 a day (note from the steady state formulas above that these

distributions affect the result only through their means).

With the above distributions, we get the following:

01
1
2

P = , and hence 04
1
2

P =

1()() Re (,1)()F m x Av s m x= =
2 2 2' ' (')

0

' () 'x x x xx e e e dx
∞

− − − +−∫
2 2' (')

0

1 ' '
2

x x xx e dx
∞

− − += − ∫

2 2' (1 ')
13 1

0

11 ()(1) ' '
2

x xP F m x e dx
∞

− − += − = + ∫ , and hence 12P =
2 2' (1 ')

0

1 ' '
2

x xx e dx
∞

− − +− ∫

2 2 2 2' (1 ') ' (1 ')

0 0

1 1' ' ' '
2 22 1 1, , , ,

5 5 5 5 5

x x x xx e dx x e dx
π

∞ ∞
− − + − − + 

− + 
 =
 
 
 

∫ ∫

Also, the mean waiting times in every state can be calculated as follows:

 154

0 01 0 04 0(()) (())M P E F a P E F m= +
1

'2

0

' 'xx e dx
∞

−= ∫

2 2 2 2' (1 ') ' (1 ')
1 12 1 13 1

0 0

1 1(()) (()) ' ' ' '
2 2

x x x xM P E F m P E F f x e dx x e dx
∞ ∞

− − + − − += + = − + +∫ ∫

2
1

90
M = , 3

1
60

M = , 4
1

90
M =

Finally, the probability of being in the fail state F is calculated as follows:

Now let Γ =
4

0
i i

i

M π
=
∑ , then

 Γ
2 2 2 2

1
' ' (1 ') ' (1 ')2

0 0 0

2 1 1 1' ' ' ' ' '
5 5 2 2

x x x x xx e dx x e dx x e dx
∞ ∞ ∞

− − − + − − += + − + +∫ ∫ ∫ +

2 2 2 2' (1 ') ' (1 ')

0 0

1 1' ' ' '
2 2 1

450 300 450

x x x xx e dx x e dx
∞ ∞

− − + − − +− +
+ +

∫ ∫
.

And

3 3
4

0
i i

i

MF
M

π

π
=

=
∑

2 2' (1 ')

0

1 ' '
2

300

x xx e dx
∞

− − ++
=

Γ

∫

Moreover, the expected instantaneous rejuvenation cost in steady state

4 4 2 2
4

0

() 2
135000

i i
i

c M M cC
M

π π

π
=

+= =
Γ∑

.

 155

7.3.4. Analysis of the Periodic Rejuvenation with B ack-up

Model

To understand how our NRGSMP model will be transformed into an HMRP, we need

to identify, for each non-regenerative state s , the set of single regenerative states sΓ that

lead to it. Then we need to divide the set sΓ into subsets of traces 1{ ,..., }m
s sδ δ such that each

subset i
sδ , is a single-AvRes set. Recall that, the number of subsets obtained, m , is equal to

the number of copies of the non-regenerative state s in the HMRP (as explained in Chapter

4). Among the states in Figure 22, the only states that have more than one single regenerative

state leading to them are state 1,I and state MR,D. These traces are: 1,IΓ ={(0, 1,)aI I→ ,

2(0, 0, ' 1,)}r aR I I→ → and ,MR DΓ = 2{(, ,)fR W MR D→ , 2(, ,)}fM W MR D→ , (note

that the sets ,MR DΓ and 1,IΓ are finite because we do not have near semi-Markovian cycles in

the NRGSMP). Now each of trace in 1,IΓ is a single-AvRes set, and similarly, each trace in

,MR DΓ is a single-AvRes set. Hence to transform the model into an HMRP, we need to create

two copies of state 1,I one accessible through trace 0, 1,aI I→ and the other accessible

through trace 20, 0, ' 1,r aR I I→ → . Similarly, we need to create two copies of state

MR,D one accessible through trace 2, ,fR W MR D→ and the other accessible through

trace 2, ,fM W MR D→ . The HMRP is shown in Figure 23.

 156

Figure 23. HMRP for the periodic rejuvenation with back-up.

 To transform the non-regenerative states in the HMRP into regenerative we need to

find the average residual distributions of the active events in the non-regenerative state as

was illustrated in the previous sub-section.

 1.I
 {f1}

 0,I
{m,a}

 D,R

 0,I’
 {m}

 1,R
 {f1}

 R,W
{r1,f2}

MR,D

 M,W
{r1,f2}

 1,I
{m}

 0,R
{r2,a}

 m

 r1

 a r1 m m

 a f2 m
 f1 f1 r2

 r2 f2 r1 r1 a

 f1

 f1 r2

MR,D

 1.I
 {f1}

 157

Chapter 8: Conclusion and Future Directions

In the literature, there are two main methods that attempt to analyze GSMPs: the

regenerative and the supplementary variable methods. Both methods can be applied to a

subset of GSMPs, those that implement the “enabling restriction” meaning that only one

non-exponentially distributed clock can be active at a given time. Imposing this restriction

leads to algorithms with reasonable costs. Going beyond the restriction is one of the most

challenging open issues in the field. Other methods exist that deal with GSMPs with special

type of distributions such as the continuous phase type distribution or deterministic event

durations; for such GSMPs, efficient numerical analysis can be found [8],[42].

The contributions of this thesis are the following:

• We extended the class of solvable GSMPs by allowing several generally

distributed events to be enabled at any time. However, we imposed the

restriction that every cycle 121
11 ... ssssC nn e

n
ee →→→= − in the GSMP

must either be near semi-Markovian (NSM) or regenerative (REG) (see

 158

Definition 4.3). GSMPs whose cycles are either NSM or REG are referred to as

near-regenerative generalized semi-Markov processes, NRGSMP, the concepts

of NRGSMP is introduced in Chapter 4 of the thesis. NRGSMPs are more

general than the GSMP’s implementing the enabling restriction (EGSMPs). In

fact, among other restrictions, the only cycles allowed in a EGSMP are either

regenerative or near-Markovian. However, as discussed in Chapter 7, an

important class of GSMP’s is not covered by NRGSMPs; examples are the

queuing networks G/G/1 of size ≥n 3. The method presented to solve the steady

state probabilities for NRGSMPs consists of an algorithm that transforms the

NRGSMP into a semi-Markov process (SMP) while preserving steady-state

simulation, a simulation that enables us to determine the steady state probability

of the NRGSMP from that of the SMP constructed. The time and space

complexities of the algorithm presented in this thesis are exponential in the

number of states in the set remS , i.e. states that are neither regenerative nor

belong to an embedded semi-Markov process (ESMP, where an ESMP is a sub-

process which is a semi-Markov process), and in the number of strongly

connected ESMPs)(hq − , (i.e. the number of embedded strongly connected

semi-Markov processes) that have at least one non-regenerative in-border

(Definition 4.5). But, when applied to GSMPs whose states either belong to an

ESMP with regenerative in-border or are regenerative, the algorithm becomes

|)||(| RR SSSO − in space complexity, where RS is the set of regenerative

states, and)||2||2(223 ScStcmO ++ in time complexity, where m is the

maximum number of states of the ESMPs and t is the branching factor of the

NRGSMP, (refer to Section 4.5). The regenerative method has)|(| 2SO space

complexity and)|(| 4SO time complexity [45]. The method of supplementary

variable has approximately 2(| |)gO q S time complexity and

)|||||(| 2∑∑
∈∈

++
GG Tg

g

Tg

gE SScSO space complexity where ES is the set of states

in which only exponential transitions are enabled, gS is the set of states in

which the non-exponential transition g is enabled, and c denotes the time for

 159

integral calculation [45]. The exponential factor in the complexity of our

algorithm limits its real applicability to the subset of GSMPs with a small

number of states in the set remS , and a small value of hq − , However, this

subset contains all GSMPs satisfying the enabling restriction.

• The method described in the point above could generate semi-Markov processes

with big state spaces. For that reason, we introduced a method to remove states

from the original NRGSMP while preserving the distribution of time needed to

travel between non-deleted states and also preserving the transient state

probabilities for a subset of the states. This method works on any GSMP and

works by deleting states that, among other restrictions, belong to an embedded

semi-Markov process M . The time required to delete one state ESs ∈ , (where

ES is the state space of M) from the GSMP such that)()(},...,{ 1 sKsAee n −=

is || EScn in the worst case, where c represents the complexity of integral

calculation). However, this simplification of the GSMP is worth doing, since

deleting one state from the biggest ESMP in the NRGSMP, leads to an SMP

with as much as ||)(|| remhqS St
rem −+ fewer states.

• Another algorithm with the aim of dealing with the state space explosion of the

resulting SMP was presented. This simplification technique for semi-Markov

processes is based on Bradley’s simplification algorithm [14], the only

difference is that we are interested in preserving the mean of the passage-time

distributions between non-deleted states rather than actual distributions. In fact,

the technique deletes states from the SMP while preserving the average time to

travel between non-deleted states, or what we call mean passage time

equivalence. The method could delete any state in the SMP. The measures that

are preserved are the performance measures that depend on the mean time to

travel between the states of the SMP, such as MTTF, availability and reliability.

The cost of deleting one state by following this technique is 2|)(| SO .

 160

As future work, we would like to:

• Explore ways to further reduce the space complexity of the algorithm that

transforms a GSMP into an SMP, and to generalize it to cover a broader

subclass of GSMP’s. We are currently trying to do this by generalizing the

sAvRe set to contain structures other than paths and ESMPs. The first thing

we would like to explore is to add embedded EGSMPs to the sAvRe set,

which are sub-processes in the GSMP that, when taken as a separate entity,

become GSMPs implementing the enabling restriction. This would generalize

our method as it would allow more structures to be integrated in the GSMP.

• Another possibility we could explore is the generalizing of our method

through the use of recursive approximation for the residual times that can not

be solved analytically.

• We would like also to explore the transient-state simulation further by

transforming the NRGSMP into a non-homogeneous semi-Markov process.

And checking the complexity of finding the transient state probabilities of the

NRGSMP from those of the resulting non-homogeneous semi-Markov

process.

• Finally we would like to translate the restrictions that make an NRGSMP to

the field of stochastic Petri-nets. This problem, besides having merit by itself

could help us find more realistic examples of NRGSMPs.

 161

References

[1] Adams E., Optimizing Preventative Service of the Software Products, IBM Journal of

Software and Development, pages 2-14, Vol. 28 (1), 1984.

[2] Ajmone Marsan M., Balbo G., Conte G., A Class of Generalized Stochastic Petri

Nets for the Performance Analysis of Multiprocessor Systems, ACM Transactions on

Computer Systems (TOCS), Vol. 2, Issue 2, pages: 93-122, 1984.

[3] Ajmone Marsan M., Chiola C., On Petri Nets with Deterministic and Exponentially

distributed firing Times. Lecture Notes In Computer Science; Vol. 266, Advances in

Petri Nets, covering the 7th International Conference on Applications and Theory of

Petri Nets, pages: 132-145, 1987.

[4] Alur R., Dill D. L., A Theory of Timed Automata, Theoretical Computer Science

Vol. 126 (2), pages: 183-235, 1994.

 162

[5] Avritzer A., Weyuker E.J., Monitoring Smoothly Degrading Systems for Increased

Dependability. Empirical Software Engineering, pages 59-77, Vol. 2 (1), 1997.

[6] Balsamo S., Product Form Queuing Networks, Lecture Notes in Computer Science;

Vol. 1769: Performance Evaluation: Origins and Directions, pages: 377-401, 2000.

[7] Beilner H., Mater J., Weissenberg N., Towards a Performance Modeling

Environment: News on HIT, Proceedings of the 4th International Conference on

Modeling Techniques and Tools for Computer Performance Evaluation, Palma de

Mallorca, Plenum Publishing Corporation, pages. 57-75, 1988.

[8] Bobbio A., Horvath A., Telek M., The Scale Factor: a New Degree of Freedom in

Phase-Type Approximation, International Conference on Dependable Systems and

Networks, Washington DC, pages. 627-636, 2002.

[9] Bobbio A., Trivedi K., An Aggregation for the Transient Analysis of Stiff Markov

Chains, IEEE Transactions on Computers , vol.35, issue 9, pages.803-814, 1986.

[10] Bobbio A., Puliafito A., Telek A., Trivedi K., Recent Developments in non-

Markovian Stochastic Petri Nets, Journal of Systems Circuits and Computers, Vol.8,

issue.1, pages: 119-158, 1998.

 163

[11] Bobbio A., Kulkarni V.G., Puliafito A., Telek M., Trivedi K., Preemptive Repeat

Identical Transitions in Markov Regenerative Stochastic Petri Nets. Proceedings of

the Sixth International Workshop on Petri Nets and Performance Models, Page: 113,

1995.

[12] Bolch G., Greiner S., de Meer H., Trivedi K., Queuing Networks and Markov Chains,

John Wiley & Sons, 1998.

[13] Bradley J.T., Semi-Markov PEPA: a Contradiction in Terms?, Proceedings of 2nd

International Workshop on Process Algebras and Stochastically Timed Activities,

pages 1-6, 2003.

[14] Bradley J.T., A Passage-Time Preserving Equivalence for Semi-Markov Processes,

Lecture Notes in Computer Science, Vol. 2324, Computer Performance Evaluation:

Modelling Techniques and Tools, pages.178–187, 2002.

[15] Bradley J.T., Vowden C.J., Report on Extracting Transient Distributions from Semi-

Markov Processes, Technical Report, Department of Computer Science, University

of Durham, DH1 3LE, UK, 2001.

[16] Bradley J.T., Davies N., Reliable Performance Modeling with Approximate

Synchronizations, Proceedings of the 7th Workshop on Process Algebras and

Performance Modeling. Prensas Universitarias de Zaragoza, pages 99–118, 1999.

 164

[17] Bravetti M., Bernardo M., Gorrieri R., Towards Performance Evaluation with

General Distributions in Process Algebra, Lecture Notes in Computer Science Vol.

1466, Proceedings of the 9th International Conference on Concurrency Theory

(CONCUR '98) , D. Sangiorgi and R. de Simone editors, Nice (France), pages 405-

422, 1998.

[18] Bravetti M., Bernardo M., Gorrieri R., Generalized Semi-Markovian Process

Algebra, Technical Report, University of Bologna, Department of Computer Science,

UBLCS-97-9, Italy, 1997.

[19] Bremaud, P., Markov Chains Gibbs Fields, Monte Carlo Simulation, and Queues,

Springer Verlag, 1999.

[20] Choi H., Kulkarni V.G., Trivedi K.S.: Markov Regenerative Stochastic Petri Nets,

Performance Evaluation, Vol. 20 , Issue 1-3, pages: 337 - 357, 1994.

[21] Choi H., Kulkarni V.G., Trivedi K., Transient Analysis of Deterministic and

Stochastic Petri Nets. Proceedings of the 14th International Conference on

Application and Theory of Petri Nets. Chicago, June 1994.

[22] Clark G., Hillston J., Product Form Solution for an Insensitive Stochastic Process

Algebra Structure, Performance Evaluation, vol.50 n.2-3, pages.129-151, 2002.

[23] Ciardo G., What a Structural World, Proceedings of the 9th international Workshop

on Petri Nets and Performance Models, Germany, pages. 3-16, 2001. IEEE CS Press.

 165

[24] Ciardo G., German R., Lindemann C., A Characterization of the Stochastic Process

Underlying a Stochastic Petri Net, IEEE Transactions on Software Engineering, Vol.

20, Issue 7, pages: 506-515, 1994.

[25] Cinlar E., Introduction to Stochastic Processes, Englewood Cliffs, NJ, USA, 1975.

[26] Cox D.R., The Analysis of Non-Markovian Stochastic Processes by the Inclusion of

Supplementary Variables, Proceeding of the Cambridge Philosophical Society, vol.

51, pages: 433-440, 1955.

[27] Cox D. R., Miller H.D., The Theory of Stochastic Processes, Chapman and Hall,

1965.

[28] Cumani A., Esp – A Package for the Evaluation of Stochastic Petri Nets with Phase-

Type Distributed Transition Times. Proceedings of the International Workshop on

Timed Petri Nets. Pages 144-151, Torino, 1985. IEEE Computer Science Press No.

674.

[29] D'Argenio P., Katoen J.P., Brinksma E., A Compositional Approach to Generalized

Semi-Markov Processes, Proceedings of the 4th Int. Workshop on Discrete Event

Systems (WODES'98), Cagliari, Italy, pages 391-397, 1998.

 166

[30] D'Argenio P., Katoen J.P., Brinksma E., An Algebraic Approach to the specification

of Stochastic Systems, In D. Gries and W.-P. de Roever (eds.), Proceedings of the

IFIP Working Conference on Programming Concepts and Methods, PROCOMET'98,

Shelter Island, New York, USA, pages 126-147. Chapman & Hall, 1998.

[31] D'Argenio P., Katoen J.P., A Theory of Stochastic Systems, Part I: Stochastic

Automata. Information and Computation, volume 203(1), pages 1-38. 2005.

[32] D'Argenio P., Katoen J.P., A Theory of Stochastic Systems, Part II: Process Algebra.

Information and Computation, volume 203(1), pages 39-74. 2005.

[33] D'Argenio P., Katoen J.P., Brinksma E., General Purpose Discrete Event Simulation

using), Editors: C. Priami, Proc. 6th Int. Workshop on Process Algebra and

Performance Modeling (PAPM'98), Nice, France, pages:85-102,1998.

[34] Dugan J.B., Trivedi K., Geist R., Nicola V., Extended Stochastic Petri-Nets:

Application and Analysis, Proceedings of the Tenth International Symposium on

Computer Performance Modeling, Measurement and Evaluation, pages: 507-519,

1984.

[35] Dohi T., Goseva-Popstojanova K., Trivedi K.S., Estimating Software Rejuvenation

Schedule in High Assurance Systems, Computer Journal, 44, pages 473-485, 2001

[36] Dohi T., Goseva-Popstojanova K., Trivedi K.S., Statistical Non-Parametric

Algorithms to Estimate the Optimal Software Rejuvenation Schedule. Proceedings of

the 2000 Pacific Rim International Symposium on Dependable Computing, pages 77-

84, IEEE Computer Society Press, Los Alamitos CA. 2000

 167

[37] Dohi T., Iwamoto K., Okamura H., Kaio N., Discrete Availability Models to

Rejuvenate a Telecommunication Billing Application, IEICE Transactions on

Communications, pages 2931-2939, Volume E86-B (10), 2003.

[38] Fricks R., Puliafito A., Telek M., Trivedi K., Applications of Non-Markovian

Stochastic Petri Nets, ACM SIGMETRICS Performance Evaluation Review, Vol. 26,

Issue 2 pages: 15 - 27, 1998.

[39] Garg S., Puliafito A., Telek M., Trivedi K.S., Analysis of Software Rejuvenation

Using Markov Regenerative Stochastic Petri Nets. Proceedings of the 6th

International Symposium on Software Reliability Engineering, pages 24-27, IEEE

Computer Society Press, Los Altimos, CA, 1995.

[40] German R., Telek M., Formal Relation of Markov Renewal Theory and

Supplementary Variables in the Analysis of Stochastic Petri Nets, Proceedings of the

8th International Workshop on Petri Nets and Performance Models, page: 64, 1999.

[41] German R., Performance Analysis of Communication Systems, Modeling with non-

Markovian Stochastic Petri Nets, John Wiley and sons, 2000.

[42] German R., New Results for the Analysis of Deterministic and Stochastic Petri Nets,

Proceedings of the International Computer Performance and Dependability

Symposium on Computer Performance and Dependability Symposium, page114,

1995

 168

[43] German R., Markov regenerative Stochastic Petri Nets with General Execution

Policies: Supplementary Variable Analysis and a Prototype Tool, Performance

Evaluation, Vol. 39, Issue 1-4, pages: 165-188, 2000.

[44] German R., Lindemann C.: Analysis of Stochastic Petri Nets by the Method of

Supplementary Variables, Performance Evaluation, v.20 No.1-3, pages: 317-335,

May 1994.

[45] German R., Logothetis D., Trivedi K., Transient Analysis of Markov Regenerative

Stochastic Petri Nets: A Comparison of Approaches, Proceedings of the Sixth

International Workshop on Petri Nets and Performance Models, page 103, 1995.

[46] Gorrieri R., Rocetti M., Towards Performance Evaluation in Process Algebra,

Proceedings of the Third International Conference on Methodology and Software

Technology: Algebraic Methodology and Software, Springer Verlag London UK,

pages: 289-296, 1993

[47] Goseva-Popstojanova K., Trivedi K., Stochastic Modeling Formalisms for

Dependability, Performance, and Performability, Lecture Notes In Computer Science;

Vol. 1769, Performance Evaluation: Origins and Directions, pages: 403-422, 2000.

[48] Gross D., Harris C.M., Fundamentals of Queuing Theory, John Wiley & Sons, 1985.

 169

[49] Henderson W., Lucic D., Applications of Generalized Semi-Markov Processes to

Stochastic Petri Nets, Proceeding of IFIP TC7/WG 7.3 International Seminar on

Performance of Distributed and Parallel Systems, Kyoto, Japan, 1988.

[50] Hermanns H., Herzog U., Katoen J-P., Process Algebra for Performance Evaluation,

Theoretical Computer Science, vol.274, issue1-2, pages: 43--87, 2002.

[51] Herzog U., A concept for Graph Based Stochastic Algebras, generally Distributed

Activity Times, and Hierarchical Modeling, Proceedings of Process Algebra and

Performance Modeling PAPM, pages. 1-20, Torino, Italy, 1996.

[52] Herzog U., Formal Description, time and Performance Analysis: A Framework,

Technical Report 15/90, IMMD VII, Friedrich-Alexander-Universitat, Erlangen-

Nurnberg, Germany, September 1990.

[53] Hillston J., Modeling and Simulation Course, www.dsc.ed.ac.uk/teaching/cs4, 2003

consulted in June 2004.

[54] Hillston J., A compositional Approach to Performance Modeling, Distinguished

Dissertation in Computer Science. Cambridge University Press, New York, NY, USA

1996.

[55] Horvath A., Puliafito A., Scarpa M., Telek M., Analysis and Evaluation of non-

Markovian Stochastic Petri-Nets, Computer Performance Evaluation. International

conference No11, Schaumburg IL , U.S., Lecture Notes in Computer Science,

vol.1786, pages:171-187, 2000.

 170

[56] Howard R., Dynamic Probabilistic Systems: Semi-Markov and Decision Systems

Volume II, Wiley 1971.

[57] Huang Y., Kintala C., Kolettis N., Fulton N.D., Software Rejuvenation: Analysis,

Module and Application. Proceedings of the 25th International Symposium on Fault

Tolerant Computing, pages 381-390, 1995. IEEE CS Press.

[58] Janssen J., Manca R., Numerical Solution of non-Homogeneous Semi-Markov

Processes in Transient Case. Journal of Methodology and Computing in Applied

Probability, pages 271-293, Volume 3 (3), September, 2001.

[59] Janssen J., Manca R., Applied Semi-Markov Processes. Springer US, 2006.

[60] Jensen K., Rosenberg G., (eds.), High-level Petri Nets. Theory and Application.

ISBN: 3-540-54125 X, Springer-Verlag, 1991.

[61] Katoen J.P., D'Argenio P.R., General Distributions in Process Algebra, Lectures on

Formal Methods and Performance Analysis. Lecture notes in Computer Science

2090. Springer Verlag, Berlin, pages: 375-429, 2001.

[62] Kulkarni, V.G., Modeling and Analysis of Stochastic Systems, Chapman & Hall,

1995.

 171

[63] Lindemann C., Performance Modeling with Deterministic and Stochastic Petri Nets,

John Wiley & Sons, 1998.

[64] Lindemann C., An Improved Numerical Algorithm for Calculating Steady State

Solutions of Deterministic and Stochastic Petri-Net Models. International workshop

on Petri nets and performance models No4, Melbourne, Australia, vol.18, issue 1,

pages:79-95, 1993.

[65] Lindemann C, Thummler A., Numerical Analysis of Generalized Semi-Markov

Processes, Technical Report: Department of Computer Science, University of

Dortmund, 2003.

[66] Lu D., Fast Search Method for Enabling a Computer to Find Elementary Loops in a

Graph. http://www.patentstorm.us/patents/6438734-description.html, August 20,

2002.

[67] Matthes K., Zur Theorie der Bedienungsprozesse, in Transactions of the 3rd Prague

Conference on Information Theory, 1962.

[68] Mehdi J., Stochastic Processes, John Wiley and Sons Inc.1994.

[69] Meyer J.F., On Evaluating the Performability of Degradable Computing Systems.

IEEE Transactions on Computers, Pages 720-731, Vol. 29 (8) August 1980.

 172

[70] Neuts M., Probability Distributions of Phase Type, Technical Report, Department of

Mathematics, University of Louvain, pages: 173-206,1975.

[71] Petriu D., Woodside M., Analyzing Software Requirements Specifications for

Performance, Performance, Proceedings of the 3rd International Workshop on

Software and Performance, Rome, pages 1-9, 2002.

[72] Pressman R. S., Software Engineering: A Practitioner’s Approach, Prentice-Hall,

1996.

[73] Pyke R., Markov Renewal Processes with Finitely Many States, The Annals of

Mathematical Statistics, vol. 32, No. 4, pages: 1243-1259, 1961.

[74] Rinsaka K., Dohi T., A Faster Estimation Algorithm for Periodic Preventative

Rejuvenation Schedule Maximizing System Availability. Lecture Notes in Computer

Science, vol. 4526, pages 94-109, Springer Berlin, 2007

[75] Schassberger R., Insensitivity of Steady State Distributions of Generalized Semi-

Markov Processes, The Annals of Probability, vol. 6, No. 1, pages: 85-93, 1978.

[76] Smith U. C., Performance Engineering of Software Systems, Addison-Wesley, 2002.

 173

[77] Smith C., Woodside M., Performance Validation at Early stages of Software

Development, The Journal of Systems and Software, vol. 49, issue 1, pages: 63-

80,1999.

[78] Stewart W.J., Introduction to the Numerical Solution of Markov Chains, Princeton

University Press, ISBN 0691036993, 1994.

[79] Strulo B., Process Algebra for Discrete Event Simulation, PhD. Thesis, Department

of Computing, Imperial College of Science, Technology and Medicine. University of

London, 1993

[80] Suzuki H., Dohi T., Kaio N., Trivedi K., Maximizing Interval Reliability in

Operational Software System with Rejuvenation, Proceedings of the 14th

International Symposium on Software Reliability Engineering, pages 479-490, vol.

17 (20), 2003.

[81] Szwarcfiter J.L., Lauer P.E., A Search Strategy for the Elementary Cycles of a

Directed Graph. BIT Numerical Mathematics, Vol. 16 (2), June, 1976.

[82] Trivedi K., Reliability and Performability Techniques and Tools, A survey, Messung,

Modellierung und Bewertung von Rechen- und Kommunikations systemen, vol. 7.,

pages: 21-23, 1993

 174

[83] Waters G., Linington P., Akehurst D., Symes A., Communication Software

Performance Prediction, 13th UK Workshop on Performance Engineering of

Computer and Telecommunication Systems, pages: 381-389, Ilkley, West Yorkshire,

1997.

[84] Winograd S., Coppersmith D., Matrix multiplication via arithmetic progressions.

Proceedings of the 19th annual ACM Symposium on Theory of Computing, New

York, United States, pages: 1-6, 1987.

[85] Woodside M., Software Performance Evaluation by Models, Lecture Notes in

Computer Science; Vol. 1769, Performance Evaluation: Origins and Directions,

pages: 283 - 304, 2000.

