
 

 
A QoS Content Adaptation Framework for 

Nomadic Users 
 
 
 

by 
 
 

Khalil Mehdi El-Khatib 
 
 

A thesis submitted to the Faculty of Graduate and Post-
Doctoral Studies in partial fulfillment of the requirements 

for the degree of 
 
 

Doctor of Philosophy 
in 

Electrical Engineering 
 
 
 
 

Ottawa-Carleton Institute for Electrical Engineering 
School of Information Technology and Engineering 

University of Ottawa 
Ottawa, Ontario, Canada 

 
 
 
 
 

© Khalil Mehdi El-Khatib, Ottawa, Canada, 2005 



 2 

Abstract 
 

The tremendous growth of the Internet has introduced a number of 

interoperability problems for distributed multimedia applications. These problems are 

related to the heterogeneity of client devices, network connectivity, content formats, and 

user’s preferences. The diversity of client devices posed some challenges in aligning and 

customizing the exchanged data between different users using different devices and with 

different preferences. Another trend in the telecommunication world that is starting to 

surface is ubiquitous computing environment where there is a shift of computing 

technology from the desktop to the background. One of its most notable attributes is its 

potential to extend the scope of the user’s reachability.   

The purpose of this thesis is to present a framework for multimedia content 

adaptation that addresses diversity, heterogeneity, and ubiquity. The framework takes 

into consideration the profile of communicating users, devices, network connectivity, 

exchanged content format, context description, and available adaptation services to find a 

chain of adaptation services that could be applied to the content. Major part of the 

framework is a QoS-based selection algorithm that finds the best sequence of adaptation 

services and their QoS configuration that can maximize the user’s satisfaction with the 

delivered content. A restricted version of the framework is used to find the best 

combination for the number of media streams and their corresponding configuration for 

presentational multimedia applications.  

The framework also forms the core of an architecture for supporting personal 

mobility. In an environment where a user has access to many communication devices, it 

is more convenient that the system makes the choice between all these devices depending 

on previously defined user preferences. The system will also select the values for the QoS 

parameters that give the user the best satisfaction with the session. We will also describe 

an extension of the architecture to support service and personal mobility in an ubiquitous 

computing environment. 

Protecting the user’s privacy is also addressed in this thesis, with a focus on 

protecting the confidentiality of the user’s preferences during session negotiation. 

 



 3 

Acknowledgments 

 
First, I would like to thank my supervisor, Prof. G.v. Bochmann, for his 

confidence, support, guidance, valuable feedback and continuous encouragement through 

the course of this work.  

I would also like to thank my friends: Rami Dalloul, Gabriel Aghazarian, Khaled 

El-Fakih, Mouhcine Guennoun, Wissam Mounzer, Nada Tamime, Raja Khalil, Jana 

Sukarriah, Peter Alleyne, and Nehmeh Baghdadi for their patience and unceasing moral 

support throughout the course of my studies. I will never ever forget their friendship. 

I would also like to thank the following people at NRC: my manager Larry Korba 

at NRC for his constant support, Ronggong Song for his help and friendship, and Ian 

Colby for his continuing technical support.  

I would like also to thank many member of the Distributed System Research 

Group (DSRG), especially Eric Zhang, Nabila Hadibi, Yu Zhong, and Bogdan Soloman 

for providing an interesting and inspiring research environment. Special thanks go to Dr. 

El-Saddik. I am really grateful to all of them for giving me the chance to work with them. 

I would like to thank all the system staff and especially Michel Racine, Keith 

White, and Roger Montcalm for keeping our machines up and running. Further thanks go 

to all people working in the administrative office at our school.  

Special thanks for Dr. Boukerche for his guidance and support. 

I would like also to thank my family for their love, patience, understanding and 

dealing with me being absent. I am especially grateful to the distinguishable friendship 

with my sister Nadia; may her soul rest in peace. Additionally, I would like to thank my 

wife’s family for their support. 

Last, but by no mean least, I would like to thank my loving wife, Amal Karboubi, 

for being with me and for encouraging me to fulfill my dream. I promise, I will make it 

up to you. 



 4 

Contents 

 
 
 
Abstract 
Acknowledgment 
Contents 
List of Figures 
List of Tables 
 
1 Introduction............................................................................................................... 11 

1.1 Introduction and motivation.............................................................................. 11 
1.2 Contribution ...................................................................................................... 12 
1.3 Organization...................................................................................................... 13 

2 Multimedia Applications and Quality of Service (QoS) Management ................ 17 
2.1 Introduction....................................................................................................... 17 
2.2 Multimedia applications: Definition ................................................................. 17 
2.3 Multimedia applications: Constraints and requirements................................... 18 

2.3.1 Temporal constraints................................................................................. 18 
2.3.2 High data bit rate....................................................................................... 19 
2.3.3 Service guarantees .................................................................................... 19 
2.3.4 Group communication .............................................................................. 19 

2.4 Classes of multimedia applications................................................................... 20 
2.4.1 Presentational multimedia application...................................................... 20 
2.4.2 Conversational multimedia application .................................................... 21 
2.4.3 Messaging multimedia application ........................................................... 21 

2.5 Quality of Service: Definition and terms .......................................................... 21 
2.5.1 Network level QoS.................................................................................... 22 

2.5.1.1 Integrated Service ................................................................................. 23 
2.5.1.2 Resource ReSerVation Protocol ........................................................... 25 
2.5.1.3 Differentiated Service ........................................................................... 26 
2.5.1.4 Multi-Protocol Label Switching ........................................................... 27 
2.5.1.5 Constraint-based routing....................................................................... 29 

2.5.2 Application level QoS............................................................................... 30 
2.5.3 User level QoS .......................................................................................... 31 

2.6 Conclusion ........................................................................................................ 34 
3 Voice-over-IP and Supporting Protocols ................................................................ 36 

3.1 Introduction....................................................................................................... 36 
3.2 Voice-over IP: What is it?................................................................................. 37 
3.3 Benefits of VoIP ............................................................................................... 37 
3.4 Issues with VoIP ............................................................................................... 38 

3.4.1 Lack of QoS support in the Internet.......................................................... 38 
3.4.2 Billing ....................................................................................................... 40 



 5 

3.4.3 Inter-working and transparency of operation............................................ 41 
3.5 VoIP signaling protocols................................................................................... 41 

3.5.1 H.323......................................................................................................... 41 
3.5.1.1 Terminal................................................................................................ 42 
3.5.1.2 Gatekeeper ............................................................................................ 42 
3.5.1.3 Gateway ................................................................................................ 43 
3.5.1.4 Multipoint control and processing unit ................................................. 43 
3.5.1.5 H.323 protocols..................................................................................... 43 

3.5.2 Session Initiation Protocol (SIP)............................................................... 45 
3.5.2.1 SIP main entities ................................................................................... 46 
3.5.2.2 SIP User Agent ..................................................................................... 46 
3.5.2.3 SIP servers ............................................................................................ 46 
3.5.2.4 SIP addressing....................................................................................... 47 
3.5.2.5 SIP operations models........................................................................... 47 
3.5.2.6 SIP messages......................................................................................... 48 

3.5.3 Comparison of H.323 and SIP .................................................................. 49 
3.6 VoIP supporting protocols ................................................................................ 51 

3.6.1 RTP and RTCP ......................................................................................... 51 
3.6.2 Session Description Protocol .................................................................... 52 
3.6.3 Session Announcement Protocol .............................................................. 54 
3.6.4 Megaco/H.248........................................................................................... 55 

3.7 Conclusion ........................................................................................................ 55 
4 A QoS-Based Framework for Distributed Content Adaptation........................... 57 

4.1 Introduction....................................................................................................... 57 
4.2 Content adaptation ............................................................................................ 59 
4.3 Required elements for content adaptation......................................................... 61 
4.4 QoS selection algorithm.................................................................................... 65 

4.4.1 User’s satisfaction as selection criteria ..................................................... 66 
4.4.2 Extending user’s satisfaction to support weighted combination and multi-
user conference sessions ........................................................................................... 68 
4.4.3 Constructing a directed graph of trans-coders .......................................... 70 
4.4.4 Graph optimization ................................................................................... 73 
4.4.5 Adding constraints to the edges ................................................................ 75 
4.4.6 QoS selection algorithm............................................................................ 75 
4.4.7 Example .................................................................................................... 79 

4.5 Discovering intermediary trans-coding service ................................................ 81 
4.6 Performance analysis of the QoS selection algorithm ...................................... 83 
4.7 Conclusion ........................................................................................................ 85 

5 Selecting the QoS Parameters for Multicast Applications Based on User Profile 
and Device Capability.............................................................................................. 86 

5.1 Introduction....................................................................................................... 86 
5.2 Literature review............................................................................................... 88 
5.3 Selecting QoS parameters for large groups of users......................................... 91 

5.3.1 Selecting QoS parameters with unlimited throughput in the source......... 92 
5.3.2 Selecting QoS parameters and channels with limited throughput in the 
source 93 



 6 

5.3.2.1 Selecting the combination of content delivery channels: Problem 
definition 95 
5.3.2.2 Selecting the group representative ........................................................ 96 
5.3.2.3 A heuristic algorithm for QoS parameter and channel selection .......... 98 
5.3.2.4 Performance evaluation of the OCoV heuristic algorithm ................. 100 

5.4 Conclusion ...................................................................................................... 102 
6 Architectures for Personal Mobility Systems....................................................... 104 

6.1 Introduction..................................................................................................... 104 
6.2 Personal mobility: Problem statement ............................................................ 105 
6.3 Architectures for personal mobility ................................................................ 108 

6.3.1 The Mobile People Architecture (MPA)................................................. 108 
6.3.2 ICEBERG: Internet-core Network Architecture for Integrated 
Communications ..................................................................................................... 111 
6.3.3 Telephony Over Packet networkS (TOPS) ............................................. 113 
6.3.4 Call Management Agent System ............................................................ 116 
6.3.5 Session Initiation Protocol ...................................................................... 118 
6.3.6 Seamless Personal Information Networking (SPIN) .............................. 119 
6.3.7 Personal mobility in telecommunication networks................................. 121 

6.4 What is still missing in personal mobility?..................................................... 122 
7 MobInTel: Mobile Internet Telecommunication architecture ........................... 124 

7.1 Introduction..................................................................................................... 124 
7.2 Home Directory .............................................................................................. 126 

7.2.1 Content of the Home Directory............................................................... 126 
7.2.2 Subscription to the HD............................................................................ 128 
7.2.3 Updating the content of the HD.............................................................. 128 
7.2.4 Benefits of the HD .................................................................................. 129 

7.3 Architecture of the HDA................................................................................. 130 
7.4 Automatic device and QoS parameter selection ............................................. 131 
7.5 Support for session establishment in MobInTel ............................................. 132 
7.6 Extending MobInTel to support personal and service mobility in ubiquitous 
computing environments............................................................................................. 134 
7.7 Architectures for personal and service mobility in ubiquitous computing 
environments............................................................................................................... 136 
7.8 Extension to the MobInTel architecture ......................................................... 138 
7.9 Support for service mobility ........................................................................... 141 
7.10 Usage scenario (continued)............................................................................. 142 
7.11 Experimentation and evaluation ..................................................................... 143 

7.11.1 Hardware, software, and communication protocols ............................... 144 
7.11.2 Experimental environment...................................................................... 145 
7.11.3 Results..................................................................................................... 147 

7.12 Conclusion ...................................................................................................... 149 
8 Preserving the Privacy of User Preferences in Multimedia Communication ... 150 

8.1 Introduction..................................................................................................... 150 
8.2 Literature review............................................................................................. 151 
8.3 Privacy invasion in multimedia applications .................................................. 153 
8.4 Proposed solutions .......................................................................................... 155 



 7 

8.4.1 Using a trusted third party....................................................................... 155 
8.4.2 Using P3P/APPEL to announce privacy policy and build trust.............. 156 
8.4.3 Using distributed secure computation..................................................... 157 

8.5 Using oblivious polynomial evaluation to negotiate private preferences ....... 157 
8.5.1 Oblivious Transfer .................................................................................. 157 
8.5.2 Oblivious polynomial evaluation protocols ............................................ 159 
8.5.3 Privacy Preserving Negotiation Protocol................................................ 160 

8.6 Complexity and efficiency.............................................................................. 162 
8.7 Conclusion and discussion.............................................................................. 164 

9 Conclusion and Future Work ................................................................................ 166 

 



 8 

Figures 
 
Figure 1. A conceptual model of QoS. ............................................................................. 22 
Figure 2. An MPLS enabled domain []............................................................................. 27 
Figure 3. Example of the mapping function determining the user satisfaction depending 
on the value of a QoS parameter....................................................................................... 32 
Figure 4. H.323 environment ............................................................................................ 42 
Figure 5. H.323 protocol stack.......................................................................................... 44 
Figure 6. RTP header ........................................................................................................ 51 
Figure 7. Framework for content adaptation..................................................................... 66 
Figure 8. Possible satisfaction function for the frame rate. .............................................. 67 
Figure 9. Trans-coder with multiple input and output links ............................................. 71 
Figure 10. Directed trans-coding graph ............................................................................ 72 
Figure 11. Pseudo-code for the graph construction algorithm.......................................... 73 
Figure 12. Pseudo-code for the graph optimization.......................................................... 74 
Figure 13. Optimized directed trans-coding graph ........................................................... 74 
Figure 14. Structure of the trans-coding service. .............................................................. 76 
Figure 15. Pseudo-code for the route selection algorithm ................................................ 77 
Figure 16. Graph selection................................................................................................ 78 
Figure 17. Example of trans-coding graph ....................................................................... 79 
Figure 18. Trans-coders along the BGP AS path.............................................................. 82 
Figure 19.  Optimized graph construction algorithm........................................................ 82 
Figure 20. Graph creation time ......................................................................................... 84 
Figure 21 User satisfaction using different selection set of trans-coders. ........................ 84 
Figure 22. Server bandwidth limit vs. average satisfaction .............................................. 94 
Figure 23. Server throughput limit vs. number of streams ............................................... 94 
Figure 24. Assigning receivers to different variants......................................................... 95 
Figure 25. Average satisfaction with different variants of grouping. ............................... 98 
Figure 26. The pseudo code of the OCoV heuristic algorithm. ...................................... 100 
Figure 27. Running time for the OCoV heuristic algorithm and the optimal algorithm. 101 
Figure 28. Difference in the total satisfaction between the OCoV heuristic algorithm and 
the optimal algorithm...................................................................................................... 102 
Figure 29: Architecture of the MPA personal proxy. ..................................................... 109 
Figure 30: The ICEBERG Architecture (from [136])..................................................... 113 
Figure 31: Structure of a user record .............................................................................. 114 
Figure 32. A CMA manages multiple communication terminals ................................... 116 
Figure 33. Example of personal mobility support in SIP................................................ 119 
Figure 34: SPIN system architecture .............................................................................. 120 
Figure 35: User Profile.................................................................................................... 127 
Figure 36. Components of the HDA............................................................................... 131 
Figure 37: HDA support for session establishment. ....................................................... 133 
Figure 38. HDA support for connecting two PSTN phones. .......................................... 134 
Figure 39. Components of the Personal Agent ............................................................... 140 
Figure 40. Session establishment based on the Personal Agent .................................... 143 
Figure 41. Experiment environment layout .................................................................... 146 



 9 

Tables 
Table 1. Different types of traffic put different QoS demands on networks. ................... 23 
Table 2. Label Information Base ...................................................................................... 29 
Table 3. SIP request methods............................................................................................ 48 
Table 4. Response Status-Code and Categories................................................................ 49 
Table 5.  Results for each step of the path selection algorithm ........................................ 80 
Table 6. Simulated user population. ................................................................................. 94 
Table 7. Variants of the preferences selection for the group representative..................... 97 
Table 8. Transcoders used in the prototype .................................................................... 145 
Table 9. Session setup time............................................................................................. 147 

Table 10. Message sequence for 2
1OT . ............................................................................ 158 

Table 11. Chang’s OPE................................................................................................... 160 
Table 12. Compressed version of the privacy preserving negotiation protocol ............. 163 



 10 

Appendices 
Appendix A. User Profile Schema……….…………………….……….……….……...189  
Appendix B. Proxy Schema…..………………………………………………………...192 
Appendix C. Trans-coder Schema……………………………………………………...196  
Appendix D. Acronyms……………………………………………………………...…197 

 



 11 

Chapter 1 

Introduction 
 

 

1.1 Introduction and motivation 

One of the major breakthroughs of the twenty first century is the wide spread of 

affordable telecommunication network technologies to the majority of people: cellular 

phone, wired phone, pager, Personal Digital Assistant (PDA) with network connectivity, 

to list a few. Other new services such as Internet-TV, Internet-phone are also starting to 

get acceptance. People now use different devices and applications for different roles and 

different tasks throughout their daily life. 

While each device presents an additional avenue to its owner, this multiplicity of 

communication devices has left users stranded in the middle. For a caller, it became a 

challenge to find the callee at a convenient time and through the right device, and more 

challenging for callees who would love to have an easy way to customize how people can 

reach them according to their schedule and preference while keeping their privacy. 

This diversity of client devices also posed some challenges in aligning and 

customizing the exchanged data between different users with different preferences. The 

challenge is even bigger for multimedia content providers who are faced with the 

dilemma of finding the combination of different variants of the content to create, store, 

and send to their subscribers that maximize their satisfaction and hence keep on coming 

back. 

Another trend in the telecommunication world that is starting to gain popularity is 

ubiquitous computing, where multiple small devices can team up together to provide 

innovative services to the occupants of the environment. Combined with advances in 

short-range wireless communications, a ubiquitous environment presents an environment 

rich in services for the users. The challenge is that occupants of the environment are 

usually un-aware of the available devices and services in the ubiquitous environment and 



 12 

of their characteristics. Making these devices available at the finger tips of the user adds 

another dimension to the challenge of delivery of multimedia content. 

1.2 Contribution 

Personalization is an important factor for the development, evolution, and 

acceptance of Internet multimedia applications. It has the potential to solve the problem 

of diversity in users’ preferences, user devices, and multimedia content. It also increases 

the user’s satisfaction with these services and encourages their usage. The success of any 

service that attempts to deliver desirable levels of Quality of Service (QoS) for the future 

Internet multimedia services should be based, not only on the progress of network 

transport technology, but also on user’s requirements. Only by integrating the user’s 

requirements and preferences, content and context description, and available network and 

trans-coding resources into the service customization can the utility of the future Internet 

services be maximized.  

The main contribution of our work is a framework for including the user’s main 

preferences, his/her device capabilities, content and context description, as well as the 

network characteristics and available adaptation services in the session management of 

these multimedia applications. User’s preferences are the main factors to decide what 

media format to use, and which device to use in order to increase the user’s overall 

satisfaction with the session. Based on all these inputs, the session management protocol 

might also suggest certain intermediate adaptation services to be applied on the content to 

increase the user’s appreciation and satisfaction.  

The key objective of the framework is to allow users to experience personalized 

communication services. The framework is based on the idea of having profiles, when 

possible, for all session participants, for their devices, their access networks, available 

adaptation service, their current context, and the exchanged content. The framework uses 

the user’s satisfaction as optimization criteria when determining the configuration 

parameters for each component of the communication session. The framework integrates 

work on metadata description with optimization of usability/utility of multimedia 

applications. The benefits of the framework are two-fold: on one hand, the over-all 

quality perceived by the user will be higher, and on other hand, Internet content and 

service providers would benefit from wider acceptance and usage of their services.  



 13 

Additionally, we also applied the same concept of using just the user profile and 

device capability to control the delivery multimedia content to large population of 

receivers. We used the same approach to select the number of streams, as well as their 

configuration parameters that can help increase the average satisfaction of all the 

receivers. 

The framework can be used as the core of an architecture that bestows personal 

mobility, which is an important requirement for users who can be reached on several 

devices. Based on the user profile, device capabilities, available trans-coder, network, 

content and context profiles, the architecture selects transparently the communication 

device as well as the QoS parameters on the device that maximize the user’s satisfaction 

with the communication session. The architecture relieves the user from the task of 

selecting the device to use and configuring its parameters each time the user is engaged in 

a communication session.  

The architecture was also extended to allow roaming users to avail themselves 

through any public services provided by their current ubiquitous computing environment. 

The architecture leverages short-range wireless communications, and also service 

discovery techniques to expand the reach of the users to public devices and services 

available in their vicinity.  We have built a prototype of the architecture and studied its 

performance. 

Finally, we have identified the threat to users’ privacy when exchanging their 

personal preferences and proposed a solution for protecting the privacy of the exchanged 

preferences during session initiation, while still be able to select the configuration 

parameters that maximize user’s satisfaction. 

 

1.3 Organization 

The content of this thesis is organized in nine chapters. Some of these chapters have been 

published as conference or journal papers. Some of the ideas and experimental results in 

these chapters are the results of discussions and collaborations with a number of persons; 

I will list the contribution of each individual in here as well as in the corresponding 

chapter where the ideas and results where used. 

 



 14 

•  Chapter 1: Introduction. 

Chapter one, the current chapter, presents the motivation, context and contribution 

of this thesis. 

•  Chapter 2: Multimedia Applications and Quality of Service (QoS) 

Management 

The second chapter defines multimedia applications, their classifications and their 

requirements. Definition for Quality of Service (QoS) at the three levels, user, 

application and, network is also included. An extensive review of network-level 

Quality of Service techniques is presented at the end of the chapter. 

•  Chapter 3: Voice-over-IP and Supporting Protocols  

Chapter 3 introduces the Voice-over-IP Internet application, which has gained 

great interest in the last few years. The chapter discusses the benefits as well as 

the challenges to enable Voice-over-IP services over the Internet. The two major 

enabling signalling protocols for Voice-over-IP, mainly H.323 and SIP, are 

presented and compared. Other Voice-over-IP supporting protocols are also 

reviewed.  

•  Chapter 4: A QoS Framework for Content Adaptation 

The general framework for content adaptation is presented in Chapter 4. All the 

aspects involved in content adaptation are highlighted and an algorithm for 

selecting the QoS configuration parameters that maximize the user satisfaction is 

also presented. The co-op student, Bogdan Soloman, has helped out with the 

programming and data gathering of the QoS selection algorithm. Parts of this 

chapter were published in the one conference paper: 

- K. El-Khatib, G. v. Bochmann, and A. El Saddik, “A QoS-Based Framework 
for Distributed Content Adaptation”, First IEEE International Conference on 
Quality of Service in Heterogeneous Wired/Wireless Networks, Dallas, TX, 
Oct.2004. 

 

•  Chapter 5: Selecting the QoS Parameters for Multicast Applications Based 

on User Profile and Device Capability 

Chapter 5 uses the framework presented in Chapter 4, but with fewer elements in 

an end-to-end rate-based mechanism for selecting the optimum QoS configuration 



 15 

parameter values for multicast applications. The mechanism relies only on the 

knowledge of the preferences of the receivers and their bandwidth limitations to 

select the number of streams as well as the configuration settings for multicast 

applications. Some of the simulation results provided in this chapter are partially 

(around 20 %) contributed by Y. Zhong, a group member of the Distributed 

System Research Group (DSRG). The work has resulted in the following 

conference paper: 

- K. El-Khatib, G. v. Bochmann, and Y. Zhong, “Selecting the QoS Parameters 
for Multicast Applications Based on User Profile and Device Capability", 
IDMS2001, Lancaster, UK. 

 

•  Chapter 6: Survey of Personal Mobility Architectures  

This chapter defines the requirements for personal mobility and examines a 

number of architectures that provide personal mobility. 

 

•  Chapter 7: MobInTel: Mobile Internet Telecommunication architecture 

Chapter 7 presents our communication service infrastructure, called the Mobile 

Internet Telecommunication (MobInTel) infrastructure, for supporting personal 

mobility over the Internet. MobInTel is an agent-based middleware that uses the 

framework presented in Chapter 4 and also the home directory agent concept of 

Mobile IP to achieve personal mobility. An extension to the MobInTel 

architecture to provide personal and service mobility in ubiquitous computing 

environment is also presented, implemented, and evaluated. N. Hadibi and Zhen 

Eric Zhang have contributed (around 25% both) to the implementation of the 

architecture. Work in this chapter has been published in the following papers: 

- K. El-Khatib, Zhen E. Zhang, N. Hadibi, and G. v. Bochmann, “Personal and 
Service Mobility in Ubiquitous Computing Environments", Journal of 
Wireless communications and Mobile Computing, (Accepted) to appear, 2004. 

- K. El-Khatib, N. Hadibi, and G.v. Bochmann, “Support for Personal and 
Service Mobility in Ubiquitous Computing Environments”, EuroPar 2003. 

- K. El-Khatib and G.v. Bochmann, “Agent Support for Context-Aware Services 
and Personal Mobility, MATA 2003. 

 



 16 

•  Chapter 8: Preserving the Privacy of User’s Preferences in Multimedia 

Communication 

In Chapter 8, we will identify the risks of privacy invasion of MobInTel user’s 

preferences during the setup of interactive multimedia applications. We will 

introduce three schemes to solve the problem of protecting the user’s privacy, 

with varying degree of complexity. A protocol based on distributed secure 

computation is also presented.  

 

•  Chapter 9: Conclusion and Future Work 

Chapter 9 presents the conclusion of our work, and outlines some interesting 

research topic that can be pursued in the future. 



 17 

Chapter 2 
 
Multimedia Applications and Quality of 

Service (QoS) Management 
 

2.1 Introduction 

Nobody can deny the fact that multimedia applications are becoming 

indispensable tools in many fields including academia, medicine, industry, and so many 

other fields. From entertainment to education, from shopping to personal communication, 

multimedia applications have been promising to change the way we live and do business. 

One of the most important enabling factors of multimedia applications is Quality of 

Service (QoS). 

 Generally speaking, QoS is a framework for describing the requirements of 

multimedia applications and their users, and the performance of the underlying transport 

infrastructure. QoS performance parameters for multimedia applications include the 

transmission delay, jitter, packet loss, and service availability at the network level, audio 

and video quality at the application level, and perceived user’s satisfaction at the user’s 

level. QoS management is the task of finding the right configuration and parameter 

values for all system components involved in the delivery of multimedia content. 

This chapter talks about multimedia applications in general, their classification, 

and their requirements. We will then focus on one important issue with multimedia 

applications, which is the Quality of Service issue, where we will talk about different 

levels of Quality of Service: network, application and user level, and present some 

literature review of some work already done at each level.  

 

2.2 Multimedia applications: Definition 

Multimedia applications are defined as applications that are “capable of handling 

at least one type of continuous media in digital forms as well as static media” [1]. Static 

media is any type of media that does not have time dimension, such as text and pictures, 



 18 

and their expressive content does not depend on their presentational style. Continuous 

media, in contrast, are time dependent, and must be presented in a certain well-defined 

timely fashion in order to be worthy. Audio and video media are examples of continuous 

media. 

 

2.3 Multimedia applications: Constraints and requirements 

In addition to the time constraint we have just mentioned, multimedia applications 

have other requirements including high data bit rate, service guarantees and group 

communication. We will discuss each of these requirement is details in the following 

sections. 

 

2.3.1 Temporal constraints 

As we mentioned earlier, the dynamic or continuous nature of the multimedia 

information compels some temporal constraints for the delivery. These temporal 

constraints are manifested through synchronization requirements of the multimedia 

content. Synchronization of multimedia information is required at different levels [2,3]: 

media layer, stream layer and object layer.   

Media layer synchronization, also referred to as intra-stream synchronization, is 

mainly concerned with the synchronization between the single Logical Data Units (LDU) 

of the stream. A LDU is the smallest data unit that the application can identify inside the 

stream (such as a video frame or an audio data block). The media layer synchronization 

requirement is usually expressed in terms of latency and jitter of LDU’s. 

Stream layer synchronization, also know as inter-stream synchronization, is 

concerned with the relationship among different streams, such as the synchronization 

between the audio and video streams. Stream layer synchronization is required since 

media streams in one multimedia document might be delivered to a user along different 

network paths, and hence they might encounter different delay, which necessitates inter-

stream synchronization at the receiver end. 



 19 

The object layer synchronization, also known as inter-object synchronization, 

covers the synchronization between time-dependent objects such as audio streams and 

time-independent objects such as text and still images.  

2.3.2 High data bit rate 

The high data bit rate of multimedia applications is mostly associated with the 

audio and video media. The high-resolution HDTV format High Definition TV (HDTV) 

quality stream coded with MPEG-2 requires around 20 Mbps (compressed from 1.2 

Gbps) [4], while a compressed MP3 stereo quality audio (compressed from CD audio, 

44.1 kHz, 16 bits) requires 128 Kbps and high computation power to compress. This high 

data rate and high computation requirement imposes a high level of performance 

requirement on the end-systems as well as on the underlying transmission network. 

Multimedia storage servers are not only required to have large storage capacity, but also 

high rate delivery; workstations used for multimedia applications are also supposed to be 

computationally powerful to handle large volume of data. Underlying network is also 

supposed to provide enough bandwidth and transport quality to move the data between 

multimedia end-systems. 

2.3.3 Service guarantees 

Due to the high data bit rate and the time-constraint requirements of multimedia 

documents, multimedia applications require that the underlying infrastructure and the 

end-systems be able to provide a certain level of service guarantee in order to have an 

acceptable multimedia document. Service guarantee is usually obtained through a 

reservation mechanism and a monitoring mechanism to ensure that the service 

agreements are not violated. Section 2.5.1 gives a general review of network level 

technologies that promise to provide delivery guarantees. Application level QoS 

management systems are presented in Section 2.5.2. 

 

2.3.4 Group communication 

Multimedia applications that involve more than two communicating parties can 

benefit from an infrastructure that supports group communication such as multicast and 



 20 

broadcast. This requirement is essential for group communication since point-to-point 

communication between individual pairs might be costly or not possible due to the large 

size of the group and the large volume of multimedia data. Group communications has a 

number of benefits: 

•  Reduction in system requirements since the data are read and processed only 

once. 

•  Reduction in network resources, especially when the data is transmitted only 

once, and replicated inside the network only when necessary. 

 

2.4 Classes of multimedia applications 

Generally speaking, multimedia applications can be classified into presentational 

multimedia applications, conversational multimedia applications, and messaging 

applications. Examples of presentational application are video-on-demand [5], and news-

on-demand [6]. Tele-conference [7] and collaborative services [8] are examples of 

conversational multimedia application. The Seamless Personal Information Networking 

(SPIN) [9] is an example of multimedia messaging applications. 

  

2.4.1 Presentational multimedia application 

Presentational multimedia applications are considered as one-way multimedia 

applications, where multimedia data (audio, video, graphics, and/or text) is digitally 

stored or captured on one or more multimedia servers and streamed to the receivers over 

a broadband network. In these applications, receivers can specify the data they want and 

their preferences for the quality of the delivery, and the multimedia data flows from the 

media server(s) to the receiver’s workstation. Typical applications include News-on-

Demand, distance education, and video-on-demand. Another form of presentational 

application is referred to as distribution multimedia application, where the information 

distribution is initiated by the multimedia server, and not by the receiver as with 

presentational applications. Internet-TV is an example of this class of applications.  

 



 21 

2.4.2 Conversational multimedia application 

Conversational (or interactive) multimedia applications are applications in which 

two or more users are communicating with each other in real-time. All participants in a 

conversational application may send and receive real-time data at the same time. 

Applications such as Voice-over-IP (VoIP) and video-conference belong to this class. 

Due to their interactive nature, conversational multimedia applications usually pose 

higher QoS requirements on all system components than presentational multimedia 

applications do. 

 

2.4.3 Messaging multimedia application 

This class of applications covers non-real-time, asynchronous exchange of 

multimedia data. The data exchanged between users of this class of applications is 

continuous multimedia information; it usually happens through an electronic multimedia 

mailbox and it does not require real-time transmission. The mailbox might scan, filter, 

and even trans-code and deliver the data in a different format from which it was received. 

The universal mailbox application [10] falls into this class of applications. 

Messaging multimedia applications usually do not have the real-time transport 

requirement of the presentational or conversational multimedia applications.  

  

2.5 Quality of Service: Definition and terms 

Vogel [11] defines the Quality of Service (QoS) as the following: 

 

“Quality of service represents the set of those quantitative and qualitative 

characteristics of a distributed multimedia system necessary to achieve the 

required functionality of an application”. 

 

Most people agree that in order for the Internet to be the first choice next 

generation network, it has to provide certain QoS guarantees. Even though there is no 

widely available standard to measure the QoS of a certain network, there are some 

performance attributes that could be used to measure the QoS of a system. 



 22 

Lu [1] presented a QoS model (Figure 1) that consists of three conceptual layers: 

user, application and system layer. At different layers, QoS parameters are expressed and 

measured differently. At the user layer, QoS parameters are more qualitative than 

quantitative. Typical values used at this layer include user’s satisfaction expressed for 

instance as unacceptable, bad, good, very good and excellent quality. At the application 

layer, QoS parameters are expressed in terms of application parameters such as frame 

rate, resolution and color depth. The system layer consists of several sub-layers, 

including the operating system, the transport protocol, the secondary storage, and most 

importantly the underlying network sub-layer.  At the network sub-layer, QoS parameters 

are expressed in term of throughput bandwidth, packet loss rate, packet delay, and jitter. 

In the following sections, we will discuss in details each of the layers, with a focus on the 

network sub-layer within the system layer. 

 
 

Figure 1. A conceptual model of QoS. 

 

2.5.1 Network level QoS 

When the Internet was launched almost 30 years ago, it was an experimental work 

to connect the U.S. Defense Department network (ARPAnet) and various other radio and 

satellite networks [12, 13]. The network was mainly designed to survive any partial 

outage, and the basic assumption was that the network itself is unreliable, and does not 

provide any guarantee on when it delivers the data. Today, more than 30 years later, the 

Internet still has the same architecture, and does not provide any guarantees on 

performance and reliability.  

User 

Application 

System 

Perceptual quality 

Processing and 
presentation of logical 
media units 

Processing and 
transmission of data 
packets 



 23 

But when multimedia applications began to use the Internet as a transport 

medium, a number of limitations started to surface. These limitations are the result of the 

time constraint and shear volume of multimedia data: multimedia applications have a low 

tolerance for delay and jitter, and any violation of these requirements may cause a very 

un-acceptable degradation in the quality of these applications. Table 1 [14] shows 

different types of application traffic and their requirements in terms of delay, jitter and 

loss.  

 

Table 1. Different types of traffic put different QoS demands on networks. 

Type of 
Traffic 

Bandwidth Delay 
Sensitivity 

Jitter 
Sensitivity 

Loss 
Sensitivity 

Bulk data 
transfer 

10Mbps to 
100Mbps 

Low None Low 

Transaction 
data 

Less than 1 Mbps Moderate None None 

Voice and 
facsimile 

8Kbps to 64Kbps High High Low 

Multimedia 
(voice plus 

image) 

Up to 384 Kbps 
for video 

High Moderate Low 

Video on 
demand and 
Streaming 

28.8 Kbps to 1.5 
Mbps 

Low Low Low 

 
To meet these requirements, the Internet Engineering Task Force (IETF) has 

proposed a number of solutions. Notable among these solutions are the Integrated Service 

(IntServ), Differentiated Service (DiffServ), Resource ReSerVation Protocol (RSVP), 

Multi-Protocol Label Switching (MPLS), and QoS-based routing. Each solution presents 

a different approach to deliver network level QoS for the Internet. The following sub-

sections discuss in details each of these technologies. 

 
2.5.1.1 Integrated Service 

The Integrated Service (IntServ) [15] is a standard framework designed by the 

IETF IntServ Working group. Its main objective is to provide, in addition to the Best-

effort class of service, two other classes of services: the Guaranteed service and the 

Controlled Load (or Predictive) service. These classes are based on applications’ 

requirements for delay: 



 24 

•  Guaranteed service class: provides delay-bound guarantees for applications that are 

critical and delay-intolerant. 

•  Controlled Load service class: provides a statistical delay bound guarantee for 

applications that are critical but delay-tolerant. 

•  Best-effort service class: This is the default class of service in the Internet; it has three 

subclasses: (1) interactive burst (for web similar applications); (2) bulk (for 

application like ftp); and finally (3) asynchronous (for applications like e-mail). 

 

The IntServ model was built around the basic assumption that networks resources 

must be reserved in order to provide guarantees for application requirements, and also 

that the network must be signaled to make necessary reservation. Before sending data, an 

application must request the specific kind of service from the network. A network node 

required to have four components: a signaling protocol, an admission control mechanism, 

a packet classifier, and a packet scheduler. 

An application that needs to send a data flow with some guarantees has to signal 

some information about the flow to the network. This information include the label of the 

flow (source and destination IP addresses and port numbers), the type of required service 

(Guaranteed or Controlled Load), the token bucket filter parameters (depth, token rate), 

the peak rate (p), the minimum policed unit and the maximum packet size (M). For 

Guaranteed service, the application has to also include the delay requirement. The 

IntServ working group has suggested the Resource ReSerVation Protocol (RSVP) 

(Section 2.5.1.2) as a candidate signaling protocol. 

To be able to meet the required guarantees of multimedia application, the 

transport network must also have an admission control mechanism in place. This 

admission control can determine, based on the requirements of the application and the 

currently available transport resources, whether the network can support the requested 

guarantees or not. The network must also implement packet classification, policing, 

intelligent queuing and scheduling in order to fulfill its commitments. 

The IntServ model suffers from a number of draw-backs related to its lack of 

scalability and the original model of the Internet [16], where each intermediate core 

routers of the backbone usually serves large number of flows. Such intermediate core 



 25 

router would be required to have large storage capability in order to keep information 

about all the flows it serves. In addition, this state information also has to be kept in a 

high-speed access memory, since it has to be accessed for each packet. Even with current 

prices on memory, having large size memory would increase the price of the core router. 

Another problem related to this scalability issue is that InterServ model is not fault 

tolerant; a failure of a core router would cause all the information about the served flows 

to be lost, making recovery an impossible task. The second problem with the model is the 

large overhead incurred by implementing support mechanisms for resource reservation, 

admission control mechanism, packet classifier and scheduler on each intermediate core 

router. Running all these components on each intermediate core router contradicts with 

the philosophy of the Internet, where core routers are optimized to switch packet as fast 

as possible. 

Both these drawbacks have forced the Internet community to think about other 

alternatives for providing different class of services; the effort has lead to the foundation 

of the Differentiated service model. But before we discuss the Differentiated service 

model, we will present the Resource ReSerVation Protocol (RSVP) which is usually 

considered as a companion protocol for the IntServ. 

 

2.5.1.2 Resource ReSerVation Protocol 

The Resource ReSerVation Protocol (RSVP) [16] is a signaling protocol from the 

Internet Engineering Task Force (IETF) that is used to reserve network resources along a 

path between a sender node and a receiver node. A source application can use the path 

message of RSVP to declare the specification of each flow it wishes to serve and to 

establish “path state” in the intermediate routers where multicasting is supported. Each 

receiver that is willing to receive the flow after receiving a path message can issue a 

reservation message toward the sender. Reservation messages travels toward the sender 

along the reverse path of the path message; intermediate routers use this message and 

“path state” to establish soft-state reservation for each flow. Reservation messages are 

not necessary forwarded to the source, since they can be terminated at the first router with 

sufficient resources allocated to meet the requirements of the flow reservation.  



 26 

RSVP is considered as a soft-state reservation protocol, where reservations have 

always to be refreshed. A lifetime reservation is associated with each flow, which needs 

to be always refreshed as long as the flow is still going on. Once the lifetime of the flow 

has expired, its state is removed from the node.  

Similarly to the IntServ, RSVP suffers from variable drawbacks [17], especially 

when it comes to the scalability issue. Intermediate routers are expected to handle a large 

number of flows, and hence state information and RSVP control message may impose a 

heavy storage requirement on these routers. This, as we mentioned earlier, contradicts 

with the original concept of the Internet where the state information of the flow is kept at 

the end-system [13], and nothing in the intermediate core routers. 

 

2.5.1.3 Differentiated Service  

To provide QoS support in the Internet at a coarser level than the IntServ, the 

Diffserv working group at the IETF proposed a simple and scalable architecture for 

service differentiation. The proposed DiffServ architecture [18] is based on the idea that 

applications can be classified into few categories that require different service guarantees. 

Data packets with different service or guarantee requirements can be tagged differently, 

and core router can forward each packet based on its tag.  

When a packet arrives at the ingress router of a Diffserv domain, it is tagged to 

receive a certain forwarding treatment or per-hop behavior at every intermediate network 

node. This treatment is applied basically by using a queuing and scheduling mechanism 

that provide several classes of services. The Type of Service (TOS) octet field in the IP 

v.4 header or the IP v.6 Traffic Class octet can be used as a tag for the packet. Both octets 

are commonly referred to as Differentiated Service (DS) byte. 

Diffserv is definitely more scalable than IntServ because it provides different 

services based on a tag carried by each packet, hence avoiding the complexity of storing 

per flow state information at each node. Packets are tagged only once at the entrance of 

the domain, reducing the overhead on intermediate core routers. Additionally, the 

DiffServ model does not require a signaling protocol to pass information about data flows 

to the network, which helps reducing the set up delay of these flows. Finally, there is no 



 27 

requirement for a recovery mechanism on the core routers since they do not store any 

state information. 

 

2.5.1.4 Multi-Protocol Label Switching 

The Multi-Protocol Label Switching (MPLS) [19] is a forwarding scheme that 

evolved from Cisco’s Tag Switching. Using the MPLS framework, a network can provide 

QoS by providing different classes of treatment for the packets in the network. Packets are 

assigned labels at the ingress of a MPLS-capable domain, and MPLS core routers can switch 

labels.  The label of each packet determines the classification, forwarding, and services for the 

packet. 

MPLS is usually implemented as an intermediate layer, between Layer 2 (L2, link 

layer) and Layer 3 (L3, network layer) in the OSI seven-layer model. Each MPLS packet 

has a 32-bit header, encapsulated between the link layer header and the network layer 

header. The header contains a 20-bit label, a 3-bit Class of Service (COS) field, a 1-bit 

label stack indicator and an 8-bit TTL field. An MPLS capable router has only to 

examine the label in the header before forwarding the packet.  

Figure 2. An MPLS enabled domain [20]. 



 28 

There are two types of nodes in an enabled MPLS domain: Label Edge Router 

(LER) and Label Switch Router (LSR). LER are located at the edge of the MPLS 

domain; they add or remove labels from the packets depending on the direction of the 

flow. LSR’s are core routers that switch the labels on the packets, and forward them 

according to the Forward Equivalence Class (FEC) (explained later). Both LSR and LER 

must run a label distribution protocol in order to exchange labels for each MPLS flow.  

Figure 2 shows an MPLS enabled domain with both, LER’s and LSR’s. 

In general, when a packet arrives at an MPLS enabled domain, it is assigned a 

certain label that determines the treatment the packet will receive on the next Label 

Switch Router (LSR). The label could be either embedded in the header of the data link 

layer (when using ATM or frame-relay at the link layer) or in the shim between the data 

link header and the network header. Labels have fixed size and can be easily 

implemented in hardware to provide higher performance. The packet is then forwarded to 

the next LSR, where the label is switched to another label and the packet is forwarded 

down the path until it exits the domain. The path followed by the packet is called a Label 

Switch Path (LSP) and it can be shared by all the packets that are assigned the same label. 

These labels are established among the LSR using the Label Distribution Protocol (LDP) 

[21], the Resource ReSerVation Protocol (RSVP) or even piggybacked with other routing 

protocol such as the Open Shortest Path First [22] or Border Gateway Protocol [23]. LDP 

defines four types of messages: (1) discovery messages, used to announce the existence 

of LSR in the network; (2) session messages, used for session management between 

adjacent LSR’s; (3) advertisement messages, used for the creation and modification of 

FEC-to-label mapping, and finally (4) notification messages, used for advisory and signal 

error information. 

The Forward Equivalence Class (FEC) is a representation for the group of packets 

that are given the same treatment on the LSR. This FEC could be based on any 

combination of the IP source address, IP destination address, source port number, 

destination port number, delay and jitter requirements, Class of Service (CoS), traffic 

engineering requirements or any other criteria. The binding of FEC-to-label is stored in 

the Label Information Base (LIB) table and is done only once at the ingress LER. In 

addition to the FEC-to-label mapping information, the LIB also contains the mapping 



 29 

between incoming and outgoing label. When an LSR receives a packet, it replaces the 

label in the packet with the corresponding outgoing label from the LIB. Table 2 shows an 

example of a LIB.  

 

Table 2. Label Information Base 

Input Port Incoming Label Forward 

Equivalence 

Class 

Output Port Outgoing 

Label 

1 9 128.89 1 4 

2 8 171.69 0 5 

… … … … … 

 
Other than forwarding packets according to their label, MPLS can provide label 

merging, tunneling, and explicit or source-based routing. Label merging is used when 

packets arriving from different sources and destined to the same destination, have the 

same FEC. All these packets will be assigned the same outgoing label. Additionally, 

using a label stack mechanism [24], MPLS can provide tunneling by inserting a stack of 

labels in each packet. An LER would then pop/push a label out/into the label stack of the 

packet. MPLS can also be used as an explicit routing protocol [25], where an LER can 

compute the LSP for the packet, and insert the full path labels into the packet.  

 

2.5.1.5 Constraint-based routing 

Generally speaking, a resource reservation process consists of two phases: 

resource finding phase and resources reservation phases. The resource reservation phase 

depends on the resource finding phase to find a path with sufficient resources that meet 

the requirements. Finding the path is typically the task of the routing protocol. 

Traditional routing protocols for the Internet (OSPF, RIP, BGP…) use a single metric 

such as path length, delay or cost as a selection criteria, and use the shortest path 

algorithm to compute the best available path between two nodes. But multimedia 

applications have stringent requirements, as we mentioned earlier, due to the temporal 

constraints and the sheer volume of data, which makes the task of finding a path that 



 30 

meet requirements a very challenging task. Algorithms for finding a path satisfying a 

number of QoS constraints are called QoS routing algorithms.  

QoS routing is a complex problem, which might not have polynomial-time 

routing algorithms [26]. A simple route search problem called the “shortest weighted-

constrained” path was listed in [27] as an NP-complete problem. The same problem was 

also studied in [28], where the authors proposed two approximation algorithms to solve 

the problem in pseudo polynomial-time or polynomial time, but with additional 

constraints on the domain of length and weight values. Wang et. al. [26] looked at the 

complexity of finding a path subject to multiple constraints, and proved that the problem 

of finding a path subject to two or more constraints on delay, delay jitter, cost and loss 

probability is NP-complete. They showed though, that the combination of bandwidth and 

any of the four metrics is a feasible combination, and presented three polynomial-time 

algorithms for finding paths subject to the two constraints. Similarly, a distributed 

heuristic solution for the delay-constrained least-cost path problem was also proposed in 

[29]. 

Constraint-based routing has a number of Pros and Cons. On the Cons side, 

constraint-based routing incur additional communication and storage cost to collect, store 

routing information. It also incurs additional computational cost to compute paths that 

satisfy the given constraints. On the Pros side, constraint-based routing can improve 

network utilization and also deliver better quality by finding communication paths that 

meet the QoS requirements data flows. 

 
 
2.5.2 Application level QoS  

Although QoS Management architectures such as Intserv [15], Diffserv [16], and 

MPLS [19] have been proposed for some times, their introduction to the Internet has been 

slow and dreadful.  These solutions have concentrated on the network and transport 

layers and have been judged to be cost deficient and very slow on financial return [30]. 

Even when new network devices are shipped with different techniques for providing 

QoS, only few enterprises have switched these options on. The major problem, expressed 

by Drucker [31], is that “you really need to be a rocket scientist to understand how these 

parameters work and how they interact with each other across your network”. 



 31 

To make QoS management simpler and comprehensible, a set of QoS aware 

systems [32,33,34,30,35] have been developed. These systems allow multimedia 

applications to adapt to the variation in QoS characteristics of the underlying network. A 

QoS manager of the applications considers all the different possible system 

configurations and selects the most appropriate configuration, depending on the desired 

QoS and the available resources.  

For these systems, the QoS parameters reflect the data units of the media such as 

the frame rate, resolution, and color quality for video streams, and sampling rate, bits per 

sample, and loudness for audio stream quality. A QoS manager translates the application 

level QoS requirements into network level QoS requirements, and negotiates with the 

local network resource manager to reserve the required resources. 

In addition to being able to adapt to variation in network resources, these systems 

must have a proper triggering mechanism that can determine when to initiate the 

adaptation process. This trigger mechanism also depends on monitoring the environment 

in order to detect the right conditions to trigger adaptation.  

 

2.5.3 User level QoS 

Although significant research has been carried out into network and application 

level QoS for multimedia communication [15,16,19], few research works have 

investigated the QoS and its contributing factors from the user’s perspective. Traditional 

QoS metrics at the network level such as delay, jitter, bandwidth, buffer size and 

response time cannot sufficiently describe the quality of service as perceived by users.  

Most researchers in the field of user level QoS agree that user level QoS 

parameters must not include technical details in describing QoS as perceived by the user. 

They also agree that there is a lot of subjectivity and context relevance associated with 

the user’s perception of the QoS of a multimedia presentation [36]. For instance, within 

the RACE architecture [37], user level QoS was described in terms of: “a set of user-

perceived characteristics of the performance of a service. It is expressed in user-

understandable language and manifests itself as a number of parameters, all of which 

have either subjective or objective values”. In [38], the authors defined the user-level 

QoS for video data as very fast, fast, normal, slow and very slow for the frame rate, and 



 32 

very high, high, medium, low and very low for the resolution. A similar classification is 

also used in [39]. Another approach termed as “Query by example” was presented in 

[40], where the user determines the required QoS by viewing samples of predefined 

qualities. 

An interesting approach for mapping between user-perceived QoS level and 

application QoS level and for selecting the best combination of application QoS level 

parameter values for communication sessions based on quantifying the user level 

preferences is described in [41]. The paper considers several QoS parameters (xi) 

representing different aspects of the quality of various multimedia components and 

computes the user’s appreciation of these parameters. The user’s appreciation is 

expressed by a “satisfaction function” gi which determines the “satisfaction” value si of 

the user as a function of the value xi of the corresponding parameter, (i.e. si  = gi (xi)). The 

range for the satisfaction function lies between zero and one (as indicated in Figure 3), 

which correspond to the minimum acceptable value (M) and an ideal value (I) for the 

parameter xi.  

Figure 3. Example of the mapping function determining the user satisfaction depending on the value of a 
QoS parameter 

 

In the case when there is more then one QoS parameter, the total satisfaction totS  

of the user with all the parameters was computed as the combination of the individual 

satisfaction functions. The authors proposed a combination function fcomb, which 

determines the total satisfaction totS from the satisfaction si of the individual parameters 

as follows: 

0 

1 

Application Parameter 

M 
(Minimum accepted) 

I 
(Ideal) 



 33 

∑ =

==
n

i
i

ncombtot

s

n
ssssfS

1

321 1
),,,( K   (Equa. 1) 

fcomb has the following properties:  

•  One individual low satisfaction value is enough to bring the total satisfaction 

to a low value. This property of the function is essentially saying that if the 

user is not satisfied with one of the parameters, then he/she is not satisfied in 

total. 

•  The total satisfaction of equal individual satisfactions si is equal to the 

satisfactions si.  

In Chapter 4, we will present an extension to this approach to add weights to 

different satisfaction functions and to compute total satisfaction for sessions with 

multiple users. 

In addition to the qualitative QoS metrics, most users would wish to restrict the 

amount of resources used in order to reduce the incurred cost. Without the notion of cost, 

a user would not have any incentive to specify anything less than maximum quality 

[42,43]. The user’s specified cost is strongly related to the user’s perceived quality: a user 

that is charged a certain amount of fee can expect to be rewarded and offered a good to 

excellent quality, while a user usually expect an acceptable to good quality when he/she 

is not charged for the service.  

For the rest of the section, we will present some of the general work done on user-

level QoS. 

 Bhatti et. al. [44] studied the effect of latency on the user’s subjective perception 

of quality. The work studied the users’ tolerance to delay when loading web pages in the 

context of e-commerce. The study found that contextual factors such as the task the user 

is engaged in or the method of loading the page affects the acceptance of web services. 

The study also found that the tolerance for delay is also influenced by the user’s 

conceptual model of how the Internet works. For instance, users that are aware of the 

local caching concept were less tolerant to delay when re-visiting already visited pages. 

Findings from the study were incorporated in the design of web servers, in order to allow 

them to serve the highest number of requests and still maintain a high utility to the user. 



 34 

Ghinea et. al [36] investigated the effect of frame rate on the user’s satisfaction 

and on the capacity of the user to understand, analyze and synthesis the content of the 

presentation. The authors conducted several experiments with different frame rates and 

different video categories, and concluded that a reduction in frame rate does not 

proportionally reduce the user’s understanding and perception of the content.  

Mcllhagga et. al. [45] talked about the relation between the user’s preferences and 

application adaptation. The authors argued that while adapting to changes in system 

resources is generally considered as a system level problem, the effect of the adaptation is 

usually visible by the user, and hence the user must always be involved in selecting the 

adaptation that best suit him/her. The authors presented a number of design choices that 

the designer of an adaptive application should consider during the design phase. These 

design choices include building open implementations of the application components 

with an interface to enable their customization. Other design issues include the degree of 

transparency in the adaptation and the degree of freedom in the degradation trajectories. 

Hafid et. al. [46] stated that any QoS management function in a multimedia 

system should take into account the cost to be charged to the user when selecting among 

several possible system configurations. Users of the system were asked to specify their 

QoS for the requested multimedia document and the cost that they are willing to pay. In 

addition, users were able to specify an importance factor on each QoS parameter and on 

the cost also. For instance, assigning an importance value for the cost that is higher than 

the over-all average importance of all QoS parameters means that the user cares more 

about the cost charged to receive a multimedia document than about the quality of the 

document.  Offers from the system are classified first according to whether they meet the 

minimum required QoS parameters into three classes: DESIRABLE, ACCEPTABLE, 

and CONSTRAINT. In each class, offers are then ordered according to the importance of 

the QoS parameters relatively to the cost of the offer. 

 

2.6 Conclusion 

The field of multimedia communication is a new field of communication and has 

been on the growth in the computer environments. In this chapter, we have introduced 

these multimedia applications, and described their classification and challenges. To 



 35 

capture and provide guarantees for the requirements of multimedia applications,  QoS 

frameworks has been used at different layers, including the system, application, and user 

layer. Transport QoS is a part of system QoS that has attracted wide attention in the 

research community. In this chapter, we have described the most promising QoS models 

for transport QoS, including Integrated Services, RSVP and Differentiated Services. We 

have highlighted their characteristics, mechanisms, and problems. We have also 

described MPLS and Constraint Based Routing, and do how they fit into the big QoS 

framework. 



 36 

Chapter 3 
 

Voice-over-IP and Supporting Protocols 
 

 

Communicating voice traffic over the Internet is part of the vision to make the 

Internet a “one-stop network”. Many companies foresee that Voice-over-IP has the 

potential of reducing the cost and enabling advanced multimedia services. For the past 

few years, challenges have been focusing on adopting standards and on designing 

terminals and gateways to support Voice-over-IP. In this chapter, we will focus on the 

major enabling signaling protocols for Voice-over-IP, mainly H.323 and SIP. Other 

Voice-over-IP supporting protocols are also reviewed.  

 

3.1 Introduction 

The ability to use the Internet for carrying voice traffic, known as Voice-over-IP, 

has generated a lot of interest during the last decade. When it started, the main driver was 

to reduce or totally eliminate the cost on long distance calls over the Public Switched 

Telephony Network (PSTN).  With Voice-over-IP (VoIP), users are able to run their 

voice traffic over the Internet, bypassing the long-distance carriers with their per-minute 

usage rates.  In addition, corporations that have two separate physical networks for voice 

and data usually incur high cost by having support staff to maintain and support the 

hardware and software of two networks. Integrating both voice and data networks into 

one-stop packet network offers big saving opportunities for these corporations.  

But the deregulation of the telecommunication industry and the advance in optical 

communication enabling high capacity transport have led to big cuts in the cost of long 

distance calls over the PSTN, and left Voice-over-IP advocates looking for new drivers to 

renew interest in their work. The new promises came in the easiness of the Internet as a 

service environment for creating and deploying new services very quickly to meet the 

demand of the clients. Such a service environment also has the potential to combine voice 

and data application to provide a new generation of services. 



 37 

Research on standardizing signaling protocol for VoIP has led to the foundation of 

two signaling protocol: H.323 and SIP. Other supporting protocols like the Real Time 

Transport Protocol (RTP), Megaco and the Service Description Protocol are also 

described in this chapter. 

 
3.2 Voice-over IP: What is it? 

Voice-over-IP (VoIP) is an application that allows data packet networks like the 

Internet to transport real-time voice traffic. At the sender side, the voice signal is 

digitized, compressed and then divided into multiple payloads, each carried in a separate 

data packet. The reverse process in used at the receiver side, with some additional work 

to put the packets in the same order they were sent. The receiver might also need to use a 

buffering management technique to remove the jitter effect from the data stream. 

 

3.3 Benefits of VoIP 

The widespread of VoIP is an indication of the potential benefits of the technology. 

These benefits can be summarized into: 

- Cost saving: As we mentioned earlier, one of the big motivations for VoIP was 

the cost saving as a result of eliminating the charges of the long-distance carrier. 

VoIP users may only pay a monthly flat fee for their Internet Services Providers 

(ISP). For big business corporations, VoIP allows them to consolidate traffic from 

voice and data traffic into one network, hence saving on the staffing and 

equipment cost. 

- Introducing new service simply and rapidly: The Internet has changed the way 

service providers creates and provide services. With its openness, user-

friendliness, higher flexibility and user-side customization, the Internet has made 

it easy and rapid to introduce new services. Providing new services on the Internet 

is as easy as running an application server on a machine connected to the Internet. 

This easiness in service provision may result in multiple service providers 

contending to provide similar services at competitive price resulting in cost saving 

and better services for the end-user. 



 38 

- Creating advanced services: while making telephone calls and sending facsimile 

data over the Internet are the first applications for VoIP, it is not hard to imagine 

the advanced services that can provided with VoIP. The increased intelligence and 

highly elaborated user interface of end devices, combined with benefits of VoIP, 

can provide a riche environment for a large number of new services. Multimedia 

and multi-services applications are the first applications to benefit from VoIP. 

Services such as VoIP-conference, registering session content for later review, 

using shared whiteboard application, or even access to a call agent center from a 

web page, are much easier to implement with VoIP.  

 

3.4 Issues with VoIP 

While VoIP has a number of advantages such as reduced cost and bandwidth 

savings, it is still plagued by a number of problems that are unique to packet network, 

mainly the lack of QoS support in the Internet, billing, inter-working and transparency of 

operations.  

 

3.4.1 Lack of QoS support in the Internet 

The Internet is a packet network that was originally designed to transport data and not 

voice traffic. Major quality requirements for VoIP such as low delay, jitter, and packet-

dropping still cannot be guaranteed over the Internet. We will next introduce each of 

these parameters, and outline their sources and effect on VoIP. 

- Delay: Between the time the voice signal is sampled by the voice recorder and the 

time it is played by the player, voice data experiences delay from different sources 

including: accumulation delay, packetization delay and network delay. The 

accumulation delay is the time it takes the voice coder to collect enough data to make 

one data packet. This delay is a function of the sampling rate and the type of voice 

coder used. When the data for one packet is complete, the voice coder takes some 

time to compress the data and encapsulate it into a packet. This time is called the 

packetization delay. After that, the packet is sent into the network, where it incurs 

what is called network delay, as a result of the queuing and processing time of the 



 39 

packet at each intermediate network node. Network delay is the largest delay a data 

packet is subject to. 

A large delay value can lead to two problems: Echo and Talker Overlap. Echo 

happens when the round trip delay of a packet is larger than 50 milliseconds, and it 

results in the speaker hearing an echo of his conversation. For networks that have 

delay larger than the 50 milliseconds, echo cancellers are usually used. When the 

round trip delay is larger than 250 milliseconds, voice from both speakers will start to 

overlap, making the connection worse than a half-duplex connection. 

- Jitter: Since packets in a packet-based network might travel along different paths 

between the sender and the receivers, successive packets might experience different 

delays in the network, and they might event reach the destination in a different order 

from the order they were sent. This variation in delay is referred to as jitter. To 

remove jitter, a buffer is usually used at the receiver end. Packets are stored and 

played with a constant delay, removing or reducing the jitter. While a buffer can 

reduce and even eliminate the jitter, the buffering time adds to the total delay the 

packet experiences, and therefore it is not a satisfying solution for interactive 

applications like VoIP. 

- Packet Dropping: since the Internet uses the IP protocol which is a best effort 

protocol, packets might be dropped due to congestion at intermediate nodes. 

Transport protocols like the Transmission Control Protocol (TCP) [47] are usually 

used to provide transmission reliability by re-transmitting packets that are lost in the 

network. While data packets are not time sensitive and can be re-transmitted, voice 

packets cannot be retransmitted and are useful only if they arrive on time to their 

destination. Few techniques have been developed to mask the packet-dropping 

problem, including playing the last packet received for a longer time, or adding some 

redundant information to the stream to reconstruct lost packets. Both of these two 

schemes cannot solve the problem of burst packet dropping. 

 

A number of efforts on QoS enhancements for the Internet have been and still going 

on. Technologies such as the ones we introduced in Chapter 2 include Integrated Service 

(IntServ) (Section 2.5.1.1), Differentiated Service (DiffServ) (Section 2.5.1.3), Multi-



 40 

Protocol Label Switching (MPLS) (Section 2.5.1.4), and Constraint-based routing 

(Section 2.5.1.5) are all promising technologies to solve the problem of QoS in the 

Internet. One of the major problems with these technologies is that they must be 

implemented in all the crossed domains between the end-points.  

 

While these technologies provide solution in the long term, other alternative solutions 

such as QoS real-time reporting and QoS-based management can provide solutions for 

the short-term. Service providers use QoS-real time reporting to do QoS-based routing, 

where only the routes that provide the required QoS are selected for the service. Also 

QoS-real-time reporting can help to provide QoS-real time provisioning, where extra 

bandwidth is provided on-demand, and in real time. 

Still another alternative solution to the QoS problem for VoIP is bandwidth over-

provisioning. A number of service providers find that QoS-enabling technologies are not 

easy to understand and implement, and it is easier to add extra bandwidth to their network 

than building any QoS-enabling technologies into the network nodes. This direction has 

seen wide acceptance especially with the advance in optical networks and especially 

research on Dense Wave Division Multiplexing (DWDM). 

 
3.4.2 Billing 

Currently there is no standard for the tariff structure for VoIP, but something sure is 

that it is definitely different from that of the PSTN. In the PSTN, each connection 

requires the reservation of a complete circuit for the connection, and the user is charged 

for the duration of the connection, not based on the amount of data exchanged during the 

connection. While a connection based tariff structure could be used for VoIP, a per-

packet tariff structure is more natural for voice over packet, since the packet is the base of 

communication. Implementing a per-packet billing system requires though the VoIP 

providers to have a more complex measuring and billing management software in place. 

Having such a complex billing system might not be possible because of the promise of 

cheap VoIP communication. Additionally, the tariff structure should also consider the 

case where a connection crosses different networks with different tariff structures, like 

between the PSTN and the Internet. 



 41 

 

3.4.3 Inter-working and transparency of operation 

The Internet is not the only type of packet network to provide VoIP service. ATM 

and Frame-Relay can also be used to carry voice traffic. Inter-working between all these 

types of networks and especially inter-working with the circuit-switched network (PSTN) 

raises a number of issues including data and signal trans-coding. This inter-working 

should also be completely transparent to the user, since what is important to the user is to 

get a connection with a quality comparable to the quality provided by the PSTN network, 

and at a lower cost. 

 

3.5 VoIP signaling protocols 

VoIP signaling protocols are needed to set up and tear down VoIP communication 

sessions between parties. They are also required to provide facilities to locate the users 

and negotiate capabilities and media encoding between the end devices. Two standards 

have emerged as the main signaling protocol for VoIP: H.323 [48] from the International 

Telecommunication Union (ITU) and Session Initiation Protocol (SIP) [49] from the 

Internet Engineering Task Force (IETF). We will present all the details of these protocols 

in the following sections, and compare them at the end. 

 

3.5.1 H.323 

H.323 is the ITU recommendation for packet based multimedia communication 

systems. It provides an umbrella of protocols for voice, video, and data conferencing over 

packet-based networks such as the Internet. Basic H.323 includes protocols for point-to-

point audio communication between two terminals over a packet network that does not 

provide any guarantees in quality of service. H.323 includes H.225 [50] for the core 

messages definition, H.245 [51] for the media control, H.235 [52] as a security 

framework, H.450.x for supplementary services (namely call transfer and call diversion), 

and H.332 [53] for large group conference control.  

Although basic H.323 can operate between peer H.323 terminals, other components 

can be used to provide additional functionalities. These components include Gatekeepers 

used for policy management and address resolution, Gateways that allow for network 



 42 

boundary crossing, and Multipoint Control Unit (MCU) for multiparty conference 

control. All these components: Terminals, Gateways, Gatekeepers, and MCU are referred 

to as endpoints in H.323. Figure 4 shows an environment with all H.323 components. The 

description of each of these components is introduced below.  

 

 

Figure 4. H.323 environment 

 
3.5.1.1 Terminal 

An H.323 terminal is any device that is capable of establishing and maintaining an 

H.323 connection. A terminal can be a simple black-box, an H.323 enabled telephone 

device, or a Personal Computer (PC). All H.323 terminals must have support for audio 

communication (codec G.711) with optional support for video communication. H.323 

terminals must also support the H.225 call control and admission control. They must also 

support the H.245 protocol for capability exchange and media support. 

 

3.5.1.2 Gatekeeper 

A gatekeeper is mainly responsible for admission control and address resolution. 

Within each administrative domain, all H.323 endpoints can register their addresses with 

the gatekeeper. When a terminal is ready to place a call, it asks for the help of the 

gatekeeper to resolve aliases to transport addresses. If the Gatekeeper is not present, the 

terminal has to do this address translation itself. The gatekeeper might also enforce the 

domain policy during this phase. In addition, a gatekeeper may also provide additional 

advanced services such as dynamic routing to gateways and telephony-like services such 



 43 

as call-blocking and call-forwarding; providing these services requires that all control 

messages exchanged between the terminals be routed through the gatekeeper. 

 

3.5.1.3 Gateway 

 An H.323 gateway is an endpoint that allows H.323 devices to communicate with 

non-H.323 devices. Located at the crossing point between H.323 enabled domain and 

other non-H.323 domain such as the Public Switched Telephone Network (PSTN), a 

gateway provides the following functionalities: 

- Call control protocols translation from H.225.0 signals to other call control 

signals, 

- Media description translation: such as H.245 signals to other similar protocols, 

- Media encoding translation, and 

- Media serialization translation. 

 

3.5.1.4 Multipoint control and processing unit 

 The Multipoint Control Unit (MCU) enables the establishment and control 

of a multiparty conference session. The MCU can be a stand-alone device, such as a 

workstation, or integrated into a gateway, a gatekeeper or even a terminal. It has two 

components: the multi-point controller (MC) and the multi-point processor (MP).  The 

multi-point controller handles the call control and signaling for conference support. It 

also allows easy join-leave operations for the conference group members. The multipoint 

processor provides the audio and video mixing for the participants. It also provides the 

trans-coding functionality that allows participants with different capabilities to participate 

in one conference. 

 

3.5.1.5 H.323 protocols 

As we mentioned earlier, the H.323 protocol is a collection of other protocols, 

mainly: H.225 RAS for call signaling, registration, admission and status, H.245 for 

capability exchange and media control, and RTP/RTCP for data transport.  



 44 

Figure 5 shows all these protocols with the underlying transport protocols. We 

will briefly introduce the H.225 and H.245 protocols in the following subsections. 

RTP/RTCP is explained later in Section 3.6.1.  

 
Figure 5. H.323 protocol stack 

 
3.5.1.5.1 H.225.0: Call admission and call control 

The H.225 protocol contains all the message definition required for the basic 

operations of H.323 endpoints. It includes two sub-protocols: Registration, Admission, 

and Status (RAS) protocol and the call signaling protocol derived from the Q.9311 

protocol.   

 

3.5.1.5.2 RAS protocol: Registration, Admission, and Status 

The RAS protocol is mainly used by the endpoints during the discovery of 

gatekeepers, endpoint registration and information exchange. An endpoint uses the RAS 

protocol to ask for the permission of the gatekeeper to acquire network resources. When 

the endpoint releases these resources, it informs the gatekeeper about the release of 

resources using the RAS protocol. The gatekeeper also uses the RAS protocol to acquire 

about the status of the endpoint. 

 

3.5.1.5.3 Q.931: Call signaling protocol 

The call signaling protocol for the H.323 protocol is derived from the Q.931 

signaling protocol used in the ISDN networks with few modifications. Q.931 messages 

                                                 
1 Q.931 is the control signaling protocol for the ISDN 

 



 45 

are used between the caller and callee to exchange call setup request, call provisioning 

(e.g. ringing) as well as the final response to the call setup.  

 

3.5.1.5.4 H.245: Media control protocol 

Using the Q.931, H.323 terminal establish separate channel used to exchange 

H.245 control messages. These messages are used to negotiate and establish all the media 

channels between the endpoints. Messages exchanged in the H.245 protocol provide the 

following functionalities: 

- Master-slave determination: in order to provide more authorities to one 

endpoint, such as breaking ties. 

- Capabilities exchange: Before endpoints in H.323 agree on a common media 

format, they have to exchange their capability sets. This allows the endpoints to 

agree on number of media channels to open, the bit rate of each channel, the 

media encoding, and other parameters. Endpoints can re-negotiate these 

parameters at any time during the session. 

- Media channel control: Before the media data is sent between the endpoints, 

endpoints must open one or more logical channels between each other. These 

logical channels are unidirectional channels, and one or more logical channel 

could be mapped into one transport channel. 

- Conference control: The conference control messages allow participants of a 

conference to know about other participants in the conference determine a 

common suitable capability set for all participants and establish logical channels 

between all endpoints. They are also used for other functions such as floor control 

and chair control. 

 

3.5.2 Session Initiation Protocol (SIP) 

The Session Initiation Protocol (SIP) is the IETF signaling protocol for 

establishing real-time calls and conferences over packet networks. SIP is used to initiate, 

manage, and terminate communication sessions over the Internet. Personal mobility is a 

focal part of the SIP architecture. SIP also can be easily customized to provide Intelligent 

Network (IN) services such as call blocking, call forwarding, and call waiting. The SIP 



 46 

protocol borrows a lot of techniques from other Internet protocols, such as the use of 

HTTP-like message format, email-like addressing scheme, and the Domain Name Service 

(DNS) infrastructure to locate SIP servers. 

 

3.5.2.1 SIP main entities 

The SIP architecture is a client/server architecture, where a SIP client sends a request to a 

SIP server, and waits for the answer.  The main entities in SIP are the User Agent, the 

SIP Proxy Server, the SIP Redirect Server, and the SIP Registrar.  

 

3.5.2.2 SIP User Agent 

 A SIP User Agent (UA) is an application that initiates and terminates SIP calls. It 

functions as a client, User Agent Client (UAC), when initiating SIP calls, and as a server, 

User Agent Server (UAS), when receiving SIP calls. UAC and UAS can communicate 

directly with each other, or through SIP Proxy Server and SIP Redirect Server. 

 

3.5.2.3 SIP servers 

 SIP has three types of servers: SIP Proxy Server, SIP Redirect Server, and SIP 

Registrar. Even though a UAC can contact the UAS directly if it knows the current 

address of the callee, a SIP request might travel through several SIP servers before it gets 

to the UAS. Each intermediate server can act on the message and provide additional 

services. 

 A SIP proxy server acts in a similar fashion to an HTTP proxy server. It forwards 

the request from the client to another SIP server or to the User Agent. A SIP proxy server 

might keep some information that could be used for tracing, accounting or billing. 

 A SIP Redirect Server never forwards a SIP request. It always responds to a 

message request with a set of new addresses for the callee. The User Agent can use this 

information to try to communicate with the callee at any of the returned addresses. 

Any SIP Proxy Server or SIP Redirect Server might use a location service to 

forward a request or redirect the caller to another location. Users can customize their 

tracking locations by continuously updating their information in the location service, 

independently of SIP. SIP has though one mechanism to allow SIP users to modify the 



 47 

content of the location service through the SIP Registrar. A SIP Registrar is a server that 

accepts SIP REGISTER messages sent by SIP clients to inform the Registrar of 

modifications in the address. A SIP Registrar stores this information and makes it 

available through a location service. 

 

3.5.2.4 SIP addressing 

 SIP addressing scheme is similar to the e-mail addressing scheme. A SIP address 

is of the form of user@host, where the user part is a user name or a telephone number. 

The host part is a domain name or a numeric IP address. Examples of SIP URL’s are: 

 sip:information@gc.ca   (host independent) 

 sip:information@infoserver.gc.ca  (host dependent) 

 sip:+1-888-521-6000@nrc.gc.ca 

 

3.5.2.5 SIP operations models 

 To place a call, the caller’s SIP user agent client must have already the SIP URL 

of the callee user agent. In case the host part of the SIP URL contains an IP address, then 

the invitation message is sent directly to that IP address, otherwise the SIP user agent 

uses the service of DNS to search for the IP address of the SIP server of that domain, and 

then the invitation is sent to that address. A SIP server that is serving the domain where 

the callee resides translates a host independent address to a host dependent address and 

forwards the invitation to the host where the user is currently logged on. The SIP server 

might use the service of a location service to forward or redirect the request to another 

SIP server. 

The basic operation model in SIP involves a SIP user agent client sending an 

INVITE message to a SIP user agent server. The SIP user agent server might either 

decline the invitation by sending an error message to the client, or accept the invitation by 

sending an “OK” response. In the later case, the user agent client should send an 

acknowledgment message “ACK” to the user agent server and the session is established. 

At any time, any of the two user agents can terminate the session by sending a “BYE” 

message. 

 



 48 

3.5.2.5.1 Proxy operation model  

 As we mentioned earlier, it is possible for a SIP request to travel through one or 

more SIP Proxy Servers. A SIP Proxy server can use some addressing information in its 

cache or through the location service to forward the request to a new address. It is 

important to mention here that while the request and respond messages might travel 

several proxy servers, the data is sent directly between the caller and callee applications, 

without going through the same proxy servers. 

 

3.5.2.5.2 Redirect operation model 

When a SIP Redirect server receives a SIP request message, it searches its cache 

or contacts a location service to find information about the current location of the callee. 

This information is then sent back to the SIP user agent who can decide how to progress 

with the call.  

 

3.5.2.6 SIP messages 

SIP is a text-based protocol with a coding format very similar to the HTTP 

protocol. A SIP message is either a request message from the UAC to the UAS or a 

response message from the UAS to the UAC. Request messages are used to initiate, 

confirm, modify and terminate calls. They are also used to modify the registered location 

of the user. Table 3 shows all the request methods that could be used in a request 

message.  

Table 3. SIP request methods 

Request Method Usage 
INVITE Initiate a session. 
ACK Confirm the receipt of an OK message. 
BYE Terminate a session. 
CANCEL Cancel a session during the establishment phase. 
OPTIONS Find out what are the supported features. 
REGISTERED Register a new location with the Registrar. 

 
 

Response messages are sent from the UAS to the UAC to communicate either 

provisional responses such as “Trying” or “Ringing”, or final responses such as 



 49 

“Success”, “Server Busy” or “Moved Permanently”. Each response message has two 

special header fields: the Status-Code field and the Reason-Phrase field. The Status-

Code field contains a three-digit number that represents the result of the request message. 

The Reason-Phrase field gives the description of the status, which can be displayed to 

the user. Table 4 shows the entire SIP response categories with some example Reason-

Phrase.  

Table 4. Response Status-Code and Categories 

Status-
Code 

Category Reason-Phrase example 

1xx Informational Trying, Ringing, Queued 
2xx Success OK 
3xx Redirection Moved Permanently, Moved Temporarily 
4xx Client Error Bad Request, Method Not Allowed, Too Many Hops 
5xx Server Error Not Implemented, Service Unavailable 
6xx Global Failure Busy Everywhere, Does not exist anywhere 

 
 
3.5.3 Comparison of H.323 and SIP 

Both SIP and H.323 have gained wide acceptance in the world of VoIP. While 

both SIP and H.323 use RTP for the data transfer, each standard has defined its own 

signaling protocol stack that is completely different from the other. Below, we list some 

of these differences between both standards. An extensive comparison between the two 

protocols can be found in [54,55]. 

- Call setup: in contrast with SIP, H.323 v.1 and v.2 used TCP connection for the 

transfer of the call setup messages, and this increased the call setup delay. H.323 

v.3 dropped this requirement, and hence it became similar to SIP. 

- Capability set negotiation: capability set negotiation is included in both signaling 

protocols to ensure that both end points can understand each other’s data and 

control signals. While the H.323 has specified the H.245 as the protocol used for 

exchanging capabilities between endpoints, SIP has more freedom on using any 

capability exchange protocol. While the Session Description Protocol (SDP) is 

mostly used with SIP, SIP can be the delivery protocol for any other capability 

exchange signaling protocol; this make SIP more generic and hence more flexible 

to support applications other than VoIP. 



 50 

- Call setup delay: The call setup delay is defined in [54] as “the number of round 

trips needed for establishing audio communication between the call participants”. 

SIP requires 1.5 round trips to establish a session. H.323 v.1 requires 6 - 7 round 

trips, while H.323 v.2 reduced this number to 3 for a session that can only support 

G.711 audio media type. This number of round trips includes the TCP connection 

round trips. H.323 v.3 uses the User Datagram Protocol (UDP) [56] as the 

transport protocol, and so it reduced the number of round trips to 1.5 or 2.5, 

depending whether a gatekeeper is used or not. This is similar to the SIP call setup 

delay. Even though H.323 v.3 uses the UDP as the transport protocol, it 

establishes in parallel a TCP connection between the two endpoints, which 

reduces the call setup delay in case the transfer over UDP was not successful. SIP 

tries using UDP and TCP connections sequentially. 

- Loop detection: Loop detection is used to prevent control messages from 

traversing the same node more than one time. SIP uses the via message header 

where each SIP server adds its address to the header. In case a server finds that its 

address is already included in the via header, the message is not forwarded, and an 

error response (“loop detected”) is sent back to the originating user agent. H.323 

v.1 and v.2 do not have any loop detection mechanism, while H.323 v.3 has added 

the PathValue field to indicate the maximum number of gatekeeper a control 

message can traverse. While this mechanism does no detect loops, it can prevent 

infinite loops. Determining the right value for PathValue is still a question 

though. 

- Protocol complexity: one of the major advantages of SIP is its simplicity that 

allows it to be implemented on small devices with limited computation capability. 

H.323 is composed of several protocols (H.225, H.245, H.235, H.246), which 

makes it more complex and less appealing to use on small devices. 

- Conference support: Unlike the H.323, the SIP protocol does not define any 

conferencing control unit for conference control. A conference controller can 

though be easily implemented as a SIP user agent. A number of conference 

models supported by SIP are presented in [57]. 

 



 51 

3.6 VoIP supporting protocols 

In addition to the two main signaling protocols, SIP and H.323, there are other 

protocols that are used to fully establish VoIP and other multimedia communication 

sessions. Typical examples of these protocols are the Real-time Transport Protocol (RTP) 

and Real-time Control Protocol (RTCP) for the data transport, the Real-time Streaming 

Protocol (RTSP) for controlling the delivery of streams, the Session Announcement 

Protocol (SAP) for advertising multimedia session, the Session Description Protocol 

(SDP) for the description of the multimedia sessions, and the Media Gateway Control 

Protocol (MGCP) to control a media gateway from a controller agent. The following 

sections describe each of these supporting protocols in details. 

 

3.6.1 RTP and RTCP 

The Real-time Transport Protocol (RTP) [58] is the result of the work of the 

Audio-Video Transport Working Group at the Internet Engineering Task Force (IETF). 

RTP is an Internet standard protocol that provides end-to-end data transport service that 

supports real-time applications. It consists of two parts: the data part and the control part. 

An application would use the data part to package data in RTP packets and send them to 

the remote application, while control information such as loss rate and inter-arrival jitter 

is sent using the Real-time Transport Control Protocol (RTCP) [58]; using RTCP, 

participants periodically exchange reports about the quality of the data delivery and the 

information of membership. The format of the RTP message header is shown in Figure 6. 

 
0 1 2 3

V P X M PT sequence number

Synchronization SouRCe (SSRC) identifier

timestamp

Contributing SouRCe identifier (SSRC)

CC

8 15 16 31

 
Figure 6. RTP header 



 52 

 

The RTP runs on the top of UDP, so it does not provide any QoS guarantee or 

reliable delivery, but it does provide certain functionalities to support media streaming, 

including: 

- Time-stamping: each RTP packet carries a timestamp that is used to 

synchronize different media streams belonging to the same session. 

- Sequence number: Since RTP runs on the top of UDP, packets might be 

dropped or they might arrive out of order at the receiver. The sequence 

number inside the RTP header is used to rearrange the packets in the right 

order. It is also used to compute the packet loss rate that is sent back as part of 

the RTCP report to the sender. 

- Payload type identification: the payload type identification is used by the 

sender to convey the type of the payload the packet is carrying. While the 

common payloads have been assigned a fixed payload type, others can be 

conveyed in the session control protocol. 

- Source identification: in order to distinguish packets from different receivers, 

each packet carries a universally unique identifier called the Synchronization 

SouRCe identifier (SSRC). 

 

3.6.2 Session Description Protocol 

The Session Description Protocol (SDP) [59] is used to describe multimedia 

sessions for the purpose of session announcement or session invitation. SDP is based on a 

protocol originally used by sd, a conference session directory tool developed at Lawrence 

Berkeley Labs [60]. 

The SDP protocol describes basically information about the multimedia session. 

Information include the name and purpose of session, time(s) the session is active, the 

media types comprising the session, and other information describing each of these media 

types such as the transport address where these multimedia streams should be sent.  

A multimedia session description in SDP consists of one general session 

description part followed by zero or more media part. The general session description 

part commences with the “v=” line and ends with the first media line or another “v=” 



 53 

line. The media line commences with an “m=” line and ends with a “v=” or “m=” line. 

Some lines in the session and media description are optional while others are required. 

The attribute line "a=" allows SDP to be extended to include additional session 

description information. The order and permissible attributes in each description line is 

shown below; an attribute that is indicated by a “*” means that it can be used zero or 

more times. 

Session description 

        v =  (protocol version) 

        o =  (owner/creator and session identifier). 

        s =  (session name) 

        i =* (session information) 

        u =* (URI of description) 

        e =* (email address) 

        p =* (phone number) 

        c =* (connection information - not required if included in all media) 

        b =* (bandwidth information) 

        [One or more time descriptions (see description below)] 

        z =* (time zone adjustments) 

        k =* (encryption key) 

        a =* (zero or more session attribute lines) 

        [Zero or more media descriptions (see description below)] 

 

Time description has the following syntax: 

        t =  (time the session is active) 

        r =* (zero or more repeat times) 

 

Media description must adhere to the following format: 

        m =  (media name and transport address) 

        i =* (media title) 

        c =* (connection information - optional if included at session-level) 

        b =* (bandwidth information) 



 54 

        k =* (encryption key) 

        a =* (zero or more media attribute lines) 

 

 

Even though SDP was originally designed as a complimentary protocol to the 

Session Announcement Protocol (Section 3.6.3) to announce multicast multimedia 

sessions, it is used these days to announce uni-cast session. Moreover, SDP was not 

designed as a negotiation protocol, since it does not have any mechanism to divide 

capabilities into multiple capability sets, similarly to the H.245 protocol. A successor of 

SDP, the Session Description and Capability Negotiation (SDPng) [61] is supposed to 

add the negotiation capability to the protocol. 

SDP does not have its own transport protocol, but it could be used with other 

transport protocols such as the Session Announcement Protocol (SAP) (see Section 

3.6.3), the Session Initiation Protocol (SIP) (Section 3.5.2), or the Hyper-Text Transport 

Protocol (HTTP). 

3.6.3 Session Announcement Protocol 

The Session Announcement Protocol (SAP) [62] is a protocol that users can use 

to periodically send sessions description, such as SDP, to a well-known multicast address 

and port number. Other users can listen to this multicast address to know which sessions 

are being announced and the descriptions of these sessions. A SAP packet consists of the 

SAP header, and a textual payload. The SAP header has the following fields: 

- Version: (3 bits) indicates the version of the protocol. 

- Message Type (MT): (3 bits) it indicates whether the SAP message is to 

announce a session or delete a pervious announcement. 

- E: (1 bit) indicates whether the payload is encrypted or not. 

- C: (1 bit) indicates whether the payload is compressed or not. 

- Authentication Length: (8 bits) indicates the length of the authentication header. 

- Message ID hash: (16 bits) combined with the original source field, it provides a 

global unique identifier for the version of the announcement. 

- Original Source: (32 bites) contains the IP address of the source of the message. 

- Authentication header (optional): contains the digital signature of the packet. 



 55 

- Optional payload type: in the case when the version field is set to zero, this field 

is not required, and the payload of the message would be an SDP payload text; 

otherwise, the payload type indicates a MIME content type identifier, which 

specifies the format of the payload. 

 

3.6.4 Megaco/H.248 

The Megaco/H.248 [63] proposed jointly by the IETF and the ITU-T, defines an 

interface between a Media Gateway Controller (MGC) (also referred to as Call Agent) 

and the Media Gateway (MG). It is a master/slave protocol where the communication 

between the MGC and the MG is carried through a series of transactions. Each 

transaction consists of one or more commands and a mandatory response.  

Megaco/H.248 allows voice, fax and multimedia calls to be switched between the 

public switched telephone network (PSTN) and IP, ATM or Frame Relay networks. It 

divides the logic of the gateway into two functional components: one for the media logic 

(MG) and the other for the control logic (MGC). The MGC functions include: call 

termination, media coding, packetization, and execution of call control stacks. For the 

external world, the MGC and the MG appear as a single VoIP gateway.  

The main controlled entities in the MG are Termination and Context objects. A 

Termination is a logical entity that generates and/or terminates one or more media 

streams. It can accept control signals from the MGC, and it can also be programmed to 

detect events, which usually trigger notification messages to the MGC. The MC can also 

collect some statistics on a Termination object. A Context objects is an association 

between two or more Termination objects. Commands like Add, Subtract, and Move, can 

be used to manipulate Terminations in a Context. 

 

3.7 Conclusion 

Many experts predict that the data traffic is going to surpass traditional voice 

traffic. Consolidating both data and voice networks is promising to reduce 

communication cost and to provide myriad of new services. In this chapter, we have 

described the VoIP application that promises to revolutionize the field of 



 56 

telecommunication. We have also presented a review of the two main enabling protocols, 

SIP and H.323. Additionally, we have reviewed a number of other supporting protocols.  



 57 

Chapter 4 
 
 A QoS-Based Framework for Distributed 
Content Adaptation 

 

 
4.1 Introduction 

Diversity and heterogeneity of Internet clients is a major problem for multimedia 

delivery over the Internet. Clients range from a small single-task audio player to a 

complex, multi-task, multi-function desktop computer. The diversity of clients varies 

along different axes including display capabilities, storage space, processing power, as 

well as the forms of network connectivity that these clients use to access the Internet. 

Clients also differ in the data formats they can consume and produce, installed 

applications and services, and personal preferences of their users.  

Today, vast amount of multimedia content already exists on the Internet. Most of 

this content is created and formatted for the PC users, and cannot be rendered directly on 

all types of client devices. Yahoo [64] and e-bay [65] have taken recently the costly 

approach of creating different versions of content for different access devices. 

Content adaptation is considered an effective and attractive solution to the 

problem of mismatch in content format, device capability and user’s preferences. The 

process of adaptation is usually applied to the sender’s content in order to satisfy the 

device constrains of the receiver client and the preferences of its user. Possible 

adaptations include, but are not limited to: format change or transcoding (converting an 

MP3, 44 khz, 16 bits, 2 channels audio stream to a DVI, 8khz, 8 bits, 1 channel stream or 

reduction of image quality,), text summarization, removal of redundant information, 

audio to text conversion, video to key frame or video to text conversion, content 

extraction to list a few. While the framework presented in this chapter deals with content 

adaptation services in general, we will use the trans-coding type of adaptation service in 

the illustrations and examples. 

Most currently available content adaptation schemes are best suitable for Web 

content. Examples of such adaptations schemes include conversion of HTML pages to 



 58 

Wireless Markup Language (WML) pages, conversion of jpeg images to black and white 

gif images, conversion of HTML tables to plain text, or stripping of Java applets / 

JavaScript. These adaptation schemes do not have the same requirements and challenges 

of real-time multimedia content adaptations. Real-time multimedia applications involve 

large volumes of data making trans-coding a computationally very expensive task 

[66,67]. To solve this problem, some trans-coders have been implemented in hardware 

and can be deployed on intermediate nodes or proxies [68]. This approach cannot keep up 

with the pace of the constant and quick introduction of new types of clients, and requires 

investments in specialized hardware devices. Another more suitable approach to address 

the computational challenge of multimedia trans-coding is based on the observation that 

the general trans-coding process can be defined as combinatorial [69], and that multiple 

trans-coders can be chained effectively together to perform a complex trans-coding task. 

So, instead of having all trans-coding done by one single trans-coder, a number of trans-

coders can collaborate to achieve a composite adaptation task. For instance, trans-coding 

a 256-color depth jpeg image to a 2-color depth gif image can be carried out in two 

stages: the first stage covers converting 256-color to 2-color depth, and the second step 

converts jpeg format to gif format. Transcoders can then be built in software and 

deployed easily and is shorter time to meet the needs of the users. Trans-coding would 

also be fast and reliable since its components can be simpler and they can also be 

replicated across the network. 

Content adaptation plays a complimentary role to other QoS management 

schemes that are based on coordinating and reserving network resources 

[32,70,40,71,46,82]. It extends the idea of providing QoS guarantees through data 

manipulation and transformation. 

In this chapter, we will present a general framework for content adaptation for 

multimedia applications. The framework identifies the major required elements for 

content adaptation as well as the processing model for these elements, which we call the 

QoS selection algorithm. Given a composite adaptation task that can be carried out in a 

number of stages, and given that there could be a number of possible configurations to 

adapt the sender’s content to make it presentable at the receiver’s device, the challenge is 

to find the appropriate chain of trans-coders that maximizes the user’s satisfaction with 



 59 

the final delivered content, and at the same time, derive a content that best fits the 

capabilities of the user’s device and the communication network. The Quality of Service 

(QoS) selection algorithm proposed in this chapter provides personalized content by 

finding the most appropriate chain of trans-coders between the sender and the receiver, 

and also by selecting the configuration for each trans-coder. The proposed algorithm uses 

the user’s satisfaction with the quality of the trans-coded content as the optimization 

metric for the path selection function. Our approach is inspired by the work of Mao et. al 

[72], in the way we construct a chain of trans-coders to match the capabilities of the 

sender and receiver. Our approach is different though in the way we select the sequence 

of trans-coders. While Mao et. el. used network based characteristics such as data 

throughput, jitter, or delay to select the trans-coders, our approach is more user centric 

and uses the user’s satisfaction, based on the information in the user profile, as the only 

selection criterion. This approach is based on the observation [73,74,75,76,77] that 

different transport level QoS may generate similar user satisfaction, and that it is best to 

select a trans-coding path based on the end result, which is the user’s satisfaction, and not 

based on single, independent, low-level factors such as delay, bandwidth, or throughput.  

The rest of the chapter is organized as follows: In Section 4.2, we will advocate 

content adaptation as a solution for interoperability, and the different approaches used in 

content adaptation. Section 4.3 lists all the required elements for providing customized 

content adaptation. In Section 4.4, we present our methodology for using the required 

element from Section 4.3 to construct and optimize a directed acyclic graph of trans-

coders; the algorithm for selecting the chain of trans-coders is then presented. The 

selection criterion for the algorithm is also introduced in Section 4.4, and finally, we end 

Section 4.4 with an example that shows step-by-step the results of the algorithm. Section 

4.5 presents several options for discovering intermediary trans-coding services. The 

performance of the QoS selection algorithm is then presented in Section 4.6, and finally 

our conclusion is presented in Section 4.7. 

 

4.2 Content adaptation 

In today’s Internet, there is a wide range of client devices in terms of both 

hardware and software capabilities. Device capabilities vary in different dimensions, 



 60 

including processing power, storage space, display resolution and color depth, media type 

handling, and much more. This variety on device capabilities makes it extremely difficult 

for the content providers to produce a content that is acceptable and appreciated by all the 

client devices [78], making application-level adaptation a necessity to cover the wide 

population of clients. The problem is even more challenging when multicasting the 

content to a large number of receivers with heterogeneous device capability and 

preferences. In Chapter 5, we discuss this problem in more detail, and propose our 

solution to address the problem.  

There are two main approaches for handling this diversity in content formats: 

static content adaptation and dynamic content adaptation, with a number of hybrids 

combining both approaches [79,80]. These two approaches differ in the time when the 

different content variants are created [81] to match the requested format. In static 

adaptation, the content creator generates and stores different variants of the same content 

on a content server, with each variant formatted for a certain device or class of devices. 

Hafid et. al. [82] presented an architecture for news-on-demand using this scheme. Static 

adaptation has three main advantages: (1) it is highly customized to specific classes of 

client devices, and (2) it does not require any runtime processing, so no delay is incurred, 

and (3) the content creator has the full control on how the content is formatted and 

delivered to the client. On the other hand, static adaptation has a number of 

disadvantages, mainly related to the management and maintenance of different variants of 

the same content [79]: (1) different content formats need to be created for each sort of 

device or class of devices, and needs to be re-done when new devices are introduced, and 

(2) it requires large storage space to keep all variants of the same content. 

With dynamic content adaptation, the content is trans-coded from one format to 

the other only when it is requested. Depending on the location where the trans-coding 

takes place, dynamic content adaptation technologies can be classified into three 

categories: server-based, client-based, and proxy-based. In the server-based approach 

[83], the content server is responsible for performing the trans-coding; the content 

provider has all the control on how the content is trans-coded and presented to the user. 

Additionally, it allows the content to be trans-coded before it is encrypted, making it 

secure against malicious attacks. On the other hand, server-based adaptation does not 



 61 

scale properly for a large number of users and requires high-end content and delivery 

server to handle all requests.  

As for the client-based approach [84,85], the client does the trans-coding when it 

receives the content. The advantage of this approach is that the content can be adapted to 

match exactly to the characteristics of the client. But at the same time, client-based 

adaptation can be highly expensive in terms of bandwidth and computation power, 

especially for small devices with small computational power and slow network 

connectivity, with large volume of data might be wastefully delivered to the device to be 

dropped during trans-coding. 

The third adaptation approach is the proxy-based approach [66,86,87,88], where 

an intermediary computational entity can carry out content adaptation on the fly, on 

behalf of the server or client. Proxy adaptation has a number of benefits including 

leveraging the installed infrastructure and scaling properly with the number of clients. It 

also provides a clear separation between content creation and content adaptation. On the 

other hand, some content providers may argue that they prefer to control themselves how 

their content is presented to the user. Also, using proxies for adaptation does not allow 

the use of end-to-end security solutions.  

 

4.3 Required elements for content adaptation 

Advances in computing technology have led to a wide variety of computing devices, and 

made interoperability very difficult. Added to this problem is the diversity of user 

preferences when it comes to multimedia communications. This diversity in devices and 

user preferences has made content personalization an important requirement in order to 

achieve results that satisfy the user. The flexibility of any system to provide content 

personalization depends mainly on the amount of information available on a number of 

aspects involved in the delivery of the content to the user. The more information about 

these aspects is made available to the system, the more the content can be delivered in a 

format that is highly satisfactory to the user (higher frame rate, better resolution, better 

audio quality,…). These relevant aspects are: user preferences, media content profile, 

network profile, context profile, device profile, and the profile of intermediaries (or 

proxies) along the path of data delivery. We will describe here each of these aspects.  



 62 

User Profile: The user’s profile captures the personal properties and preferences of the 

user, such as the preferred audio and video receiving/sending qualities (frame rate, 

resolution, audio quality…). Other preferences can also be related to the quality of each 

media types for communication with a particular person or group of persons. For 

instance, a customer service representative should be able to specify in his profile his/her 

preference to use high-resolution video and CD audio quality when talking to a client, 

and to use telephony quality audio and low-resolution video when communicating with a 

colleague at work. The user’s profile may also hold the user’s policies for application 

adaptations, such as the preference of the user to drop the audio quality of a sport-clip 

before degrading the video quality when resources are limited. Some other information in 

the user profile might also include the user’s authorization, authentication and accounting 

information. 

One of the most notable work on user profiles is the MPEG-21 standard [89], 

which describes attributes of the end user of multimedia content, including besides name 

and contact information, also content preferences, presentation preferences, accessibility 

and mobility preferences. These preferences are used for instance to provide effective and 

efficient access (search, filtering and browsing) to multimedia content. Appendix A 

shows the schema for the user profile we have used in the experimental prototype. This 

schema can be added as an extension of the MPEG-21 standard. 

 

Content Profile: Multimedia content might enclose different media types, such as audio, 

video, text, and each type can have different formats [81]. Each type and format has a 

number of characteristics and parameters that can be used to describe the media. Such 

information, referred to as meta-data information, is usually included in the content 

profile. Some of this meta-data about the content may include:  

- Information about the storage features of the content, such as the type of media 

(video, audio, etc), the transport protocol (RTP/UDP/IP, H.320, etc), and the 

format (H.261 video, MPEG video, etc). 

- Information about available variants of the content, such as colored-and-black and 

white variants, 



 63 

- Information about the author and production of the content, such as the title, and 

date of creation. 

- Information related to the usage of the content, such as copyright, application 

adaptations, and usage history. 

The MPEG-7 standard [90], formally named “Multimedia Content Description 

Interface”, offers a comprehensive set of standardized description tools to describe 

multimedia content. These tools allow for a complete description of what is depicted in 

the content, the form (coding format and size), the condition for accessing the material, 

the classification, the context, and the links to other relevant material. MPEG-7 also 

provides tools for describing variations of the content such as summaries and abstracts; 

scaled, compressed and low-resolution versions; and versions with different languages 

and modalities – audio, video, image, text, and so forth. Using the content profile, a 

content adaptation system can decide what type of adaptations can be applied to the 

content. 

Context Profile: The notion of context and its implications has been a research topic for 

a number of research groups [91,92,93] and is still attracting more interest. According to 

[94] and [95], the context can be generally defined as: “any information that can be used 

to characterize the situation of an entity. An entity is a person, place or object that is 

considered relevant to the interaction between a user and an application, including the 

user and the application themselves.” Based on this definition, a context profile would 

include any dynamic information that is part of the context or current status of the user. 

Context information may include physical (e.g. location, weather, temperature), social 

(e.g. sitting for dinner), or organizational information (e.g. acting senior manager). Some 

context information, such as the role or task of the user, can be manually keyed in by the 

user, while other information, such as location, time of the day, weather condition, can be 

easily gathered using sensing devices. Some other information, such as the current status 

of the user, can be gathered from other sources such as the calendar of the user or from a 

meeting attendees list. The MPEG 21 standard includes tools for describing the natural 

environment characteristics of the user, including location and time, as well as the audio 



 64 

and illumination characteristics of the user’s environment. Resource adaptation engines 

can use these elements to deliver the best experience to the user. 

Device Profile: To ensure that a requested content is properly rendered on the user’s 

device, it is essential to include the capabilities and characteristics of the device into the 

content personalization process. Information about the rendering device may include the 

hardware characteristics of the device, such as the device type, processor speed, 

processor load, screen resolution, color depth, available memory, number of speakers, the 

display size, and the input and output capabilities. The software characteristics such as 

the operating system (vendor and version), audio and video codecs supported by the 

device should also be included in the device profile. The User Agent Profile (UAProf) 

created by the WAP Forum [96] and the MPEG 21 standard [89], both include 

description tools for describing device capabilities. 

Network Profile: Streaming multimedia content over a network poses a number of 

technical challenges due to the strict QoS requirements of multimedia contents, such as 

low delay, low jitter, and high throughput [97]. Failing to meet these requirements may 

lead to a bad experience of the user [98,99].  With a large variety of wired and wireless 

network connectivity, it is necessary to include the network characteristics into content 

personalization and to dynamically adapt the multimedia content to the fluctuating 

network resources [100]. Achieving this requires collecting information about the 

available resources in the network, such as the maximum delay, error rate, and available 

throughput on every link over the content delivery path. A description tool for network 

capabilities, including utilization, delay and error characteristics are included in the 

MPEG 21 standard. 

Profile of Intermediaries: When the content is delivered to the user across the network, 

it usually travels over a number of intermediaries. These intermediaries have been 

traditionally used to apply some added-value services, including on-the-fly content 

adaptations services [86,87,88]. Using intermediaries for applying adaptations alleviates 

the problem of clients with limited-resources [101] and overloaded servers [83].  



 65 

For the purpose of content adaptation, the profile of an intermediary would 

usually include a description of all the adaptation services that an intermediary can 

provide. These services can be described using any service description language such as 

JINI [102], SLP [103], or WSDL [104]. A description of an adaptation service would 

include, for instance, the possible input and output format to the service, the required 

processing and computation power of the service, and maybe the cost for using the 

service. The intermediary profile would also include information about the available 

resources at the intermediary (such as CPU cycles, memory) to carry out the services. 

Note that the available bandwidth through an intermediary can also be included in the 

intermediary profile, but for clarity reasons, we have decided to include it in the network 

profile. Appendices B and C show the schema we have used for the trans-coding services 

and intermediaries. 

 

4.4 QoS selection algorithm 

When a user of a multimedia application sends a request for content to a content 

server in a system that supports content adaptation, the system has to decide on the 

required adaptations to be carried out on the content to make it satisfactory presentable to 

the user. This decision is affected by all the information elements introduced in Section 

4.3, including the user profile, device, content, and context profile, network profile, and 

intermediary profile (which includes the set of available adaptation services). The QoS 

selection algorithm is the decision making process that analyses all these elements to find 

the best adaptation rules to apply to the content to make it acceptable by the user. Figure 

7 shows a high level description of the QoS selection process.  

 
 



 66 

  
Figure 7. Framework for content adaptation 

 
 

In this section, we will describe the overall QoS selection algorithm that finds the 

most appropriate path of trans-coders between the sender and the receiver, and also 

selects the configuration for each trans-coder. We will first start by defining the user’s 

satisfaction, with constraints on the user’s budget and the available network resources, as 

the selection criterion for the algorithm, and then show how to construct a directed graph 

for adaptation using the available trans-coders, the sender’s content profile, and the 

receiver’s device profile. After constructing the graph, we will show how to apply some 

optimization techniques on the graph to remove the extra edges in the graph, and finally 

present the actual QoS path and parameter selection algorithm. The QoS selection 

algorithm for two-party communication has been implemented as the core of the 

MobInTel architecture presented in Chapter 6.  Using the algorithm for multimedia 

distribution to large groups of users is studied separately in Chapter 5. 

 

4.4.1 User’s satisfaction as selection criteria 

Most Internet users are indifferent about the underlying technologies such as 

protocols, codecs, or resource reservation mechanisms that enable their communication 

session. They also are indifferent about network level QoS characteristics, such as 

bandwidth, delay, or throughput. All what is important for them in the end is making the 

communication session work in a satisfactory way: for instance, hearing without jitter 

and seeing without irregularity. 



 67 

As we mentioned earlier, the user’s preferences expressed in the user’s profile can 

be classified as application layer QoS parameters. In order to compute the user’s 

satisfaction with all values of the application layer configuration parameters, we have 

used the approach presented in [41] by Richards et. al., where each application level QoS 

parameter is represented by a variable xi over the set of all possible values for that QoS 

parameter. The satisfaction or appreciation of a user with each quality value is expressed 

as a satisfaction function Si(xi). All satisfaction functions have a range of ]0..1], which 

corresponds to the minimum acceptable (M) and ideal (I) value of xi. The satisfaction 

function Si(xi) can take any shape, with the condition that it must increase monotonically 

over the domain. Figure 8 shows a possible satisfaction function for the frame rate 

variable. 

IdealMinimum

Satisfaction 
Function

1

0 5 10 15 20

Satisfaction

Frame per 
sec.  

Figure 8. Possible satisfaction function for the frame rate. 

 

In the case when there are more then one application parameter (frame rate, 

resolution, color depth, audio quality,…), Richards et. al. proposed using a combination 

function fcomb that determines the total satisfaction totS from the satisfactions si for the 

individual parameters as follows: 

∑ =

==
n

i
i

ncombtot

s

n
ssssfS

1

321 1
),,,( K   (Equa. 1) 

The function fcomb has two important properties:  

− Prop. 1. One individual low satisfaction is enough to bring the total 

satisfaction to a low value.  

− Prop. 2.  The total satisfaction of equal individual satisfactions si is equal to 

the satisfactions si.  

 



 68 

For our prototype presented in Chapter 7, we have used the simplest case where 

the satisfaction function is linear between the two points of minimum acceptable and 

ideal values, and constant outside that interval. This means that ( )xs  is zero for values of 

x smaller than M, equal to one for value of x larger than I, and linear for values in 

between M and I, as shown in the following equation: 

 









>

≤≤−
−

<

=

Ixif

IxMifMx
MI

Mxif

xs

1

)(
1

0

)(    (Equa. 2) 

We also note that fcomb is a many-to-one mapping function, and hence different 

combinations of individual satisfaction values are possible for one value of totS . To find 

out what is the best possible combination of individual satisfaction functions, another 

selection criterion is needed. The most reasonable selection criterion is a monetary cost 

threshold that specifies how much the user is willing to pay for specific media types and 

parameter values. Such price would include the cost for establishing the session, the cost 

of transfer and transformation, and in some cases, the cost of the requested data. 

Providing a tariff structure which determines the cost for the different values xi of the 

individual application parameters, one can devise an optimization strategy for finding 

application parameter values that minimize the cost for a given global satisfaction totS , or 

maximize the satisfaction totS  for a given cost value. Another selection criterion can be 

the available resources that can be used to provide a certain user satisfaction. 

4.4.2 Extending user’s satisfaction to support weighted combination and multi-

user conference sessions 

We think that the approach described above is a major step towards a simple user-

friendly interface for user level QoS specification, however, further considerations could 

be taken into account as described below. A first improvement results from the 

observation that users in telecommunication session might find some media types more 

important than others. For instance, a user of a news-on-demand service might prefer to 

receive high quality audio with low quality video as compared to average quality audio 



 69 

and average quality video. In the case of a user watching a sport event the situation may 

be the opposite (if the user does not care about the audio of the commenter).  

  

 This preference to individual media can play a factor when it comes to the 

calculation of the total satisfaction totS . By assigning different weights wi to the different 

parameters xi, totS  will reflect the user preference for different media types. The 

combination function for the total user satisfaction can be redefined as follows: 

∑ =

==
n

i
i

i
nncomb

user
tot

s

w
wn

wwwwssssfS

1

321321 ),,,,,,,( KK

  (Equa. 3) 

where iw  is the weight for the individual satisfaction is  and 
n

w
w

n
i i∑ == 1 . Equa. 3 

have similar properties as Equa. 1, which is to: 

− Prop. 1. One individual low satisfaction is enough to bring the total 

satisfaction to a low value.  

− Prop. 2.  The total satisfaction of equal individual satisfactions si with equal 

weight is equal to the satisfactions si.  

 

These constants weight factors (AudioWeightFactor, VideoWeightFactor,..) can 

be selected by the user, and stored in the user profile. The selection of these weights 

depends on the type of service the user is willing to receive when using a specific service 

or communicating with a given callee. 

Additionally, we have so far considered only the QoS preferences of a single user. 

But all conversational multimedia applications involve several users. It is therefore 

important to determine how the possibly conflicting preferences of the different users are 

reconciled in order to come up with QoS parameters that are suitable for all participating 

users.  

In certain circumstances, some given parameters may be determined simply based 

on the preferences of a single user. This may be the case in a two-way teleconference 

between two users A and B, where the parameters of the video visible by User A would 

be determined based on the preferences of User A alone, and the video in the opposite 



 70 

direction based on the preferences of User B. However, the situation may be more 

complex if the cost of the communication is paid by User A and the selection of the video 

received by User B has an impact on the communication cost.  

In other circumstances, as for instance in the case of the joint viewing of a video 

clip by several participants in a teleconference, the selected quality parameters should be 

determined based on the preferences of all participating users. In such circumstances, we 

propose to use the same combination function for user satisfaction considered above and 

(optionally) introduce a weight for each of the participating users, called the QoS 

selection weight, which determines how much the preferences of the user influences 

overall QoS parameter selection. The total satisfaction (computed for all users) is then 

given by  

∑ =

==
m

i usr
tot

i
m

usr
tot

usr
tot

usr
totcombtot

i

m

s

a
am

aaasssfS

1

21 ),,,,,( 21 KK   (Equa. 4) 

where iusr
tots  is the total satisfaction for user i, and ia is the QoS selection weight for user i. 

In the case that the weight of a given user is zero, the preferences of this user are not 

taken into account for the selection of the QoS parameters. 

 

4.4.3 Constructing a directed graph of trans-coders 

Now that we have decided on the selection criteria, the first step of the QoS 

selection algorithm would be to construct a directed acyclic graph (DAG) for adaptation, 

using the content profile, device profile, and the list of available trans-coders. Using this 

graph, the route selection algorithm would then determine the best path through the 

graph, from the sender to the receiver, which maximizes the user’s satisfaction with the 

final received adapted content. The elements of the directed graph are the following: 

1. Vertices in the graph represent intermediate trans-coders. Each vertex of the graph 

has a number of properties, including the computation and memory requirements of 

the corresponding trans-coder. Each vertex has a number of input and output links. 

The input links to the vertex represent the possible input formats to the trans-coder. 

The output links are the possible output formats of the trans-coder. Each format has a 

number of video parameters (video compression (H.261, H.263, MPEG-1, MPEG-2, 



 71 

MPEG-4), resolution, and frame rate), and audio parameters (audio compression 

(G.711, G.721, DVI, MPEG-1 Layer 1, MPEG-1 Layer 2, ….), sampling rate, bits per 

sample, number of channels). Figure 9 shows a trans-coder T1, with two input 

formats, F5 and F6, and four possible output formats, F10, F11, F12 and F13. The 

sender node is a special case of a vertex, with only output links, while the receiver 

node is another special vertex with only input links.  

To find the input and output links of each vertex, we rely on the information in 

different profiles. The output links of the sender are defined in the content profile, 

which includes as we mentioned earlier, meta-data information (including type and 

format) of all the possible variants of the content. Each output link of the sender 

vertex corresponds to one variant with a certain format. The input links of the 

receiver are exactly the input formats for the decoders available at the receiver’s 

device. This information is available through the description of the receiver’s device 

in the device profile. The input and output links of vertices are described in the 

intermediaries profile. Each intermediary profile includes the list of available trans-

coders, each with the list of possible input and output formats. Each possible input 

format is represented as an input link into the vertex, and the output format is 

represented as an output link. 

 

 

Figure 9. Trans-coder with multiple input and output links 

2. Edges in the graph represent the network connecting two vertices, where the input 

link of one vertex matches the output link of another vertex.  

To construct the adaptation graph, we start with the sender node, and then connect the 

outgoing edges of the sender with all the input edges of all other vertices that have the 

same format. The same process is repeated for all vertices. To make sure that the graph is 

 

F6 F5 

F10 
F11 

F13 
F12 

T1 



 72 

acyclic, the algorithm continuously verifies that all the formats along any path from the 

sender are distinct.  

Figure 11 shows the complete pseudo-code for the graph construction algorithm, 

with an example of an adaptation graph shown in Figure 10. The graph is constructed 

with one sender, one receiver, and six intermediate vertices, each representing a trans-

coder. As we can see from the graph, the sender node is connected to the trans-coder T1 

along the edge labeled F5. This means that the sender S can deliver the content in format 

F5, and trans-coder T1 can convert this format into format F10, F11, F12, or F13. The 

graph optimization code fragment is explained in the next section.  

T1

F1 F2

F3

F4

F5

T2

T3

T4 T5

F6

F9

F10

F8

F7

F11

F12

T6

data_
source

Rece
iver

F13

F15

F14

F16

F17

 

Figure 10. Directed trans-coding graph 

 

Assuming that the resulting directed acyclic graph G(V,E) is represented with an 

adjacency list, the total complexity of the graph construction is O(n2 lg n), where n = |V|. 

The time analysis of the graph construction algorithm is as follows, assuming that, on 

average, each node has b outgoing edges: 



 73 

− Searching through all the trans-coder (lines 1-3) can be done in O(nlog n), 

since the for loop is repeated n times, and searching through the list of 

transcoders from the source node takes an average of  log n. 

− Each function call recursively calls itself n/b times 

Using the Master theorem [105], we can easily compute the computational 

complexity of the graph construction algorithm as O(n2 lg n).  

 

Figure 11. Pseudo-code for the graph construction algorithm 

 
4.4.4 Graph optimization 

By looking at the graph in Figure 10, we can see that there are some edges like 

F1, F2 or F17 that are connected only to one trans-coder. These edges cannot be a part of 

any path from the sender to the receiver. The same principle also applies to trans-coders 

other than the sender and receiver that are not on any path from the sender to the receiver. 

T5 is an example of a trans-coder that cannot be used to send data through it on the way 

from the sender to the receiver. Removing these edges and vertices help reduce the 

computational time of the algorithm, since it helps pruning dead-ends from the graph. 

 
data_source = sender’s output formats; 
receiver = receiver’s input formats; 
T = {Set of all network transcoders}; 
// neighbor(t) is the set of all direct children transcoders of t 
// path(data_source,t) is the list of transcoders in the graph along the path from the        
//   data_source to the transcoder t. 
 
Graph_construction(){ 

add_transcoder_to_graph (data_source); 
 } 
 

add_transcoder_to_graph( Transcoder t){ 
1       for all transc ∈  T 
2  if ( (input_format(transc) = output_format(t) )     & 
             (output_format(transc) ≠  output_format(g) ∀  g ∈   path(data_source,t)))  
3        then neighbor(t) = neighbor(t) ∪  {transc} 
4       for all ne ∈  neighbor(t) 
5 add_transcoder_to_graph(ne); 

} 
 



 74 

Applying optimization for the graph in Figure 10 would result in the graph shown in 

Figure 13. The pseudo-code for the graph optimization is shows in Figure 12. 

 

Figure 12. Pseudo-code for the graph optimization 

 

The complexity of the graph optimization algorithm is similar to the complexity 

of breadth-first traversal of the graph; the graph optimization algorithm is called one time 

for each vertex and each edge in the graph. The total complexity of the graph 

optimization algorithm is   O(V + E ). 

 

T1

F3

F4

F5

T2

T3

T4

F6

F9

F10

F8

F11

F12

T6

Data
_sou
rce

Rece
iver

F15

F14

F16

 

Figure 13. Optimized directed trans-coding graph 

 

 graph_optimization(Transcoder t){ 
6 if t ≠ receiver then { 
7  for all ne ∈  neighbor(t) 
8   graph_optimization(ne);  
9  if is_empty(neighbor(ne)) then 
   delete(ne); 
 } 
} 
 

 



 75 

4.4.5 Adding constraints to the edges 

As we have discussed earlier, the optimization criterion we have selected for the 

QoS selection algorithm is the user’s satisfaction computed using the function fcomb 

presented in 4.4.1. The maximum satisfaction achieved by using a trans-coder Ti depends 

actually on a number of factors. 

The first factor is the bandwidth available for the data generated by the trans-

coder Ti. The more bandwidth is available to the intermediary where the trans-coder is 

running, the more likely the trans-coder will be able to generate trans-coded content that 

is more appreciate for the receiver. The available bandwidth between two trans-coders is 

restricted by the amount of bandwidth available between the intermediate servers where 

the trans-coder Ti and the next trans-coder or receiver is running. We can assume that 

connected trans-coders that run on the same intermediate server have an unlimited 

amount of bandwidth between them.  

Other factors that can affect the user’s satisfaction are the amount of memory and 

computing power required from the intermediary where the trans-coder is running, to 

carry out the trans-coding operation. A transcoder that requires a certain amount of 

memory space can not perform properly if the hosting intermediary can not allocate the 

minimum required memory to the transcoder. Each of these two factors is a function of 

the amount of input data to the trans-coder.  

 

4.4.6 QoS selection algorithm 

Once the directed acyclic adaptation graph has been constructed, the next step is to 

perform the QoS selection algorithm to find a chain of trans-coders, starting from the 

sender node and ending with the receiver node, which generates the maximum 

satisfaction of the receiver. Finding such as path can be similar to the problem of finding 

the shortest path in a directed weighted graph with similar complexity, except that the 

optimization criterion is the user’s satisfaction, and not the available bandwidth or the 

number of hops.  

The algorithm uses two variables representing two sets of trans-coders, the set of 

already considered trans-coders, called VT, and the set of candidate trans-coders, called 

CS, which can be added next on the partially selected path. The candidate trans-coders set 



 76 

contains the trans-coders that have input edges coming from any trans-coder in the set 

VT. At the beginning of the algorithm, the set VT contains only the data_source node, 

and CS contains all the other trans-coders in the graph that are connected to data_source, 

and also the receiver. In each iteration, the algorithm selects the trans-coder Ti that , when 

using it, generates the highest user satisfaction. The user satisfaction is computed as an 

optimization function of the audio and video parameters for the output format for Ti, 

subject to the constraint of available bandwidth between Ti and its ancestor trans-coder, 

and also subject to the remaining user’s budget. Ti is then added to VT. The CS set is then 

updated with all the neighbor trans-coders of Ti. The algorithm stops when the CS set is 

empty, or when the Receiver node is selected to be added to VT. The complete 

description of the algorithm is given in Figure 15. Each transcoding service or node in the 

created graph has the structure shown in Figure 14: 

 

 Trans-coding-service-structure{ 

  input_formats, output_formats: Array of Format_Type // list of possible input and output formats 

  selected_input, selected_output: Format_Type   // The selected input and output format 

  transcoding_and_transmission_cost: real   // cost for using the trans-coding and  

               // transmission service. This cost can be  

                   // defined by the trancoding service provider 

  previous_selected_transcoder : Transcoder  // link to the previous transcoder, from the  

               // source node 

  accumulated_cost: Real    // accumulated cost for using all trancocders  

               // from the source to the current trasncoder 

}               // trans-coding_service_structure 

 

Figure 14. Structure of the trans-coding service. 

 

 

 

 

 

 

 



 77 

Figure 15. Pseudo-code for the route selection algorithm 

 
As indicated in Step 2 and Step 8, the algorithm selects from CS the transcoder Ti 

that can generate the highest satisfaction value for the receiver. To compute the 

satisfaction value for each transcoder Ti in CS, the algorithm selects the QoS parameter 

values xi that optimize the satisfaction function in Equa. 4, subject only to the constraint 

Step 1: // Let VT be the set of all considered trans-coders.  

   VT = {data_source}; 

   // Let CS be the set of all direct neighbor transcoders of all transcoders in VT 

  CS = neighbor(data_source); 

   // Let user_budget be the amount of money the user is willing to pay  

Step 2: For ∀  Ti  ∈  CS 

  // Each trans-coder keeps a track of its parent trans-coder 

    // Let Tprev be the trans-coders in CS connected to Ti; 

   // Compute the perceived user’s satisfaction for using all the trans-coders in CS, subject 

   // to two constraints: the remaining user budget and the available bandwidth between 

   // Ti and Tprev. 

   Optimize( user_profile, input_format, output_format, Sat_T[i],  

          user_budget,cost,available_bandwith) 

Step 3: if is_empty(CS) then  

    // there are no more transcoders to consider and the receivers can not  

   // be reached from the data_source through any transcoding path. 

   TERMINATE(FAILURE) 

Step 4:  Select the trans-coder Ti that has the highest satisfaction value Sat_T[i], for the user.  

   CS = CS – { Ti };  

Step 5:  VT = VT  + { Ti }; 

Step 6: Let Ti. previous_selected_transcoder = Tprev;   

   Ti.accumulated_cost = Ti.previous.accumulated_cost + transcoding_and_transmission_cost [i]; 

Step 7: if  Ti = receiver , then GOTO Step 10  

Step 8: // compute the satisfaction for using all the neighboring transcoders of Ti and add them to CS 

   For ∀  Tj  ∈   neighbors( Ti ); 

     Optimize( user_profile, input_format, output_format, Sat_T[i],  

          user_budget,cost[i],available_bandiwth) 

     CS = CS ∪  {Tj }; 

Step 9: GOTO Step 3 

Step 10: Print the reverse path from the Receiver to the Sender, by following the link “previous” of all 

transcoders, starting from the Receiver. 



 78 

remaining user’s budget and the bandwidth availability that connects Ti to Tprev in VT.  

i.e.  

 

bandwith_requirement(x1.. xn) ≤ Bandwidth_AvailableBetween(Ti , Tprev). 

 

Since each trans-coder can only reduce the quality of the content, when the 

algorithm terminates, the algorithm would have computed the best path of trans-coders 

from the data_source to the receiver, and the user’s satisfaction value computed on the 

last edge to the receiver node is the maximum value the user can achieve.  To show this, 

assume that the selected path is the path {T11,…T1n} in Figure 16. If the path {T21,…T2m} 

is a better path, then T2m should have converted the content into variant that is more 

appreciated by the user than the variant generated by T1n. Since transcoders can only 

reduce the quality of content, all transcoders along the path {T21,…T2m}, should have also 

produced a content with higher satisfaction function than the variant produce by T1n, and 

hence all these transcoders should have been selected before T1n, which contradicts with 

the assumption. 

S

R

T11

T1n

T21

T2m

 

Figure 16. Graph selection 

What is the running time of the QoS selection algorithm assuming an input DAG 

G(V,E) of trans-coding services is given? The optimization function is called one time for 

each edge in the graph (Step 2 or Step 8), for a total of |E| calls. Additionally, since each 



 79 

vertex v ∈  V is added at most once to the set CS, steps 3-8 are repeated at most |V| times. 

Each time, the transcoder with the highest user satisfaction is selected.  Since we are 

simply storing the user’s satisfaction for adding transcoder Ti in the ith entry of an array, 

selecting the transcoder with the maximum satisfaction takes O(V) time. The total time of 

the algorithm is then O(|V|2+|E|). 

 
4.4.7 Example 

In this section, we will present an example to show how the route selection 

algorithm works. We will assume that the graph construction algorithm has generated the 

graph shown in Figure 17. The graph also shows the selected path with and without trans-

coder T7 as part of the graph. The selected trans-coders, user satisfaction, as well as the 

best current path produced by the algorithm are also shown in Table 5. Each row in the 

table shows the results for one iteration of the algorithm.  

 

 

Figure 17. Example of trans-coding graph 

 

 

 



 80 

Table 5.  Results for each step of the path selection algorithm 

Round Considered Set (VT) Candidate set (CS) Selected  

trans-

coder 

Selected Path Deliverd 

Frame 

Rate 

User 

satisfaction 

1 { data_source } {T1, T2, T3, T4, T5, T6, 

T7, T8, T9, T10} 

T10 data_source,T10 30 1.00 

2 { data_source, T10} {T1, T2, T3, T4, T5, T6, 

T7, T8, T9, T19, T20, 

receiver} 

T20 data_source,T10,T20 30 1.00 

3 { data_source, T10, T20} {T1, T2, T3, T4, T5, T6, 

T7, T8, T9, T19, receiver} 

T5 data_source,T5 27 0.90 

4 { data_source, T10, T20, 

T5} 

{T1, T2, T3, T4,  T6, T7, 

T8, T9, T19, T15, 

receiver} 

T4 data_source,T4 27 0.90 

5 { data_source, T10, T20, 

T5, T4} 

{T1, T2, T3, T6, T7, T8, 

T9, T19, T15, receiver} 

T3 data_source,T3 23 0.76 

6 { data_source, T10, T20, 

T5, T4, T3} 

{T1, T2,  T6, T7, T8, T9, 

T19, T15, T14, receiver} 

T2 data_source,T2 23 0.76 

7 { data_source, T10, T20, 

T5, T4, T3, T2} 

{T1,  T6, T7, T8, T9, T19, 

T15, T14, T12, T13, 

receiver} 

T1 data_source,T1 23 0.76 

8 { data_source, T10, T20, 

T5, T4, T3, T2, T1} 

{T6, T7, T8, T9, T19, T15, 

T14, T12, T13, T11, 

receiver} 

T11 data_source,T1, T11 23 0.76 

9 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11} 

{T6, T7, T8, T9, T19, T15, 

T14, T12, T13,  receiver} 

T13 data_source,T2, T13 23 0.76 

10 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11, 

T13} 

{T6, T7, T8, T9, T19, T15, 

T14, T12,  receiver} 

T12 data_source,T2, T12 23 0.76 

11 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11, 

T13, T12} 

{T6, T7, T8, T9, T19, T15, 

T14,  receiver} 

T14 data_source,T3,T14 23 0.76 

12 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11, 

T13, T12, T14} 

{T6, T7, T8, T9, T19, T15,  

receiver} 

T8 data_source, T8 20 0.66 

13 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11, 

T13, T12, T14, T8} 

{T6, T7,  T9, T19, T15,  

receiver} 

T7 data_source, T7 20 0.66 

14 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11, 

T13, T12, T14, T8, T7} 

{T6,  T9, T19, T15,  

receiver} 

T6 data_source, T6 20 0.66 

15 { data_source, T10, T20, 

T5, T4, T3, T2, T1, T11, 

T13, T12, T14, T8, T7, T6} 

{T9, T19, T15,  receiver} receiver data_source, T7, 

receiver 

20 0.66 

 



 81 

 
4.5 Discovering intermediary trans-coding service 

In order for the QoS selection algorithm to construct the graph of trans-coders and 

select the chain of these trans-coders, starting from the sender node and ending with the 

receiver node, the algorithm should know about available trans-coders; in other words, 

each trans-coder should be able to advertise the service it offers and the QoS selection 

algorithm should be able to discover these advertised services. This problem is known as 

“service advertisement and discovery”. A number of approaches and protocols have been 

suggested to solve this problem in the ad hoc computing environment, including JINI 

[106], SLP [107], and WSDL [108]. 

The solution we have adopted for our prototype in Chapter 7 is the simple one, 

and is based on the assumption that the route selection algorithm has a table of all 

intermediate trans-coding services and their characteristics. More sophisticated 

approaches can be used depending on the environment where these services reside. If all 

these intermediate trans-coding services are located within one single administrative 

domain, protocols such as SLP or JINI can be used to register and discover these 

services. If trans-coding services are considered as computing resources in an Internet-

scale Peer-to-Peer (P2P) systems then, P2P lookup protocols, such as Chord[109], 

CAN[110] or Pastry[111], could be used to retrieve the location and specification of 

instances of these services. The problem with this later approach is that the QoS selection 

algorithm must know what service to look for before using these protocols. Additionally, 

building a graph with all available trans-coding service may take a long time.  

A more controllable approach, in the Internet environment, is to look for the 

trans-coding services that are located at a certain location inside the Internet, such as 

service located in domains along the data path between the communicating parties. Such 

approach has been used in [112]. Using this latter approach, the QoS selection algorithm 

may query first a local border router to get a list of all domains (BGP AS path 

information in the case of BGP) along the data path between the two communicating 

parties. Such information is usually built using inter-domain routing protocols such as the 

Border Gateway Protocol [113]. The graph construction algorithm would then query local 

directories of services located in each domain along the data path. Figure 18 presents a 



 82 

graph showing this approach, where only the trans-coders that are along the BGP path in 

the gray colored domains are the ones used by the graph construction algorithm. To 

preserve the data flow along the BGP path, the graph construction algorithm requires that 

each trans-coding service be assigned a distance value that represents the number of 

domains along the BGP path between the data_source and the trans-coder. The pseudo-

code for the optimized graph construction algorithm is shown in Figure 19. 

Figure 18. Trans-coders along the BGP AS path 

 
Figure 19.  Optimized graph construction algorithm 

 

data_source = sender’s output formats; 
receiver = receiver’s input formats; 
T = { set of all network transcoders along the BGP path between sender’s domain and the 
receiver’s domain )};  
 
Graph_construction(){ 

add_transcoder_to_graph (data_source); 
 } 
 
add_transcoder_to_graph( Transcoder t){ 
      for all transc ∈  T 
  if (  ((distance(data_source,transc) ≥ distance(data_source, t)) & 
     (input_format(transc) = output_format(t) ) & 
   (output_format(transc) ≠  output_format(g)∀  g∈  path(data_source,t)))  
 then neighbor(t) = neighbor(t) ∪  {transc} 
       for all ne ∈  neighbor(t) 
  add_transcoder_to_graph(ne); 
} 

Alice

Bob

Internet

T

T

T
T

T
T

T

T
TT

T

T
T

T
T

T
T

T

T
T

T
T

T

TT

T

T

T
T

T

T
T

T

T

T

T

T
T

B GP Router
BGP  R outer

BGP  Router

BGP  Router

BGP Router
BGP  R outer

B GP Router

BGP Router

B GP Router

BGP Router

BGP Router

BGP  R outer

BGP  R outer
BGP  Router



 83 

 
4.6 Performance analysis of the QoS selection algorithm 

 
In this section, we will present some performance analysis of the QoS selection 

algorithm. As we mentioned, the algorithm consists of two phases: the graph construction 

phase and the route selection phase: the graph creation algorithm is responsible for 

building the DAG of trans-coders, and the route selection algorithm, is responsible for the 

selection of the chain of trans-coders.  

We have developed the QoS selection algorithm, including the graph creation and 

graph optimization algorithms, using Java SDK v 1.4.2_09. We have run the code on a 

Pentium-4 PC, with 2.1 GHz processor, 760 MB of RAM, and running Windows XP 

operating system. We have simulated a network of 12 randomly connected administrative 

domains, and we have used between 3 and 60 transcoders randomly distributed over the 

12 administrative domains. 

We have run two sets of experiments: in the first set of experiments, the graph 

creation algorithm builds the graph from the large pool of all the trans-coders in the 

network. In the second set, the graph creation algorithm selected the trans-coders for the 

graph creation from the set of trans-coders in the administrative domains that are along 

the shortest BGP AS path. For both sets, we were interested in the graph creation time, 

route selection time, and the resulting user satisfaction. Figure 20 and Figure 21 show the 

results of our experiments. 

As one can see from Figure 20, the route selection time is negligible compared to 

the graph construction time. The figure shows also a big change in the graph creation 

time between using a large pool of trans-coders, and using just trans-coders located in 

administrative domains along the BGP AS path. 

 



 84 

Graph Creation time

0

2000

4000

6000

8000

10000

12000

14000

3 10 19 24 26 40 50 60

# of  transcoders

T
im

e 
(m

s)
Using all transcoders

Using transcoders along
the BGP AS path

Route selection * 100

 
Figure 20. Graph creation time 

 
As for the change in the user satisfaction, Figure 21 shows, as expected, a change 

in the value of resulting user satisfaction when using the restricted set of trans-coders 

along the BGP AS path. This difference is the result of reduction in the number of 

possible adaptation paths between the sender and the receiver. 

Figure 21 User satisfaction using different selection set of trans-coders. 
 

User satisfaction vs number of transcoders

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25 30 35 40 45 50

Number of total transcoders in the 
network

u
se

r 
sa

ti
sf

ac
ti

o
n

Using all transcoders
available in the network

Using transcoders along
the shortest BGP AS path



 85 

4.7 Conclusion 

Content adaptation is a natural solution to the problem of heterogeneity in client 

devices, network connectivity, content format, and users’ preferences. This chapter 

presented a framework for adding several adaptation services to multimedia to make the 

content more satisfactory to the user. An important part of the framework is the QoS path 

selection algorithm that decides on the chain of adaptation services to add and the 

configuration parameters for each service. The theoretical and experimental analyses of 

the QoS path selection algorithm were also presented in this chapter. 



 86 

Chapter 5 

Selecting the QoS Parameters for Multicast 
Applications Based on User Profile and 
Device Capability 
 
5.1 Introduction 

Multimedia multicast applications like tele-teaching, teleconferencing, Internet 

TV, or remote presentation, are becoming valuable services for users of the Internet. 

These applications became possible due to advances in the capabilities of desktop 

machines and transport networks. At the level of transport, the most important advance 

that made these applications possible was the development of broadcast protocols, such 

as the Multicast Backbone (Mbone). The Mbone is an experimental virtual network 

imposed on the top of the Internet and has been used as a multicast test-bed. The Mbone 

consists of islands of multicast-capable networks, connected to each other by virtual links 

called "tunnels", and it shares the same transport infrastructure as the Internet. 

Presentational multimedia applications are considered as one-way multimedia 

applications, where multimedia data is digitally stored on one or more multimedia servers 

and streamed to the human end user over a broadband network. In these applications, 

users can specify the data they want and their preferences for the quality of the delivery, 

and the multimedia data (audio, video, graphics, and/or text) flows from the media 

server(s) to the end-user workstation. Typical applications include News-on-Demand, 

distance education, home shopping, and video-on-demand.  

Adaptive presentational applications are presentational applications that may 

adapt to the receiving conditions of the users. They are classified as either receiver-driven 

or sender-driven applications. In the receiver-driven approach, the source transmits the 

same data in different variants, and the receivers select the variant to receive depending 

on the congestion they encounter. In the sender-driven approach, the congestion feedback 

messages from the receivers and/or network are used to adapt the transmission rate at the 

source.  



 87 

Based on the feedback reports, the source might adjust the sending rate 

[114,115,116] or keep the same sending rate and send more error-resilient data [117].For 

large multicast sessions, such as an Mbone broadcast or IP-based TV distribution, group 

sizes can be extremely large, on the order of hundreds of thousands to millions of 

participants. As the number of feedback messages scales with the number of receivers, 

the source might not be able to handle all these feedback reports, especially when these 

reports are sent periodically. This problem is known in the literature as feedback 

implosion. Several approaches have been proposed to solve the feedback implosion 

problem including back-off timers [118,119], probabilistic polling[120], and network 

aggregation [121].      

 

In this chapter, we will show how to use the framework presented in Chapter 4 to 

find out what adaptations best to use at the source for generating maximum satisfaction 

for the receiver population. The framework uses information in the reports received from 

the receivers to compute the number of streams as well as the format and QoS parameters 

for each stream to be sent. Information in a report includes the preferences of the receiver 

for the QoS parameters such as frame rate and resolution and the bandwidth limit of the 

available local network access link. We simplify the problem of feedback implosion by 

assuming that the receivers will only send one report before the session starts.  

Our approach differs from other research work in that the selection of the format 

and QoS parameters is based on the user preferences (frame rate and resolution), device 

capabilities, including the data format and the limitation on the bandwidth of the device 

rather than transport parameters, such as the data loss rate. Receivers are classified 

according to their bandwidth limit. Based on the capability of the source, our approach 

selects the number of streams as well as the format and QoS parameters of each stream. If 

the source has enough bandwidth to send a separate stream for each class of users, the 

source runs the selection algorithm for each class separately. If not, the source has to 

decide then on the number of streams to be sent as well as the QoS parameters for each 

stream. We will assume that the sender has a number of adaptation services that 

transcode the content into different variants, and that each stream is considered as an 

adapted variant of the original stream. In both cases, the selected format and QoS 



 88 

parameters ensure the highest level of satisfaction of the receivers within their 

preferences, their device capabilities and the throughput limitation of the source. To 

avoid the scalability problem with the number of receivers, we introduce a way to select a 

virtual representative for each class, representing all receivers in that class. Receivers that 

have the same bandwidth limit are more likely to have similar QoS preferences and 

adequately represented by one virtual representative. Using group representatives, our 

scheme achieves content adaptation while retaining the scalability in terms of the number 

of receivers. 

The rest of the chapter is organized as follows: Section 5.2 gives a literature 

review of adaptive multicast applications. Based on the throughput limit of the source, 

Section 5.3 details two algorithms to select to number of streams as well as the QoS 

parameters for each stream to send: one for the case of unlimited server throughput and 

the other for the case of limited server throughput  In the case of unlimited server 

throughput, we have proved how the selection problem matches to a well known NP-hard 

problem. A polynomial  heuristic algorithm that uses group representatives to solve the 

problem is also presented and evaluated in Section 5.3. Finally, we conclude in Section 

5.4. 

 

5.2 Literature review 

Adaptive multicast applications are classified as either sender-driven or receiver-

driven applications. In the sender-driven approach, the congestion feedback messages 

from the receivers and/or network are used to adapt the transmission rate at the source. In 

the receiver-driven approach, the source transmits the same data in different variants, and 

the receivers select the variant to receive depending on the congestion they encounter. 

In [120], a single video stream is transmitted to all receivers, and congestion 

feedback is used to control the rate of the video stream. To prevent feedback implosion, a 

form of probabilistic feedback is used. In [122] the authors proposed an approach for the 

design of an available bit rate congestion control algorithm that maximizes inter-receiver 

fairness for multicast Available Bit Rate (ABR) sessions. Each receiver is assigned a 

weight value, and has an “isolated bandwidth” defined as the rate that would be achieved 

by the receiver when it is the only receiver in the multicast group. Every single receiver 



 89 

defines his maximum acceptable loss tolerance l and selects its own “receiver fairness 

function” that maps from the actual operating bandwidth value to a fairness value. The 

sender receives a feedback from each receiver including the isolated bandwidth and the 

receiver fairness function. The sender will then try to determine the sending rate that 

maximizes the weighted fairness among receivers. To achieve scalability, intermediate 

nodes are used to aggregate feedback messages from receivers according to their isolated 

rates. This approach was modified to be implemented in the Internet [114]. The authors 

used the loss rate instead of the isolated rate to find the best sending parameters for the 

stream. The authors also suggested the use of two streams: a base stream with a constant 

data rate that can accommodate the receivers with the lowest connection rate, and another 

variable bit rate stream whose data rate can be modified based on feedback messages 

from receivers. Receivers with requests to lower the bit rate of the V-stream can always 

change to the base stream. 

Layered encoding and group multicasting are combined in the receiver-driven 

approach. In the receiver-driven layered multicast (LRM) [123] approach, the video 

stream is decoded as a “basic” video stream, and a set of enhancement layers. Each layer 

is sent to a different multicast address. Receivers should receive the basic video stream 

and the enhancement layers that best suit their requirements. A receiver may use join-

experiments to add more layers when there is extra capacity and release layers when the 

receiver experiences congestion. Thin Streams [124] reduces the congestion resulting 

from the join-experiments by dividing each layer further into “thin” layers. 

The Destination Set Grouping (DSG)[115] is a hybrid between sender-driven and 

receiver-driven approaches. In this scheme, the source maintains a small number of video 

streams, broadcasting different variants of the same information. Receivers can tune to 

the stream with the quality they prefer. They can also send feedback messages to the 

source to adjust the quality of the stream to which they are tuning.  

The DSG protocol is composed of two components: an intra-stream protocol and 

an inter-stream protocol. Using the intra-stream protocol, receivers can determine their 

status as: LOADED, UNLOADED, and CONGESTED depending on the packet loss rate. 

Receivers are polled in a probabilistic manner in order to estimate the number of 

CONGESTED and UNLOADED receivers. Depending on the fraction of CONGESTED 



 90 

receivers, the source adjusts the sending rate in order to keep most of the receiver in the 

LOADED state. 

The Source Adaptive Multi-Layered Multicast (SAMM)[116] is another hybrid 

algorithm that uses congestion feedback from the receivers to adjust the number of the 

generated layers as well as the encoding parameters of each layer. Two variations of the 

algorithm were proposed: a network based SAMM algorithm and an end-to-end SAMM 

algorithm. In the network-based algorithm, the source periodically generates a control 

packet called “forward feedback packet” and sends it to the multicast group. Each 

intermediate node updates the packet with the amount of bandwidth available for the 

transmission of the multicast flow. When the packet arrives at the receivers, it contains 

the bandwidth available on the path from the source to the receivers. Each receiver stores 

this value in a feedback message and sends it back to the source. Intermediate mergers 

combine feedback messages from downstream nodes and forward only one feedback 

message toward the source. If the number of requested rate values is higher than the 

maximum number of video layers allowed, then one or more rates must be discarded. The 

algorithm drops the layer with the smallest number of receivers and adds the number of 

receiver of that layer to the number of the preceding lower layer. The end-to-end 

algorithm is similar to the network-based algorithm, except that the receivers cannot 

determine their available bandwidth, and they only use an estimate based on the received 

video rate. Because the actual available bandwidth could be higher than the video arrival 

rate, the receiver might occasionally report a rate that is higher than the observed rate. 

Active networks can also be used with adaptive multicast application [125]. In 

this approach, trans-coders are installed at intermediate nodes in the multicast distribution 

tree. The source sends only one high rate variant of the data, and intermediate nodes do 

the trans-coding depending on the requirements of down-stream receivers and network 

congestion. While this approach distributes the overhead of the source, saves bandwidth 

by sending only one variant of the data, and performs trans-coding only when necessary, 

the control and management of intermediate trans-coders is a complex problem. 

 



 91 

5.3 Selecting QoS parameters for large groups of users 

Traditional QoS parameter selection has been addressed in the context of small 

groups, mostly in two-party sessions or in a small group of users collaborating in a 

teleconference session. With such a small group, it is feasible for group members to 

negotiate the QoS parameters that represent best the participants’ preferences. However, 

the negotiation algorithms for small groups do not easily scale to large groups. The task 

of finding a common denominator for all participants in a large group can pose 

interesting and challenging technical problems. 

In [126], Bochmann and Yang used the DMIF session management protocol to 

develop a distributed QoS management framework for multicasting multimedia 

applications. The protocol is aimed at distributing part of the QoS management process 

between source and receivers; each receiver process can make certain QoS decisions 

based on its local context. The QoS manager in the source node determines the list of 

potential stream variants for each logical multimedia stream, and informs all the receivers 

about these variants. Based on the user profile, the QoS agent at the receiver node selects 

the stream that gives the highest level of appreciation to the receiver. The QoS agent can 

request a certain stream from the QoS manager if the stream is not currently transmitted. 

They used the control-plane of DMIF for the session management and illustrated its 

usage for the management of a tele-teaching application including different QoS 

alternatives for the participating users.  

An approach to find a common ground for all participants in a session is to send 

the preferences of all participants to one node, which tries to find the QoS parameter 

values that generate the maximum satisfaction among all participants. In our approach, 

we assume that this node is the multimedia server or any node that controls the sending 

parameters of the source. All candidate receivers are required to send their profiles to this 

node. Intermediate nodes may be used to aggregate the user profiles as explained in 

Section 5.3.2.2. As we mentioned earlier, each profile will include, in addition to the QoS 

preferences of the user, the available bandwidth to the receiver. We assume that this 

available bandwidth is known and remains constant throughout the session. 

In Chapter 4, we have presented a QoS management framework for inter-personal 

communication, which we have adopted from the framework presented in [41] for 



 92 

selecting the QoS parameters that provide the highest satisfaction for the user. This 

selection algorithm assigns a value of zero to the total satisfaction of the user in the case 

that the satisfaction with one of the parameters is zero. We have modified the framework 

to assign weights to individual parameters and to include several participants in a session. 

The total satisfaction was computed then as the weighted satisfaction for all participants, 

with the same property that this satisfaction will be equal to zero if the satisfaction of any 

participant (with weight > 0) is equal to zero. This property ensures that all parties will 

participate in the session, even if the satisfaction of an individual is not at their 

maximum. 

In the case of multicasting, we found that this framework for computing the 

overall satisfaction is not appropriate, since with a large population of receivers, at least 

one of the receivers would probably have a zero value for his satisfaction for any 

combination of QoS parameters, and therefore the overall satisfaction would always be 

zero. Instead, we decided to use a weighted sum of individual user satisfactions to 

determine the overall satisfaction of all receivers. Candidate receivers that have a zero 

satisfaction for the selected QoS parameters simply do not join the session. 

 

5.3.1 Selecting QoS parameters with unlimited throughput in the source 

Before the session starts, all receivers are required to send their reports to the 

source. The source then classifies the receivers into separate classes according to their 

bandwidth limits. If the source has throughput limit higher than the sum of all bandwidth 

limits of the class, it tries to find the QoS parameters for each class separately. The next 

section deals with the case when the server has a throughput lower than the throughput 

required by all classes. 

For each class, the source tries to find the combination of the QoS parameters that 

generates the highest average satisfaction of all receivers in the class. This combination 

must also require lower bandwidth than the bandwidth limit of the class. The source 

selects the QoS parameters for every class of receivers, based on the preferences of the 

receivers in the class and their bandwidth limit. For instance, if the user satisfaction is 

defined as a function f(.,.,.) of certain QoS parameters the algorithm then solves for the 

QoS parameters that maximize the sum of f(.,.,.) over all users in the given class. The 



 93 

source sends after a multicast report to all receivers, informing them of the number of 

streams, the QoS parameters for each stream, and the multicast address for each stream. 

Each receiver determines the stream that best suits his preferences and tunes to the 

address of that stream, as described in earlier work [126]. 

 

5.3.2 Selecting QoS parameters and channels with limited throughput in the 

source 

It is very possible that the source receives requests to deliver a number of streams 

that exceed its bandwidth limitation. In this case, the source has to decide on the number 

of streams to send, as well as the combination of the QoS parameter for each stream. In 

this section, we will show how the problem of finding the best combination of stream 

variants for delivering media to a large group of receivers is an NP-Problem. We will 

start first presenting some experiments that shows how the number of channels delivered 

by a multimedia delivery server and the average user satisfaction changes with the 

change of the throughput of the server. We will then outline the problem of selecting the 

combination of channels to deliver, and show how the knapsack problem [127], which is 

known to be an NP-hard problem, maps to a special case of our problem. 

We have run some experiments to see how the average satisfaction of the 

receivers and the number of streams change as a function of the throughput limit of the 

server. The results are shown in Figure 22. We selected four bandwidth limits on 

receivers (four classes: 28Kbps, 56Kbps, 128Kbs, unlimited), and we run the experiment 

with a population of 1000 receivers (Table 6). The graph shows clearly that as the 

bandwidth limit of the source increases, the number of streams and the average 

satisfaction increases until it reaches a maximum point. While the average satisfaction 

did not get to one (1), all users were receiving up to the maximum bandwidth of their 

devices. Figure 23 shows how the number of streams increased from one to four, leading 

to higher average satisfaction for all receivers. 

 

 

 

 



 94 

Table 6. Simulated user population. 

 Min. 
Acceptable 
Frame Rate 

Ideal 
Frame 
Rate 

Min. Acceptable 
Resolution 

Ideal Resolution Bandwidth 
Limit 
(Kbps) 

Class 1 1..10 10..15 45x60..90x120 
 

135x180..180x240 28 

Class 2 8..17 17..22 135x180..180x240 
 

225x300..270x360 56 

Class 3 10..24 24..29 225x300..270x360 315x420..360x480 128 

Class 4 12..31 31..36 315x420..360x480 405x540..450x600 Unlimited 

 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

50 17
0

30
0

42
0

54
0

66
0

78
0

90
0

10
20

11
40

12
60

Server Throughput

G
ro

u
p

 a
ve

. s
at

.

 
Figure 22. Server bandwidth limit vs. average satisfaction 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 17
0

30
0

42
0

54
0

66
0

78
0

90
0

10
20

11
40

12
60

Throughput limit

N
u

m
b

er
 o

f 
st

re
am

s

 
Figure 23. Server throughput limit vs. number of streams 



 95 

 
 

5.3.2.1 Selecting the combination of content delivery channels: Problem definition 

V1

R1 Rn-2R2 R3 R6R5 RnR7R4

V2 V3 Vm

Rn-1

S

Internet

 

Figure 24. Assigning receivers to different variants 

 
We will assume that the sender can, using simple or composite adaptation 

services, generate m variants, V1..Vm. A given receiver, Rk, has the satisfaction SRk-Vi, 

when receiving variant Vi. Each variant Vc also is assigned a satisfaction, SVc, which is 

equal to the sum of the satisfaction of all the receivers that will receive the variant. 

Assume that each variant, Vi, requires a bandwidth BVi to transmit to its subscribers.We 

assume that the sender has a certain throughput capability, sender_throughput, expressed 

in the sender’s profile . If the sender throughput is insufficient to send all stream variants, 

the problem is to select a certain number of variants that fit into the bandwidth limit and 

optimize the overall user satisfaction. That is, find values δi (δi = 1 if Vi is selected, 0 if 

not) such that ∑i=1
m δiBVi ≤ sender_throughput, and ∑i=1

m δiSVi, is maximized. 

 

Theorem 5.4.1 Finding the optimal combination of variants (OCoV) that maximizes the 

average user satisfaction is NP-hard. 

 

Proof. We will prove the theorem by showing that the Knapsack problem, which is 

known to be NP-hard, is equivalent to a special case of the problem of finding the best 

combination of variants.  The knapsack problem is defined as follow:  

 



 96 

There is a knapsack of capacity c > 0 and there are N items. Each item i 

has value vali > 0 and weight wi > 0. Find the selection of items (δi = 1 if 

item i is selected, 0 if not) that fit, ∑i=1
N δiwi ≤ c, and the total value, ∑i=1

N 

δivali, is maximized. 

 

The above problem is very similar to our problem, if we consider the case where 

each receiver can receive data from only one variant. The sum of receiver satisfactions 

with each variant Vi , Svi, corresponds to the value vali, and the constant c corresponds to 

the sender_throughput capacity of sender. Therefore, we can see that the knapsack 

problem is a special case of the OCoV problem, showing that the OCoV problem is NP-

hard. 

 
5.3.2.2 Selecting the group representative 

All adaptive multicast applications that require the server to solicit the receivers 

for feedback messages face the problem of feedback implosion, because the total number 

of feedback messages increases linearly with the number of receivers. Several approaches 

have been proposed to solve this problem including back-off timers [118, 119,], 

probabilistic polling [120], and selecting group representative (or feedback aggregation) 

[120,121,128,129].  

In our application, we avoided the feedback implosion problem at two levels: 

first, we require that the receivers send their profiles and device limitations to the source 

only once, before the session starts, hence avoiding periodic feedbacks implosion. A 

problem with this approach is that it does not cover the variation over time of the 

bandwidth limit available for the receiver. To avoid this problem, users can use a 

conservative value for their bandwidth limit instead of the best all-time value. 

To reduce further the implosion problem, we use class representation, where all 

receivers that have the same bandwidth limit are grouped together and are represented as 

one virtual receiver called the representative. The preferences of the representative are 

selected based on the preferences of the class members. The QoS selection algorithm 

would then select the QoS parameter for the class based on the QoS preferences of the 

representative. The decision to partition receivers according to their bandwidth limit is 



 97 

based on the fact that receivers that have the same bandwidth limit are more likely to 

have close preferences, and the values of their preferences is more likely to represent the 

preferences of individual receivers. 

Even though receivers in the same class are more likely to have close preferences, 

there is still a range on the minimum accepted and ideal preference values for the class, 

and this gives several possibilities for selecting the preferences of the representative. 

Table 7 shows different variants for selecting the minimum accepted and ideal preference 

of the representative receiver based respectively on the minimum accepted and ideal 

value for all receivers in the class.  

Table 7. Variants of the preferences selection for the group representative 

 minimum accepted value of the 
representative 

ideal value of the 
representative 

Variant 1 Average of the minimum 
accepted values for all receivers 

Average of the ideal 
values for all receivers 

Variant 2 Minimum of the minimum 
accepted values for all receivers 

Minimum of the ideal 
values for all receivers 

Variant 3 Minimum of the minimum 
accepted values for all receivers 

Maximum of the ideal 
values for all receivers 

Variant 4 Maximum of the minimum 
accepted values for all receivers 

Minimum of the ideal 
values for all receivers 

Variant 5 Maximum of the minimum 
accepted values for all receivers 

Maximum of the ideal 
values for all receivers 

 

To evaluate the adequacy of the class representation, we selected one class of 

receivers, and run the selection algorithm once with all receivers directly considered by 

the source for the selection of the QoS parameters of the broadcast stream (no grouping) 

and another time with only the preferences of the class representative considered. We 

compared the average satisfaction of all the receivers in these two cases. Simulation 

results are shown in Figure 25. 

The graph in Figure 25 shows clearly that variant 2 and 4 resulted in the worse 

average satisfaction for the group, even though the satisfaction of the representative with 

its selected parameters was one (1). This is basically due to the fact that the ideal 

preference for the group representative is the minimum of the ideal preferences of all 



 98 

receivers, reflecting hence the preferences of the most conservative receiver for the ideal 

preferences. The best variant for group representation is variant 5, where the minimum 

accepted value for the preferences of the representative is the maximum of the minimum 

accepted values for all receivers, and the ideal value for the representative is the 

maximum of all ideal values for all receivers. This variant avoids the conservative choice 

of the minimum accepted preference, and explores the optimism on the ideal preferences 

of all receivers. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Group size

G
ro

u
p

 A
ve

. S
at

. No grouping

Variant 1

Variant 2

Variant 3

Variant 4

Variant 5

 
Figure 25. Average satisfaction with different variants of grouping. 

 
5.3.2.3 A heuristic algorithm for QoS parameter and channel selection  

In this section, we will present a polynomial heuristic algorithm for the OCoV 

problem. We first discuss an important practical issue neglected in the previous problem 

definition. Then we present a heuristic algorithm that takes this issue into account. 

An important issue with selecting the number of channels and the QoS parameters 

for each channel with limited server throughput is that if the server decided not to 

transmit channel CHi, the receivers for whom channel CHi was the best choice, can 

always receive media from other channels, mainly from the channels that have close 



 99 

bandwidth requirements, i.e. CHi-1 or CHi+1 (assuming that all the channels are sorted in 

the increasing order of their bandwidth requirements). The representative of these 

receivers can also help adjusting the parameters of the substitute channel in a way that 

guarantees better satisfaction.  

We now provide a polynomial heuristic algorithm for the OCoV problem. The 

pseudo code for the algorithm is shown in Figure 26. The algorithm primarily involves 

the following steps: in Step 1, the server separates receivers into separate classes based 

on their bandwidth limit, and selects the group representative for each class in Step 2. For 

each class, the server then computes the QoS parameters that maximize the sum of the 

user satisfaction over all the users in the class. The source then tries to select the 

combination of channels and the QoS parameters of each channel in Step 3. In Step 5, the 

algorithm sorts all the channels according to their bandwidth requirements (CH1.. CHm). 

In Step 6, the algorithm repeats the process of:  (a) selecting a candidate channel CHi 

with the lowest total satisfaction, (b) computing the preferences for the group 

representative of channel CHi, (c) checking to find the neighboring channel (CHi-1 or 

CHi+1) that best accommodates the group representative of the candidate channel. (d) 

Finally, the candidate channel is deleted and the group representative is added to the 

selected neighboring class. The process is repeated until the sum of the bandwidth 

requirement of all the selected channels is less than or equal to the throughput of the 

server.  



 100 

Figure 26. The pseudo code of the OCoV heuristic algorithm. 

 

5.3.2.4 Performance evaluation of the OCoV heuristic algorithm  

To study the performance of the proposed OCoV heuristic algorithm, we have run 

a number of simulations using the MATLAB® software. We have used the results of the 

simulations to compare the performance of the OCoV heuristic algorithm with the 

optimal algorithm. The optimal algorithm uses exhaustive search for the best combination 

of channels and values for the QoS value parameter that maximize the total receiver’s 

satisfaction.  

In the simulation, we have used a population of 1000 receivers with randomly 

generated QoS preferences, but equally divided into six classes (Table 8), and we have 

used Variant 5 from Section 5.3.2.2 to compute the group representative for each class. 

As we have mentioned earlier, we have used the MATLAB® software running on an IBM 

ThinkPad T40 laptop, with a 1500 MHz Intel® Pentium® M processor and running the 

Windows XP operating system.  

 

 

 

 
Step 1. Divide the receivers into m separate classes, Class1 ..Classm,  based on their bandwidth limit 
Step 2. For each group i, select a group representative Ri 

Step 3. For each group i, find the QoS parameters for the channel CHi that maximize the total satisfaction 
Sat(Classi) for the receivers in the group. 

Step 4. Total_Required_Throughput = ∑
= mi

iCHtrequiremenBandwidth
..1

)(_  

Step 5. //Sort all channels according their bandwidth requirements 
 Sort(Bandwith_requirement[1..m]); 
Step 6. While (Total_Required_Throughput > Server_Throughput_Limit) do 

•  Select the channel CHi with the smallest total user satisfaction, Sat(Classi) 
•  Compute the QoS preferences for the group representative for channel CHi 
•  Check the user satisfaction of the group representative for channel CHi with the QoS 

parameters of the adjacent channels, CHi-1 and CHi+1. Select the channel ch which yields 
highest satisfaction to the group representative 

•  Update the total satisfaction of the channel ch to include the satisfaction of the group 
representative of group CHi 

•  Remove CHi from the list of channels 
•  Total_Required_Throughput = Channel_Required_Throughput – Bandwidth(CHi); 

End{while} 



 101 

Table 8. Population distribution 

 Min. 
Acceptable 
Frame Rate 

Ideal 
Frame 
Rate 

Min. Acceptable 
Resolution 

Ideal Resolution Bandwidth 
Limit 
(Kbps) 

Class 1 6..16 11..21 45x60..90x120 
 

135x180..180x240 28 

Class 2 8..18 13..23 135x180..180x240 
 

225x300..270x360 56 

Class 3 10..20 15..25 225x300..270x360 315x420..360x480 128 

Class 4 12..22 17..27 315x420..360x480 405x540..450x600 256 

Class 5 14..24 19..29 405x540..450x600 495x660..540x720 512 

Class 6 16..26 21..31 510x680..540x720 585x780..630x840 Unlimited 

 

The results that we were interested in were the running time of the optimal 

algorithm and of the OCoV heuristic algorithm, as well as the percentage of the 

difference between the achieved total satisfaction for the two algorithms. These 

simulation results for these two values are depicted in Figure 27 and Figure 28. 

Running Tim e

0

200

400

600

800

1000

1200

1400

1600

1800

20
0

250 300 35
0

400 45
0

50
0

55
0

60
0

650

Server throughput

T
im

e 
in

 s
ec

o
n

d
s

Running time
w ithout grouping

Running time w ith
grouping*100000

 

Figure 27. Running time for the OCoV heuristic algorithm and the optimal algorithm. 

 



 102 

Difference  in the  Total Satis faction

0

10

20

30

40

50

60

70

20
0

250 30
0

350 400
45

0
500 55

0
60

0
650

Server lim it

P
er

ce
n

ta
g

e 
(%

)

 

Figure 28. Difference in the total satisfaction between the OCoV heuristic algorithm and the optimal 
algorithm. 

 
Figure 27 summarizes the comparison results for the running time of the OCoV 

heuristic algorithm and the optimal algorithm. The graph shows clearly a major reduction 

(in the order of 106) in the running time of the algorithm to find the best combination of 

streams and their QoS configuration parameters. This reduction in running time definitely 

improves the response time of the data source to deliver customized content. This 

reduction came at a cost of (30-60%) reduction in the total achievable user satisfaction, as 

Figure 28 shows. It would be interesting to optimize the achievable total user satisfaction 

of the OCoV heuristic algorithm, and still keep the same running time. We will leave this 

issue for future work. 

 

5.4 Conclusion 

In this chapter, we have proposed an end-to-end rate-based mechanism for the 

selection of the optimum QoS for media broadcast that relies on the knowledge of the 

user preferences and bandwidth limitations of all receivers. Based on this information, the 

source will select the number of QoS variants for the given media stream and the QoS 

parameters for each of these variants.  To limit the problem of feedback implosion from 



 103 

the receivers, we use a virtual representative for all receivers within a given group of 

receivers. We have considered several algorithms to determine the QoS preferences of 

the group representatives. We have also presented a heuristic algorithm to computer the 

number of streams as well as the QoS configuration parameters for each stream, and 

compared its performance to the optimal algorithm. 



 104 

Chapter 6 
 

Architectures for Personal Mobility Systems 
 

  

6.1 Introduction 

A natural consequence for the multiplicity of devices and access networks is to try 

to integrate seamlessly similar services across networks, and to enable users from a 

certain network to use services in other networks. Users that subscribe to services in one 

network would like to have the flexibility of accessing these services through devices 

connected to other types of access networks. Examples such as accessing the e-mail 

inbox from a regular telephone line, or accessing messages in a voice mailbox through 

the Internet are typical kinds of accessing services from outside the native networks 

The idea of “always connected” has always been a driving vision of the key 

players in the telecommunication world. This vision is beneficial for users who are on the 

move in order to provide them with constant access to telecommunication services. This 

vision has also created several forms of mobility, such as device mobility, session 

mobility, and user mobility. Device (or terminal) mobility is defined as the ability of a 

device to move from one location to the other without losing network connectivity. This 

form of mobility is achieved by technologies at the network layer such as cellular 

telephone network, or Mobile IP [130]. Session mobility is mobility at the application 

layer, where technologies like Hot Desk [131] allow users to stop a session at a certain 

terminal, and to continue the session at another terminal from the same point where it was 

stopped. User mobility, also known as personal mobility, is defined as “the ability of end 

users to originate and receive calls and access user-subscribed telecommunication 

services on any terminal in any location, and the ability of the network to identify end 

users as they move”[132]. While device mobility has been the focus of research for many 

years, the area of user and session mobility are still in early stages.  

The first notion of personal mobility started with the Universal Personal 

Telecommunication (UPT) in the ITU Telecommunication Standardization Sector, which 

was defined as the ability of a user to receive telecommunication services anywhere, 



 105 

anytime and through any telephony terminal. Each user in the UPT paradigm is assigned 

a unique personal UPT number and a personalized service profile that serves as an 

application level routing algorithm. UPT was originally produced for the PSTN and it 

supports only telephone terminals. Extending the same concept to support different types 

of terminals and networks has lead to what is currently known as personal mobility.  

Several research groups proposed architectures to solve the problem of personal 

mobility. Notable among these architectures are the Mobile People Architecture (MPA), 

the Internet-core Network Architecture for Integrated Communications (ICEBERG), the 

Telephony Over Packet networkS (TOPS), Seamless Personal Information Networking 

(SPIN), Call Management Agent (CMA) System, the Session Initiation Protocol (SIP) 

and finally the Seamless Personal Information Networking (SPIN). In this chapter, we 

will present several architectures that were proposed as a solution for the personal 

mobility problem. But before we talk about each of these architectures, we will define 

clearly the problem of service mobility.  

 

6.2 Personal mobility: Problem statement 

The wide spread and diversity of communication devices that a person has access 

to made the task of reaching that person a big challenge. A caller always has to guess 

when, where, and how to reach a certain callee. Managing and configuring 

communication user preference as to when and who have the permission to reach the user 

on each device is also a big task for the user. In addition, keeping the user always 

connected without jeopardizing his/her privacy is always a main concern. Following is a 

description of the many challenges and issues related to device multiplicity and personal 

mobility: 

- Addressing people rather than communication devices: Until today, people still 

perform the conversion in their mind between persons and the identification of their 

communication devices. In addition, people use application or device specific 

address even when the target entity is a person. The phone directory is just one 

service to help alleviate the problem, though the user still has to search manually for 

the phone number, and it works only for telephones. In addition, there is currently 

no one directory that includes the user’s phone number, cellular phone number, SIP 



 106 

URL, Skype [133] user id, email address, and other device addresses which are 

accessible by different telecommunication technologies.  

- Locating the called party: Since personal mobility is all about reaching a person, 

finding the workstation, the phone, the cellular phone, and in general, the device 

that the user currently has access to is a major task. Industry estimates quote that 

only ten percent of phone call results in productive conversation: most of the calls 

ends up reaching a voice mail, go unanswered, or reach the person at an 

inconvenient time [134]. This is only when using normal telephony and when each 

user has one phone number; having multiple numbers makes this problem worse, 

and the worst is when considering other candidate ways of communication such as 

trying to reach the person on his cellular phone, pager, or using VoIP through his 

workstation. 

- Customizing communication: Most people would like to customize their 

availability on each device according to different criteria, such as the time of the 

day, the day of the week, the type and format of received content, and even 

according to different roles of the caller and/or the callee. Connecting with a person 

according to his preference makes the communication session desirable and un-

intrusive. While traditional applications and services do not offer much choice for 

the user (only ON/OFF option)(we refer to this as low level customization), new 

Internet based telephony application such as IP-telephony allow their users to fine 

tune a number of parameters. A user may customize several options for the 

applications, including customizing the type of media and the quality for each 

media type (we refer to this as high level customization). For instance, an employee 

may prefer using only telephone-quality, voice communication when talking with a 

co-worker, while insist on CD-audio quality when talking to his manager.  

- Acquiring new devices: Still another problem is with acquiring new devices. When 

a user subscribes to a new service, he/she has to pass the address of his/her new 

service to other people before he/she can start receiving calls through this service. 

For instance, a person that has subscribed to a cellular service, might not be reached 

by a second party if the second party is not aware of the access number of the 

service. Publishing the address for a new service is usually an awkward and lasting 



 107 

task. A user would prefer an environment similar to a “plug and play” where new 

subscribed services can be used the moment they are plugged into the environment. 

In such an environment, the user does not have to worry about passing around the 

address of the service, and the environment takes care of routing incoming calls to 

the service without requiring the caller to be aware of the address of the service. 

De-activating a telecommunication service has the opposite effect on person 

reachability. 

- Using public services near the user: While the set of services available for the 

user changes when the user acquires a new service, it can also be more convenient 

if the set is updated automatically with additional public telecommunication 

services that the user may transiently get access to.  For instance, it would be 

convenient for a user walking into a common room to be able to receive 

communication calls on the phone in that room. Changes in the set of services 

available to the user to include such services should be done transparently to the 

user who might be un-aware of the possible available services and their addresses. 

- Maintaining the user’s privacy: Most users agree that providing customized 

ubiquitous access should not jeopardize their privacy. While certain access 

networks, such as the wireless network can conceal the location of the user, wired 

devices such as telephones and computers can easily reveal the location of their 

user.  Information about which device is used by the called party and hence his 

location should be hidden from the caller. A similar logic applies also for the caller, 

where the called party should in no way be able to detect the address of the caller’s 

device and hence his location. While location privacy might not be an issue for 

some users, other users might be ready to pay extra fee to keep their location 

private. Another important privacy threat can be directed at the personal preferences 

of the users. Most users would definitely prefer to hide their preferences for 

communications, as this information can be considered as private information. For 

instance, having a blocking list public would be an embarrassment to most people. 

- Data trans-coding and protocol bridging (applications inter-operability): 

personal mobility is tied to application independent communications. Connecting to 

any of the mobile user’s devices from a non-compatible device that uses different 



 108 

protocols for signaling and data transfer necessitates the existence of one or more 

gateway/proxy between communicating parties. A PSTN-Internet gateway for 

instance has one interface connected to the PSTN and another interface connected 

to the Internet. A connection from the Internet to the PSTN must go through a 

gateway that works as a terminating end-point for both devices on the Internet and 

the PSTN. Devices with incompatible codec require intermediate proxies that can 

trans-code formats to allow data flow between the two devices.  

 

6.3 Architectures for personal mobility 

In this section, we will present a number of architectures for personal mobility. 

The next section lists a number of deficiencies with these architectures. Chapter 6 

presents our Mobile Internet Telecommunication (MobInTel) architecture that addresses 

these issues. 

 

6.3.1 The Mobile People Architecture (MPA) 

The Mobile People Architecture (MPA) [135] proposed by the Moquitonet group 

at Stanford university aimed at addressing the deficiency of the network protocol stack, 

where the “personal” factor in telecommunication is absent. The architecture presents an 

extension to the current OSI 7-layer model, to change the end-point communicating from 

applications to persons. It also routes the communication to the person, regardless of the 

person’s location or his current application. 

The MPA architecture proposes a person layer that bridges the gap between the 

communicating users and the underlying communication infrastructure. Within the 

person layer, each user has a personal proxy that acts on his/her behalf; it works as a 

personal level router that tracks the location of the user, accepts, converts, and routes 

communication calls based on the type of the communication request and the user 

preferences. Each personal proxy has an address that is called the Personal Online 

Identifier (POID).  



 109 

 

 

Figure 29: Architecture of the MPA personal proxy. 

 
The personal proxy has four components, as shown in Figure 29: 

•  Tracking Agent: The Tracking Agent keeps track of the location or application 

where the user is most likely to be accessible. Applications can be registered with 

the tracking agent manually, automatically or according to a user-specified 

profile. 

•  Rules Engine: Based on information from the Tracking Agent and user’s 

preferences, the Rules Engine directs the dispatcher on how to forward the 

communication request. The Rules Engine specifies also the description of the 

desired output format. 

•  Dispatcher: when the personal proxy receives an incoming call, the Dispatcher 

asks the Rules Engine for instructions on how to route the incoming call. Based 

on directions from the Rules Engine, the Dispatcher instantiates the right 

application drivers that trans-code the data and control signals to the appropriate 

application-specific format. 

Dispatcher 

 

Tracking 
Agent 

Incoming 
communications 

Forwarded 
communications 

Registration
s 

Rules  
Engine 



 110 

•  The Application Drivers act as adapters between non-compatible applications. 

Four types of drivers have been proposed: Session Drivers that receive and send 

communication requests, Messaging or Protocol Drivers that parse the 

communication requests/response and generate the corresponding meta-data, 

Content Drivers that search for a certain pattern into the data content, and finally 

Conversion Drivers that convert data from one format to another. 

   

During session initiation, a caller passes the POID of the callee to the local personal 

proxy, which queries then a directory service such as LDAP for the Proxy Application-

Specific Address (PASA) of the callee’s personal proxy. The personal proxy provides the 

directory service with the POID of the callee and the application type the caller is willing 

to use. The directory service returns the Proxy Application-Specific Address (PASA) of 

the callee’s personal proxy. Each personal proxy has an application address for each 

application of the user, which is different from the application’s address. The invitation is 

then sent to the callee’s personal proxy, which in turn forwards it to the application 

specific address (ASA). Only the ASA of the personal proxy are included in the directory 

service, while the real ASA’s of the applications are kept secret with the personal proxy, 

protecting hence the privacy of the callee. If the user does not care about his/her privacy, 

the ASA can then be included in the directory and returned to the querying application. 

The personal proxy would then be responsible only for updating the ASA in the directory 

service, without interfering in the initiation of the session. In addition, outgoing requests 

also protect the caller’s privacy. 

The MPA architecture provides full privacy for both caller and callee using the 

personal proxy. The use of POID allows for personal level communication, independent 

from the type of application. The Tracking Agent allows for the mobility of the user 

between several applications, though it does not cover for dynamic discovery of devices 

in ad-hoc environments such as ubiquitous environments. The architecture allows for 

customizing the user’s communication, though the level of customization is not specified 

in the published papers. In other words, it is not known whether the architecture allows 

the user to specify the quality for the communication session or it just allows the user to 



 111 

specify only the device to use for the session (low level customization). The architecture 

allows also for application interoperability by using application drivers. 

 

6.3.2 ICEBERG: Internet-core Network Architecture for Integrated 

Communications 

The ICEBERG [136] architecture is an Internet-core based architecture that 

integrates together telephony services over different networks. It uses the Internet as the 

base infrastructure for connecting devices with different access technologies. A number 

of key components are introduced in the ICEBERG architecture: 

- Clearing House: The Clearing House is the control and management entity for 

the traffic flow between the ICEBERG network plane (and hence the various 

access networks) and the Internet Service Providers (ISP’s). It acts as a bandwidth 

broker in establishing data paths that meet certain QoS requirements. It also 

performs authentication, authorization and accounting for ICEBERG users. 

- Name Mapping Service: The Name Mapping Service acts as the directory 

service in the ICEBERG architecture. It maps an ICEBERG Unique ID (iUID) 

associated with each user to a set of communication devices. 

- Preference Registry: The Preference Registry is a service that stores and 

processes the user’s preferences. Given the caller’s and callee’s iUID’s, the time 

of the day, and some other dynamic information such as the current location of 

the user, the Preference Registry finds the device that is best suitable for the 

requested communication session. Users use the Preference Registry to express 

and customize their communication preferences. 

- Personal Activity Coordinator: The Personal Activity Coordinator (PAC) acts 

as a tracking agent for the end-user. It keeps track of the user’s current location, 

current activity and any other dynamic information that could be used during the 

session setup. Information in the PAC is used by the Preference Registry to 

provide more accurate information about the current activity of the user. 

- ICEBERG Access Points (IAP): An ICEBERG Access Points (IAP) is a 

gateway that connects the ICEBERG network to an access network such as the 

PSTN, GSM cellular network, or the pager network. It is access network 



 112 

dependant, and it is responsible for converting control messages and data flow 

between the networks with different data and control protocols.  

- Automatic Path Creation Service: The Automatic Path Creation Service (APC) 

is responsible for the computation and establishment of data flows between the 

end-points. Depending on a number of constraints, such as available network 

resources, the APC might add several trans-coders along the data path between 

the end-point devices. 

- Call Agent: The Call Agent (CA) is a process that is responsible for setting up, 

maintaining, and tearing down communication sessions. It uses the Clearing 

House for authentication, accounting and resource reservation. It interacts with 

the Name Mapping Service and the Preference Registry to map an iUID into the 

device to use, and with the Path Creation Service for establishing data flows. Each 

user has one Call Agent per device, per session. Call Agents are created by the 

iPOP when a connection request is received or initiated.  

 

All the components of the ICEBERG architecture reside in the ICEBERG 

network plane (Figure 30) that connects several access networks over the Internet. 

ICEBERG Points of Presence (iPOPs) are connected to all access networks through 

ICEBERG Access Points (IAP); they are also connected to a Clearing House and to 

Internet Service Providers (ISP). 

While most of ICEBERG architecture components are very common to several 

personal mobility architectures, ICEBERG uses a soft state signaling protocol to setup 

and maintain the session state. All call agents in one communication session share their 

state information over one multicast session. Periodic call state information is sent from 

the IAP to the iPOP. The iPOP passes this state information to the corresponding CA, 

which in turn propagates this information to other CA’s on the multicast channel. This 

call signaling mechanism makes ICEBERG a very good platform for simple and quick 

service creation and deployment. 

 

 

 



 113 

 

Figure 30: The ICEBERG Architecture (from [136]). 

 

 ICEBERG shares many of the MPA properties in the support for personal 

mobility. ICEBERG provides customized communication through the Preference 

Registry. User’s location privacy is maintained by returning the address of iPOP to the 

caller, rather than the address of the device to use. Interoperability between different 

access networks is provided by using different IAP’s. The ICEBERG architecture suffers 

though from the same drawbacks of the MPA, in that it does not support device discovery 

and high-level communication customization. 

 

6.3.3 Telephony Over Packet networkS (TOPS) 

The Telephony over Packet Networks (TOPS) [137] architecture was designed to 

exploit the flexibility of the packet network, and the increased intelligence of the end 

devices. TOPS users may have several devices, and they can control how 

communications are directed to these devices. 

The major driver for the TOPS architecture was to extend the traditional directory 

service to support user mobility and location management. A directory service in the 

  

   
Access Network 

Plane 

ICEBERG  
Network  

Plane  

ISP Plane 

 
A 

 
B 

I I

   

I

SF iPOP  

NY iPOP  

NY iPOP  

SF iPOP PR 

CA 

PAC 
APC  
NMS  Clearing 

I I I



 114 

architecture allows users to register their devices as well as the selection directive or 

profile to handle all communication calls. Each user, identified by a distinguishing 

name, keeps a user record (Figure 31) that contains his/her personal information and 

profile in the directory. Using the distinguishing name, TOPS users may contact one 

another without having to first figure out each other's phone numbers or email address. 

 

 
Figure 31: Structure of a user record 

 
There are three main components in the TOPS architecture: 

- Directory Service: The directory service in the TOPS architecture is a convenient 

way to protect the user from having to deal with low-level addressing schemes and to 

permit personal mobility. The directory service maps a distinguishing name of a user 

to a set of call appearances, based the conditions and preferences in the call handling 

profile. Each call appearance holds enough information about one terminal where the 

user can be reached. The directory server allows the user to customize the query 

handling and call setting on a call-by-call basis, depending on the caller, the time of 

the call, the urgency of the call, and some other conditions. Using the user query 

handling profile, the directory service gives the user a full control over which call 

appearance is returned to the caller. 

- Application Layer Signaling (ALS): Applications running on top of the TOPS 

architecture use the Application Layer Signaling (ALS) protocol for establishing and 

DN(s)

User info

Credentials

QHP1

CAS1

CAS2

CAS3QHP2

Call Appearance Sets

Caller

Responce(CHP)

User Record

Directory Server



 115 

controlling the communication session, negotiating capabilities, and requesting 

advanced services. The ALS protocol allows the application to add and remove media 

channels. The two basic messages of the ALS are the INVITE and RESPONSE 

messages; the INVITE message is sent over the default Logical Channel (LC) of the 

call appearance returned from the directory query. The INVITE message contains the 

attributes of the logical channels as desired by the caller. The caller may also take into 

consideration the capabilities of the callee terminal(s) before sending the INVITE 

message. The RESPONSE message describes which of the requested channels are 

available, as well as any additional information provided by the callee.  After the 

caller’s application receives the RESPONSE message, it can proceed with the 

resource reservation, and when all the requested resources are made available, it 

sends a RING message to the callee’s application which answers with an ANSWER 

message, containing the set of media the callee actually decided to accept. 

- Logical Channels: The Logical Channels (LC) layer provides the application layer 

with an abstract uniform communication interface, independent of the underlying 

network. Several LC’s with similar QoS transport requirements can be multiplexed 

onto one transport channel. 

 

The TOPS architecture provides also a mechanism to support both loosely and 

tightly coupled conference control mechanisms. For tightly coupled conferences, the 

TOPS architecture provides conference controllers that perform control functions for 

conferences including capability negotiation and policy access to the conference. The 

ALS protocol messages, CONFIGURE, CNF_ACK, MODIFY, MOD_ACK, END, 

END_ACK are used to create, modify and terminate a conference. TOPS allows also 

both centralized and decentralized mixing schemes for media streams.  

Similar to the MPA architecture, the TOPS architecture allows for personal 

mobility using the directory service. Personal level addressing is achieved by using a 

distinguished name, which the directory service maps into a terminal address. The Query 

Handling profiles allows for user customization of communication, though like the MPA 

architecture, it allows only for low-level customization. TOPS supports only terminal 

mobility, but not dynamic discovery of devices and services. TOPS also does not support 



 116 

application interoperability. Location privacy is not provided in TOPS, since the Query 

Handling Profile returns the call appearance of the device of the user, which could be 

used to deduce the location of the user.  

 

6.3.4 Call Management Agent System 

The Call Management Agent system (CMA) [138] is an agent-based architecture 

proposed by the Voice-over-IP Consortium for managing multimedia communication 

sessions. In the architecture, each Call Management Agent (CMA) represents a person or 

a group of persons and manages the communication access to their devices. Each CMA 

has the logic of the user or group it represents, which allows it to select the 

communication device for the communication session.  

Each CMA is identified by a CMA Name (email-like address), which is used to 

locate the CMA server where the CMA resides. Since a CMA server may host one or 

many CMA’s, the CMA Name is also used to identify the intended CMA on the CMA 

server. The system assumes the existence of DNS-like directory for locating the CMA 

server of a certain CMA. 

 

 

Figure 32. A CMA manages multiple communication terminals 

 

 

 
CMA 

 
Phone 

(POTS,Cellular) 

 
WhiteBoard 

 
Internet  Phone 

 
Pager 

 
Email 

(MIME, Voice, Video) 



 117 

Each user’s device in the CMA architecture has a Communication Terminal 

Specification (CTSpec) that holds all the information about the device. The CTSpecs are 

stored as properties of the CMA of the user. A query to the CMA of a certain user will 

return a list of CTSpecs representing the set of devices that could be used to access the 

user at this point of time.  

The CMA system defines also a protocol, called the CMA Protocol (CMAP), 

which is used for communicating with the CMA server. Using the protocol, the caller’s 

CMA can send a RESOLVE request to the callee’s CMA server, containing the callee 

CMA Name, and possibly the caller CMA Name, the CTSpecs for the caller’s own 

devices. The RESPONSE message would include a list of CTSpecs for the callee’s 

devices, or a RIDERECT response, which instructs the caller CMA to redirect the 

RESOLVE request to another CMA server. Other CMAP messages include: GET 

message, to retrieve certain properties of the CMA, CREATE message, to add some 

properties to the CMA, and CHANGE message, to change some already existing 

properties of the CMA. 

The CMA architecture shares with the TOPS architecture a number of properties 

for personal mobility, including personal level addressing, customization of 

communication, lack for location privacy, and lack of support for application 

interoperability. They differ only in that the CMA architecture defines its own protocol to 

access the directory server (CMA server) while the TOPS architecture uses any directory 

access protocol. The CMA architecture also does not define a signaling protocol like the 

ALS protocol of the TOPS architecture.  

 



 118 

6.3.5 Session Initiation Protocol 

In Section 3.5.2, we have talked about the Session Initiation Protocol (SIP) [49] as 

a VoIP signaling protocol. SIP integrates both VoIP location management and the 

application layer signaling into one protocol, making it a good candidate for many 

applications that requires personal mobility. In this section, we will discuss how SIP can 

support personal mobility. 

The SIP protocol, as we described it earlier, uses an addressing scheme similar to 

e-mail addressing to contact a person, regardless of the address of the device. The 

mapping between the user name and the device to use is done on the intermediate servers.  

SIP defines a number of logical entities: user agent, redirect server, proxy server 

and registrar server. The user agent originates and terminates SIP messages. The redirect 

server receives requests from user and responds with a message that includes the 

location(s) where the targeted user agent should be contacted. The proxy server forwards 

request messages to the targeted user agent or another proxy server. User agents use the 

service of the registrar server to register their current location. The registrar server 

provides user agent location information through a location service. Proxy servers use 

these location services to forward the incoming, while location information sent to a 

redirect server is returned to the calling user agent. 

A SIP proxy or redirect server and a registrar server can be used to support personal 

mobility. A user might run a user agent on each of his devices, and each user agent would 

register its addresses with the registrar. An incoming request might be diverted to any of 

the user agents based on certain call processing rules: the user can use either the Call 

Processing Language (CPL) or the SIP CGI to express his/her processing rules. Example 

of personal mobility support in SIP is illustrated in Figure 33[139]. The example shows a 

user Alice who wants to be reachable via a PSTN phone, a wireless device and a PC. User 

Alice would register these devices with the SIP server at “yahoo.com” and 

“comlumbia.edu” together with the rules to handle incoming calls, and just publish her 

addresses(alice17@yahoo.com, alice@columbia.edu, 7000@columbia.edu, and 

Alice.McBeal@columbia.edu). A call to any of Alice’s published address would be 

forwarded to any of Alice’s devices, based on her preferences 

 
 



 119 

Figure 33. Example of personal mobility support in SIP 

The SIP architecture has a number of shortcomings when it comes to personal 

mobility: first of all, all the user devices and applications must be registered directly with 

the SIP registrar to become available for the user. Second, SIP does not have any 

dynamic discovery mechanism for devices and applications. Interoperability and location 

privacy were not included in the protocol. But as we mentioned earlier, a SIP user can use 

the SIP CGI or CPL to create a script that is executed by the SIP server when the user 

receives or sends a communication request. This script usually contains the user 

customization for his communication sessions. 

 

6.3.6 Seamless Personal Information Networking (SPIN) 

The Seamless Personal Information Networking (SPIN) [9] project at the National 

Research Council of Canada (NRC) in Ottawa introduced a seamless messaging system 

for the management of personal incoming messages across heterogeneous networks. The 

system allows the user to customize the way the system handles the messages in his/her 

multimedia mail-box.  

The system architecture pf SPIN is composed of four major components: Message 

Watcher, Personal Agent, Service Process, Device Manager, and Service Process. The 

complete architecture of the system is showed in Figure 34. 

Cellular phone

PC

1 2 3

4 5 6
7 8 9

* 8 #

IP phone

tel: 12128541111

tel: 12015551234

alice@host.columbia.edu

yahoo.com

columbia.edu

alice17@yahoo.com

alice@columbia.edu

Alice.McBeal@columbia.edu

7000@columbia.edu



 120 

 

 
Figure 34: SPIN system architecture 

 
The Message Watcher awaits incoming messages and formats them in a form that 

the system can process. The Device Managers are device-dependant drivers and are 

responsible for delivering the message to the specified user device. The Personal Agent 

has three main sub-components: the Classifier, the Action Definer, and the Secretary. The 

Classifier, triggered by the Message Watcher, is responsible for classifying the message 

based on the rules provided by the user. After the message has been classified, the Action 

Definer is triggered to define the actions to be applied on the message. These actions are 

interpreted by the Secretary. The Secretary might require additional resources to perform 

certain actions request by the Action Definer. For instance, the Secretary might require 

the service of a tracking agent to deliver urgent messages to the user. Both, the Message 

Watcher and the Device Manager use the Service Process: the Message watcher triggers 

the Service Process to convert incoming messages into the system’s unified format for 

Personal 
Agents 

Service 
Processes 

Voice 

 
Signaling 

Ring 

E-mail 

Classifier 

WWW 

Input Messages 

Fax 

Action 
Definer 

Secretary 

Message 
Watcher 

Universal 
Message  

Box 

Pager Fax E-mail 

Device Drivers 

Phone 

Device 
Manager 

Voice 

Voice 

Recog. 

OCR 



 121 

message processing, and the Device Process uses the Service Process to convert a 

message in the system’s unified format to the format acceptable by the end-device. 

The SPIN architecture does not use any addressing scheme, and the caller still has 

to know all the addresses of the callee. It hides though the information about the device 

that received the message or call. Additionally, the architecture allows the user to specify 

the rules for handling calls, and hence provides a partial personal mobility service. The 

system does not support though high-level customization or dynamic discovery of 

devices. 

 

6.3.7 Personal mobility in telecommunication networks. 

As we have mentioned earlier, the first notion of personal mobility started with 

the Universal Personal Telecommunication (UPT) in the ITU Telecommunication 

Standardization Sector, which was defined as the ability of a user to receive 

telecommunication services anywhere, anytime and through any telephony terminal. UPT 

is an example of personalized service that the POTN can provide. UPT is just one 

manifestation of the desire of the telecom providers to provide their customers with much 

more customized services. Telecom providers soon realized that providing customized 

service with their traditional systems can be a very daunting task (especially with many 

feature interaction problems) which calls for drastic changes in the architecture of these 

communication systems.  

A number of researchers [140, 141, 142, 143] proposed the use of Multi Agent 

Systems (MAS) as an architecture platform for next generation telecom services with 

minimum feature interaction. In [143], the authors presented an architectural framework 

that identifies the different components of a distributed telecommunication system; the 

architecture used different agents to represent different components, “keeping their 

concerns and responsibilities separate and well-defined” [143]. Three types of agents 

were identified in the architecture: (1) user agents, enforcing user profiles and 

preferences, (2) service agents, representing with different logic representing different 

telecommunication services, and (3) resource agents, that manage the functionality 

contained in resources. The processing model of the architecture requires that the user 

agent uses a set of dispatch rules to determine when to send a message to other user, 



 122 

service, or resources agents. The dispatch rules provide by the services agent to which the 

user has subscribed. Some dispatch rules are also created from the user’s profile. This 

processing model enables the user agent to make decisions that resolve interactions 

independently of the specific services to which the user has subscribed. In [140], users’ 

preferences and constraints were expressed as features or policies; agents representing 

users use negotiation mechanisms to solve conflicts between users’ policies. During the 

negotiation process, the user agent uses a local tree structured goal hierarchy that 

represents the user’s policy to generate proposals, determine acceptability of received 

proposals, and generate counter-proposal to proposals received from other user agents. 

This negotiation process between different agents enforcing the constraints of different 

users provides an automated method for detecting and resolving conflicts at run time.  

Recently, the concept of Virtual Home Environment (VHE) was introduced with 

the introduction of third generation wireless mobile networks like the Universal Mobile 

Telecommunications System (UMTS) [144,145]. The VHE was defined as an 

environment that enables the user to receive customized and personalized services, 

regardless of location, access network or terminal type. VHE gives the user the ability to 

roam between different telecommunication networks and still receive the same set of 

services, thus giving the “feeling” of being on the home network. In addition to seamless 

access to subscribed services, the VHE provides also personalization of services to 

customers through adaptive terminals. A number of MAS [146,147,148] were also 

proposed for the provision and support of the VHE. Our architecture goes beyond the 

VHE concept, which focuses mainly on Intelligent Network (IN) services. Our 

architecture focuses on services that are available to a user in a certain context, without a 

prior subscription to these services. 

 

6.4 What is still missing in personal mobility? 

All the previous architectures, except SPIN, support the use of a naming scheme 

that allows users to be addressed independently of the addressing scheme of their devices. 

Each user is assigned a unique identifier (id), and the architecture takes care of mapping 

between the user id and the address of his/her devices. Using such a naming scheme 

allows addressing people rather than communication devices.  For the caller, it means 



 123 

only remembering the one unique id is sufficient to locate the called party on any of his 

devices, while giving the callee the power to manage and control their availability 

through their devices. 

Each of the presented architectures allows its users to customize their 

communication sessions according to their preferences, as to when, where, and from 

whom to receive calls. While all the architectures include services for routing calls based 

on user specified preferences, none of these architectures performs routing decision based 

on the combination of the user’s high-level preferences. Chapter 7 describes how the 

user’s satisfaction is used to manage communications. Moreover, only the SPIN and 

ICEBERG architectures talked about using intermediate trans-coding services to support 

type mismatch between different communicating devices. The SPIN approach is a 

primitive one, while the ICEBERG approach is based solely on low level QoS 

parameters. 

In additions, none of these architectures included dynamic discovery of public 

services in environments like ubiquitous computing environments. Factoring in these 

services in the surrounding of the user adds more dimension to personal mobility. 

Chapter 7 describes an architecture to support personal mobility in ubiquitous computing 

environments. 



 124 

Chapter 7 
 
MobInTel: Mobile Internet 
Telecommunication architecture 
 

7.1 Introduction 

Electronic communication has proliferated deeply into our daily life, and it is 

becoming more than normal to have several email accounts, a telephone at home and at 

work, a cellular phone, a workstation at home and in the office, a laptop with a wireless 

connection, a pager, and the list can go on and on. While each individual enabling 

communication technology is advanced and stable, a framework for enabling the 

management of a collection of these devices to meet the owner expectations still does not 

exist. With multiple access points, it is becoming a challenge to connect to the person at 

the right device, right time, and using the right configuration parameters. It is also more 

challenging for the user to decide on which device to use to make a call to somebody, 

since the user has to worry about the quality of the call, and the price he is charged to 

make the call.  

Additionally, to provide authentication, authorization, billing for each of these 

services, all service providers use central or distributed proprietary data-base servers in 

their domains. With each service provider being interested in the profile of the user from 

the point of view of the service it provides, information about a single user ended up 

being stored in separate independent location. A complete comprehensive user profile 

that controls the use and preferences of a user to all the devices and services he/she 

subscribed to is still missing. 

User mobility allows a user who has multiple devices to control how 

communication session are established through these devices. While device mobility has 

been the focus of research for many years, the area of user and session mobility is still in 

early stages. In Chapter 6, we have presented a number of pilot projects 

[135,136,137,138,49,9] that have focused on user mobility, but none of these 

architectures has considered multimedia Quality of Service (QoS) requirements and 



 125 

parameters. Additionally, while all these architectures provide solutions to user mobility, 

most of the selection criteria are based on the time of the day, the availability of the 

device, and the role of the user. None of the selection criteria is based on user satisfaction 

and multimedia QoS preferences and device capabilities.  

In this chapter, we address the issue of user and service mobility and show how 

our framework presented in Chapter 4, can support them. The chapter is divided into two 

parts: in the first part (Section 7.2 – Section 7.5), we present our Mobile Internet 

Telecommunication (MobInTel) architecture which is based on the concept of having 

complete comprehensive information about the user stored in a single user profile at a 

directory server called the Home Directory (HD) of the user. In addition to the 

information about the devices the user owns, the user profile contains the set of policies 

to control incoming and outgoing communication requests for the user. The profile 

includes also the ranges of acceptable values for each QoS configuration parameter. Our 

MobInTel architecture treats the user’s satisfaction with the quality of service of the 

multimedia session as an essential factor to select among multiple available services. 

With this logic stored with the data, end users take the power to control the logic and 

access permission to their devices according to their own preferences. The Home 

Directory Agent (HDA) uses the framework presented in Chapter 4 every time the user 

receives an incoming call through the HD. The HDA can be also invoked by the user in 

order to find (and establish) the best way to make an outgoing communication call.  

In the second part of the chapter (Section 7.6 – Section 7.12 ), we present an 

extension of the MobInTel architecture to support personal and service mobility in 

ubiquitous computing environments.  The extended architecture leverages technologies in 

short-range wireless communication, such as Bluetooth, to construct the WPAN; it also 

leverages service discovery protocols, such as Jini, SDP, SLP, and Salutation, to discover 

services available just in the WPAN of the roaming user. The extended architecture 

supports also optional service mobility, which allows, when possible, the service 

currently in use to follow the user as he moves from one location to the other. An 

extended instance of the HDA, called the Personal Agent (PA), runs on a personal device 

carried by the user; the PA triggers the service discovery, service selection and controls 



 126 

service mobility. The PA also enforces the user’s policies and preferences stated in the 

user profile. 

 

The rest of the chapter is organized as follows: Section 7.2 describes in details the 

content and operations provided by the HD, and its controller, the Home Directory Agent 

(HDA). Section 7.3 presents the architecture of the HDA. The automatic QoS parameter 

selection process is discussed in Section 7.4. The HDA support for session establishment 

is explained in Section 7.5.  In Sections 7.6 and 7.7, we start our discussion on extending 

MobIntel to ubiquitous computing environments with a literature review of a number of 

architectures for personal mobility with highlights to their limitations in ubiquitous 

computing environments. We then propose our extension for the MobInTel architecture 

for supporting personal mobility in ubiquitous environment and its main components in 

Section 7.8. Section 7.9 shows how our architecture supports service mobility. Section 

7.10 continues with more details about the usage scenario introduced in Section 7.6. Our 

prototype and performance measurements are presented in Section 7.11. We finally 

conclude in Section 7.12. 

 

7.2 Home Directory 

In the following sub-sections, we will focus on different aspects of the HD, 

including the content of the HD, subscription to the HD, updating the HD, benefits of the 

HD, and finally give an example to show how the architecture supports multimedia 

session establishments. 

7.2.1 Content of the Home Directory 

The Home Directory acts as a storage place for user-centric profiles. Each profile 

captures the personal properties and preferences of the user it represents. Properties 

include, but are not restricted to personal information such as name, and employer, list of 

devices and services controlled by the user, as well as the access permission list to all 

these devices and services. As for preferences, they can cover the parameters for all 

applications running on the user’s devices, especially the user's application level 

preferences concerning the quality of service for the multimedia applications. These 

preferences can be associated with groups or persons, and they cover the choices 



 127 

concerning the receiving/sending of audio and video QoS parameters, such as the frame 

rate, the resolution, the audio quality and the importance (weight) of different media 

types. Users express their preferences by specifying the minimum and the ideal 

acceptable value for each QoS parameter, and possibly a function that maps between the 

QoS parameters and satisfaction values as explained in Chapter 4. A section for public 

preferences may also be included, which could be used to specify that the user is 

interested in news about the stock market. This section, which we call public preferences 

section, can be used by content providers to provide tailored advertisements and services. 

An example of a typical user profile is shown in Figure 35. An XML schema for the user 

profile is shown in Appendix A. 

Personal Identification 
Name:   Peter Elleyene 
Employer:  University of Ottawa 
Email  peter@site.uottawa.ca 
Phone Number 613-562-5800 

 

Devices information 
Home telephone 
Network Address: 1-613-521-5555 
Permission to: ALL 
Office Telephone 
Network Address: 1-613-562-5800 
Permission to: ALL 
Cellular Phone: 
Network Address: 1-613-286-1052 
Permission to: rami@wam.umd.edu,  
john@nortelnetworks.com 
Answering Machine 
Network Address: 1-613-521-5556 
Permission to: ALL 

Callees 
 

Callee  rami@wam.umd.edu 
QoSselectionWeight                         7.5 
PriceCeiling_CentsPerMinute  30 

AudioPreferences 
AudioWeightFactor   7 
ReceiveAudio   Yes 
SendAudio   Yes 
Min Acceptable  Telephone Quality 
Ideal   CD Quality 

VideoPreferences 
VideoWeightFactor  1 
ReceiveVideo Yes 
SendVideo                   Yes 
FrameRate  Min Acceptable                  10 

Ideal                   30 
FrameRateWeightFactor         5 

FrameResolution Min Acceptable             320x240 
Ideal              800x600 
FrameResolutionWeightFactor     2 

 
Device to try : Home telephone, Cellular Phone,  
Answering Machine 

Callee     john@nortelnetworks.com 
Publishing Preferences  ….. 
Receiving Preferences  ….. 
Device to try : Office Telephone, Cellular Phone,  
Answering Machine  1 
 

Callee www.sportsnews.com 
……… 
 

Callee    www.newsondemand.com 

………. 

Device usage Preferences  
Time: 8 am- 5pm 

Office-Phone : 613-5625801 
WorkStation: 137.122.20.102 :7512 

Time: 7pm- 11pm 
Home-Phone: 819-7702266 
Laptop        : 137.122.40.30 :7512 
Time: any 
Cell-phone:  613-2236598 

Public_Preferences 
Music   Jazz 
Blues  
Sport 
Soccer 
Tennis 

Figure 35: User Profile 



 128 

7.2.2 Subscription to the HD 

In order to benefit from the system, each user is required to create a profile on a 

directory server; the directory server be called then the Home Directory of the user. All 

other directory servers would be referred to as Foreign Directories. Agents managing 

these directories are referred to as Home Directory Agent (HDA) and Foreign Directory 

Agent (FDA), respectively. 

When a user subscribes to a domain, he/she completes all the basic information in 

the profile. The HD can provide a template profile, and users would add more 

information into their profiles as they acquire new devices or change their preferences. 

Security keys for authorization and authentication purposes are also assigned at this 

point, though they can also be updated later. The user will then be assigned a universal 

distinguishable identifier that would then be used when somebody needs to contact him. 

In our prototype implementation, we have adopted the SIP naming scheme, and used the 

well established SIP protocol as the main signaling protocol in the system. 

 

7.2.3 Updating the content of the HD 

Even though the initial version of the user profile will contain little information 

about the user and his devices, modifications to this profile will be done as the user gets 

acquainted with the system or when the user acquires new devices. Modifications to the 

profile can be done either manually or dynamically. Manual modification may include 

using a graphical interface to the HD. For dynamic modification, the HDA can monitor 

the behavior of the user, and extract some common patterns and use them to update the 

user’s profile. This functionality will tune the user profile to best fit the user’s needs.  

As another extension to this dynamic update of the user’s profile, we have 

incorporated the Bluetooth [149] technology into the system, as we shall see in Chapter 7. 

Information about Bluetooth devices detected by a handheld Bluetooth device can be 

added dynamically to the user profile. The set of detected devices might include 

personally owned devices as well as public services and devices that the user has 

permission to use. In this case, the system would be more dynamic and accurate in 

locating the user. Chapter 7 gives a detailed description of how the architecture was 



 129 

extended to support dynamic update of user profiles, for users roaming in ubiquitous 

computing environments. 

 

7.2.4 Benefits of the HD 

The HD architecture has a number of advantages. Besides shielding the end-user 

from the problems of diversity of network technologies, protocols and end-system 

devices, and dynamic addresses, it also has several other benefits. Below is a list of direct 

benefits to its users. 

•  User centric communication architecture: Most of the current addressed entities in 

a communication session represent just endpoint devices, never a user. Even for a 

person-to-person communication session, it is always the phone number or 

computer address that is dialed in, and the end-user is never addressed himself. 

The MobInTel architecture adopted the SIP addressing scheme, where each user 

is assigned a unique identifier which forms an umbrella for all the devices and 

services the user has access to. Each user will be addressed with his/her unique 

identifier, independent of the device used for communication. 

•  Management of user devices according to the user preferences: The MobInTel 

architecture allows the end-user, as ultimate holder of many devices, to control 

how these devices should handle, coordinate and perform up to the maximum 

possible satisfaction of their owner. The architecture allows the end-user to 

specify which device to use depending on various criteria such as the caller, the 

time of the day, the importance of the call, or the current role of the caller and 

callee.  

•  Service creation environment: one of the most important benefits of the MobInTel 

architecture is that it provides a rich environment for creating and running user 

customized services. Services like call-forward, call blocking, follow-me can be 

easily created using the user profile. These services can be built and introduced by 

the user himself in no time. New complicated services such as the ability to record 

a conversation during a communication session can also be easily integrated into 

the system. 



 130 

•  A “plug and play” environment for devices: Any user device cannot be used to 

connect to its owner unless its address is published. A user acquiring a new end-

device has to publish its address to all his acquaintances. With the MobInTel 

architecture, the user has simply to update his/her profile with the information 

about the new device to be available through this device. The opposite happens 

when the user looses the devices or terminates the service. 

•  User’s privacy: a direct consequence of publishing all user’s device addresses and 

preferences is that the user’s privacy is jeopardized. A calling party might infer 

the location of his partner depending on the number he dialed. Additionally, 

exchanging all possible acceptable configuration parameters creates easily a 

privacy violation. Most users would like to keep their preferences private, and 

only exchange the minimum required acceptable configuration parameters. The 

MobInTel architecture provides location privacy to the user by using the user’s 

unique identifier to access all user’s devices, and the system transfers the call to 

the right device in a way that is transparent to the caller. To protect the privacy of 

user’s preferences, the MobInTel architecture extends the SIP protocol with 

solutions from the field of secure distributed computation. In Chapter 8, we will 

elaborate more on the solution and present an algorithm for privately negotiating 

the Quality of Service (QoS) parameters for multimedia applications without 

revealing the user’s preferences 

 

7.3 Architecture of the HDA 

To fully account for personal mobility, we have designed an architecture for the 

HDA with two major components: a Communication Agent (CA) and a QoS Selection 

and Negotiation Agent (QSNA) (Figure 36). We will present here a detailed description 

of each of these components. Additional components to support service mobility in 

ubiquitous computing environments  are presented in Section 7.8: 

− Communication Agent: The Communication Agent (CA) is responsible for the 

exchange of communication requests/replies with other parties’ communication agents.  

Communication requests/responses carry usually the content profile, use profile, and 

can also be used to put together the network profile as well as the profiles of all 



 131 

intermediaries along the data path. Each intermediate node that forwards the 

request/response message adds information about its local available services as well as 

its network characteristics. 

 

 
Figure 36. Components of the HDA 

 

− QoS Selection and Negotiation Agent: The function of the QoS Selection and 

Negotiation Agent (QSNA) is to select the best device, QoS parameters, as well as the 

required adaptation services that satisfy the session requirements, and comply with the 

preferences of the user, and without violating the available network resources. This 

selection is based on the session requirements2, the user’s preferences, device 

capabilities, and the network and intermediaries profiles. The QSNA implements the 

device and QoS parameter values selection algorithm presented in the next section, 

which is based on the framework we have presented in Chapter 4. 

 
7.4 Automatic device and QoS parameter selection 

Before engaging in a telecommunication session, a decision has to be made as to 

what devices to use (camera, speaker, microphone,..), which software to start (Vic, Vat, 

whiteboard,..), what type of  media to use (MPEG1, H.261), and the value for each QoS 

configuration parameter (frame rate, frame resolution, audio quality,…). This decision is 

affected by many factors including the hardware and software profile of the available 

device(s) (device profile), the available network resources (network profile), the list of 

available intermediate adaptation services (intermediary profile), and the preferences of 

the end users (user profile). This means that all these elements should be merged together 
                                                 
2 Session requirements may be described using the Session Description Protocol (SDP) carried in the SIP 
INVITE message. 



 132 

to come up with the profile for the communication session. The HDA uses the framework 

outlined in Chapter 4 and implements its QoS selection algorithm to decide which device 

to select out of all possible devices for the user, as well as the configuration parameters 

for the selected device and intermediate trans-coders.  

As we mentioned in Chapter 4, the algorithm selects also the appropriate value for 

each QoS parameter for each service based on a user satisfaction function. Using all 

possible combinations of QoS parameters of all available services, the algorithm selects 

the combination of QoS parameter values that generates the maximum satisfaction within 

the restrictions of the devices where the services are running and the preferences of the 

user. The algorithm considers also all possible combinations of adaptation services 

available at the intermediaries along the path of the data. In addition, the algorithm 

always uses the network profile to make sure that the network resources required to 

deliver the selected combination are less than or equal to the currently available network 

resources. 

In case that the algorithm does not find an appropriate configuration satisfying the 

user’s preferences, the algorithm should either ask the user to release some restrictions on 

the preferred qualities, or it could present the user with the best configuration found, and 

the user is asked whether to accept the configuration or just abort the request. A similar 

approach was introduced in [150]. 

 

7.5 Support for session establishment in MobInTel 

In this section, we will give an example to show how the HDA’s in several 

domains cooperate between each other to establish a communication session between two 

users, Alice and Bob. Figure 37 shows the major steps for establishing a communication 

session between Bob as a call initiator, from his hotel room during a business trip, and 

Alice. For simplicity, we will not include the authentication part of the users. A full 

description of how the HDA architecture is used as a secure authentication infrastructure 

for mobile communication services can be found in [151,152]. We will assume that each 

domain has a local policy server that acts as a policy decision point for the domain. We 

will also assume that all users of the architecture have already registered and been 

assigned universal identifiers. The major steps in the session establishment are as follow: 



 133 

1. Using the PC in his room, Bob submits the universal identifier and the 

universal identifier of Alice to the FDA. 

2. To fetch Bob’s profile, the FDA uses the domain name part in Bob’s 

universal identifier and the DNS service to find the IP address of Bob’s 

Home Directory server. The FDA also looks up the IP address of Alice’s 

Home Directory server using Alice’s universal identifier. 

3. The FDA of the hotel asks the HDA of Bob for Bob’s profile. 

4. The FDA forwards Bob’s profile, the profile of the candidate devices in the 

hotel that Bob can use to the HDA of Alice. 

5. The HDA of Alice gathers first the network profile and the list of available 

intermediate trans-coding services from the network. Next, it combines 

Bob’s profile and his candidate devices, Alice’s profile and her candidate 

devices, together with the network and intermediaries profiles as we 

described in Chapter 4 to determine the devices that best suit the 

preferences of Alice and Bob, as well as the multimedia QoS parameters to 

be used by these devices. The system also will generate a list of 

requirements to be carried out before the session can be established. An 

example of a requirement would be to use zero or more trans-coders 

between the two end points. Trans-coders, if required, are instantiated and 

the session is established between the selected devices of Alice and Bob 

(Figure 37). 

T
T

Alice

Bob

Bob’s
Visiting D om ain

1
2

3

Internet

4

Directo ry

HD A

5

Bob Home  
Domain

HDA

FDA

T

T
T

T

T
T

T

 

Figure 37: HDA support for session establishment. 

6. Figure 38 is an example where the HDA decides that the best way to 

connect Alice and Bob would be through the phone. The HDA locates a 



 134 

PINT server [153] and passes the phone numbers of Alice and Bob to the 

PINT server to connect them over the Public Switched Telephony Network 

(PSTN). 

Alice

Bob

Bob’s
Visiting Domain

1
2

3

Internet

4

Directory

9

11

HDA

5

Bob Home 
Domain

HDA

FDA

PSTN

PINT
Server

 

Figure 38. HDA support for connecting two PSTN phones. 

 
7.6 Extending MobInTel to support personal and service mobility in ubiquitous 

computing environments 

Ubiquitous computing is a new trend in computation and communication; it is at 

the intersection of several technologies, including embedded systems, service discovery, 

wireless networking and personal computing technologies. It is best described by Mark 

Weiser, father of ubiquitous computing, as the world with “invisible” machines; a world 

such that “its highest ideal is to make a computer so imbedded, so fitting, so natural, that 

we use it without even thinking about it”[154]. In such an environment, computing 

devices are shifted to the background, and they are only visible through the services they 

provide; specific information about these devices such as location, address, or 

configuration parameters are totally transparent to the user.  

One of the major contributing factors to the big interest in ubiquitous computing 

is the advance in short-range radio frequency communication. This advance has created 

the notion of personal-level communication infrastructure, referred to as Wireless 

Personal Area Networking (WPAN), of which Bluetooth [155] is an example. Devices 

connected over WPAN have the capability to locate, communicate, and provide services 

for each other. This capability allows these devices to collaboratively provide an ad hoc 

distributed computing environment and to deliver services that cannot be possibly 



 135 

delivered with only one device. For instance, a video display service may look for an 

audio playing service in its vicinity to play an audio and video recording. Also, an audio 

play-out service can use the service of a computer connected to the Internet to download 

music from the Internet before playing it out. 

Given these trends in personal communication, there is a growing need to provide 

personal and service mobility for persons roaming in ubiquitous computing 

environments. Personal mobility [156] is defined as the ability of a user to get access to 

telecommunication services from any terminal (e.g. workstations, notebooks, Personal 

Digital Assistants (PDA), cellular phones) at any time and from any place based on a 

unique identifier of the user, and the capability of the network to provide services in 

accordance with the user's service profile. Closely related to the subject of personal 

mobility is service or session mobility [138], which refers to the possibility of suspending 

a running service on a device and picking it up on another device at the same point where 

it was suspended. An example of service mobility is a call transfer from the mobile phone 

of the user to his office phone.  

Throughout the rest chapter, we will show how an extended MobInTel 

architecture could be used during a communication session between Alice, a team 

manager on a business trip, and her team-members. The elaboration of the scenario is 

presented in Section 7.10. Before the meeting, Alice would like to have a small chat with 

Bob, who is a team leader in her group. Using the multimedia workstation in the business 

office of the hotel, Alice sends an invitation for a multimedia conversation to Bob, ten 

minutes before the meeting starts. Bob, sitting in his office, receives the invitation on his 

PDA. Since Bob has indicated in his profile that he is always willing to accept calls from 

Alice, his PDA tries to find a microphone, a speaker, a video display service and a 

camera to make for a full multimedia session. Assuming that such services exist in Bob’s 

surrounding, the PDA discovers and reserves these services for the communication 

session with Alice. The PDA sends back information about all these services, and the 

videoconference is started between Alice and Bob. 

When it is time for the meeting, Bob moves with his PDA into the conference 

room where all the team members are waiting.  Bob’s PDA detects that the services that 

Bob was using are not available anymore, and since he has already set the FOLLOW-ME 



 136 

option of the session to ON, his PDA tries to discover similar services to continue the 

session in the conference room. The PDA then detects and selects the big screen, the 

camera, the speaker as well as the microphone of the conference room; Alice’s picture 

appears on the big screen and she is now ready to participate in the meeting. 

 

7.7 Architectures for personal and service mobility in ubiquitous computing 

environments 

In Chapter 6, we have reviewed a number of architectures 

[9,49,135,136,137,138,157] that have been proposed to solve the problem of personal 

mobility in the context of the Internet. All these architectures share the same concept of a 

Directory Service (DS) that provides a user-customized mapping from a unique user 

identifier to the device that is best suitable for the user to use. The basic idea of these 

architectures is that the user keeps a profile in the DS containing static information about 

all the devices he/she has access to, and the logic or policy (user preferences) for when to 

use these devices. When the DS receives a session initiation request for a user, it executes 

the logic in the user’s profile and handles the request according to the user’s specified 

preferences. 

While these architectures provide personal mobility for users with multiple 

telecommunication devices (telephone, PDA, laptop, cellular phone, pager), they all fail 

short to extend personal mobility to ubiquitous computing environments because: 

•  the information in the Directory Service is static, 

•  there is no support for service discovery, 

•  they lack support for service mobility, and finally 

•  they lack support for complex (combined) services. 

A number of research works have addressed the problem of service discovery and 

selection in ubiquitous computing environments. The work in [158] presented two 

approaches for selecting services based on the physical proximity and line-of-sight of the 

handheld device relative to the service. The authors in [159] used a central gateway that 

makes the decision of delegating rendering tasks to devices in the environment of the 

user. A PDA carried by the user is responsible for detecting the user’s nearby devices, 

and sending the list of available devices to the gateway. Both these two architectures 



 137 

[158,159] suffer from the drawback of using infrared communication for finding and/or 

selecting services. Because infrared communication requires aligning the devices before 

any communication is established, these architectures cannot be used in ubiquitous 

environments because they require user’s awareness of the location of devices. Moreover, 

service mobility and QoS issues were not discussed in these works. Beigl et. al. [160] 

investigated the use of a browser running on a PDA to enable ubiquitous access to local 

resources as well as resources on the World Wide Web. The browser, called the 

Ubicompbrowser, detects devices and resources in the environment of the user, and 

delegates the rendering of the requested resources to the nearby devices in order to 

overcome the limitation of the PDA. A major drawback of the Ubicompbrowser is that it 

requires the user to know its current location to select the rendering devices. 

Additionally, the Ubicompbrowser does not deal with the issue of QoS negotiation, 

neither with the issue of service mobility. Campadello [157] addressed the problem of 

change in the execution environment of applications through the composition of basic 

hardware and software building components available in the execution environment. 

Based on the preferences of the user and the application logic, a personal agent 

dynamically combines hardware and software building components available in the 

current execution environment to build an instance of the requested application. 

Campadello’s architecture suffers from the same drawbacks as the Ubicompbrowser and 

does not also consider the possible adaptation space at the content level. 

In a recent project, researchers at the Smart Space Laboratory (SSLab) [161] have 

suggested the use of embedded computers as a substitute for the awkward interface of the 

portable devices. The researchers have suggested that collaboration between a portable 

device and embedded computers can help alleviate the problem of limited input and 

output capability on the portable device [162]. They have demonstrated their approach by 

implementing a mobile TV-phone prototype that uses a nearby high resolution-display 

instead of the small display on the mobile phone. 

Our extension to the MobInTel architecture is different from all these reviewed 

architectures in that it dynamically discovers and updates the list of services available in 

the WPAN of the user. Our architecture uses also a QoS negotiation and selection 

algorithm to select the services that best suit the context and preferences of the user. The 



 138 

architecture can also mix-and-match different services to fulfill all the requirements of 

the session. Additionally, our architecture incorporates additional components in order to 

support smooth and transparent service mobility. 

 

7.8 Extension to the MobInTel architecture 

The extension of the MobInTel architecture was inspired by the Ubicompbrowser 

project, and is intended to support personal mobility in ubiquitous environments. The 

extended architecture includes additional functionalities to overcome its shortcomings in 

ubiquitous environments. The modified architecture uses the short-range Bluetooth 

wireless communication to construct the user’s WPAN, and to restrict the domain of 

services available to the user just to the services running on devices that are within this 

WPAN. Our architecture differs also from the architecture in [158, 159] in that service 

selection is done automatically on behalf and according to the preferences of the user, 

and without requiring the user to point and select each service individually using infrared, 

(since the user might not, and should not, be aware of the services and their locations). 

We also address the problem of service mobility by using periodical search for services 

similar3 to the services currently used by the user, in order to provide smooth hand-off for 

these services. 

In a typical ubiquitous computing environment, the set of available devices for the 

user may change continuously as the user changes his/her location. Updating manually 

the information about currently available services is not an option. Additionally, 

discovering the available services and sending update messages to the HDA is not a 

practical solution either, since the set of available services might change very often with 

the environment, which results in many update messages sent to the HDA. Moreover, if 

the update message incurs a certain delay, the information included in the message could 

be outdated when it gets to the HDA. 

To overcome these limitations, we propose to run a modified version of the HDA 

on a hand-held device, such as a PDA, that is always carried by the user. We call this 

modified version of the HDA the Personal Agent (PA) of the user, and it is responsible 

for detecting devices in the vicinity of the user as well as managing the user’s 
                                                 
3 We say that two services are similar if they serve the same purpose, for instance a TV and a wall 
projector, or a PC speakers and a mini-stereo. 



 139 

communication sessions. In order to retrieve the user profile and send/receive 

communication requests through the HDA, we require that the hand-held device, on 

which the Personal Agent runs, to have access to the Internet (through a wireless modem 

or IEEE 802.11[163] connection). The PDA is also supposed to be able to join a Wireless 

Personal Area Network (such as Bluetooth WPAN) in order to be able to detect and 

communicate with other wireless devices just around the user. These requirements are 

readily available, for instance, in the new iPAQ Pocket PC models from Compaq. For the 

rest of the chapter, we will assume that the PA is running on a PDA that satisfies these 

communication requirements.  

At any one time, either the HDA or the PA is responsible for providing personal 

mobility service to the user. When the PDA is switched ON, the PA contacts the HDA to 

retrieve the user profile. From that point on until the PDA is switched OFF, the PA is 

responsible for executing the logic in the user profile, and the HDA would switch into 

passive mode and act only as a proxy for incoming call requests. To ensure that the HDA 

is aware of the status of the PA, we decided to send all replies to communication requests 

through the HDA. The HDA can detect when the PA is not running or the PDA is 

currently out of reach if the HDA does not see a reply to a forwarded call after a certain 

time-out period. The HDA would then switch into active mode, and handle the 

communication request according to the rules specified in its local copy of the user 

profile. 

To fully account for personal and service mobility in ubiquitous computing 

environment, The PA includes all the components of the HDA with three additional  

components; these additional components are: a Service Discovery Agent (SDA), a User 

Context Agent (UCA), and a Service Registry (SR). Figure 39 shows the architecture of 

the Personal Agent with its components. We will present here a detailed description of 

each of these components.  

− Service Discovery Agent and Service Registry: The function of the Service Discovery 

Agent (SDA) is to search for all services in the WPAN of the user. Because devices in 

ubiquitous computing environment are more likely to be single-service devices, the 

line between a device and a service becomes blurred. For instance, a display device can 

be identified by a display service with the same capabilities as the physical device that 



 140 

could be discovered using service discovery protocols. We will refer hereafter to the 

device that provides a visible service to the user as an end-service, and the rest of the 

services as intermediary services. Example of an end-service is a video display screen 

or an audio play-out service.  

The SDA provides the QoS Selection and Negotiation Agent (QSNA) (discussed 

below) with the list of currently available services (including end-services). Since 

different services might be using different service discovery protocols (JINI [102], SDP 

[164], or SLP [103]), the SDA shall act as a service discovery client in multiple service 

discovery protocols. The SDA periodically searches for all available services, and 

stores this information in the Service Registry (SR). This information allows for fast 

session setup and smooth service mobility, as we will discuss in Section 7.9. 

− User Context Agent:  The User Context Agent (UCA) is responsible for collecting and 

providing the user’s context profile to the QSNA. Context information includes, as we 

mentioned earlier, the location of the user, whether the user is by herself or surrounded 

by other people [160,165], and any other context information. The UCA assists the 

QSNA during the service selection phase by providing up-to-the-minute information 

about the user’s context.  

 

QoS
Negotiation

and Selection
Agent User

Context
Agent

Personal Agent

User Profile

Service
Registry

Communic-
ation Agent

Service
Discovery

Agent

 
Figure 39. Components of the Personal Agent 

 

As with the MobInTel architecture, the QSNA makes the decision on which 

service out of all the available services in the vicinity of the user to use, based only on the 



 141 

preferences from the user profile, the user’s current context, and within the availability 

and capability of the end-services in the vicinity of the user.   

 

7.9 Support for service mobility 

During a communication session, a nomadic user in a ubiquitous environment 

might move away from one device and get closer to another device that provides a 

service similar to the one used on the first device. To continue with the communication 

session, the user has to re-initiate the session again with the new services. This could be a 

problem for the user, especially if the user continues moving from one place to the other 

during the session. Our architecture solves this problem by supporting service mobility 

during the communication session. 

Service mobility is required since the life span of the communication session 

might be longer than the time during which the currently used device is available in the 

user’s WPAN. To solve this problem, the Personal Agent should switch the service from 

one device to another device providing a similar service when the device that is currently 

used becomes unavailable or it should inform the user about the disappearance of the 

service. For instance, a user moving away from his computer and entering the conference 

room should have, if desired, the multimedia session transferred from his computer to the 

TV and stereo system in the conference room. If the conference room does not have a TV 

set, the user should be warned that the video display service would be discontinued if 

he/she stays in the conference room. 

Our architecture supports service mobility through service hand-off, transparently 

to the user. A smooth transparent service handoff requires continuous discovery and 

update of the Service Registry (SR) with information of the currently available services 

in order to provide smooth service transfer. When a connection to a service is fading, the 

SDA informs the QSNA about the possible replacement service. The QSNA passes the 

information about the new service to the Communication Agent, which in turn, sends an 

update message the Communication Agent of the other party.  

 



 142 

7.10 Usage scenario (continued) 

In this section, we will elaborate more on the scenario presented in Section 7.7. 

We will assume that the SIP [49] signaling protocol is used to establish and maintain the 

communication session. We also assume that a SIP invite message can carry the call 

initiator profile as well as the profile of his/her devices as a payload. The scenario of 

Alice trying to reach Bob, who is in the lounge area, is divided into five phases (Figure 

40), with the first phase executed only once, when Bob switches ON his PDA. We will 

assume that Bob has enabled the service mobility option with his Personal Agent. Due to 

the space limitation, we will only give a short description of each phase: 

− Startup Phase: The Personal Agent retrieves the user’s profile from the Home 

Directory Agent (Messages 1-2). 

− Session Initiation Phase: Alice’s agent (a HDA agent or PA agent) sends a SIP invite 

message to Bob’s Home Directory Agent containing the profile of Alice as well as her 

device profile. Bob’s Home Directory Agent (HDA) forwards the request to the 

Personal Agent (Messages 3-5). The SDA uses the service discovery protocol to 

discover the available services for the session and update the SR (Messages 6-8).  The 

QSNA selects from the SR the services for the session based on the session 

requirements, the user profile, network and intermediaries, and device/service profile, 

as described in Chapter 4. The QSNA might also mix-and-match several devices to 

provide compound services. Bob’s Personal Agent sends back to Alice's Personal 

Agent the information about the selected services. (Messages 9-11) 

− Data Exchange Phase: The data is exchanged between Alice’s device and the selected 

devices from Bob’s environment. 

− Session Maintenance Phase: As long as the session is still running, the SDA 

periodically queries the environment for services that are similar to the services used in 

the session. This information is used to update the SR in order to reduce the delay in 

service mobility (as we discussed in Section 7.9). When Bob moves to the conference 

room, the SDA detects the audio and video services of the conference room. 

(Messages 12-14) 

− Service Hand-off Phase: In case a service that is currently used becomes unavailable 

because of the mobility of the user, the SDA informs the QSNA of the replacement 



 143 

service(s) (in this scenario, the replacement services are the services of the conference 

room). The QSNA in turns sends an update message through the CA to Alice’s PA 

with the information of the new services. (Messages 15-16) 

 
Figure 40. Session establishment based on the Personal Agent  

 
7.11 Experimentation and evaluation 

 
In order to get a better understanding of the system, we have developed a prototype 

of the extended MobInTel architecture in our lab [166]. We wanted to show how to 

provide personal and service mobility to the user, and in case of multiple similar services, 

how the selection algorithm can correctly select the service that is more satisfactory to the 

user. The prototype allowed us also to measure the performance of the system in order to 

study the feasibility of the system.  

 

 

Bob’s PA 
Bob's HDA CA & QSNA SDA Environm ent Alice 

1: Profiles Req 

2: Profile Resp 

3: SIP invite 
4: SIP invite 

5: Service Request 
6: Service Discovery Request 
7: Service Discovery Reply 

9: Service Reply 
10: 200 OK 

11: 200 OK 

8: Update Local Service Directory 

12: Service Discovery Request 

13: Service Discovery Reply 

14: Update Local Service Directory 

15: Service Update 
16: Service Address Change 

Session Initiation 
Phase 

Startup Phase 

Data Exchange 
Phase 

Service Hand-off  
Phase 

Data Exchange 
Phase 

Session  
Maintenace 
Phase 

Data Exchange 
Phase 

Data Exchange 

Data Exchange 

Data Exchange 



 144 

7.11.1 Hardware, software, and communication protocols 

In this section, we will present the hardware and software platform for the 

prototype, the communication protocols, as well as the architecture software components 

of the prototype. 

− Hardware: For the hardware platform of the prototype, we have used a number of 

devices, including: 

a. Two IBM Pentium III 1600 MHz PC’s with 128 MB RAM and running Windows 

2000 operating systems. Each PC is hosting one audio and one video service. 

Each of the PC’s is equipped also with a Bluetooth device connected on the USB 

port. Both PC’s run Linux with BlueZ module for the Bluetooth hardware (3COM 

device) and connected to the Internet.  

b. An IBM ThinkPad T40 laptop to host the caller side and the media delivery 

server. The laptop has a video camera and a microphone connected to it and 

functions as a multi-media streaming server, capturing the audio and video data 

and delivering it to the selected services running on the PC’s. 

c. A Compaq's handheld iPAQ 3870 PocketPC device to run the Personal Agent. 

The iPAQ 3870 runs Windows CE by default; but, in order to use the BlueZ 

Bluetooth stack, we installed Linux on the iPAQ. The iPAQ has also a wireless 

802.11 card that connects the iPAQ through an 802.11 hub to the Internet. All 

control messages to the iPAQ are exchange through the wireless hub.  

d. For the transcoding infrastructure, we have used three PC’s (as intermediaries) 

running the transcoding services on top of JMF. 

 
− Software and services: We have also used a number of software to integrate and test 

the prototype of this thesis: 

o J2SE (Java 2 Standard Edition) version 1.3.1 to develop caller side software 

on the laptop and the HDA’s. 

o Jeode: Java Virtual Machine that runs on the PDA from Insignia’s to develop 

the PA software for the PDA. 



 145 

o JMF (Java Media Framework) version 2.1.1a. for the transcoding and 

streaming of data. Table 9 shows the list of all the JMF trans-coders used and 

their supported formats. 

o SDP server: To enable service discovery, each machine runs a Bluetooth 

Service Discovery Protocol (SDP) server to manage local services on the 

machine. The SDP server acts as a directory lookup server: it keeps records of 

registered services, receives requests and sends replies about the registered 

services.  

Table 9. Transcoders used in the prototype 

Transcoder Hosting 
Proxy 

Supported Source 
Format 

Supported 
Destination Format 

Transcoder 11 Proxy 1 MJPEG 640x480 MJPEG 320x240 
Transcoder 12 Proxy 1 MJPEG 640x480 h263 704x576 
Transcoder 13 Proxy 1 h263 176x144 h263 128x96 
Transcoder 21 Proxy 2 MJPEG 320x240 MJPEG 160x120 
Transcoder 22 Proxy 2 h263 176x144 h263 352x288 
Transcoder 23 Proxy 2 MJPEG 320x240 MJPEG 640x480 
Transcoder 31 Proxy 3 h263 352x288 h263 176x144 
Transcoder 32 Proxy 3 h263 704x576 MJPEG 640x480 
Transcoder 33 Proxy 3 MJPEG 160x120 MJPEG 80x60 
Transcoder 34 Proxy 3 h263 128x96 MJPEG 80x60 

 
− Communication protocol: As for the communication protocol, we have used the 

following: 

o Session Initiation Protocol (SIP): For setting up, modifying, and tearing down 

the communication session, we have developed a small version of the SIP 

protocol (6.3.5) with only minor communication messages.  

o SDPTool: We have used the program SDPtool [167] on the PDA to check 

which services are made available by the nearby devices.  

 
 
7.11.2 Experimental environment 

Our experimental environment consisted of a large room, with four services: two 

audio play-out services and two video display services as shown in Figure 41; Audio 

Service 2 (AS2) has a better audio quality than Audio Service 1(AS1), and Video Service 

2 (VS2) has a better quality (higher resolution) than Video Service 1 (VS1). We have 



 146 

selected two locations in the room, location 1 and location 2, and the user of the system 

can move in-between the two locations. While standing in location 1, the user’s PDA can 

discover only Audio Service 1 and Video Service 1, and while the user is in location 2, 

the PDA can discover all four services.  

We start the experiment with the user in location 1 when he receives an incoming 

call through the 802.11b wireless interface of the PDA. The call requires an audio service 

and a video display service. The PA on the PDA analyses the request and, locates the two 

services, Audio Service 1 and Video Service 1. The Communication Agent sends a 

message to the caller’s Communication Agent (CA) containing the information of these 

services. The caller’s media server sends the data directly to these services. 

When the user moves to location 2, two better services, Audio Service 2 and Video 

Service 2 also become available to the user. The PA discovers the new services, and 

based on the user’s profile, decides to use the new services since they are more 

satisfactory to the user. The Communication Agent sends an update message to the 

caller’s PA with the information of the new services, and the audio and video are now 

switched to Audio Service 2 and Video Service 2. When the user moves back to location 

1, Audio Service 2 and Video Service 2 become unavailable again, and the data is sent 

again to Audio Service 1 and Video Service 1. 

 
 

 
Figure 41. Experiment environment layout 

 
 



 147 

7.11.3 Results 

After building the prototype, we were able to collect a number of performance metrics. 

We placed the media server of the caller and the audio and video services on the same 

local area network (LAN), while the PDA was connected to the LAN through an 802.11b 

wireless access point. We were interested in measuring the following metrics: 

Total Signaling Time: The time it takes for the signaling messages to travel from the 

caller to the callee and return, including the time to select the QoS parameters and 

intermediate adaptation services.  

Media Server Initialization Time: The time it takes the Communication Agent (CA) 

of the caller to read the reply message from the network and to initialize the Java 

Media Framework audio and video servers, responsible for capturing and sending 

the audio and video data. 

Data Transfer and End-Service Initialization Time: The total time required to 

initiate the sending and receiving services and the data transfer delay between the 

two services. These parameters where combined together since this is the time 

observed by the user of the system. 

We have performed five run tests, and the average results (in seconds) are presented in 

Table 10. 

 

Table 10. Session setup time 
 

 Total Signaling 
Time 

Media Server 
Initialization Time 

Data Transfer & 
End-Service 

Initialization Time 

Total Setup 
Time 

Time (sec) 2.2 5.3 2 9.5 

 

The Data Transfer and End-Service Initialization Time included in the table does 

not include any delay incurred by intermediate adaptation services. We also note that 

some additional delay (not mentioned in the above table) can be expected due to service 

mobility. This delay is a result of the fact that the SDA runs periodically, and not 

continuously. In our prototype, we set the discovery agent to run periodically every 30 

seconds, to balance between the incurred computation load on the PDA and the speed and 

accuracy of service discovery. Additionally, the SDA spends 10 seconds, using the 

SDPtool, trying to discover all the available services. In this setting, the SDPtool 



 148 

consumes around 18% of the CPU resources when running on the iPAQ 3870 Compaq 

handheld with 206 MHz ARM processor. As a result, the total service mobility time 

could vary between 19.5 sec (10 seconds for the service discovery and 9.5 for the 

signaling and data transfer) if the user reached the new location right before the service 

discovery agent started the periodic check, compared to 49.5 seconds if the user moved 

into the new location right after the discovery agent had finished the service discovery 

process. 

We should mention that for an IP telephony service to be accepted by users, the 

time delay of the service should be equal if not better than the plain old telephony 

service. We acknowledge that the measured delays in our prototype are large, but there 

are a number of ways to improve the performance in a streamlined implementation. The 

first improvement would be to replace the freeware SDPtool with another faster 

implementation of the native SDP protocol. Even the native SDP tool suffers from long 

service discovery delays since each node is obliged to establish a connection with every 

other node before it can perform service discovery. Some existing work [168] promises to 

reduce the service discovery time in Bluetooth.  

Additionally, we can also improve the Data Transfer and End-Service Initialization 

Time. This delay results mainly from the time it takes to initialize and start the end-

service. In our prototype, we just register the end-services, but never initialize them. This 

initialization time could be virtually eliminated if the services are already up and running 

on the device. 

Finally, our current implementation does not take the capabilities (battery, CPU, 

and memory capacity) of the PDA into consideration when executing the code for the 

PA. Depletion in any of these resources would definitely affect the performance of the 

service and personal mobility. One could foresee that the service discovery period 

becomes a function of the available resources. Another approach would be to let the user 

switch off the service discovery when he/she is not moving. The PA may also run the 

service discovery agent less frequently when there has not been a recent change in the 

discovered services. 

 



 149 

7.12 Conclusion 

In this chapter, we have presented our MobInTel architecture for personal mobility. 

The architecture uses the QoS selection algorithm presented in Chapter 4 to select the 

communication quality for mobile users based on device capabilities and user 

preferences. Using this scheme, user mobility becomes completely transparent for the 

mobile user. We have also presented an extension to the architecture to support personal 

mobility in ubiquitous environments. The extended architecture allows nomadic users to 

benefit from the availability of large number of hidden services in a ubiquitous 

environment to establish communication sessions. To construct this architecture, we 

introduced a new component that we called the Personal Agent (PA) that acts on behalf 

of the user during the service discovery and selection process. The Personal Agent also 

provides support for service mobility through periodic updates of currently available 

services into a local service registry. We have also shown the functionality of the 

Personal Agent during a typical communication session using an example scenario. 

Additionally, we have presented a prototype of the architecture and some performance 

measurements. We have also discussed a number of recommendations to improve the 

performance of the prototype. In future work, we are planning to implement the 

recommendations before we can study the usability of the architecture.  

 



 150 

Chapter 8 
 
Preserving the Privacy of User Preferences in 
Multimedia Communication 
 

8.1 Introduction 

Over the past few years, there has been a widespread increase in the use of 

Internet as a platform for wide range of applications in different areas including 

medicine, education, commerce and telecommunications. Most of the time, these 

applications require some personal or financial information from their consumers. Such 

information could be used for a number of purposes, ranging from regulating access to 

on-line services (authentication, authorization), to billing (accounting), to service 

maintenance, customization or adaptation.  

For Internet users, the temptations to disclose personal information are numerous, 

including the convenience of putting orders online, the privileged access to some 

resources, and the benefits of personalized and value-added services. But incidents with 

online privacy violations [169] made most online users concerned with the privacy 

invasion risk associated with revealing personal information. The risk has lead Internet 

users to conceal true information or to “garbage in” fake data in order to bypass the 

information request phase. A number of identity management systems [170,171,172] and 

software proxies [173,174] already exist. These systems help their users to control how 

much personal identifiable information is released. Concealing true information by using 

identity management and proxy systems or even providing fake information is acceptable 

for web surfing, but not for  many other applications such as IP-telephony or video-

conference, where genuine user’s identity and preferences are crucial inputs to the 

application.  

IP-telephony and videoconference applications are more of a personal 

communication type of applications where users have to identify themselves to each 

other. More importantly, users of these applications have the choice to fine-tune a 

number of configuration parameters in the application to suit best their preferences. For 





 188 


Appendix A  
User Profile Schema 
This appendix presents the schema for the trans-coder used in the prototype. 
 
 
<?xml version="1.0" ?> 
 
<!-- 
    Document   : user_profile.xsd 
    Created on : May 18, 2004, 10:04 PM 
    Organization: University of Ottawa,  
    Description: 
        Definition of a user’s profile 
--> 
 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
        targetNamespace="http://www.site.uottawa.ca/school/research/DSRLab" 
        xmlns="http://www.site.uottawa.ca/school/research/DSRLab" 
        elementFormDefault="qualified"> 
 <xsd:element name="userProfile"> 
  <xsd:complexType> 
   <xsd:sequence> 
    <xsd:element name="sn" type="humanName"/> 
    <xsd:element name="cn" type="humanName"/>     
    <xsd:element name="employer" type="xsd:token"/> 
    <xsd:element name="organizationMembership" type="xsd:token" 
maxOccurs="unbounded"/> 
    <xsd:element name="dateofBirth" type="xsd:date"/> 
    <xsd:element name="postalAddress" type="xsd:string"/> 
    <xsd:element name="homepageURL" type="xsd:anyURI"/> 
    <xsd:element name="email" maxOccurs="unbounded"> 
     <xsd:simpleType> 
      <xsd:restriction base="xsd:token"> 
       <xsd:pattern value="[\w]+([\-\._]?[\w]+)*@[\w]+([\-
\._]?[\w]+)*\.[\w]+"/> 
      </xsd:restriction> 
     </xsd:simpleType> 
    </xsd:element> 
    <xsd:element name="usrID"> 
     <xsd:simpleType> 
      <xsd:restriction base="xsd:string"> 
       <xsd:maxLength value="8"/> 
       <xsd:minLength value="3"/> 
       <xsd:pattern value="[a-zA-Z0-9]+"/> 
      </xsd:restriction> 
     </xsd:simpleType> 
    </xsd:element> 
    <xsd:element name="userPassword"> 
     <xsd:simpleType> 
      <xsd:restriction base="xsd:normalizedString"> 
       <xsd:minLength value="6"/> 
      </xsd:restriction> 
     </xsd:simpleType> 
    </xsd:element> 
    <xsd:element name="QoSWeight"> 
     <xsd:simpleType> 
      <xsd:restriction base="xsd:decimal"> 
       <xsd:totalDigits value='3'/> 
       <xsd:fractionDigits value='1'/> 







 189 


       <xsd:minInclusive value='0'/> 
       <xsd:maxInclusive value='1'/> 
      </xsd:restriction> 
     </xsd:simpleType> 
    </xsd:element> 
    <xsd:element name="timePolicy" maxOccurs="unbounded"> 
     <xsd:complexType> 
      <xsd:all> 
       <xsd:element name="beginningTime" type="xsd:time"/> 
       <xsd:element name="endTime" type="xsd:time"/> 
       <xsd:element name="policyID" 
type="xsd:nonNegativeInteger"/> 
       <xsd:element name="weekday" type="xsd:boolean"/> 
      </xsd:all> 
     </xsd:complexType> 
    </xsd:element> 
    <xsd:element name="caller" maxOccurs="unbounded"> 
     <xsd:complexType> 
      <xsd:all> 
       <xsd:element name="callerID" 
type="xsd:nonNegativeInteger"/> 
       <xsd:element name="idealResolution" type="resolution"/> 
       <xsd:element name="acceptableResolution" 
type="resolution"/> 
       <xsd:element name="idealAudio" type="audioQuality"/> 
       <xsd:element name="acceptableAudio" 
type="audioQuality"/>  
       <xsd:element name="acceptableFramerate" 
type="framerate"/> 
       <xsd:element name="idealFramerate" type="framerate"/> 
       <xsd:element name="priceCeiling"> 
        <xsd:simpleType> 
         <xsd:restriction base="xsd:decimal"> 
          <xsd:fractionDigits value="2"/> 
          <xsd:minExclusive value="0"/> 
         </xsd:restriction> 
        </xsd:simpleType> 
       </xsd:element> 
       <xsd:element name="cn" type="humanName"/> 
       <xsd:element name="priority"> 
        <xsd:simpleType> 
         <xsd:restriction base="xsd:positiveInteger"> 
          <xsd:maxInclusive value="10"/> 
         </xsd:restriction> 
        </xsd:simpleType> 
       </xsd:element> 
       <xsd:element name="audioWeight"> 
        <xsd:simpleType> 
         <xsd:restriction base="xsd:nonNegativeInteger"> 
          <xsd:maxInclusive value="10"/> 
         </xsd:restriction> 
        </xsd:simpleType> 
       </xsd:element> 
       <xsd:element name="videoWeight"> 
        <xsd:simpleType> 
         <xsd:restriction base="xsd:nonNegativeInteger"> 
          <xsd:maxInclusive value="10"/> 
         </xsd:restriction> 
        </xsd:simpleType> 
       </xsd:element> 
       <xsd:element name="QoSWeight"> 
        <xsd:simpleType> 
         <xsd:restriction base="xsd:decimal"> 







 190 


          <xsd:totalDigits value='3'/> 
          <xsd:fractionDigits value='1'/> 
          <xsd:minInclusive value='0'/> 
          <xsd:maxInclusive value='1'/> 
         </xsd:restriction> 
        </xsd:simpleType> 
       </xsd:element> 
      </xsd:all> 
     </xsd:complexType> 
    </xsd:element> 
    <xsd:element name="deviceInfo" maxOccurs="unbounded"> 
     <xsd:complexType> 
      <xsd:all> 
       <xsd:element name="deviceAddress" type="IP"/> 
       <xsd:element name="deviceProfile"> 
        <xsd:simpleType> 
         <xsd:restriction base="xsd:token"> 
          <xsd:pattern 
value="deviceName=[^=,]+(,[\w]+=[^=,]+)+"/> 
         </xsd:restriction> 
        </xsd:simpleType> 
       </xsd:element> 
       <xsd:element name="deviceID" 
type="xsd:nonNegativeInteger"/> 
      </xsd:all> 
     </xsd:complexType> 
    </xsd:element> 
   </xsd:sequence> 
  </xsd:complexType> 
 </xsd:element> 
 <xsd:simpleType name="humanName"> 
  <xsd:restriction base="xsd:token"> 
   <xsd:pattern value="[a-zA-Z]+[a-zA-Z \.\-]*"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="resolution"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="1024X768"/> 
   <xsd:enumeration value="800X600"/> 
   <xsd:enumeration value="640X480"/> 
   <xsd:enumeration value="320X240"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="audioQuality"> 
  <xsd:restriction base="xsd:string"> 
   <xsd:enumeration value="CD"/> 
   <xsd:enumeration value="FM"/> 
   <xsd:enumeration value="Telephone"/> 
  </xsd:restriction> 
 </xsd:simpleType> 
 <xsd:simpleType name="framerate"> 
  <xsd:restriction base="xsd:positiveInteger"> 
   <xsd:maxInclusive value="30"/> 
  </xsd:restriction> 
 </xsd:simpleType>   
 <xsd:simpleType name="IP">  
    <xsd:restriction base="xsd:string"> 
      <xsd:pattern value="(([1-9]?[0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-
5])\.){3}([1-9]?[0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])"/> 
    </xsd:restriction> 
 </xsd:simpleType>  
 
</xsd:schema> 







 191 


Appendix B  
Trans-coder Schema 
 
This appendix presents the schema for the trans-coder used in the prototype. 
 
 
<?xml version="1.0" ?> 
 
<!-- 
    Document   : transcoder.xsd 
    Created on : May 18, 2004, 10:04 PM 
    Organization: University of Ottawa,  
    Description: 
        Definition of a transcoder, it's capabilities and it's location 
--> 
 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 
 
    <xsd:element name="transcoder" type="TranscoderType" /> 
<!-- ######################## --> 
<!-- Definition of Transcoder --> 
<!-- ######################## --> 
<xsd:complexType name="TranscoderType"> 
    <xsd:sequence> 
 <xsd:element name="input" type="inputType" maxOccurs="unbounded"/> 
 <xsd:element name="output" type="outputType" maxOccurs="unbounded"/> 
 <xsd:element name="transcHardware" type="transcHardwareType" /> 
 <xsd:element name="proxyNode" type="proxyNodeLocation"/> 
    </xsd:sequence> 
    <xsd:attribute name="transcName" type="xsd:string" /> 
</xsd:complexType> 
 
 
 
<!-- ############################ --> 
<!-- Definition of transcHardware --> 
<!-- ############################ --> 
<xsd:complexType name="transcHardwareType"> 
    <xsd:sequence> 
 <xsd:element name="processor" type="processorType" minOccurs="0" /> 
 <xsd:element name="memory" type="xsd:positiveInteger" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- ####################### --> 
<!-- Definition of proxyNode --> 
<!-- ####################### --> 
<xsd:complexType name="proxyNodeLocation"> 
    <xsd:attribute name="location" type="xsd:string" /> 
</xsd:complexType> 
 
 
<!-- ########################### --> 
<!-- Definition of processorType --> 
<!-- ########################### --> 
<xsd:complexType name="processorType"> 
    <xsd:sequence> 







 192 


 <xsd:element name="processorName" type="xsd:string" /> 
 <xsd:element name="cyclesPer" type="xsd:decimal" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- ################### --> 
<!-- Definition of input --> 
<!-- ################### --> 
<xsd:complexType name="inputType"> 
    <xsd:sequence> 
 <xsd:element name="inputName" type="MIMEType" /> 
 <xsd:element name="iproperty" type="iopropertyType" minOccurs="0" 
maxOccurs="unbounded" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- #################### --> 
<!-- Definition of output --> 
<!-- #################### --> 
<xsd:complexType name="outputType"> 
    <xsd:sequence> 
 <xsd:element name="outputName" type="MIMEType" /> 
 <xsd:element name="oproperty" type="iopropertyType" minOccurs="0" 
maxOccurs="unbounded" /> 
 <xsd:element name="visualQuality" type="visualQualityType" minOccurs="0" 
/> 
 <xsd:element name="audioQuality" type="audioQualityType" minOccurs="0" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- ######################## --> 
<!-- Definition of ioproperty --> 
<!-- ######################## --> 
<xsd:complexType name="iopropertyType"> 
    <xsd:sequence> 
 <xsd:element name="property" type="xsd:string" /> 
        <xsd:element name="value" type="xsd:string" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- ########################### --> 
<!-- Definition of visualQuality --> 
<!-- ########################### --> 
<xsd:complexType name="visualQualityType"> 
    <xsd:sequence> 
 <xsd:element name="videoFormat" type="xsd:string" minOccurs="0" /> 
 <xsd:element name="Pixel" type="PixelType" minOccurs="0" /> 
 <xsd:element name="Frame" type="FrameType" minOccurs="0" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- #################### --> 
<!-- Definition of Format --> 
<!-- #################### --> 
<xsd:complexType name="FormatType"> 
    <xsd:attribute name="FormatName" type="xsd:string" use="optional" /> 
    <xsd:attribute name="colorDomain" use="optional" default="color"> 
    <xsd:simpleType> 







 193 


 <xsd:restriction base="xsd:NMTOKEN"> 
            <xsd:enumeration value="binary" /> 
            <xsd:enumeration value="color" /> 
            <xsd:enumeration value="graylevel" /> 
            <xsd:enumeration value="colorized" /> 
 </xsd:restriction> 
    </xsd:simpleType> 
    </xsd:attribute> 
</xsd:complexType> 
 
 
<!-- ################### --> 
<!-- Definition of Pixel --> 
<!-- ################### --> 
<xsd:complexType name="PixelType"> 
    <xsd:attribute name="resolution" type="xsd:nonNegativeInteger" 
use="optional" /> 
    <xsd:attribute name="aspectRatio" type="nonNegativeReal" use="optional" /> 
    <xsd:attribute name="bitsPer" type="xsd:nonNegativeInteger" use="optional" 
/> 
</xsd:complexType> 
 
 
<!-- ################### --> 
<!-- Definition of Frame --> 
<!-- ################### --> 
<xsd:complexType name="FrameType"> 
    <xsd:attribute name="height" type="xsd:nonNegativeInteger" use="optional" 
/> 
    <xsd:attribute name="width" type="xsd:nonNegativeInteger" use="optional" /> 
    <xsd:attribute name="aspectRatio" type="nonNegativeReal" use="optional" /> 
</xsd:complexType> 
 
 
<!-- ########################## --> 
<!-- Definition of audioQuality --> 
<!-- ########################## --> 
<xsd:complexType name="audioQualityType"> 
    <xsd:sequence> 
 <xsd:element name="audioFormat" type="xsd:string" minOccurs="0" /> 
 <xsd:element name="audioChannels" type="audioChannelsType" minOccurs="0" 
/> 
 <xsd:element name="audioSample" type="audioSampleType" minOccurs="0" /> 
    </xsd:sequence> 
</xsd:complexType> 
 
 
<!-- ########################### --> 
<!-- Definition of audioChannels --> 
<!-- ########################### --> 
<xsd:complexType name="audioChannelsType"> 
    <xsd:attribute name="front" type="xsd:nonNegativeInteger" use="optional" /> 
    <xsd:attribute name="rear" type="xsd:nonNegativeInteger" use="optional" /> 
    <xsd:attribute name="side" type="xsd:nonNegativeInteger" use="optional" /> 
    <xsd:attribute name="lfe" type="xsd:nonNegativeInteger" use="optional" /> 
    <xsd:attribute name="track" type="xsd:nonNegativeInteger" use="optional" /> 
</xsd:complexType> 
 
 
<!-- ######################### --> 
<!-- Definition of audioSample --> 
<!-- ######################### --> 
<xsd:complexType name="audioSampleType"> 







 194 


    <xsd:attribute name="rate" type="nonNegativeReal" use="optional" /> 
    <xsd:attribute name="bitsPer" type="xsd:nonNegativeInteger" use="optional" 
/> 
    <xsd:attribute name="Stereo" type="xsd:boolean"/> 
</xsd:complexType> 
 
 
<!-- ####################### --> 
<!-- Definition of MIME Type --> 
<!-- ####################### --> 
<xsd:simpleType name="MIMEType"> 
    <xsd:restriction base="xsd:string"> 
        <xsd:pattern value="text/.*" /> 
 <xsd:pattern value="multipart/.*" /> 
 <xsd:pattern value="message/.*" /> 
 <xsd:pattern value="application/.*" /> 
 <xsd:pattern value="image/.*" /> 
 <xsd:pattern value="audio/.*" /> 
 <xsd:pattern value="video/.*" /> 
 <xsd:pattern value="model/.*" /> 
    </xsd:restriction> 
</xsd:simpleType> 
 
 
<!-- ############################# --> 
<!-- Definition of nonNegativeReal --> 
<!-- ############################# --> 
<xsd:simpleType name="nonNegativeReal"> 
    <xsd:restriction base="xsd:double"> 
 <xsd:minInclusive value="0" /> 
    </xsd:restriction> 
</xsd:simpleType> 
 
 
</xsd:schema> 







 195 


Appendix C 
 
Intermediary Schema 
 
 
<?xml version="1.0" encoding="UTF-8" ?> 
<!--Document   : proxyNodeDefinition.xsd 
    Created on : May 10, 2004, 9:22 AM 
    Organization: University of Ottawa 
    Description:  Describes the information of a proxy node that contains 
transcoders. 
--> 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 <xsd:element name="proxyNode" type="proxyNodeType" /> 
 <!-- ####################### --> 
 <!-- Definition of proxyNode --> 
 <!-- ####################### --> 
 <xsd:complexType name="proxyNodeType"> 
  <xsd:sequence> 
 <xsd:element name="transcoderDirectory" type="xsd:string" /> 
                      <xsd:element name="IP" type="xsd:string"/> 
                      <xsd:element name="pathPort" type="xsd:positiveInteger"/> 
    <xsd:element name="neighborList" type="neighborListType" 
minOccurs="0"/> 
                        <xsd:element name="type" type="xsd:string"/> 
  </xsd:sequence> 
 </xsd:complexType> 


<!-- ########################## --> 
 <!-- Definition of neighbor List --> 
 <!-- ########################## --> 
 <xsd:complexType name="neighborListType"> 
 <xsd:sequence> 
  <xsd:element name="neighbor" maxOccurs="unbounded"> 
 <xsd:complexType> 
 <xsd:attribute name="neighborDir" type="xsd:string"/> 
  <xsd:attribute name="bandwidth" type="xsd:positiveInteger" 
/> 
                   <xsd:attribute name="dataPort" type="xsd:positiveInteger" /> 
                   <xsd:attribute name="pathPort" type="xsd:positiveInteger" /> 
                   <xsd:attribute name="IP" type="xsd:string" /> 
 </xsd:complexType> 
  </xsd:element> 
 </xsd:sequence> 
 </xsd:complexType> 
</xsd:schema> 







 196 


Appendix D 
 
Acronyms 
 
 
DSRG: Distributed System Research Group 
ABR: Available Bit Rate 
ALS: Application Layer Signaling 
APC: Automatic Path Creation Service 
ARPAnet: U.S. Defense Department network 
AS: Audio Service 
ASA: Application-Specific Address 
BGP: Border Gateway Protocol 
Bluetooth SDP: Bluetooth Service Discovery Protocol 
CA: Communication Agent 
CC/PP: Composite Capability/Preference Profile 
CMA: Call Management Agent system 
CMAP: CMA Protocol 
CoS: Class of Service 
CPExchange: Customer Profile Exchange 
CPL: Call Processing Language 
CTSpec: Communication Terminal Specification 
DAG: Directed Acyclic Graph 
DiffServ: Differentiated Service 
DNS: Domain Name Service 
DS: Directory Service 
DSG: Destination Set Grouping 
DSRG: Distributed System Research Group 
DWDM: Dense Wave Division Multiplexing 
FDA: Foreign Directory Agent 
FEC: Forward Equivalence Class 
HD: Home Directory 
HDA: Home Directory Agent 
HDTV: High Definition TV 
Hyper-Text Transport Protocol  
IAP: ICEBERG Access Points 
ICEBERG : Integrated Communications 
IN: Intelligent Network 
IntServ: Integrated Service 
iPOP: ICEBERG Points of Presence 
ISP: Internet Services Providers 
ITU: International Telecommunication Union 
iUID: ICEBERG Unique ID 
J2SE: Java 2 platform Standard Edition 







 197 


J2SE: Java 2 Standard Edition 
JMF: Java Media Framework 
LAN: Local Area Network (LAN), 
LC: Logical Channel 
LDP: Label Distribution Protocol 
LDU: Logical Data Units 
LER: Label Edge Router 
LIB: Label Information Base 
LSP: Label Switch Path 
LSR: Label Switch Router 
MAS: Multi Agent Systems 
Mbone: Multicast Backbone 
MC: Multi-point Controller 
MCU: Multipoint Control Unit 
MG: Media Gateway (MG) 
MGC: Media Gateway Controller 
MGCP: Media Gateway Control Protocol 
MobInTel : Mobile Internet Telecommunication 
MP: Multi-point Processor 
MPA: Mobile People Architecture 
MPLS: Multi-Protocol Label Switching 
NRC: National Research Council of Canada 
OCoV: Optimal Combination of Variants 
OPE: Oblivious Polynomial Evaluation 


2
1OT : Oblivious Transfer 


P2P: Peer-to-Peer 
P3P: Platform for Privacy Preferences 
PA: Personal Agent 
PAC: Personal Activity Coordinator 
PASA: Proxy Application-Specific Address 
PC: Personal Computer 
PDA: Personal Digital Assistant 
PKI: Public Key Infrastructure 
POID: Personal Online Identifier 
POTS: Plain Old Telephone Service 
PSTN: Public Switched telephone Network 
QoE: Quality of Experience 
QoS: Quality of Service 
QSNA: QoS Selection and Negotiation Agent 
RAS: Registration, Admission, and Status 
RDF: Resource Description Framework 
RFC: Request For Comments 
RLM: Receiver-driven Layered Multicast 
RSA: Rivest Shamir-Adelman 
RSVP: Resource reSerVation Protocol 
RTCP: Real-time Control Protocol 







 198 


RTSP: Real-time Streaming Protocol 
SAMM: Source Adaptive Multi-Layered Multicast (SAMM) 
SAP: Session Announcement Protocol 
SDA: Service Discovery Agent 
SDP: Session Description Protocol 
SDPng: Session Description and Capability Negotiation 
SPIN: Seamless Personal Information Networking 
SR: Service Registry 
SSRC: Synchronization SouRCe identifier 
TCP: Transport Control Protocol 
TOPS: Telephony Over Packet networkS 
ToS: Type of Service 
UA: User Agent 
UAC: User Agent Client 
UAProf: User Agent Profile 
UAS: User Agent Server 
UCA: User Context Agent 
UDP: User Datagram Protocol 
UMTS: Universal Mobile Telecommunications System 
UPT: Universal Personal Telecommunication 
URI: Uniform Resource Identifier 
VHE: Virtual Home Environment 
VoIP: Voice over the Internet Protocol 
VPN: Virtual Private Network 
VS: Video Service 
W3C: World Wide Web Consortium 
WML: Wireless Markup Language 
WPAN: Wireless Personal Area Networking 
XML: Extensible Markup Language 
 
 





