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Abstract 
We developed a diffusive load balancing scheme that equalizes the available 

capacities of nodes in a peer-to-peer (P2P) system. These nodes may have different 

resource capacities, geographic locations, or availabilities (i.e., length of time being part 

of the peer-to-peer system). The services on these nodes may have different service times 

and arrival rates of requests. Using the diffusive scheme, the system is able to maintain 

similar response times for its services. Our scheme is a modification of the diffusive load 

balancing algorithms proposed for parallel computing systems. This scheme is able to 

handle services with heterogeneous resource requirements and P2P nodes with 

heterogeneous capacities. We also adapted the diffusive scheme to clustered peer-to-peer 

system, where a load balancing operation may move services or nodes between clusters. 

After a literature survey of this field, this thesis investigates the following issues 

using analytical reasoning and extensive simulation studies. The load balancing 

operations equalize the available capacities of the nodes in a neighborhood to their 

averages. As a result, the available capacities of all nodes in the P2P system converge to a 

global average. We found that this convergence is faster when the scheme uses 

neighborhoods defined by the structure of the structured P2P overlay network rather than 

using randomly selected neighbors. For a system with churn (i.e. nodes joining and 

leaving), the load balancing operations maintain the standard deviation of the available 

capacities of nodes within a bound. This bound depends on the amount of churn and the 

frequency of load balancing operations, as well as on the capacities of the nodes. 

However, the sizes of the services have little impact on this bound. In a clustered peer-to-
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peer system, the size of the bound largely depends on the average cluster size. When 

nodes are moved among clusters for load balancing, the numbers of cluster splits and 

merges are reduced. This may reduce the maintenance cost of the overlay network.     
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1. Introduction 

1.1. Motivation 

We study a diffusive load balancing technique that improves the performance of peer-

to-peer systems. A peer-to-peer (P2P) system is a distributed computing system. The 

nodes in the system are called P2P nodes, and they are computers that run the software 

programs realizing the functions of the P2P systems. These functions allow end-users to 

access their shared objects (e.g. data, audio or video files) or resources (computing 

power, network bandwidth) in the form of services. While using these services, end-users 

expect that their requests should have short response times. However, in a P2P system, 

the response times of services are not guaranteed. A load balancing technique that unifies 

the performance of services would therefore be useful for P2P systems.     

It is not easy for a P2P system to provide services with a uniform response time. The 

difficulty comes from three points. First, the services on the nodes have diverse service 

times and request rates. The shared objects in a P2P system differ in their sizes. For 

example, normally, audio files are smaller than 10 Mbytes, and video files are larger than 

100 Mbytes [Gummadi2003]. Services used for accessing these shared objects on a P2P 

node have different service times. These shared objects also have different numbers of 

requests. For example, the majority of requests (e.g. 91%) are for downloading audio 

files. Because of these diversities, the workloads on nodes are largely heterogeneous. 

Second, P2P systems are composed of computers connected to the Internet. These 

computers are largely diverse. Some of these computers are low-capacity personal 
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computers with small CPU processing powers, slow network speeds, and small storage 

spaces. Some of them are high-capacity server computers. These computers are also 

different in their geographic locations and the durations of being on line. For example, 

the measurements from some P2P systems (e.g. P2P file sharing applications like 

Gnutella) showed that the on-line duration of P2P nodes follows a Pareto distribution 

with a heavy tail [Saroiu2003].  

Third, P2P systems do not have any component dealing with the heterogeneity of 

their nodes or services. The nodes in a P2P system construct an overlay network. These 

nodes select their neighbors either randomly (e.g. those neighbors in an unstructured 

overlay network) or according to the associations between their data (e.g. those neighbors 

in a structured overlay network). They also provide a distributed lookup service that 

locates the shared objects for the end-users. Measurements showed that an overlay 

network can include up to millions of nodes. However, according to Castro et al., the 

general overlay network does not consider the heterogeneity of resources while 

constructing the overlay network or routing lookup messages [Castro2005]. 

Therefore, the requests of the end-users of a P2P system could have largely diverse 

response times. For example, the requests of some services experience long delays since 

these services are on heavily loaded nodes. Meanwhile, the requests of some other 

services are answered quickly by nodes that are close to idle. Also, the mean response 

time of a service could vary from time to time. One challenge of a P2P system is to 

effectively guarantee the service quality it provides. 

Our research aims at improving the performance of P2P systems by using a load 

balancing technique. Therefore, the shared objects of a P2P system can always be located 
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at nodes with enough resources for them, and the requests for accessing these objects can 

have a uniform response time.  

1.2. Objective 

We study a diffusive load balancing technique in this thesis. For a P2P system using 

this technique, the performance of its nodes, that is, the mean response time of its 

services, would become similar.  

Load balancing schemes, such as [Zhu2005, Surana2006, Shen2007 and Vu2009], are 

proposed to dynamically reallocate nodes or shared objects in P2P systems so that these 

systems could serve more service requests during a time unit. The services accessing 

shared objects could have their mean response times reduced. Using distributed 

approaches, these schemes are scalable to the sizes of P2P systems. Some schemes use a 

specific structure of the overlay network for load balancing (for example, the tree 

structure). These schemes can not be deployed in an overlay network with another kind 

of structure. Some schemes construct a structure based on the P2P overlay networks for 

load balancing (e.g. the schemes in [Zhu2005 and Vu2009]). These schemes require P2P 

nodes to maintain extra connections only for load balancing. Or, some schemes use 

random walks (e.g. in [Shen2007]) to select neighbors for their load balancing operations. 

However, this kind of random walks adds extra messages to a P2P system.  

Diffusive load balancing techniques, originally proposed for parallel computing 

systems that have a massive number of processors, are a good candidate for P2P systems. 

This kind of technique uses the connections between nodes for its operations. Compared 

with other techniques proposed for P2P systems, such a technique neither sets up extra 
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connections between nodes nor spends a large number of messages on random walkers in 

a system. However, in order to work in a P2P system, a diffusive scheme has to be 

redesigned.  

Our research deals with the following four issues. First, the diffusive scheme should 

improve the response times of services instead of speeding up parallel computing 

programs. Second, its load balancing operations should be effective in an environment 

where nodes may suddenly join or leave. Third, it has to deal with nodes whose 

capacities are heterogeneous and services whose resource requirements are diverse. 

Fourth, the diffusive scheme is also expected to work in a clustered P2P system. Because 

of these issues, the diffusive scheme developed in this thesis is different from those for 

parallel computing systems.       

1.3. Contribution 

This study provides the following contributions: 

1) We proposed a load balancing scheme for P2P systems. The scheme realizes a 

diffusive load balancing algorithm, which is a modification of those used for 

parallel computing systems. We call it asynchronous algorithm with local 

synchronism for load balancing. We demonstrate that, using this scheme, a P2P 

system has the performance of its node approaching the average. We say that this 

scheme converges.  

2) We studied the convergence speeds of this scheme when using different decision 

algorithms. These algorithms decide load transfers between nodes. The scheme 
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converges most quickly when a node uses a directory-initiated algorithm which 

works as a local directory for a neighborhood.   

3) We extended the directory-initiated algorithm with extra features to handle 

services with heterogeneous resource requirements. We observed that the 

effectiveness of the scheme depends on whether the system hosts services with 

homogeneous resource requirements or with heterogeneous resource 

requirements.  

4) We further extended the directory-initiated algorithm such that it could perform 

load balancing for clustered peer-to-peer (clustered P2P) systems. Two types of 

directory-initiated algorithm are designed for this purpose. In one case, services 

are moved between clusters. In another case, nodes are moved between clusters.  

1.4. Organization of the thesis 

In Chapter 2, we review the possible architectures and characteristics of workloads of 

P2P systems. In Chapter 3, we survey load balancing techniques proposed for distributed 

computing systems, diffusive load balancing techniques for parallel computing systems, 

and load balancing techniques for P2P systems. In Chapter 4, we describe the proposed 

diffusive load balancing scheme and its algorithms; we also evaluate the effectiveness of 

the diffusive load balancing scheme by simulation experiments. In Chapter 5, we 

investigate the effectiveness of the diffusive load balancing in a system with various 

characteristics such as random neighborhoods, churn (i.e. node joining or leaving in a 

P2P systems), and services with heterogeneous resource requirements. In Chapter 6, we 
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extend the diffusive load balancing scheme to clustered P2P systems. We conclude in 

Chapter 7.  
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2. The structures and the 

characteristics of peer-to-peer 

systems 

2.1. Introduction 

We present the kinds of architectures and the characteristics of P2P systems in this 

chapter. Our research is based on this knowledge.    

Peer-to-peer (P2P) systems are composed of computer nodes connected to the 

Internet. These computers are either low-capacity personal computers of end-users, or 

high-capacity computers of service providers in the Internet. A computer becomes a 

“peer-to-peer node” or “node” in a P2P system by a joining procedure. A P2P node 

locally stores the IP addresses of its neighbors and communicates with them through 

messages over the transport layer of the Internet. For example, Pastry nodes communicate 

with TCP (Transmission Control Protocol) messages, and Chord nodes use RPC (Remote 

Procedure Call) messages. The connections for transmitting these messages between two 

nodes are called “peer-to-peer connections”, or simply “connections”.   

A P2P system has a platform and applications. Its platform is called P2P overlay 

network; it is constructed by the P2P nodes using the connections between these nodes. 

An application on this platform is called a P2P application. Such an application, like file 

downloading (e.g. eDonkey [Tutschku2004]), video streaming (e.g. PPLive [Vu2007]), 
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or distributed databases, contains the running processes of software programs for users to 

access the shared objects, such as files, network links, or storage spaces, on P2P nodes. 

These running processes provide two kinds of services. One kind is for users to access 

shared objects, and they are called application service. Another kind of processes are 

used to locate the nodes that store shared objects; their service is called lookup service. 

Figure 2.1 demonstrates a typical scenario where a user downloads a file by using a 

file sharing application. At the beginning, a user invokes a running process of this 

application by running its software program on his computer (shown at the bottom level 

of the figure). At the beginning, this computer joins the overlay network and becomes 

P2P node A (shown at the middle level). The user looks for a file by issuing a request to 

the running process of the P2P application on node A. In response to this searching 

request, node A uses the lookup service of the P2P application to send a file lookup 

message to its neighbors: nodes B and C; then, node B forwards the message to D. Node 

D locates the file in its local file system and sends a replying message to A. At the end, 

node A uses the file downloading service provided by the P2P application to download 

the file from D to A (shown at the top level).   

P2P systems are large-scale distributed computing systems. In this chapter, we 

discuss two types of decentralized P2P systems. One type is called unstructured P2P 

system, and another type is called structured P2P system [Lv2002]. We review them from 

the perspectives of the structures of their overlay networks and the characteristics of their 

applications. First, unstructured P2P systems are presented. Then, we discuss some 

typical structured P2P systems, and a file storage system deployed on such a structured 

P2P system. Churn represents the dynamics changes in the overlay network where nodes 
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join and leave frequently. Churn is a major factor in P2P systems. At the end of this 

chapter, we present the notations and definitions of churn, and the characteristics that 

have been discovered from real systems. We also discuss the techniques used by P2P 

systems to handle churn.  

 

 

Figure 2.1 An example of a file downloading path in a file sharing P2P application 
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2.2. Unstructured peer-to-peer systems  

Unstructured P2P systems are deployed for file sharing applications in the Internet, 

including Gnutella, and KaZaa. These applications provide file sharing services like file 

searching or downloading. File searching services are also called distributed lookup 

services which locate shared objects on nodes. File downloading services are used by 

users to access these shared objects. According to Lv [Lv2002], in systems of this kind, 

the placements of shared objects (i.e. files for these file sharing applications) are “not 

based on the knowledge of topology” of the overlay networks. The performance of their 

services, including file downloading services and lookup services, largely depends on the 

characteristics of their structures and of their shared objects (e.g. the sizes or the numbers 

of requests of these objects).  

2.2.1. Structures of overlay networks 

The overlay network of a P2P file sharing application has a flat or a hierarchical 

structure. In a flat overlay network, a node connects to its neighbors that are chosen at 

random. For example, the original Gnutella uses this kind of overlay network. The file 

discovery service (i.e. lookup service) on a Gnutella node broadcasts file lookup 

messages to all its neighbors. FastTrack [Liang2006] adopts a hierarchical structure with 

two tiers. Peers are classified as Super Nodes (SN) or Normal Nodes (NN). An NN only 

connects to one SN, and it publishes the metadata of its shared files at that SN. SNs in a 

FastTrack system are connected into a network, and they resolve lookup messages among 

themselves.  
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It was questioned whether an unstructured P2P system is able to maintain a network 

in the case that there is a large number of nodes joining or leaving (i.e. the resilience and 

robustness of an overlay network). Measurements showed that an unstructured file 

sharing application like Gnutella is resilient and robust. For instance, in the case that a 

peer is allowed to have at most 20 neighbors, a flat Gnutella could be partitioned only 

when more than half of the peers (e.g. 60%) are removed [Saroiu2002]. Research also 

showed that the systems using hierarchy architecture could have their resilience and 

robustness improved. For example, in a FastTrack, in the case that an SN periodically 

exchanges the information of 200 SNs with around 40 other SN neighbors, the SN could 

be always connected to the network [Liang2005]. Furthermore, Stutzbach et al. 

[Stutzbach2005] show that, in a hierarchical Gnutella, super peers with long online 

durations tend to build connections among themselves. Therefore, the core network 

composed of these super peers is highly stable and resilient, and it experiences little 

partitions even when the network is highly dynamic.  

Similar to Gnutella, BitTorrent systems are unstructured P2P systems that have a flat 

architecture. Their applications, for example, PPlive, allow nodes to exchange blocks of 

video files rather than to forward messages for searching shared files through the 

connections in their overlay networks. Several techniques are used in these systems to 

improve their performance. For example, among its 40 neighbors, an active node uses the 

“rarest first” policy to download the rarest block and the “tit-for-tat” strategy to choose 

up to 5 nodes for uploading its own blocks. These techniques increase the chance of a 

node to upload file blocks while preventing the “free-riding” scenario. Through these 
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techniques, the fairness of the file downloading service and the utilization of the 

connections are increased.  

However, a BitTorrent system has central components, and the reliability of the 

downloading services for its shared files highly relies on these central components. One 

of these components is a centralized directory (normally a Web server) that stores a list of 

shared files and their “.torrent” files. The users of the system search this server for shared 

files, and they download the “.torrent” files for their peer nodes to find the addresses of 

trackers. The tracker of a shared file records all of peer nodes that are downloading the 

shared file in the same overlay network. A peer node finds its neighbors there. For a 

BitTorrent system, when its directory has failed, no new peer node could find an overlay 

network to join. For a shared file, when its tracker fails, no new peer node could find 

neighbors. Furthermore, a tracker requires large bandwidth (e.g. up to the order of 

GBytes each day). When these large bandwidths can not be guaranteed in the Internet, the 

performance of the downloading services for shared files is impacted.         

2.2.2. Characteristics of P2P file sharing 

applications 

The characteristics of P2P file sharing applications have been studied in terms of the 

types, numbers of requests (i.e., file popularity), and localities of shared files. Most 

shared files in Kazaa and Gnutella are multimedia files, such as audio or video files 

([Chu2002] and [Fessant2004]). According to [Gummadi2003], the majority of the 

requests (e.g. 91%) are for downloading small sized audio files (e.g. with sizes less than 
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10 Mbytes); however, more than half of the network bandwidth (e.g. 65%) is spent on the 

transferring of the video files with sizes usually larger than 100 Mbytes.  

Also, the popularity of the files in a hierarchical Gnutella follows a distribution with a 

large variance (e.g. a Zipf distribution), where 80% requests ask for 10% of the files 

[Zhao2006]. Zhao further indicated that the popularity of files varies 5% at different 

times of the day. Meanwhile, Lloret observed that the popularities of files are varied in a 

cosine waveform function with the time of the day [Lloret2006]. Furthermore, the 

location of files is correlated to the geographic places. For example, in Europe, if two 

peers in the same country have a small number of common files, the probability for them 

to have another common file is as large as 80% [Fessant2004].   

2.3. Structured peer-to-peer systems 

A structured peer-to-peer (structured P2P) system is a “decentralized object location 

and routing infrastructure” for locating shared objects in a distributed manner 

[Kubiatowics2003]. The placements of shared objects are “not at random nodes but at 

specified locations that will make subsequent queries easier to satisfy” [Lv2002]. In this 

section, we describe some typical systems of this kind in terms of the organizations and 

construction of their structures.  

2.3.1. Organizations of overlay networks 

A structured P2P system is defined by three components: the associations between 

shared objects and nodes, the overlay network constructed by the connections or 

associations between nodes, and a lookup procedure that locates the shared objects (i.e. a 
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lookup service). These components work together. We present the structures of these 

systems in terms of these components as follows.   

Some structured systems implement a Distributed Hash Table (DHT). Like an 

element in a hash table, a shared object in a DHT has an object key and an object value. 

The object key is hashed into a hashed key in a numerical space by a function (e.g. the 

SHA-1 used in Chord [Stoica2001], Pastry [Rowstron2001] or Tapestry [Zhao2004]). 

Like a bucket in a hash table, a node in a DHT stores shared objects. A node is assigned a 

unique ID in the same space where the hashed keys are; this ID is generated by the same 

function that hashes the node’s IP address. Then, a DHT defines an association between 

the keys of objects and the IDs of nodes; based on this association, the lookup service can 

locate nodes while searching shared objects. For example, Chord positions nodes in a 

ring by the ascending order of their node IDs. A node is responsible for the objects whose 

hashed keys locate in the range between its predecessor’s ID and its own ID. 

Accordingly, an object is stored on the first node whose ID is following its hashed key in 

the clockwise direction. Pastry stores an object on the node whose ID is closest to its 

hashed key, and Tapestry stores an object on the node whose ID has the longest common 

prefix with its hashed key.  

In a DHT system, a node connects to some other nodes (called neighbors) according 

to the associations of their node IDs. Each node has a routing table storing the IP 

addresses of its neighbors. DHT systems define their routing tables differently. A node in 

Chord has a one-column table, and its neighbor at row i is the first node whose ID is 

larger than 12 +i . Figure 2.2 is a modified version of Figure 3 in [Stoica2001]. The figure 

shows the fingers (i.e., connections) and the finger table (i.e., the routing table) of node 0 
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on an 8-node ring network. Node 0, 1, 3 are the nodes that currently exist in the overlay 

network. For example, the routing table of node 0 has the IP address of node 3 in row 2 

since node 3 is the first node whose ID is larger than 12 . In Pastry, a node has a 

dl × routing table, where l  is the number of digits in a node ID and d is the numerical 

base used for node IDs. The entry of >< ji,  of a routing table is the IP address of a 

neighbor node whose ID shares the same i -digit prefix with the ID of the current node, 

and has a value j  at the digit 1+i . A Tapestry node has a routing table similar to that of 

a Pastry node. However, nodes at the same row of a routing table are at the same level in 

the tree topology.  

02
)2,2[ 21

)2,2[ 32

 
Figure 2.2 The finger table at node 0 and its connections in ring topology 

 

Nodes in a DHT system use a lookup service to locate nodes that store shared objects. 

For a user’s query request for a shared object, a lookup message is created, and the 

message contains the hashed key of the object. The lookup message is forwarded or 

routed by the nodes of a DHT system. The lookup service on a node is invoked first right 

after the node receives a lookup message. The hashed key of the shared object is 

examined. Then, the node decides whether to forward the message to the next hop or not. 

For example, in Chord, in the case that the hashed key is between its own ID and the ID 

of its successor, a node locates its successor as the object’s host node. The node replies 
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the lookup message with the ID of its successor. Otherwise, the node chooses a node 

from its routing table to be the next hop of the lookup message. The chosen node has the 

largest ID among the nodes whose IDs are smaller than the hashed key. After a 

forwarding step, the distance between the positions of the lookup message and of the host 

node is reduced at most by half. Therefore, it takes )(log NO  steps on average for the 

lookup service of a Chord to locate the node that stores a shared object.  

Pastry and Tapestry have lookup services similar to that of Chord. In addition to a 

routing table, a Pastry node maintains a leaf set that stores the nodes whose IDs are in a 

numerical range around its own. While performing the lookup service for a lookup 

message, a Pastry node directly forwards the message to the host node, in the case that 

the hashed key of a lookup message is in the scope of the nodes in its leaf set. Otherwise, 

the node picks from its routing table the next hop whose node ID has one more digit that 

matches the key. Matching one digit of a hashed key at a hop, Pastry’s lookup service 

resolves lookup messages in )(log NO b  hops (where b is the base used for representing 

the hash keys and node IDs) on average.  

The Content-Addressable Network (CAN) [Ratnasamy2001] is a structured P2P 

system without implementing a DHT. A CAN system has a torus topology in d -

dimensional Cartesian space. The object key of a shared object is mapped into a point in 

this space. The d -dimensional space is partitioned into zones, and each zone can be 

identified by a vector with d -dimensional coordinates. A node takes charge of a zone 

and stores the shared objects whose key points are located in that zone. A node has a 

routing table with 2 d  neighbors whose coordinates are only different from its own at one 

dimension. When a node receives a lookup message, its lookup service examines the 



 17 

contained key point of the searched object. In the case that the key point is in its own 

zone, it returns itself as the host node. Otherwise, from its routing table, the node 

forwards the lookup message to the next hop whose coordinate is the closest to the point. 

With a d torus topology, CAN requires )(
1

ddNO  steps for one lookup message on 

average.  

Some non-DHT structured P2P systems are proposed to support range queries. For 

example, Mercury orders nodes in a ring according to the ascending order of their names, 

and objects are stored on these nodes according to the order of their values. A node can 

build associations with other nodes in different positions on the ring. These systems can 

support range query functions, where shared objects can be found through locating the 

two ends of the range specified in a lookup message.  

The structures of structured P2P systems are often similar to the data structures that 

store data elements and support the access to these elements; for example, Chord is 

similar to a skip-list, Tapestry and Pastry implement a tree, or CAN implements a d-

dimensional torus. Structures other than those described above are also proposed in 

literature; for example, a butterfly network is used by Viceroy [Malkhi2001], a skip list 

by GosSkip [Guerraoui2006], and a de Bruijn graph by Koorde [Kaashoek2003]. 

Bochmann et al. [Bochmann2007] presented and analyzed the architectures of several 

structured P2P systems in detail.  

2.3.2. Construction of overlay networks  

The previous subsection reveals that the overlay network of a structured P2P system 

is constructed according to the associations of nodes (e.g. the associations of their node 
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IDs or associations of their shared objects). Since nodes frequently join or leave a peer-

to-peer system, theses associations are frequently changed. Therefore, an overlay network 

has to be updated to reflect these changes from time to time.   

There are two issues a structured P2P system should deal with for a newly joined 

node. The first issue is that the new node should locate its position in the overlay network 

and find its neighbors. In Chord, a new node locates its position in the ring by looking up 

its own ID in the system. The new node regards the node that hosts (i.e. takes charge of) 

the key equal to its own ID as its successor, and takes over the predecessor from the 

successor. Then, the new node looks up its neighbors that take charge of the beginning 

point of each entry of its routing table. In a Pastry, a new node issues a “join” message 

that contains the new node’s ID first. The “join” message is routed in the overlay 

network. When the message arrives to a node, the visited node will let the new node copy 

one row from its own routing table. For example, Row r is copied in the case that the ID 

of the new node shares the r-digit prefix with the ID of the visited node. Using the “join” 

message, the new node locates itself besides the host node that takes charge of its ID. At 

the end, the new node composes its own leaf set table through referring the leaf set of the 

host node. Tapestry has a node joining procedure similar to that of Pastry; however, it 

selects its routing table entries at row i from all of the nodes that should be at that row.  

The second issue is that a new node has to be included into the routing tables of some 

other nodes. In Chord, a new node notifies other nodes to update the associations in their 

routing tables. A new Pastry or Tapestry node notifies its presence to nodes it knows so 

that they could update their tables. In the case that there are multiple nodes that could be 

filled in an entry of its routing table, a node in Pastry or Tapestry chooses the closest one. 
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The proximity is decided according to a metric measurement, either the geographic 

distance, or the Internet distance measured in number of hops.  

A new node in a CAN system uses simpler ways to deal with the above issues. A new 

node picks a point P as its ID at random and searches the ID through a bootstrapping 

node in the overlay network first. After the host node hosting of this ID is located, the 

host node transfers the responsibility of half of its zone to the new node. Then, the new 

node selects its own neighbors from the host node’s routing table and notifies these 

neighbors of its presence.  

A structured P2P system should also update its overlay network when nodes leave. 

Nodes periodically exchange maintenance messages between them. A node detects a 

node leaving in the case that several consecutive messages are lost, and invokes a 

repairing procedure to find a replacement. For example, a Pastry node sends heart-beat 

messages to its neighbors. While finding a replacement for a leaving neighbor, a node 

asks its other neighbors to report their own neighbors and selects a suitable node from 

them. In Tapestry, when a node detects that an entry at a level is empty, the node will 

find a replacement from all nodes at that level. A CAN node sends soft-state messages to 

its neighbors, including the coordinates of its own zone, a list of its neighbors, and their 

coordinates. A CAN node will select a node whose zone has the smallest volume to take 

over the pointes of a leaving node, and the node will notify all of its neighbors after the 

takeover. A Chord node also periodically checks the status of its neighbors. In the case 

that a neighbor is leaving, the node locates its replacement by issuing a lookup message.  

A structured system should be able to maintain the overlay network when nodes join 

and leave frequently. Nodes in some structured systems have redundant neighbors. In 
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Chord, a node keeps the states of its k consecutive successors in the ring. A node also 

periodically runs a stabilization procedure that checks the on-line state of its immediate 

successor. In the case that the immediate successor leaves, a node would take the next as 

its immediate successor without any extra cost. Research indicates that, when k is set to 

)(log NO , the Chord ring is able to be connected even when half of the nodes are 

leaving, and the number of nodes a lookup message travels is still kept to )(log NO  on 

average. In Tapestry, there are multiple nodes for an entry of a routing table. Any one of 

these nodes could be chosen as the next hop of a lookup message.  

Also, a structured P2P system has to deal with the missing of the shared objects on 

leaving nodes. In some cases, a node leaves an overlay network by a leaving procedure. 

The node notifies its neighbors of its leaving, and hands over the responsibility of its 

shared objects to its immediate successor. In other cases, a node leaves without notice 

(e.g. in the case that of a node failure or just a leaving). After detecting a neighbor’s 

leaving of this kind, a node notifies the applications on the top and lets them recover the 

lost objects. Pastry allows applications to replicate shared objects on the nodes in the leaf 

sets of their host nodes. In the case that one replica is lost due to its node’s failure, the 

application recovers the replica on a replaced node. Tapestry and CAN systems let an 

application periodically publish the index items of their shared objects. Moreover, 

Tapestry replicates an index item on the nodes in its publishing path. The republishing of 

the index items guarantees that the information of these shared objects is always available 

in a system whose nodes change frequently.   
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2.4. Cooperative File System (CFS) 

The Cooperative File System (CFS) is a P2P read-only file storage system 

[Dabek2001]. The system demonstrates the integration of a P2P application with a 

structured overlay network. It adopts several techniques to improve the reliability and 

performance of its file downloading services. 

A CFS has a file structure similar to that of the UNIX V7 file system; but the blocks 

of its files are distributed in storage spaces at peers rather than in a local disk of a 

computer. It is composed of two layered components: DHash and Chord. DHash is the 

application that organizes files and calls the interfaces of Chord to manage the file blocks 

on the nodes. Chord manages the DHT overlay network and provides the interfaces that 

implement the distributed object lookup services, for instance, put(key, block) for storing 

a block, and get(key,block) for retrieving a block. A key is the hashed key generated by a 

function according to the content of a block. Figure 2.3 shows the file structure of a CFS 

and the distribution of the blocks of a file in the Chord network. In this example, each file 

block is replicated on the next 3 consecutive successors of its host node. In the case that a 

node storing a block leaves the overlay network, Chord notifies DHash of the loss of the 

replica. Then, DHash places a new replica on the next consecutive successor. A client 

may download a block from any of its replicas. Using replicas, CFS provides reliable file 

downloading services to its clients.  
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Figure 2.3 An example of the file structure and block distribution of a file in CFS 
 

CFS improves the file downloading speed by the techniques described as follows. 

First, a client may choose the best among the replicas for file downloading. Second, 

DHash divides a file with a large size into multiple blocks and stores these blocks on 

different host nodes. In this way, the blocks of a file can be downloaded at the same time. 

Third, CFS adopts a simple load balancing technique. CFS allows a physical node to host 

multiple virtual servers, and a virtual server contains multiple file blocks. Each virtual 

server has a unique ID, and virtual servers are connected into Chord according to their 

IDs. In the case that a physical node is overloaded, it deletes some of its virtual servers, 

and let the DHash recover them on other nodes. Using the simple load balancing 

technique, the variation of file downloading speeds is reduced. This variation is caused 

by the heterogeneity of the storage disks or network links on nodes. Fourth, similar to the 

techniques that use Web-cache to improve the performance of a Web-server, DHash 

copies the blocks of popular files on the nodes along the lookup paths of these files. A 

lookup message for a block may find a hit earlier before it reaches its destination node.     

Experiments showed that a CFS system is scalable to thousands of nodes. Also, its 

operations are efficient, and its file downloading services are competitive. The 

experiments use computer nodes in the Internet. The CFS can achieve a file downloading 
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speed better than that of the file downloading using TCP. Also, the variance of download 

speed in the CFS is smaller, which gives users a consistent performance during file 

downloading. For example, in the experiment using nodes in a local computer lab, the 

number of RPC messages for a lookup is close to )(log2
1

2 NO  on average. After the 

CFS uses the caching technique, the number of RPC messages used for resolving a query 

is reduced from 5.7 to 3.2 hops along with the progress of experiments in a 1000-server 

system. One experiment testified that there is no lookup failure when fewer than 20% of 

the nodes fail, and as low as 0.005 fraction of the lookups failure when 35% of the nodes 

fail.  

2.5. Churn 

2.5.1. What is churn? 

When nodes join or leave the overlay network of a P2P system, the system is said to 

be experiencing churn. Churn occurs from time to time, and it can be described by the 

inter-arrival time of node joining and the durations that the nodes remain in the network 

[Stutzbach2006]. For a system, the inter-arrival time is the average interval time between 

two consecutive times of node-joining. Researchers widely adopted a Poisson process 

arrival model in analysis and experimentation of DHT overlay network designs [Li2004] 

and [Liben-Nowell2002], where the inter-arrival time of node joining is modeled with an 

exponential distribution. However, from the observations of real file sharing applications, 

the inter-arrival time appears to have a Weibull distribution with k  around 0.6 
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[Stuzbach2006] along the time of the day. Since the exponential distribution is a special 

Weibull distribution with 1=k , an inter-arrival model with Poisson process will appear 

to be more bursty than that in reality. Except for the time of the day effect, there are few 

correlations between node joining and leaving in the network [Bhagwan2002].  

The session time is a continuous period that a node remains in the network, and the 

time starts from the node’s joining and ends with the node’s leaving. Although the 

session time of nodes in a network is usually modeled as an exponential distribution 

[Liben-Nowell2002], the measurements from file sharing applications show that the 

session time has a Pareto-distribution with a heavy tail [Saroiu2003]. Measured more 

accurately with a shorter duration at each measuring snapshot, the session time was fit to 

a Weibull distribution or a log-normal distribution, where a large portion of sessions are 

short timed, and a small portion of sessions have distinct long durations [Stutzbach2006].  

Godfrey et al. [Godfrey2006] defines churn as the number of state changes of a P2P 

system per unit of time. A state of a network is the number of nodes at time t . A state 

change is caused by the event of one node-joining or leaving, and it is measured as the 

absolute difference of two states, which describes the total number of changes occurring 

in the system between these two states. Hence, churn is the average number of changes 

that occur in the system per unit of time. The churn of a system can be determined when 

the inter-arrival times of node-joining and the session times of node-living in the overlay 

network are determined. 
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2.5.2. Handling churn  

Because of churn, the information of connections stored on nodes might not be 

consistent within the overlay network. This kind of inconsistency may cause lookup 

messages to be dropped during the forwarding procedures. When a structured P2P system 

is exposed to churn, the availability of its services, including the services for routing 

lookup messages and the services of applications on the top of the overlay network, are 

affected. Therefore, extra efforts have to be spent on maintaining a consistent network 

and recovering lost data. P2P systems handle churn by the mechanisms that belong to 

overlay networks or applications.  

2.5.2.1. Overlay networks  

As a DHT overlay system has considered node joining and leaving in its primary 

protocol, one way to improve the routing capability of the DHT is to adjust the system 

parameters that control the routing of lookup messages. Li et. al. analyzed the trade-off 

between the maintenance costs and performance benefits of DHTs under churn [Li2004]. 

In the case that a systems is allowed to use any amount of bandwidth to maintain its 

overlay network, all four examined DHTs (i.e. Chord, Tapestry, Kelips, and Kademlia) 

can provide similar lookup latency; otherwise, Chord is superior to others by using its 

stabilization procedure to maintain the correctness of its routing tables. However, 

increasing the frequency of Chord’s stabilization too much is not recommended since it 

does not further improve performance but costs excess bandwidth.  
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DHTs also can be improved through augmenting fault tolerant mechanisms. One 

solution in [Flocchini2007] is to construct redundant Chord rings in a system. A node 

uses different IDs to join these redundant rings, and maintains a routing table for the 

neighbors in each ring. The node may select the healthiest among the neighbors in these 

rings to be the next hop of a lookup message. This structure is more robust to node 

failures than a single Chord ring. Differently, Zhao et al. proposed to configure multiple 

backup nodes in an entry of Tapestry’s routing tables [Zhao2003]. These backup nodes 

are maintained according to the estimation of their link qualities; therefore, redirecting a 

lookup request can be completed faster than in the case without this estimation.  

Rather than improving existing DHTs, new structures that connect nodes into graphs 

with minimum diameter and maximum connectivity are proposed. These new structures 

better forward lookup messages in a DHT. For example, the DHT in [Aspnes2001] 

constructs an overlay network with a random-graph topology. A node associates with its 

neighbors that are randomly distributed in their ID space. The authors of the paper proved 

that a DHT overlay network having this kind of random-graph topology will experience 

few partitions upon node’s leavings, and also, the system can route lookup messages in a 

bounded number of hops.  

2.5.2.2. Application data consistency 

In order to tolerate the changes of a network caused by churn, P2P applications 

always replicate a shared object on multiple nodes. These replicas prevent the loss of the 

object when some of these nodes leave. However, these applications must maintain data 

consistency among replicas. In some applications, replicas are located at the nodes 
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neighboring the master node that contains the primary copy, and the master node is 

responsible for propagating updates to replicas (i.e. CFS and OceanStore). Or, in some 

other applications, pull and push techniques that are used in Web cache systems to keep 

data up to date throughout the Internet are also adopted recently.  

For example, SCOPE [Chen2005] pushes updates to replicas in the Chord ring. Each 

key corresponds to a propagation tree with its destination node as the root and replicas as 

the leaves of the tree. The space of the ring is partitioned recursively, and a partition 

corresponds to an inner node of the tree. The information of replicas in one partition is 

aggregated into the representative node of the partition, and this aggregation procedure is 

performed from the leaves to the root. The propagation of an update will start from the 

root and pass along the nodes in the tree till it arrives at all leaves. Li et al. [Li2008] 

proposed a dynamic propagation tree similar to SCOPE. This system allows updates to 

occur at any node; upon an update, a propagation tree will be built, and the tree will be 

torn down when the propagation is finished.  

Liu et al. [Liu2006] proposed a data consistency protocol which combines a regular 

push technique and an adaptive pull technique for P2P applications. Update is allowed on 

the primary copy of an object only, and the update is propagated to replicas by a push 

action initiated by the primary copy. A replica missing a push message will start a pull 

action to refresh its copy. The time intervals between two consecutive pull actions for an 

object depend on the update frequency of the object and the stability of the overlay 

network. A replica uses a short pull interval for an object in the case that the object is 

frequently updated, or the routing table of this replica is frequently changed. 
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3. Load balancing techniques 

In this chapter, we survey the load balancing techniques for distributed computing 

systems and the diffusive load balancing schemes for parallel computing systems. The 

load balancing techniques proposed for P2P systems in literature are surveyed at the end.   

3.1 Load balancing schemes 

Using load balancing techniques, distributed computing systems are able to better 

allocate their computing resources to their programs and improve their overall 

performance. For example, for the purpose of reducing the running time of programs or 

services, the programs or server processes may be migrated from heavily loaded nodes to 

lightly loaded nodes. This kind of migration is called load migration. The heavily loaded 

node is called a load sender or sender, and the lightly loaded node a receiver node or 

receiver. Load balancing techniques for distributed computing systems always have load 

balancing schemes that specify load balancing policies (i.e. how to decide which node is 

a sender or a receiver for a load migration) and architecture (i.e. how nodes are organized 

for load balancing). We review the schemes in terms of these two sides.  

3.1.1 Different types of schemes    

Load balancing schemes are combinations of policies (e.g. the Information, Transfer, 

Location, or Selection policies). The combination that was described in [Eager1986a] and 
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used by [Zhou1988, Kremien1992 and Dandamudi1997] includes the Information, 

Transfer, and Location policies. The combination in [Shivaratri1992] is an extension of 

the previous one, and has been widely adopted in papers published recently [Cao2004, 

Leinberger2000 and Cardellini2003]. We present the extended combination of load 

balancing policies as follows. 

• Information policy: specifies when and how to collect system state information. 

• Transfer policy: decides whether a node is suitable to initiate a load migration; 

either as a sender or as a receiver.  

• Location policy: determines another participant in the load migration after the 

migration was decided by the Transfer policy. 

• Selection policy: specifies which load should be transferred in a load migration.  

The policies of a load balancing scheme are realized by software programs. By 

running these programs, the nodes in a system perform the load balancing operations. 

The load balancing schemes for distributed computing systems can be classified into 

static and dynamic schemes. We review these two kinds of scheme here. 

3.1.1.1. Static schemes  

The operations of a static load balancing scheme decide load arrangements for 

systems based on the average behaviors of the systems [Eager1986a]. In one 

implementation, an operation distributes loads from a sender to receivers through 

deterministic distribution in a random portion or cyclic manner. For example, a node 

always distributes certain programs to other nodes in the system, each program to one 

particular node. This kind of scheme does not require nodes to collect the system status 
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from time to time. Therefore, these schemes are simple to implement and easy to achieve 

with little overhead. However, they work perfectly only in systems where the 

characteristics of tasks or programs, for example, their arrival or resource requirements, 

does not change. The workloads on the nodes in a distributed computing system are 

usually dynamic (or frequently changed). Without implementing an Information policy, 

the operations of a static scheme distribute the load on nodes with little dependency on 

current system status [Wang1984]. Therefore, this scheme can hardly catch up and react 

to the dynamics of workload in a distributed computing system.  

3.1.1.2. Dynamic schemes  

The operations of dynamic load balancing schemes make decisions of load 

arrangements among nodes based on their load statuses at the current time or recent past. 

In order to indicate the load statuses of nodes, a dynamic scheme defines how to measure 

the “load”; this is called load measure or load index. It has been reported that the 

effectiveness of a load balancing scheme largely depend on the load measure the scheme 

uses [Kunz1991]. Dynamic load balancing schemes generally use the queue-lengths of 

CPUs as a load measure [Ferrari1986, Zhou1988, and Kunz1991]. Researched showed 

that the CPU queue length of a node has a strong correlation with the mean response time 

of the tasks. In the case that the nodes are load-balanced according to their CPU queue 

length, the tasks could have similar mean response times.  

The Information policy of a dynamic scheme specifies a method to dynamically attain 

the knowledge of the load statuses of nodes in the system. There are three types of 
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Information policy used by dynamical schemes. They are listed in the following 

[Shivaratri1992]:  

• Probing: a node collects the load measure of the other nodes through a probing 

procedure.    

• Periodic reporting: a node reports its load measure to others periodically.   

• State-change-driven: a node reports its load measure to others when its state has 

changed. 

In addition to an Information policy, a dynamic scheme also specifies the transfer, 

location, and selection policies. We present dynamic schemes according to the types of 

their architecture in the following subsection.  

3.1.2. Architecture 

In addition to policies, a dynamic scheme also specifies the structure of the 

organization of nodes in the system. Its operations use this organization to collect the 

load statuses of the nodes and decide load migrations. We call this structure the 

architecture of the load balancing scheme. A static load balancing scheme uses a structure 

with a complete graph topology where a node knows all other nodes. A dynamic scheme 

may use a centralized, distributed, or topological architecture. This subsection reviews 

these types of architecture and discusses the effectiveness of the dynamic schemes that 

use them.  
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3.1.2.1. Centralized structure 

This kind of scheme has a central directory storing the load information of all nodes 

in a system, and requires the nodes to periodically report their load statuses to the 

directory. For example, the load sharing scheme proposed in [Zhou1988] assigns the role 

of a Load Information Center (LIC) to a node in the system. The other nodes in the 

system report their load measures to the center by using a periodic information policy. A 

node identifies itself to be a sender according to a static threshold, and the center is 

accessed by the sender for locating a receiver. Simulation experiments show that a system 

with a small number of nodes could perform best with a centralized scheme, and tasks 

could obtain the lowest mean response time within a narrow range. However, since nodes 

need to update their load measures at the central directory, the number of messages for 

this kind of updating increases along with the increase of the system size. Also, a central 

directory could become a performance bottleneck and it is a single point of failure. 

Researchers showed that the period of information reporting has a strong influence on the 

effectiveness of the scheme. Using a shorter period, the scheme might use more messages 

for updating the load information; using and with a longer period, the scheme might use 

stale load information in its operations. The effectiveness of the scheme is degraded in 

both cases.  
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3.1.2.2. Distributed structure 

The schemes using a distributed structure allow nodes to know the load statuses of 

other nodes and locally make decisions. We describe these schemes in terms of their 

information policies.  

a) Schemes using a periodic broadcast Information policy  

This kind of scheme lets each node periodically broadcast its latest load status 

information to other nodes. A node stores the received status information in a vector, and 

when it becomes a candidate for load transfer, it chooses a peer for load migration based 

on the information in its own vector. As indicated by [Zhou1988 and Livny1982], this 

kind of information policy generates a large number of messages for broadcasting. Also, 

similar to the centralized scheme, the effectiveness of a distributed scheme largely 

depends on the length of the information reporting period.  In the case that a scheme uses 

a long reporting period, the status information stored on nodes may quickly become stale. 

Kremien et al. [Kremien1992] suggested that a distributed scheme could use a request-

reply acceptance policy instead of a single-request policy to avoid the occurrence of 

incorrect load migrations in such a case. An acceptance policy specifies whether a sender 

should transfer the load to a receiver directly (i.e. the single-request policy), or waits for a 

reply from the receiver according to an acceptance agreement (i.e. the request-reply 

policy). 

b) Schemes using a state-change-driven Information policy    

This kind of scheme lets a node report its information only when its state has 

changed. For example, Livny et al. [Livny1982] proposed a scheme where an idle node 



 34 

broadcasts a message and announces it being a receiver; a node which has tasks waiting 

in its queue could transfer some load to the receiver through a reservation process (like a 

request-reply acceptance policy does). Livny further indicates that this scheme spends 

less bandwidth compared to the schemes with a periodic broadcast information policy; 

hence, it is more effective in a system that has a large size. However, this scheme uses 

more messages then a scheme with a probing Information policy.      

c) Schemes using a probing Information policy 

This type of scheme lets a node know the load status information of some other nodes 

through probing them. Adaptive load sharing schemes are typical examples of this kind 

of scheme. According to the role of an initiator of a load migration, a scheme of this kind 

can be classified as sender-initiated or receiver-initiated.  

• Sender-initiated: A node decides to be a sender according to a static threshold 

and initiates a load migration. The sender selects a receiver from the nodes probed 

at random. Simulations in [Zhou1988] show that the scheme is more effective in 

the case that a sender is allowed to probe multiple nodes. However, it is also 

reported that the effectiveness of the scheme does not increase much when the 

number of probes increases.   

• Receiver-initiated: Unlike the sender-initiated policy, the receiver-initiated policy 

specifies that a receiver initiates the probing in the case that a node becomes a 

receiver. Livny et al. [Livny1982] and Eager et al. [Eager1986b] individually 

proposed some schemes using this policy.  

Simulation experiments also indicate that the workloads on nodes affect the 

effectiveness of the schemes using these policies. Eager et al. [Eager1986b] showed that 
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when a system is lightly loaded, a sender-initiative policy will perform slightly better 

than a receiver-initiative policy, where a sender could find a receiver in a small number 

of probing; however, when a system is heavily loaded, a receiver-initiative policy is 

recommended since a receiver can have more chance to hit a sender in a probing 

procedure. A symmetrically-initiative scheme is proposed to combine sender-initiative 

and receiver-initiative into one scheme [Shivaratri1990]. Kremien suggested combining a 

periodic policy with a slow reporting time and a probing policy together in 

[Kremien1992]. The experimental results in that paper indicate that the scheme can 

periodically adjust a system to perform at an optimal state while keeping a fast response 

to load changes.   

3.1.2.3. Topological structure 

Topological architectures are proposed for systems with a large number of nodes. The 

basic idea behind this kind of architecture is to organize nodes into groups and apply load 

balancing schemes both at the intra-group and inter-group levels. The structures of flat 

group partitioning, hierarchical, and domain overlapping, are the three main forms 

proposed in research.    

a) Flat group partitioning structure  

This kind of structure partitions the nodes into groups. A group could use a 

centralized scheme or a periodic broadcasting distributed scheme to load balance its 

nodes. For example, the scheme for UTOPIA system [Zhou1993] uses central 

information centers to manage the load for the groups, one center for each group. The 

scheme for a web server system [Mohamed-Salem2003] uses the head nodes of groups to 
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distribute web server requests to nodes inside of groups, one head node for each group. 

These two schemes allow the heads or centers of groups to exchange load status 

information so that tasks could be transferred between nodes in different groups. The 

“Local Strategy” scheme proposed in [Zaki1996] lets nodes periodically broadcast their 

load statuses to the other nodes in the same group. Without exchanging load status 

information between groups, this scheme does not allow tasks to be transferred between 

nodes in different groups.  

The results of experiments for the above schemes indicate that these schemes perform 

better than a scheme using a centralized or fully distributed structure. Zaki [Zaki1996] 

shows that, in the case that a system has a large size, the system with the partitioning 

scheme has better performance than with a non-partitioning scheme. However, in the case 

that no task is transferred between groups, load balancing is limited inside a group only, 

and the performance of nodes in different groups is still diverse. The experiment results 

from UTOPIA system showed that allowing tasks to be transferred between nodes in 

different groups could further speed up tasks by a factor of ten. Mohamed-Salem’s 

experiment [Mohamed-Salem2003] indicates that, when a scheme uses a dynamic 

threshold to identify a sender or a receiver, the balanced system could have the mean 

response time of their requests tightly bounded to the system average. The bound is not 

seen when the scheme uses a static threshold.   

b) Hierarchical structure 

This kind of structure organizes nodes into a hierarchy. For example, the scheme 

proposed in [Dandamudi1997] organized the nodes of a system into a balanced tree. In 

this multi-level tree, the leaf-nodes are the computing nodes. A child node reports its load 
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status to its parent-node by using a state-change-driven policy, and a parent node 

aggregates the status information of its children. Ideally, the difference between the loads 

of its two children is zero. In the case that a leaf-node becomes a sender according to a 

static threshold, the sender asks its immediate parent for a receiver. The parent locally 

searches its other sub-tree if receivers are indicated in its aggregated load information. A 

receiver is returned to the sender when it is found. Otherwise, the parent forwards the 

request to its parent, and the searching procedure will be continued along the links of the 

parents until a receiver is located or the forwarding limit is reached. Experimental results 

showed that the performance of a system using the hierarchical structure scheme is close 

to that using the centralized structure scheme. But, using the hierarchical structure 

scheme, the system spends fewer messages on load balancing, especially, for the cases 

that the nodes in the system have largely diverse capacities [Lo1996]. Moreover, this 

kind of scheme is better tolerant to the single-point failure than a centralized structure 

scheme. However, when the function of an internal node or the root fails, the tree is 

partitioned, and the scheme becomes a scheme with a flat group partitioning structure.    

c) Domain Overlapping structure  

Kremien et al. [Kremien1993] proposed a domain overlapping structure. In this kind 

of structure, each node belongs to a domain and performs load balancing operations for 

the nodes only in its domain. A sender (receiver) node selects receivers (senders) to be 

members of its domain. A sender uses a sender-initiated transfer policy to locate a 

receiver in its own domain, and a request-reply acceptance policy to avoid incorrect load 

movements. Domain membership is refreshed periodically or upon node status change. 

Experiments showed that the scheme using this kind of structure outperforms a 
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distributed scheme that uses a periodic broadcasting information policy, or a 

combination of the probing information and random location policies.      

3.2. Diffusive load balancing schemes  

Research has also studied load balancing schemes for parallel computing systems. 

Some parallel computing systems are composed of processors tightly coupled together by 

internal fast connections. Others are composed of multiple workstations connected by a 

network. We call a computing component (e.g. a processor or a workstation) a node in 

such a computing system. In a parallel computing system, a program is divided into small 

pieces of sub-programs so that the nodes could simultaneously run them. A load 

balancing scheme better relocates resources of the nodes in a parallel computing system 

for these sub-programs. Therefore, the running time of the program could be further 

reduced. Diffusive load balancing schemes are one kind of scheme that has been 

intensively studied for this purpose. 

Diffusive load balancing schemes are dynamic load balancing schemes. These 

schemes also specify policies. Load balancing operations realize these policies. We call a 

node that is running a load balancing operation the operating node of the operation. We 

call the domain of an operation, which includes the nodes for which the load balancing is 

performed, the neighborhood of the operation. Normally, for a diffusive load balancing 

scheme, the neighborhood of an operation is the neighborhood of the operating node in 

the P2P system.  

In this subsection, we first review two major kinds of diffusive load balancing 

scheme: synchronous schemes and asynchronous schemes. Then, we review the 
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effectiveness of diffusive load balancing in a system where the workloads o nodes or the 

locations of nodes change from time to time. The diffusive schemes that handle the nodes 

with heterogeneous capacities are also reviewed. At the end of this subsection, we review 

the papers that compared diffusive schemes and other dynamic schemes using 

experiments with real systems.   

3.2.2. Synchronous schemes 

Most of synchronous schemes are studied for parallel computers where a global clock 

is provided in hardware. The nodes of this kind of system can conduct load balancing 

operations in a synchronous manner. A load balancing operation has three sequential 

stages. During the information stage, a node reports its load status to all its neighbors. 

During a decision stage, a node decides the loads that would be transferred to its 

neighbors. During a load migration stage, the loads are transferred between nodes 

according to the decisions.  

The operations of synchronous diffusive schemes (also known as diffusion schemes 

in literature) use decision algorithms that implement diffusion equations during their 

decision stages. These equations are similar to heat diffusion in physics. For example, the 

algorithm in [Boillat1990] implements a Poisson diffusion equation: tC
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iterative equations run at each node of a system. The network of the system could be 
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its neighbors at time 1−t , a node could have its workload at time t equal to the calculated 

value.   

Similar to Boillat’s work, Cybenko also used an iterative algorithm to describe a 

diffusion scheme [Cybenko1987]. The function below describes how the loads of nodes 

are calculated in one operation. The workload of a node t
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Both of these two diffusion schemes are represented by linear equations. By 

iteratively solving these linear equations, the load balancing operations drive the 

workloads of the nodes to approach their average in the case that the workload of the 

system is static. This kind of load balancing progress is called convergence. When a 
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system has a static workload, no task is created or finished in the system. The 

convergence of these schemes is proved by the geometrical convergence of their linear 

equations. Since the coefficient matrix of a diffusion scheme is a non-negative, 

symmetric and doubly-stochastic matrix, the convergence factor of the diffusion scheme 

γ  could be selected from its eigenvalues 1121 =≤≤≤≤ − λλλλ Knn as ii λγ 1max >= . 

Then, at each iteration, 
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between t
w  and w monotonically decreases along with the iteration of the decision 

algorithm. The workload vector t
w geometrically converges to w : ww
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convergence factor γ . A small factor indicates that the variance of loads of the system 

has a large reduction and the scheme converges at a fast speed. 

Research further studied the factors affecting the convergence factor or convergence 

speed of a diffusion scheme. The convergence factor of a diffusion scheme is one of the 

eigenvalues of a transformation matrix. Since the matrix of a diffusion scheme is 

constructed based on the network structure of a system that uses the scheme, the network 

structure is one of the factors to the convergence speed. For example, the convergence 

factor of Boillat’s scheme is related to the maximum node degree and the number of 

nodes in the system. In a complete graph, the scheme can take one run of the algorithm to 
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reach a global balanced state. In a linear network or a circle, the scheme takes long time 

to converge with a larger convergence factor; in a −d dimensional hypercube, the 

convergence factor of the scheme is 
1

2
1

+
−

d
. The factor for Cybenko’s scheme is the 

coefficients α . When Cybenko chose the coefficients α  equal to 
1

1

+d
for a 

−d dimensional hypercube, he attained the same convergence factor [Cybenko1989]. Xu 

further studied the choice of coefficientsα  according to the system structure for optimal 

convergence rates [Xu1997]. Using Matlab simulations, Diekmann et. al. solved 

optimization functions  with a constraint on minimizing the convergence time to find the 

diffusion matrix with the optimal convergence rate for systems with a hypercube, linear 

array or star structure [Diekmann1997]. The coefficients of the optimized diffusion 

matrixes obtained by the above two researchers are consistent.  

3.2.3. Asynchronous schemes 

An asynchronous scheme, such as the partially asynchronous schemes proposed in 

[Bertsekas1997, Song1994, Cortes2002, and Cedo2007], allows nodes to asynchronously 

run load balancing operations. This kind of scheme is often used in systems composed of 

workstations or servers where a global clock is not an inherent component. But, this kind 

of scheme still requires a system to have a delay-bounded message passing mechanism 

(or “partial asynchronism” [Bertsekas1997]) where a message or a task sent from a node 

would be received by its neighbor in a maximum of B time units.  

Like a synchronous scheme, a partially asynchronous scheme is a combination of 

policies. Also, the scheme has three phases. During the information phase, a node 
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broadcasts its load status to all its neighbors when its load status has changed. This phase 

guarantees that a load balancing operation uses up-to-date load status information of its 

neighborhood. During the decision phase, if a sender-initiated transfer policy is used, the 

operating node is the sender and the receivers are some neighbors that have lower loads.  

The decision phase chooses receivers from those neighbors that have smaller workloads.  

Two kinds of asynchronous scheme are proposed in the literature. Bertsekas proposed 

a scheme with a decision algorithm that handles fine grain tasks in Section 7.4 of 

[Bertsekas1997]. The Selection policy of the scheme allows a sender to transfer portions 

of its workload to multiple receivers. Especially, the portion migrated from the sender to 

a lightest loaded receiver is a proportion of the difference between their workloads. The 

policy also specifies that a sender must still have a load larger than the lighter-loaded 

nodes in the neighborhood right after the load transfer. Bertsekas also showed that the 

workloads on nodes, including the maximum, the minimum, and t

iw of node i 

geometrically converge to 
n

L
where the system has n nodes with total workload of L .  

Asynchronous schemes were also proposed for systems having integer workload, e.g. 

determined by the number of tasks running. Schemes proposed in [Song1994 and 

Cortes2002] work on reducing the differences between the numbers of tasks on the 

nodes. Song’s and Cortes’ schemes implemented Bersekas’ scheme differently. In an 

operation of Song’s scheme, a node stores a list of load statuses of its neighbors. These 

load statuses are arranged in ascending order. After a sender transfers load out, the 

position of the sender in the sender’s list does not change. Cortes’ scheme implements the 

case that a node identifies itself as a sender if its workload is larger than the average 

workload of its neighborhood and distributes its exceeding workload to the receivers with 
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workload less than the average. With Cortes’ scheme, the sender reaches the 

neighborhood average in one load transfer. It might take several load transfers for a 

sender to reach the neighborhood average with Song’s scheme. Both schemes are able to 

control the difference between the workloads of neighbors within the limit of one unit. 

[Song1994] further derived the maximum global imbalance at the globally balanced state 

equal to 






2

)(Gdia
 where )(Gdia  is the diameter of the graph G representing the 

system’s network. 

The convergence speed of a partial asynchronous scheme is studied with simulation 

experiments in [Hui1996]. The convergence speed is lower when the system has a larger 

number of nodes or a larger network diameter. Hui further showed that the topology of 

the network of a system largely affects the effectiveness of the scheme. For a graph like a 

ring or a linear path, this kind of scheme would take a long time to balance the load, 

especially when an overloaded node is at one end of the path and an under-loaded node at 

the other end. The scheme converges faster in a network with hypercube or torus 

topology, where the network has a smaller diameter (for the same amount of works). 

Although a star or a balanced tree network has a smaller diameter, the experiment 

showed degraded convergence rates. This is because the central node or the root receives 

more balancing messages than the other nodes do, and dealing with these messages at one 

node leads to control overload and increases the convergence time.    
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3.2.4. Characteristics  

3.2.4.1. Dealing with heterogeneous nodes  

Diffusive schemes are also able to balance the load for nodes with heterogeneous 

capacity, i.e. heterogeneous nodes. These nodes have processors with different computing 

speeds, different sizes of memories, or different bandwidth over their network links. 

Working in a system with heterogeneous nodes, a diffusive load balancing scheme 

reduces the differences between the values of 
C

w
 of these nodes, where 

C

w
 is the ratio of 

the workload to the processing power of the node. This is based on the understanding 

that, if two nodes i and j  with capacity iC and jC , respectively, have the same workload 

per unit of processing power, that is 
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finish their works. For example, the synchronous diffusion scheme proposed in 

[Elsasser2002] uses the following iterative algorithm to calculate the workloads on the 

nodes at time t : )(
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The impact of the heterogeneity of the capacity on the convergence speed of an 

asynchronous scheme is studied in [Hui1996]. Hui proposed a partial asynchronous load 

balancing scheme similar to Bertsekas’s scheme with 
C

w
 ratio replacing w . A global 

balanced state is achieved when all nodes have the same ratio. The convergence proof in 

the paper indicates that, in addition to the factors of network structure, the diversity of the 

node capacities has an impact on the convergence speed of the diffusive scheme. In the 

case that a system has nodes with largely diverse capacities, the convergence speed is 

slow. The convergence speed of a heterogeneous system could be improved when the 

system uses nodes with similar capacities.  

3.2.4.2. Working in dynamic systems 

Being a dynamic scheme, a diffusive load balancing scheme is able to handle the 

dynamics of a system. The dynamics comes from two sources: 1) from time to time, new 

tasks are created or some existing tasks are finished (dynamic workload), 2) the existing 

nodes or links may fail or recover (dynamic nodes or dynamic network). Although a 

diffusive scheme does not use an extra mechanism for the dynamic, the effectiveness of 

load balancing changes. Cybenko investigated the effectiveness of his (synchronous) 

diffusion scheme in a system with a dynamic workload [Cybenko1989]. Along with the 

progression of the load balancing, the mean of the variance of the workloads on a node is 

smaller than 
2

2

1 γ

σ

−
, where γ is the convergence factor of the diffusion scheme. This 

result indicates that the nodes of the system will not have the same load in the case that 

the workloads of the nodes are dynamically changing (which can be the expected 
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situation); however, the variance of the workloads is bounded. Also, for a scheme with a 

convergence factor closer to 1, or for a system whose workloads have strong changes, the 

variance of the workloads on the nodes would be larger.   

Elsasser considered the effectiveness of load balancing in a system whose network 

links frequently fail and recover [Elsasser2004]. A (synchronous) diffusion scheme could 

be described by: 1−= tt
Mww . Since, M is the coefficient matrix derived from the 

system’s network structure, in the case that a link between node i and j fails, the 

coefficients ijm and 0=jim  become zero. The coefficients are restored when the link 

recovers. Therefore, the diffusion scheme could be described as 1−= ttt
wMw  where the 

coefficient matrix corresponding to the network at time t . Let tγ be the convergence 

factor of the tM , the Euclidean distance between workload distribution and the average 

satisfies: ww
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Dmax is the maximum 

node degree of the network at time t , and t

2λ  is the second smallest eigenvalue of the 

unweighted Laplacian of the network.  

3.2.4.3. Comparison with other dynamic 

schemes   

Researchers also compared diffusive schemes with other dynamic schemes by 

experiments using real system. They measured the speed-ups of parallel programs in a 

cluster of workstations. The measurement of speed-up combines all of the factors 
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affecting the effectiveness of load balancing; these factors include the effect of load 

distribution and effect of the costs of load balancing (e.g., processing power and network 

bandwidth). There are three comparisons discussed here; each of them reflects a certain 

aspect of dynamic schemes.  

Saletore’s experiments [Saletore1990] showed that the system had the highest speed-

up in the case that an asynchronous diffusive scheme uses the sender-initiated (transfer 

policy) and the neighborhood averaging information policy. This asynchronous scheme 

is similar to the asynchronous scheme introduced at Subsection 3.2.2. The other two 

schemes use the same transfer policy and different location policy. One scheme uses a 

random location policy where a sender could choose a receiver at random. Another 

scheme allows a node to identify its state using the estimated global information. 

However, the results in the experiments are not enough to show that the deficiencies of 

the effectiveness of these two schemes are caused by the load imbalance remaining in the 

system or the delay induced by load migrations.  

Willebeek-leMair’s experiments [Willebeek-leMair1993] indicates that the diffusive 

scheme using receiver-initiated (RID) policy is more effective than the other dynamic 

schemes, such as  gradient-model (GM), dimension exchange method (DEM) and 

hierarchical balancing method (HBM). The RID scheme evenly distributes tasks, and it 

transfers fewer loads between nodes than other schemes. The SID scheme using the same 

information policy results in a smaller speed-up since the migration decision adds extra 

workload to senders and degrades the speed-up. The HBM scheme is based on a 

hierarchical tree; a tree node (i.e., an inner node or the root) takes charge of load 

balancing of its two sub-trees. Compared to the RID scheme, the HBM scheme induces 
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more load transfer, especially in the case that the load granularity (the size of tasks) is 

small. The GM scheme which depends on global information takes the last position in 

this comparison: it has the smallest speed-up and a large number of tasks transferred. 

This is because the global information is easily aged, and a resulting load migration 

decision might not be correct, thus worsening the system’s load unbalance situation. 

Another reason is that resources are consumed by the load migration on the path from an 

overloaded node to an under-loaded node; this degrades the speed-up as well. The DEM 

could have a comparable effectiveness with the RID scheme; however, its load balancing 

operations are globally synchronized.    

The effectiveness of diffusive schemes in a dynamic system was studied in 

[Corradi1999]. The workloads on the nodes are changed frequently. The studied diffusive 

schemes use various kinds of neighborhood in their operations. Corradi’s experiments 

indicated that, when the workloads of nodes are highly dynamic, a diffusive scheme that 

uses the immediate neighborhoods of a network performs better than the other schemes. 

Their research also showed that a scheme relying on global information like the GM 

scheme described above can not deal well with a system that has fast changing workload.   

3.3. Techniques for peer-to-peer systems 

Load balancing techniques have been proposed for improving the performance of P2P 

systems. We are not interested in the technique that evenly dispatches the requests to 

multiple replicas of a shared object, such as the scheme proposed in [Roussopoulos2006]. 

This kind of technique has been intensively studied for distributed computing systems 

such as web servers. We are interested in the techniques that achieve load balancing by 
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placing or moving objects or nodes in P2P systems. These techniques can be classified 

into static technique and dynamic technique. They are designed specifically for P2P 

systems according to their structures and characteristics.  

3.3.2. Static techniques  

This kind of technique statically maps shared objects to nodes when these objects are 

inserted into a P2P system. For example, the consistent hashing function [Karger1997] 

implemented in DHT systems is a static technique. A hash function used by a classic 

centralized hash table is able to generate the hashed keys uniformly distributed in a data 

space according to the number of buckets of the table. But, the hash function does not 

allow the number of buckets to change dynamically. A consistent hashing function solves 

this issue and also maintains the consistency properties. That is, in a DHT system such as 

the Chord or Pastry, with a high probability, the number of hashed keys at each node are 

bounded, and, when a node is moving in (out) the network, only a portion of keys are 

moved from (to) immediately neighboring nodes.  

However, even with the static load balancing function of a DHT system, Chord still 

has a load imbalance factor as large as )(log NO . That is, for an N-node Chord, the 

number of objects on the highest loaded node is of the order of )(log NO  times the 

average number of objects per node. To solve this problem, Stoica et al. proposed an 

approach that builds a Chord using virtual servers [Stoica2001]. According to the 

approach, a node can create multiple virtual servers, and randomly choose an ID for each 

server. A virtual server has a unique ID in the system. The virtual servers of nodes 

construct a Chord ring. A virtual server takes over its objects from its predecessor virtual 
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server when it is created, or hands over its objects to its successor when it is deleted. 

Each virtual server has a routing table whose entries point to its neighbor virtual servers 

in the Chord. In the case that the number of virtual servers in a system with N nodes is as 

large as )(log NNO , a node can host )(log NO  virtual servers with IDs that are uniformly 

distributed in the ID space. Therefore, the differences of number of objects between 

nodes are reduced.   

The corporative file system CFS [Dabek2001] is another example of using static load 

balancing technique. CFS generates hashed keys by hashing contents of the individual 

blocks of a file and stores the blocks to different nodes according to their hashed keys. 

This prevents a single node from becoming overloaded in the case that the file has a large 

number of requests. However, the number of nodes on which a file is stored depends on 

the number of blocks of the file instead of the number of requests of the file. CFS does 

not assign more nodes to files that have more requests.   

These static techniques place objects evenly on nodes based on the assumption that 

both of the hash keys of the objects and IDs of the nodes are uniformly distributed in 

their spaces, and all nodes have homogeneous resource capacities. These techniques do 

not consider the characteristics of P2P systems (e.g. the dynamics and heterogeneity).       

3.3.3. Dynamic techniques 

Dynamic techniques consider dynamics and heterogeneity existing in P2P systems 

(reviewed in Chapter 2). These techniques are different in their ways of placing loads on 

nodes or moving loads between them and the architectural organization of node for load 

balancing.    
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3.3.3.1. Types of load placement  

a) Object placement  

Some techniques place a newly inserted object on a node that has a lighter load. We 

call this kind of load placement object placement. The Simple Load Balancing Scheme 

proposed in [Byers2003] is a technique of this kind. When an object is inserted in a P2P 

system, multiple hashed keys are generated for the object by the system using multiple 

hash functions, one function for one key. These hashed keys are looked up in the system. 

After the nodes that are in charge of these keys are located, the loads of these nodes are 

compared. The object is stored on the node that has the lightest load among them.  

b) Virtual server placement 

The k-Choices scheme [Ledlie2005] is a technique using virtual server placement. In 

a P2P overlay network constructed by virtual servers, a newly joined node picks up 

multiple IDs at random. The nodes that are in charge of these IDs are located, and their 

loads are compared. The new node creates a virtual server with the ID that is taken care 

of by the node with the heaviest load, and lets the virtual server join the overlay network. 

In this way, the new virtual server takes over some of objects from the overloaded node 

so that the overloaded node could have its load reduced. In the case that the new node 

still has some available capacity, it creates more virtual servers in the same way.  

c) Object relocation enhanced by node migration  

Some techniques move objects between nodes from time to time. This kind of 

technique is used in non-DHT systems like Mercury [Bharambe2004] or a system 

supporting range-partitioned data [Ganesan2004]. Using such a technique, the nodes in a 
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ring or linked list are locally load-balanced by moving objects to their consecutive 

neighbors. In order to improve the load balancing speed, the technique further moves 

nodes in the system. A lightly loaded node is required to leave and rejoin the network to 

be a consecutive neighbor of a heavily loaded node. In this way, the heavily loaded node 

has its load reduced. We call this kind of load placement object relocation enhanced by 

node migration.    

d) Virtual server migration 

DHT systems using virtual servers can use dynamic techniques with virtual server 

migrations. A virtual server has a unique ID and contains the objects associated to its ID. 

The load of a node is the sum of the loads of its virtual servers. The loads of nodes 

change when virtual servers migrate between them. The technique proposed in 

[Surana2006] uses this kind of load placement. During the migration of a virtual server, 

the IP address of the virtual server is changed. The migration does not split, or merge 

virtual servers. Therefore, they do not induce extra churn into the DHT system.     

3.3.3.2. Architecture 

The architecture of a load balancing scheme is the structure by which the nodes are 

organized for the purpose of load balancing. We present several structures used by the 

load balancing techniques for P2P systems. 

a) Topological structure 

The typical topological structures are listed as follows.   

• Linked-list: Some load balancing techniques use this kind of structure for local 

load balancing. Normally, these techniques use another structure for global load 
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balancing (e.g. the techniques in the category of “object relocation enhanced by 

node migration”). For example, in a global load balancing operation, a lightly 

loaded node will be asked to leave and rejoin the network and be the consecutive 

neighbor of a heavily loaded node in the case that the local load balancing can not 

resolve the heavy load on the node.     

• Tree structure: In this category, a scheme either uses the tree-structured overlay 

network or builds a tree-structure for load balancing operations. For example, the 

scheme for the DP-tree system [Li2006] depends on the tree structure of the 

overlay network for aggregating load status of the system and circulating the 

global load status information. A node of the DP-tree stores the load statuses of 

all nodes in a load distribution map, and locates a receiver using the map in the 

case that it becomes a sender. Differently, the k-ary tree scheme proposed in 

[Zhu2005] builds a tree structure based on an overlay network like Chord. The 

P2P nodes are the tree-leaves. The tree-root aggregates the load status of the 

system and disseminates the information to the P2P nodes. According to the load 

status of the system, a P2P node identifies itself as a sender or receiver, and 

reports its state to its parent in the tree. A tree-inner-node works as a directory and 

locates receivers for senders in its sub-trees.  

• Histogram: Vu et al. proposed a technique of this kind in [Vu2009]. The 

technique constructs a structured framework for a P2P system, such as Chord, 

BATON, or Skip-Graph. Using this framework, each node aggregates a load 

distribution map of the system called Load Histogram. The Load Histogram 

indicates the average load status of nodes in the non-overlapped data ranges of the 
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system. Using the Load Histogram, a sender could find a receiver by recursively 

locating the nodes in the data rangers with lower average loads. 

b) Distributed Directory 

Suranna et al. proposed a distributed directory in [Suranna2005]. A node registers in 

one of the directories, and periodically reports its load status to the directory. The 

directory works as a central information server to locate receivers for senders. In order to 

achieve the globally balanced state, the technique asks nodes to change their registrations 

from time to time. 

c) Random Probing 

Some dynamic techniques use a distributed architecture where each node runs load 

balancing operations. While running an operation, a node collects the load status of the 

system by random probing. A random probing could be implemented by a procedure for 

looking up a random number or by a random walker in an overlay network. The nodes 

being probed compose the domain of the operation. For example, the scheme used by 

Mercury allows a node to estimate the load distribution of the system by sampling 

multiple nodes. Based on the knowledge, the node could identify itself as a sender and 

locate a receiver. The Simple Load Balancing scheme in [Karger2006] allows a node to 

sample only one node. The node identifies itself as a sender and the sampled nodes as a 

receiver in the case that its load is higher by some factor of the load of the sampled node.  

3.3.3.3. Load measure  

There are two kinds of load measures used for P2P load balancing: workload and 

utilization of nodes. Workload is used by the schemes in [Bharambe2004] and in 
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[Ganesan2004]. These schemes assume that objects are fine grained, which means that 

objects with any size (or loads with any value) can be exchanged between nodes. In the 

case that a system is balanced, the nodes have the same value of load. Utilization is used 

by the schemes in [Zhu2005 and Suranna2005]. Here, the resources of nodes to be 

balanced could be CPU processing power or network bandwidth. These schemes regard 

the workload of a node as the total resource requirements of its services. For example, the 

resource requirement il of node i  could be calculated by adding the resource 

requirements of its services: ∑ ∑
∈ ∈

==
io io

oooi sll λ where o is an object on the node, os  is 

the resource requirement of a service accessing o , and oλ  is the request rate or the 
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ρ . The techniques 

using virtual server migrations or virtual server placements also use this load measure. 

Since a virtual server contains multiple services, the workload of the virtual server is the 

sum of the resource requirements of its services. The workload of a node is the sum of the 

workloads of its virtual servers. 
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3.3.3.4. Effectiveness  

The effectiveness of load balancing in P2P systems is usually measured in terms of 

load distributions, system performance, and the cost of load balancing. These issues can 

be studied by simulation experiments. We present these studies as follows.  

Some papers displayed the load distributions in the systems at a globally stable state 

by using the correlation between the workloads on the nodes and the capacities of these 

nodes. A scheme is said to be effective in a system when the system has the correlation of 

this kind close to 1. For example, the paper [Zhu2005] showed that the loads on nodes 

follow a linear function of their node capacities. Moreover, some papers, for example the 

one for the Histogram scheme [Vu2009] or for the Mercury system [Bharambe2004], 

investigated the load distribution on nodes in terms of load imbalance; that is, the ratio of 

the maximum to the minimum of the workload. The more effective the load balancing 

scheme is, the smaller is the load imbalance in the system. There are some other ways to 

evaluate the effectiveness. For example, a scheme is more effective in the case that the 

system has fewer failed requests [Suranna2005], or more succeeding requests 

[Ledlie2005]. The cost of load balancing is mainly shown by the amount of loads moved 

and the number of messages spent on load balancing. According to the investigation in 

[Suranna2005], a scheme that reduces more variances of loads induces more load 

movements in the system. The number of messages used for load balancing depends on 

the scheme.  

After deciding the measure of the effectiveness of load balancing, people also studied 

the factors that affect the effectiveness. We list these factors as follows.  
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• Highly skewed workload distribution: Bharambe et al. [Bharambe2004] indicates 

that a highly skewed workload takes more time to converge. Also, when the 

change of workload occurs at one hot spot, for example, a site or a file becomes 

suddenly extremely popular, and the popularity is further increased along with the 

time, the effectiveness of load balancing is degraded. Suranna et al. 

[Suranna2005] showed that, in this situation, the proportion of requests that fail 

will increase. The effectiveness of a scheme becomes normal when the load 

changes are widely dispersed in the system.   

• Churn: Churn causes the updates of the overlay network as well as the changes of 

the workload distribution of a P2P system. Even under the function of load 

balancing, the performance of a system is degraded when churn occurs. A scheme 

induces more load movements in the case that the system has a higher churn rate.   

• Size of objects: The workloads on the nodes in a system with small sized virtual 

servers could have better load distribution using load balancing schemes.  

• Size of systems: Distributed schemes are scalable. Their effectiveness should not 

be degraded by an increase of the sizes of systems. The scheme using the linked-

list structure is not scalable. Experiments showed that a system using this kind of 

scheme has its load imbalance increased when its system size increase.  

The effectiveness of a scheme can be improved by adjusting the parameters of its 

policies. For example, a distributed directory scheme would be more effective when the 

running period of the directories is smaller.  

The load balancing schemes have different effectiveness. For example, Shen et al. 

[Shen2007] revealed that, compared to other schemes, the k-ary tree scheme induces a 
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larger number of messages. Meanwhile, the system using the scheme has a larger 

variance of loads in the case of churn. The paper also showed that the directory (central 

or distributed) scheme can not deal well with the dynamics of a system. The running 

period of the directory requires to be engineered. Ledlies’s research [Ledlie2005] shows 

that the technique called transfer technique is superior to the techniques that create or 

delete virtual servers on nodes according to the available capacities of individual nodes 

only, and to the link-list structure scheme where nodes only balance their loads with 

consecutive neighbors. The transfer technique is a virtual server replacement technique 

that uses a sender-initiated policy with a static threshold and a random-probing policy. 

The scheme is comparative to the k-Choice scheme. However, in the case that the 

workload is highly skewed, or the churn is highly skewed, k-Choice has better 

effectiveness. Since the k-Choice scheme arranges the virtual servers of a node when the 

node is inserted, in the case of a highly skewed workload, the insertion process better 

captures the changes of workload distribution.  

The paper on the Histogram scheme [Vu2009] shows that, in the case that a load 

distribution map is available, the technique using object relocation enhanced with node 

migration could be more effective than a scheme that simply equalizes the load on two 

nodes. The system using the Histogram scheme has a smaller load imbalance. Other 

techniques, such as those using random neighbors, skip graph, and the scheme for 

Mercury, take more messages in order to reach a similar load balance level.  

Besides the effectiveness of load balancing, some load balancing schemes consider 

other aspects. For example, the Histogram scheme uses a parameter to control the 

propagation of load status reports to reduce the number of reporting messages. The k-ary 
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tree scheme considers the locality of nodes. When a sender selects a receiver, the 

candidates within a smaller proximity will have higher priorities than others. The k-

Choice scheme considers security when the IDs of virtual servers are generated.  
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4. Diffusive load balancing for 

peer-to-peer systems 
We propose a diffusive load balancing scheme that is adapted from the diffusive 

schemes proposed for parallel computing systems. In this chapter, we first present the 

reasons why we choose a diffusive scheme to balance the loads of nodes for a P2P 

system. Then, we present the scheme in terms of its policies, and the components and 

algorithms that implement these policies. We further investigate the effectiveness of the 

scheme, including the speed of load balancing and the costs for load balancing, in a 

distributed system with a skip-list network topology.    

4.1. Why choosing a diffusive load 

balancing scheme?  

The review in the last chapter indicates that diffusive load balancing schemes are 

capable of balancing workload for systems with a large number of nodes. In a system, the 

operations of a diffusive scheme perform load balancing functions for the nodes in local 

neighborhoods. Studies have shown that a diffusive scheme is able to control the variance 

of loads within a smaller bound than other dynamic schemes (see Section 3.2.5). 

In this thesis, we propose a diffusive load balancing scheme for P2P systems to 

improve their performance. We modified the scheme in several ways. First, in a P2P 
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system, the scheme is expected to equalize the mean response times of nodes that host 

services. The operations of the scheme relocate objects between nodes. This kind of 

relocation causes the requests of the services that access these shared objects to be 

redirected. In this way, the available processing powers of the nodes are changed, which 

induces the change of the mean response times of the services. However, in order to 

effectively improve the performance of a P2P system, the scheme has to consider the 

nodes’ heterogeneous capacities, heterogeneous resource requirements of the services, 

and churn. Second, the scheme works in a distributed system that does not provide a 

global synchronization mechanism. We present the detail of the scheme in the following 

sections. 

4.2. Design of the scheme  

We modified three aspects of the scheme, including the load measure, the stages of 

operation, and the decision algorithms. We present these aspects in the following.  

4.2.1. Load measure   

4.2.1.1. Available capacity 

We decided that the scheme should equalize the mean response times of services. The 

main responsibility of P2P nodes is to provide services like a server in a client/server 

system. In many studies regarding client/server systems, the performance of a server is 

evaluated by the mean response time of its requests. Also, the effectiveness of load 

balancing for a distributed computing system is investigated by the mean response times 
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of the tasks that dynamically arrive to or depart from nodes ([Eager1986a, Eager1986b, 

and Dandamudi1997]). Furthermore, it has been shown that load balancing based on the 

mean response time of services improves the performance of the services in a web server 

system ([Mohamed-Salem2003]). These points indicate that our diffusive scheme should 

improve the performance of a P2P system by equalizing the mean response time of 

services.  

However, the load measures used by existing diffusive load balancing schemes can 

not achieve this aim. The operations of a diffusive scheme measure and equalize the 

amounts of computation on the nodes in a parallel computing system. In this way, the 

execution times of parallel computing programs are reduced. Clearly, this load measure 

does not reflect the dynamic arrival or departure of requests on nodes. Therefore, in order 

to equalize the mean response time of services for a P2P system, the designed diffusive 

scheme has to use a different load measure.   

The load balancing schemes proposed for P2P systems in literature neither equalize 

the mean response times of services. Some load balancing schemes, such as the 

techniques in [Bharambe2004] or in [Ganesan2004], equalize the number of objects or of 

virtual servers on the nodes. They do not deal with nodes with heterogeneous capacities. 

Other load balancing schemes, such as the scheme in [Zhu2005] or in [Suranna2005], 

evaluate the load statuses of nodes by measuring their utilizations (i.e. the utilization of a 

node is the proportion of the time that the node is busy). These schemes bring the 

utilizations of the nodes to the average for the system. However, it can be shown that 

when two server nodes with different capacities have the same utilization, their mean 

response time might not be the same. The requests arriving to the node with the higher 
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capacity would experience the smaller mean response time. Therefore, these schemes can 

not equalize the response times of services on different nodes, and these nodes have 

largely varying performance.  

In contrast to the above schemes, we propose a diffusive scheme that uses the 

available capacities ( avc ) of P2P nodes as its load measure. The operations of the 

scheme bring the available capacities of nodes to the average of the system. In the studies 

regarding client/server systems, the performance of a server is normally modeled as an 

M/M/1 queuing system, and the performance parameters, like mean response time of 

service requests, mean queue length, and utilization, could be derived from the model. 

According to [Jain 1991], the formula [ ]
λµ

µ

λ
µ
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rE  indicates that the mean 

response time of requests ][rE  is the inverse of the difference between the service rate 

µ and the arrival rate λ of requests on the server. We define the available capacity as the 

difference between µ and λ . This formula can be further interpreted as, in the case that 

two server nodes have the same available capacity, the mean response times of their 

requests are the same. The formula also works in the case that the two servers have 

heterogeneous capacities. Because of the direct mapping, we conclude that, in the case 

that the nodes in a P2P system have the same available capacity, the mean response times 

of the requests of the system are the same. Therefore, the purpose of the diffusive load 

balancing is to obtain similar available capacities of nodes so that the services provided 

by the system could have a more uniformed mean response times or quality of services. 
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The available capacity iavc  of node i can be calculated from the total capacity of the 

node iu and its utilization iρ  by using the formula )1( iii uavc ρ−= . The total capacity of a 

node could be measured by a benchmark tool, and the utilization of the node could be 

measured by a performance measuring tool. This formula also implies that the available 

capacity of a node can be calculated when the node runs programs other than those for 

the P2P applications. In order to improve the accuracy of its load status, a node could 

monitor its own available capacity all the time, and the average value over a time could 

be taken as its load status for a load balancing operation.   

4.2.1.2. Using available capacity as load 

measure 

In the last sub-section, we proposed that the diffusive scheme should use available 

capacity of nodes as its load measure. Now, we further support this decision with two 

points. First, we compare the effectiveness for two choices of load measure: (a) available 

capacity of a node, and (b) node utilization. We assume that each node can be modeled as 

an individual 1GGI queues. We consider as objective for load balancing a uniform 

response time throughout the system; therefore we are interested in obtaining the lowest 

expected values for the average response time of the nodes and the variance of these 

response times. Our comparison shows that, between the two choices, the technique that 

equalizes available capacities is more effective. Second, we show that using available 

capacity for load balancing is a practical technique since it is consistent with Mean Value 

Analysis (i.e. MVA) derived from operational laws. The operational laws define the 

equations for evaluating performance of real systems as a function of parameters.      
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Originally, we chose the available capacity as load index because in the case that a 

node can be modeled as an M/M/1 queue, the mean response time of the node is the 

inverse of the available capacity of the node. Therefore, the response times of all nodes 

will be equal when their available capacities are equal. We also know that this inverse 

relation holds in the case that the nodes are modeled as M/G/1 queues and certain other 

scheduling methods such as PS (Processor Sharing) or LCFS (Last Come First Server 

pre-emptive scheduling). However, for other node models, the mean response times on 

the nodes may be different when their available capacities are equal. In the following 

analysis, we use the 1GGI  queuing model for evaluating the performance of nodes. The 

expected response time of a node modeled as a 1GGI  queue only depends on the mean 

and standard deviation of the service times and on the average inter-arrival time of 

requests. The following analysis is a generalization of the analysis based on the M/M/1 

model in the previous section. First, we determine the expected value and variance of the 

mean response times on the nodes in a system. We consider the two cases where the 

available capacities or the utilizations of the nodes are equalized. Then, we compare these 

expected values and variances.  

We assume that a node is modeled as a 1GGI  queue. The “G” in this model stands 

for a general distribution for the service time where, for a random variable X, only the 

mean ][XΕ  and the standard deviation ][XSTD  are known. Here, the coefficient of 

variation of X is 
][

][

X

XSTD
c

Ε
= . The parameters of this model are as follows: the inter-

arrival time of requests on a node has a mean value of 
λ

1
and a squared coefficient of 
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variation of 2
Ac , and the service time has a mean of 

µ

1
 and a squared coefficient of 

variation of 2
Bc . Any kinds of queueing models can be derived from this model. For 

example, since, for a random variable with an exponential distribution, the mean and the 

standard deviation are the same, an M/M/1 queue is a special  1GGI  queue with 

122 == BA cc . We assume that a system has n nodes, and these nodes have heterogeneous 

capacities. The capacities of the nodes are described by a random variable µ  and the 

capacity of a node i is written iµ . The requests arriving at nodes are described by another 

random variable λ , and the requests that arrive at node i have an arrival rate of iλ . The 

total of the node capacities in the system is ∑=
i

itotal µµ , and the total request rate in the 

system is ∑=
i

itotal λλ . The following approximation holds for the waiting time of 

requests on a node i: 
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ρ =  [Bolch1998]. According to 

Bolch, this “well-known Allen-Cunneen approximation formula” “is exact for M/G/1 and 

a fair approximation elsewhere and is the basis for many other better approximations.”  

Therefore, the mean response time of service requests on node i can be approximated as:   
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In the first case, the nodes have their available capacities equalized, and the available 

capacities on nodes satisfy  avc
n

avci totaltotal
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Since the values of 2
Ac and 2

Bc  are the same on all nodes, the expected value of the mean 

response times of the nodes satisfies  
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and the variance of the mean response times of the nodes satisfies: 
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 (Equation 4.3). 

In the second case, the utilizations of the nodes are equalized. Utilization is another 

kind of load index which has been used by several load balancing schemes proposed for 

P2P systems. This choice is consistent with the techniques that balance the load among 

several nodes, such as in the M/M/m queueing model or for an asymmetric (or 

heterogeneous) system as described in [Bolch1998]. In order for such systems to have 

optimal performance, these techniques ensure that the utilizations of the different nodes 

are the same, but they also assumes that there is a common queue for dispatching requests 

to the nodes. Since P2P nodes do not have a common queue for their requests, we 

perform in the following an analysis, similar to the case of equalized available capacities, 

for a P2P system using utilization as load index where the performance of the nodes is 

modeled by individual 1GGI  queues (without a common queue). Then, we will 
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compare this case with the first one considering the expected value and variance of the 

mean response times on the nodes. The results from this comparison indicate that, when a 

technique equalizes the utilization of nodes, the mean response times of services 

(including the expected value and the variance of the mean response times of nodes) are 

not the smallest. 

We assume that the utilizations of the nodes satisfy ρ
µ

λ
ρ ==∀

total

total
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Then, the expected value of the mean response times of nodes is:  
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In order to compare the results for the two cases regarding the expected values of the 

mean response times, we calculate the difference ΕD  by subtracting the expected value 

defined by 4.2 from the expected value defined by 4.4. We obtain  
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Since [ ]µµ Ε= ntotal  and [ ]λλ Ε= ntotal ,  we obtain 
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In general, for a random variable X, its arithmetic mean 
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that the expected value in the second case is larger than that in the first case. We conclude 

that the mean response times of services on nodes have a smaller expected value when 

the available capacities are equalized, as compared with the case that the node utilizations 

are equalized, 

Next, we investigate the variance of the mean response times of nodes. For the first 

case (where the available capacities are equalized), Equation 4.3 shows that the variance 

of the mean response times of requests is equal to the variance of the requests’ services 

times multiplied by a factor 
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22
BA cc +

 the “variation of 

requests”, and its value is independent of the capacities of nodes. Equation 4.3 indicates 

that, in the case where 1
2

22

>
+ BA cc

 , the larger the variation of requests is, the larger the 

variance of the mean response times is. However, in the case where 1
2

0
22

≤
+

< BA cc
, it is 

the opposite. For the second case, Equation 4.5 indicates that the variance of the mean 
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response time is determined by a function of the variation of the requests and the variance 

of service times. Since the function has a factor
ρ

ρ

−1
 , the higher the utilization is, the 

larger the variance of the mean response times is.  

In the following, we investigate the difference between the variances of the mean 

response times of nodes in the above two cases. We denote this difference by varD . We 

calculate varD by subtracting the variance defined by Equation 4.3 from the variance 

defined by Equation 4.5 as: 
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If we have 0var >D , this indicates that the technique that equalizes available capacities is 

more effective since the variance in the first case is smaller. If we have 0var <D , this 

indicates the opposite. If we have 0var =D , this indicates that there is no difference 

between the effectiveness of the two technique. These cases are discussed in more details 

below. We note that we do not consider systems working with a very low utilization close 

to zero. We do not consider systems whose nodes are modeled by D/D/1 queues, neither; 

in this case, there are no variations, and we 022 == BA cc , and therefore 

10: <<∀ ρρ , 0var =D .  

In the following, we present the properties of varD  derived from its approximation in the 

following cases:  

1) For 2
2

0:,
22

22 ≤
+

<∀∀ BA
BA

cc
cc  and 10: <<∀ ρρ , the inequality 0var >D  is 

satisfied. 
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2) For 2
2

:,
22

22 >
+

∀∀ BA
BA

cc
cc and 5.00: <<∀ ρρ , let 

ρ

ρ

21

)1(2

−

−
=C . Then  

when C
cc BA <

+

2

22

, we have the inequality 0var >D ; when C
cc BA =

+

2

22

, we have 

0var =D ; and when C
cc BA >

+

2

22

, we have the inequality 0var <D .  

3) For 2
2

:,
22

22 >
+

∀∀ BA
BA

cc
cc  and 5.0: ≥∀ ρρ , the inequality 0var >D  is satisfied.  

 

These properties indicate that, in general, the technique that equalizes the available 

capacities on nodes is more effective. First, for systems whose requests have the variation 

(regarding 
2

22
BA cc +

) as small as those in the range defined by Case 1 (for example, a 

system with nodes modeled as M/M/1 queues), the technique that equalizes available 

capacities on the nodes is more effective. Compared to the variance in the second case, 

the variance in the first case is smaller since 0var >D . Also, this effectiveness depends on 

the average utilization of the system. The higher the utilization is, the larger the 

effectiveness is. Second, when the requests in a system have variations as large as those 

in the range defined by Cases 2 or 3, varD  depends on the average utilization of the 

system and the variation of its requests. For a system efficiently working (with an 

average utilization ρ not smaller than 0.5), the technique that equalizes available 

capacities is more effective whatever the variation of requests in the system is. However, 

when the average utilization ρ is less than 0.5, the technique that equalizes utilizations 

becomes more effective in the case that the variation of requests is larger than the value 

of C defined above (that is, C
cc BA >

+

2

22

); otherwise, either the technique that equalizes 
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available capacities is still the one that is more effective (when C
cc BA <

+

2

22

), or there is 

no difference between these two techniques (when C
cc BA =

+

2

22

).  

According to the above analysis, we conclude that the technique that equalizes the 

available capacities of the nodes is more effective than the technique that equalizes 

utilizations. Using the former technique, a system has a smaller expected value and a 

smaller variance for the mean response times of nodes. Also, the variance of the mean 

response times on its nodes is bounded by a fixed value. For a system where utilizations 

are equalized, this variance is bounded by 
ρ−1

1
. 

Our definition of available capacity is consistent with the Mean Value Analysis 

(MVA) derived from operational laws. Although we analyzed the mean response times of 

nodes in the above section, it is difficult to precisely predict the mean response time of a 

system since there are also other factors that affect the mean response time of a system, 

for example, the scheduling methods, or the influence of the utilization of a node on the 

variation of requests on the node. Mean Value Analysis is a practical method for 

estimating the performance of a system. This kind of analysis is derived from operational 

laws where the equations with the parameters like mean response time, throughput, and 

utilization of a device are defined. The performance of a system can be estimated by 

these equations when some of their parameters are measured. These equations are further 

extended for analyzing the performance of open queuing networks or closed queuing 

networks (called Mean-Value Analysis) [Jain1991]. The numerical analysis by Cavendish 

et al. [Cavendish2010] pointed out that the mean response time calculated from the mean 
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value analysis is the upper bound of that obtained by using a queuing model. Also, the 

results from their simulation experiments supported well their analysis. In this thesis, we 

define the available capacity of a node i as )1( iii Cavc ρ−= where the 
i

i
S

C
1

= is the 

capacity of the node. Meanwhile, the function 
i

i
i

S
R

ρ−
=

1
is derived from operational 

laws for evaluating the mean response time of requests on a device i , where iS  is the 

mean value of the service times of these requests, and iρ  is the utilization of nodes. 

Combining the above two equations, we conclude that, when the nodes in a system have 

the same available capacity, the services on these nodes have the same mean response 

times.  

Combining the above results and those in Section 4.2.1, we conclude that using 

available capacities as load index is more effective than using utilizations for a load 

balancing scheme.  

4.2.2. Load balancing operation  

The designed diffusive scheme specifies load balancing policies. These policies are 

realized by the load balancing operations that are run on each node. We call the node that 

is executing an operation the operating node. The nodes for which an operation balances 

the load are the neighbors of the operating node. An operating node and its neighbors 

compose the neighborhood of an operation. The diffusive scheme specifies that the load 

status of a node is the available capacity of the node. Its Information policy specifies that 

a node collects the load statuses of its neighbors at the beginning of an operation. Its 
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transfer and location policies select senders and receivers from the nodes in the 

neighborhood. 

A node periodically executes the load balancing operations of the diffusive scheme. 

An operation goes through three stages which conduct the policies of the diffusive 

scheme. We describe these three stages in the following:   

• Information: at this stage, the operating node determines its own available 

capacity and collects the available capacities of its neighbors through sending 

probing messages to them. The operating node waits for the responses from them.  

A probed neighbor responds with its available capacity if it is not involved in 

another balancing operation. After all responses are received, the operation goes 

to the decision stage.  

• Decision: first, the operating node calculates the average available capacity of the 

neighborhood. Then, a node is identified as a candidate receiver (sender) if its 

available capacity is larger (smaller) than the average. The operation at this stage 

identifies one or several pairs of receivers and senders and sends a load transfer 

request to the sender of each pair, including the ID of the selected receiver (which 

is the target of the load transfer) and the load that should be transferred (called 

required capacity). The details of the operation at this stage depend on its decision 

algorithm. We will discuss different decision algorithms in the following section. 

• Load transfer: note that objects are moved from a load-sender node to a load-

receiver node to bring the balance. After a sender receives an instruction for load 

transfer, it will select objects and transfer them to the receiver.  
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After having performed an operation, the operating node will go back to the 

processing of the normal service requests until the time has come for another load 

balancing operation. Operations on different nodes are not synchronized. These 

operations may run concurrently on different nodes, however, a node involved in one 

such operation will refuse the participation in another load balancing operation initiated 

by one of its neighbors. In this way, the load status information collected from a neighbor 

during an operation is always correct.  

We design a state diagram to show the stages of these load balancing operations in 

Figure 4.1. The execution of an operation on an operating node is triggered by a timeout 

event called “Triggering Timeout” after a predefined amount of time “sleeping” from the 

last operation execution, or a state change event when the node becomes either 

overloaded or under-loaded according to a static threshold. This execution sends out 

probing messages to its neighbors and waits for their responses in the “Load 

Determination” state. It enters the “Decision” state after the “GetResponses Timeout” 

expires, and makes decisions for load transfers. Then, it goes to “sleeping” again after 

sending the load transfer instructions to all the senders.  

 

Send Probe 

Messages

Load 

Determination

Decision
Send load transfer 

instructions

sleeping

response

GetResponses

Timeout

Triggering

 Timeout

 

Figure 4.1 The state diagram of the load balancing procedure 
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In a P2P system, the load balancing operations are run by a node in regular time 

intervals, called a round. It is assumed that the message delay in the P2P system is 

bounded. When a node is in the “Load Determination” state, it waits for responses from 

the probed nodes. Since the messages of load balancing operations are transferred on the 

P2P connections, the health of these connections can be monitored by the functions of the 

P2P overlay network, and the delay time of transferring messages between nodes can be 

estimated. The waiting time of the “GetResponses” timer can be set according to the 

estimated delay. The time of the “sleep” timer is set according to the performance 

requirement of the system.    

We further formalize the diffusive load balancing in Appendix A. We call it 

“asynchronous load balancing with local synchronism”.   

4.2.3. Decision algorithms  

In this section, we describe different algorithms that could be used in the decision 

stage of a load balancing operation. They are the Proportional, Complete Balancing 

(CB), Directory-Initiated (DI), Sender-initiated (SI) and Receiver-initiated (RI) 

algorithms. We assume that objects can be divided into infinitely small pieces at the size 

of fine granularity; also, they can be moved to any neighbor in the system. As an overlay 

construction protocol could avoid the change of overlay links when the objects are 

relocated to their consecutive neighbors (e.g. the way designed in [Li2006] or CAN 

[Ratnasamy2001]), we simply assume that the changes of overlay network caused by the 

load transfers are handled by the protocol of the overlay network. 
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We use here the following notations. The operating node of a load balancing 

operation is called node i . The neighborhood of the operation is denoted as iA , and the 

number of nodes in the neighborhood is |Ai|. A node in iA  is identified as a node j . A 

node x has a node capacity equal to Cx. If a node has services with a total resource 

requirements of lx, its available capacity is avcx= Cx - lx.  We write avcx and lx to represent 

the available capacity and the workload of node x at the beginning of an operation, 

respectively. We write xcav ′  for the situation at the end of an operation. For example, 

when services with resource requirements l have redirected from node x to y at the end of 

an operation, lavccav xx +=′  and lavccav yy −=′ .  

4.2.3.1. Proportional algorithm 

The Proportional algorithm (Prop.) has been discussed in [Xu1997], and we assume 

that the algorithm uses the available capacities of nodes as their load measure. Here, the 

decision algorithm determines the following load exchanges between node i and each 

other node j in its neighborhood: load equal to k(avci-avcj) will be transferred from node j 

to node i (if the value is negative, the exchange proceeds in the opposite direction), where 

k is a constant between zero and one. At the end of the operation, when all these 

exchanges have been performed, the new available capacities are as follows: 

∑+−=′
j

jii avckavcdkcav )1(  for i where d=|Ai|-1, and ijj kavcavckcav +−=′ )1(  for any 

neighbor j other than i.  
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4.2.3.2. Complete Balancing algorithm 

The Complete Balancing (CB) algorithm (also described in [Xu1997]) equalizes the 

available capacities of all nodes in the neighborhood of node i during an operation. The 

average available capacity of the nodes in the neighborhood of node i (including node i) 

is   

i

Aj

j

A
A

avc

avc i

i

∑
∈

=  (Equation 4.6). 

The CB algorithm determines load exchanges such that at the end of the operation all 

nodes in the neighborhood have the same available capacity.  

4.2.3.3. Directory-Initiated algorithm 

The Directory-Initiated (DI) algorithm also calculates the average available capacity 

of a neighborhood using Equation 4.6, but in contrast to the previous algorithms, it 

organizes the load transfer in terms of pairs of senders and receivers. A similar algorithm 

was proposed in [Corradi1999] for parallel computer programs. Based on the value of the 

average, the algorithm classifies all nodes as either overloaded (if its available capacity is 

smaller than the average), under-loaded (if its available capacity is larger than the 

average), or equalized. The overloaded nodes are kept in a vector SVect, and the under-

loaded nodes in RVect. The algorithm uses the procedure shown in Figure 4.2 to decide 

load migrations.  
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Decision Procedure 
1 Do forever 
2      if SVect and RVect are not empty 

3         }{min j
SVectj

avcs
∈

=  

4          }{max j
SVectj

avcr
∈

=  

5         decide a transfer with the load equal to   

6             },min{
ii ArsA avcavcavcavc −−  from s  to r 

7         remove s from SVect and r from RVect 
8      else break; 

 

Figure 4.2 The decision procedure of the DI algorithm 

 

The procedure stops in the case that one of the two vectors is empty (line 2). 

Otherwise, it selects a pair of a sender s and a receiver r such that the two nodes have the 

largest difference between their loads among all of the nodes remaining in the two 

vectors (line 3 and 4). Line 5 decides the load that could be moved between s and r 

according to the differences between their available capacities and the average. The 

sender s will not be under-loaded and the receiver r will not be over-loaded after the load 

transfer. The procedure continues after removing s from SVect and r from RVect.  

4.2.3.4. Sender-Initiated and Receiver-Initiated 

algorithms 

Like the DI algorithm, the Sender-Initiated (SI) and Receiver-Initiated (RI) 

algorithms identify overloaded and under-loaded nodes according to the average 

calculated by Equation 4.6. However, there is only one sender in the SI algorithm, and 

only one receiver in the RI algorithm. Similar algorithms have been proposed for parallel 

computing systems in [Willebeek-leMair1993].  
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In the SI algorithm, node i is identified as a sender s if its available capacity is smaller 

than the average; otherwise, no load transfer will take place. The procedure for deciding 

the load transfer is shown in Figure 4.3. The load transferred out from node s (called 

requiredavc ) is the difference between the average and the available capacity of s (line 1). 

The total providable available capacity (called providableavc ) is obtained from the 

providable available capacities of all under-loaded nodes. The load to be transferred into 

a receiver is proportional to its providable available capacity (line 6). The under-loaded 

nodes in RVect are taken one by one for deciding the load transfers.  

The RI algorithm has a similar procedure where the receiver takes the role of the 

sender in Figure 4.3, and its exceeding available capacity (i.e. providable available 

capacity) will be distributed to all the overloaded nodes. 

Decision Procedure  

1 sArequired avcavcavc
i
−=  

2 ∑
∈

−=
RVectr

Arprovidable i
avcavcavc )(  

3 Do forever 
4      if RVect is not empty 
5          for some node r in RVect 
6         decides the transfer with the  load of  

              providableArrequired avcavcavcavc
i

/)( −   from s to r 

7         remove r from RVect 
8      else break; 

 
Figure 4.3 The decision procedure of the SI algorithm 

 

4.3. Convergence and convergence speed   

In this section, we consider the effectiveness of diffusive load balancing in a P2P 

system that has a static workload. In this system, no services are added or removed, and 
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the request rate of each service is not changed. At the beginning, the workloads are 

randomly distributed over the nodes. We study how this asynchronous, diffusive load 

balancing will lead the system to a globally balanced state where all nodes have the same 

available capacity. First, we discuss the convergence of the diffusive scheme from an 

analytical viewpoint, and then we present some simulation results which provide a more 

detailed comparison.  

4.3.1. Analytical investigation  

The function that the Proportional algorithm uses to calculate the new available 

capacities of nodes is the function of an asynchronous diffusion scheme presented in 

[Xu1997] where workload is replaced by available capacity. The proof in [Xu1997] 

shows that, after an operation, the variance of the workload of all nodes in the system is 

decreased by a given factor a (smaller than 1). This means that the variance follows a 

geometric series of values which converges to zero. Hence, the Proportional algorithm 

converges when it uses available capacity as load measure. We can provide similar proofs 

of convergence for the other decision algorithms as follows. We first discuss the CB 

algorithm in detail, and then comment on the situation for the other decision algorithms.  

We assume that there is a P2P system that consists of N nodes, and the global average 

of the available capacities of its nodes is 
N

avc

AVC
j

j∑
= . We write 

N

avcAVC

avc
j

j∑ −

=

2

2

)(

)(σ  for the variance of the available capacities of the system at 

the time before a node i starts its load balancing operation. Now we want to calculate the 
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variance of the available capacities after this operation, written as )(2
cav ′σ . We have the 

following formula to calculate the variance of available capacities:  

∑∑

∑

∉∈

′−+′−=

′−=

′

ii Aj

j

Aj

j

j

j

cavAVCcavAVC

cavAVC

cavN

22

2

2

)()(

)(

)(σ

  

The formula is composed of two terms. The first term is over all of the nodes j that 

are within the neighborhood Ai (including i), and it is equal to 2)(
iAi avcAVCA − , where 

iAavc  is the average of the available capacity of the nodes within i’s neighborhood and 

|Ai| is the number of nodes in this neighborhood. Since this local average
iAavc  is 

obtained over a set of |Ai| nodes, the square of the difference between a local average  

iAavc and the global average of AVC , is on average equal to )(
1 2

avc
Ai

σ . Since the 

second term above evaluates to )()( 2
avcAN i σ− , we obtain 

)()1()( 22
avcANcavN i σσ +−=′  or  

)()
1

1()( 22 avc
N

A
cav

i σσ
−

−=′  (Equation 4.7). 

Since this reduction factor for the variance holds for any local load balancing operation 

that is performed by any node in the system, we see that the value of the variance follows 

a geometric series that converges to zero. 

Now we are interested in estimating by which factor the variance decreases over a 

period of one round, which is the time interval within which each node of the overlay 

network is supposed to have performed exactly one load balancing operation. Since there 

will be N load balancing operations within this period, we obtain a decrease by a factor of 
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∏
−

−
i

i

N

A
)

1
1( ; in the case that all operations have the same size of neighborhoods |A|, 

the factor is equal to N

N

A
)

1
1(

−
− . Since |A| is much smaller than N, we can use the 

approximation that xn
e

n

x
=+ )1( for large n, and obtain a variance reduction factor for the 

period of one round equal to )1( A
e

− , or a factor of 2

1 A

e

−

 for the reduction of the standard 

deviation of available capacities. Then, we have Equation 4.3 for the available capacity of 

the system at round t+1:  

)()( 2)1(12 tAt avceavc σσ −+ =  (Equation 4.8). 

The DI, SI and RI decision algorithms are expected to provide slower convergence 

than the CB algorithm discussed above, because at the end of a load balancing operation 

by a node i, the available capacities of the nodes within its neighborhood would be less 

uniform than in the case of the CB algorithm. For example, in the case of the SI 

algorithm, half of the times, there is no change in the load distribution, namely when 

node i is under-loaded. If node i is overloaded, its available capacity will reach the 

neighborhood average and the available capacity of the under-loaded nodes will be 

increased by smaller amounts. If we ignore the changes of the under-loaded nodes, we 

obtain the formula )()
2

1
1()( 22

avc
N

cav σσ −=′  – note that we have ignored here the 

difference between the global average and the average within the neighborhood. 

Therefore we expect that the standard deviation of available capacities is reduced over 

the period of one round by a factor of 
25.0

e . This would be similar for the RI algorithm. 
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The convergence speed of the DI algorithm is more difficult to estimate, since during 

a single load balancing operation, several sender-receiver pairs exchange parts of their 

load. For each of the resulting load transfers, one of the partners will reach the 

neighborhood average, but it is difficult to estimate how many pairs will be identified and 

how much the load change of the other partner contributes to the reduction of the 

variance. However, since the DI algorithm drives more nodes to reach the average of the 

neighborhood during one operation than the SI or RI, it is clear that the convergence 

speed of this algorithm is expected to lie between the speeds of the CB and SI algorithms. 

4.3.2. Simulation experiments 

The analysis in Section 4.3.1 is only approximate, and it does not consider the effect 

of the structure of P2P overlay networks. To further study the issues, we made simulation 

studies and measured the convergence speed of the diffusive load balancing in an overlay 

network with a skip-list structure, as described below. As the diffusive scheme does not 

require any specific structure for the P2P system to collect the load statuses of nodes or to 

disseminate load, the scheme could be used in any structured P2P system. However, the 

effectiveness of the scheme will in general depend on the neighborhood structure used for 

information collection and load dissemination. 
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4.3.2.1. A peer-to-peer system with a skip-list 

overlay network 

We assume that the system using our diffusive scheme has a skip-list overlay 

network. A skip-list is a data structure for storing and accessing data or service items. It 

has multiple-level lists. At level 0, all elements are connected in order, and at level i , 

elements are sequentially picked from level 1−i  with a certain probability p and 

connected in the same order as well. There is only one node at the highest level  Nplog  

for an N -node skip-list. The process of searching an element in the skip-list is similar to 

that in a tree structure; therefore, the time complexity of a search is )(log NO p  

[Pugh1990]. Such skip-lists are used by many P2P systems, such as Chord, Mercury and 

DPTree, to construct their overlay networks. The time and message complexities of a 

search can be maintained as )(log NO  in these overlay networks.  

We assume that there are N nodes in the network. Each of these nodes is assigned a 

unique ID. An ID is an integer number chosen from 0 to 1−N . These nodes are 

connected into a ring in ascending order of their IDs. Node i ,  in position i , will take 

nodes in the positions Ni mod)2( 0+ , Ni mod)2( 1+ , K ,   Ni
N mod)2( )1(log2 −+ , as 

neighbors, that is, the immediate neighbors connecting i  at levels 0 to  )1(log2 −N   is a 

skip-list. In an overlay network of this kind, a node has  )1(log2 −N  fingers called out-

degree connections that point to its neighbors, and  )1(log2 −N  fingers called in-degree 

connections that point to it from other nodes, and the diameter of the overlay graph is 
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)(log NO . Figure 4.4 shows an example of the connections between nodes and the 

routing table of a node in a system of 17 nodes. Figure 4.4(b) shows the routing table of 

node 0. The routing table stores the IP addresses of its neighbors 1, 2, 4, 8, and 16 

(pointed by the fingers in Figure 4.4(a)). 

node0

node1

node2

node4

node8

node16

 

(a) 

 

(b) 

Figure 4.4 The connections of node0 in the overlay with a skip-list structure:  (a) the fingers of node0, (b) the routing 
table of node0 
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4.3.2.2. Experiments and their results 

The experiments in this subsection are mainly provided for showing the convergence 

of the load balancing scheme. The speeds of convergence for the scheme with different 

decision algorithms are also compared.  

In these experiments, the parameters defining the simulation and the simulated system 

are configured first. The system use the skip-list overlay network described above, and it 

has 1,000 nodes (N=1000). All nodes have the same capacity (C=10 requests/second). 

Initially, the available capacities of the nodes are uniformly distributed in the range of 

[0,10], with a mean of 5 which leads to a standard deviation of 2.88. We assume that the 

objects of the system are fine grained, that is, loads of arbitrarily small sizes may be 

moved.  

The effectiveness of the scheme, including the convergence ratios and the loads 

transferred during the rounds (defined in Section 4.3.1) of load balancing, is evaluated. 

The convergence ratio tγ  during round t is the ratio of )( tavcσ  to )( 1−t
avcσ  where 

)( t
avcσ  is the standard deviation of the available capacities collected at the end of round 

t and called the standard deviation of load of the system. Comparing two convergence 

ratios, the smaller one indicates the larger reduction of the standard deviation of available 

capacities, and the load balancing converges faster and stronger. The amount of loads 

transferred between nodes is also collected. For transferring loads, a system has to spend 

some processing power of its nodes on packing and unpacking objects and some 

bandwidth of its network links on transmitting the packages of objects. Therefore, the 

cost of load balancing is evaluated by measuring the amount of loads transferred between 
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nodes. These measurements are collected from 20 runs of the experiments. The mean and 

the 95% confidence interval of the mean for each measurement are displayed.  
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                                                                  (c) 

Figure 4.5 The progress of the diffusive load balancing with various decision algorithms: (a) standard 
deviation of normalized available capacities, (b) convergence ratio, and (c) proportion of loads transferred 

 
Figure 4.5 shows the effectiveness of diffusive load balancing during the first 5 

rounds. Figure 4.5(a) shows the reduction of the standard deviation of normalized 

available capacities during load balancing. The normalized available capacities are the 

available capacities at the end of that round normalized by the average workload of the 

system. We will further explain the concept of normalized available capacity in Section 

5.3.1. Since the system keeps the same average workload during load balancing, Figure 

4.5(a) also shows the reduction of the standard deviation of available capacities. We 
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observe that, for a given decision algorithm, the convergence ratios of the rounds change 

as the available capacities become more similar. During the first round, the standard 

deviation of available capacities drops most rapidly (Figure 4.5(b)), and the system has 

the largest proportion of loads transferred (Figure 4.5(c)). In the following rounds, the 

load balancing resolves the differences between the available capacities of nodes in a 

slower manner with fewer loads transferred. We also observe that, after the experiment 

runs for 10 rounds, there are very few loads transferred in the system, and the standard 

deviation of available capacities approaches zero. We say that the system is in a globally 

balanced state, and the diffusive scheme converges.  

We also observe that the decision algorithms converge at different speeds. The CB 

algorithm converges most rapidly among all the algorithms. This algorithm has a 

convergence ratio 1γ  close to 0.002, which indicates that the standard deviation of 

available capacities drops by 99.8% in the first round (Figure 4.5(a) shows that the 

standard deviation of the normalized available capacities drops from 0.573 to 0.001). In 

the following rounds, the convergence ratios of the CB algorithm could be kept as small 

as 0.01. The SI and RI algorithms converge much slower than the other algorithms (e.g. 

the standard deviation of available capacities drops by 78% in the first round with 1γ  

around 0.22). Among the practical algorithms (i.e. DI, SI and RI), the DI algorithm has 

the smallest average convergence ratio, and this convergence ratio is close to that of the 

CB algorithm (with 1γ  around 0.02). This observation indicates that resolving multiple 

pairs of senders and receivers, as done by the DI algorithm, improves the effectiveness of 

diffusive load balancing. The Proportional algorithm converges faster than the SI and RI 
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algorithm and slower than the DI algorithm. The data in the figure confirms the 

predictions of our analysis given above. 

We conclude that the DI algorithm is the best candidate for use in the diffusive load 

balancing scheme within a P2P system. The CB algorithm is an ideal algorithm which 

would be difficult to implement in a distributed P2P system. The proportional scheme 

requires transferring more loads than the DI, SI or RI algorithms. The DI, SI and RI 

algorithms result in about 35% of the total loads to be transferred between nodes for the 

standard deviation of available capacities to drop by 99% from the beginning. Among 

these algorithms, the DI algorithm converges fastest. 
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5. Characteristics of the diffusive 

load balancing scheme  
We studied the effectiveness of the diffusive load-balancing scheme in a P2P system 

with a skip-list overlay network in the last chapter. Now, we examine the effectiveness of 

the scheme in more detail. In this chapter, we consider various kinds of neighborhoods, 

and systems with various workload distributions, sizes, and degrees of churn. Then, we 

compare the diffusive scheme with some other dynamic load balancing schemes 

proposed for P2P systems. At the end, the diffusive scheme is modified for P2P systems 

hosting large-sized services, and the impact of sizes of these services on the effectiveness 

of the scheme is also examined.  

5.1. Using random neighborhoods 

There are two kinds of random neighborhoods that we consider in this subsection. 

One is the neighborhoods provided by a random-graph overlay network and called 

random-graph neighborhoods. Another is the neighborhoods with neighbors collected by 

random walks and called random-walk neighborhoods. The kind of neighborhoods in a 

skip-list overlay network is called skip-list neighborhoods. The term “overlay network 

neighborhood” implies either a skip-list or random-graph neighborhood.   
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5.1.1. Random-graph structured overlay 

networks 

Researchers have shown that diffusive load balancing requires different times to 

converge in systems with different structures. For example, it converges faster in a 

hypercube-structured system than in a ring-structured system. The skip-list overlay 

network considered in the last chapter is similar to the architecture of a hypercube 

network. We investigate whether the proposed diffusive load balancing scheme 

converges faster in a skip-list overlay network than in a random-graph overlay network.  

We did simulation experiments based on a simulated P2P system with a random-

graph overlay network. We kept the configuration used by the experiments in Section 

4.3.2.2 except that the nodes are randomly connected. In order to construct a random-

graph overlay network, the simulation program randomly chooses O(logN) nodes to be 

the neighbors of a node at beginning. For a specific node, its neighbors do not change 

during an experiment as long as there is no node joining or leaving. The neighborhoods in 

a random-graph overlay network are used by the operations of the diffusive scheme. 

Similar to the previous experiments, the following experiments use systems with static 

workloads.  

Figure 5.1 shows the convergence ratios during the first five rounds of the decision 

algorithms presented in Section 4.2.3. Compared with the results shown in Section 

4.3.2.2, the performance of the CB algorithm is not much changed in this random-graph 

overlay network; its convergence ratios are still as small as 0.003. However, the 
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performance of the other algorithms is degraded. The convergence ratios are increased by 

10% for the Proportional, SI and RI algorithms. For the case of the DI algorithm, the 

convergence ratios are increased by a factor of about 2 to 4. For example, the DI 

algorithm has 1γ  around 0.012, and 5γ  (i.e. the convergence ratio of the fifth round) 

around 0.30 with skip-list neighborhoods, and 1γ  around 0.046 and 5γ  around 0.6 with 

random-graph neighborhoods. Accordingly, we claim that the diffusive scheme performs 

better with skip-list neighborhoods than with random-graph neighborhoods.  
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Figure 5.1 The convergence ratios of the diffusive load balancing in the overlay network with a random-graph topology 

 

5.1.2. Random walks 

Another kind of random neighborhoods has been proposed for load balancing where, 

for each load balancing operation, a new random neighborhood is dynamically 

established by random walks. The schemes proposed in [Bharambe2004] and 

[Zhong2008] are schemes for P2P systems of this kind. We investigate the convergence 

of the diffusive scheme when it uses random walks to dynamically construct its 
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neighborhoods. In our simulation experiments, the operating node of a load balancing 

operation randomly chooses  N2log  nodes at the beginning of the operation.  

Figure 5.2 shows the convergence ratios of the different decision algorithms in the 

first 5 rounds. The classic Proportional algorithm does not perform well in this context. 

We observed that there is still some degree of load imbalance that cannot be resolved. 

Especially, the standard deviation of the available capacities on nodes is kept around 0.05 

even when the experiment is run for 50 rounds. The CB algorithm is less affected by the 

changing of neighbors during the progress of load balancing. Therefore, we say its 

effectiveness does not depend on what kind of neighborhoods is used: the skip-list or 

random neighborhood. The SI and RI algorithms perform better by using random-walk 

neighborhoods than by using overlay network neighborhoods. Starting from round 2, 

their convergence ratios become much smaller than those for the overlay network 

neighborhood case (including the skip-list neighborhoods and the random-graph 

neighborhoods). We think that a node has more chance to be a sender or a receiver when 

the domain of the load balancing operations is changed each time, and the reduction of 

load differences is also larger than in the case of overlay network neighborhoods. The DI 

algorithm does not have any improvement for its convergence speed by using random 

neighbors. Meanwhile, we observe that the proportion of loads transferred between nodes 

in a system using the DI, SI or RI algorithm is very similar to that in the previous case. 

In summary, the diffusive scheme has different performance when it uses different 

kinds of neighborhoods. The SI and RI algorithms perform better with random-walk 

neighborhoods. The performance of the DI algorithm does not have much difference 

whether the random-walk neighborhoods or skip-list neighborhoods is used. However, 
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the performance of the diffusive scheme is degraded when random-graph neighborhoods 

are used. Since these results were observed in systems whose workloads have initially a 

distribution which is uniformly distributed between two extreme values, we investigate 

next the effectiveness of the scheme in systems that have initially a skewed workload 

distribution. 

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

c
o
n
v
e
rg

e
n
c
e
 r

a
ti
o

rounds

Prop.
DI

CB
SI
RI

 

Figure 5.2 The convergence ratios of the diffusive load balancing with random neighbors 

 

5.2. Skewed workload distribution 

It has been shown that, in some cases, the workload distributions of P2P systems are 

highly skewed. For example, the popularity of files is described by a Zipf distribution in 

[Zhao2006]. To simulate a skewed workload distribution, we configure the simulated 

system with a number of hot spots. We consider different cases with the following 

fractions of nodes being hot-spots: 0.001, 0.01, 0.1, 0.2, or 0.4. The fraction of 0.001 

corresponds to the case of one hot-spot in the 1000-node system. At the beginning of an 

experiment, the workloads of a system are evenly distributed over all of its hot-spots. 
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These workloads on the hot-spots will be redistributed to the other nodes by the load 

balancing operations. 

The DI and SI algorithms are used in the experiments for collecting the following 

results. These algorithms use skip-list neighborhoods or random-walk neighborhoods. 

We observed that the convergence ratios in the first round are different in these cases. 

However, during the progress of load balancing, for the case of a specific algorithm with 

a specific kind of neighborhoods, the convergence ratios approach those found in the 

previous experiments. For example, in the case of the one-hot-spot workload, the DI 

algorithm with skip-list neighborhoods has  1γ as large as 0.34. During the second round, 

the convergence ratio drops, and in round 5, 5γ  is 0.30 which is close to that in the case 

of uniform workload (Figure 4.4(b) and 5.1). Therefore, in Figure 5.3, we show only 1γ  

for these different cases.  
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Figure 5.3 Comparison of the DI and SI algorithms in systems with hot spots 

 

For the one-hot-spot case, the SI algorithm outperforms the DI algorithm in the first 

round (Figure 5.3). The SI algorithm could reduce 80% of the standard deviation of 

available capacities (with 1γ =0.19), but the DI algorithm only reduces 65% of the load 

differences (with 1γ =0.35). One reason for this is that, in the one-hot-spot case, a 
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neighborhood could have one or zero sender with a larger probability at the beginning of 

the experiment. Since the DI algorithm only selects one receiver for a sender, the DI 

algorithm resolves fewer differences between the available capacities of nodes than the SI 

algorithm which can select many receivers for the sender. The performance of the SI 

algorithm is not much affected by the workload distribution with 1γ  all around 0.2. 

However, the performance of the DI algorithm largely depends on the fraction of hot-

spots in the system. 1γ  of the DI algorithm is dropped to 0.23 from 0.35 when the fraction 

of hot-spots is increased from 0.001 to 0.01. In the case that the fraction of hot-spots is 

further increased to 0.1, the values of 1γ of the DI algorithm are close to those observed 

from the pervious experiments where the system initially have uniformly distributed 

workload. Moreover, the DI algorithm does not reduce 1γ  much even if the system 

further increases the number of its hot-spots. 

5.3. Working in systems with churn  

In this subsection, we investigate the effectiveness of the diffusive load balancing in a 

system that has churn (i.e. node-joining or -leaving). Churn occurs when nodes join or 

leave a P2P system. This kind of node-joining and leaving could cause the changes of the 

overlay network. These changes may affect load balancing operations. In some cases, the 

operating node could disappear in the middle of an operation, and the operation would be 

aborted. In some cases, a node in the neighborhood could leave. The operation would 

have fewer nodes in its neighborhood. In both cases, the differences between the loads of 

the nodes in the neighborhood can not be fully reduced. Especially, in the case that the 
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operating node fails, the differences between the loads of nodes in the neighborhood can 

not be reduced at all. Shen et al. showed in [Shen2007] that the effectiveness of load 

balancing is degraded when node failures occur in a P2P system. For example, a system 

has fewer service requests met their deadlines after the node failures are introduced in the 

system. We mainly discuss the effect of churn to the load distribution here.      

Churn also affects the load distribution of a system, and it is the major source that 

contributes to the variation of workload in a P2P system. Structured P2P systems in 

general use data replication or recovery mechanisms to deal with node-joining or leaving. 

For example, when a new node locates its place in a CAN system, the node takes over 

half of the objects from a neighbor; when a node leaves, the node hands over its objects 

to a neighbor. Therefore, the workloads on these nodes change. Although the variation of 

workloads also can be caused by the changes of services’ request rates, the variation 

induced by churn is much larger. First, a node hosts multiple services. Second, 

researchers showed that the popularity of files in a file sharing application generally 

follows a cosine waveform function with a period of a day (i.e. 24 hours) [Lloret2006]. 

But, the occurrence of churn (i.e. the arrival of churn events) fits to a Weibull distribution 

[Stutzbach2005]. Therefore, the impact of churn on the variation of workloads is in 

general more important from the perspective of load balancing.  

The effectiveness of the diffusive load balancing in a dynamic system had been 

studied before. For example, Cybenko [Cybenko1989] pointed out that the difference 

between the workloads of nodes is bounded when tasks or computations are dynamically 

generated and terminated. Elsasser et al. [Elsasser2004] studied the convergence of a 

diffusion scheme when nodes change their positions in the network by carrying along 



 100 

their existing workloads. However, these dynamics are all different from the changes of 

workloads on P2P nodes induced by churn.  

5.3.1. The bound of the standard deviation of 

available capacities  

We consider a P2P system with churn in the following experiments. We study the 

standard deviation of available capacities. We also study the impact of the decision 

algorithm, degree of churn (i.e., the rate of node joining or leaving), and the sizes of 

workloads, on these standard deviations. In this subsection, we consider homogeneous-

node systems whose nodes have the same capacity.   

We extended our simulated system by using an extra component to implement churn. 

In the simulated system, node-joining is realized by placing a new node in a position 

randomly selected from the ring, and the new node takes over half of the objects (or half 

of its services) from its successor. Node-leaving is realized by disconnecting a node 

chosen at random from the ring, and the leaving node hands over its objects (or services) 

to its successor. In order to capture the changes of the overlay network induced by churn, 

a node rebuilds its neighborhood right before it runs a load balancing operation.  

The simulated system uses a churn rate to specify the frequency of churn events. We 

define the churn rate to be the fraction of nodes that join or leave the system during one 

round of the load balancing operations (see Section 4.3.1). Therefore, the changes of 

available capacities of nodes induced by churn and the reduction of the differences 

between these available capacities produced by the diffusive load balancing are evaluated 
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within the same time period. The differences between the available capacities of nodes 

are shown with the standard deviation of these available capacities (called standard 

deviation of available capacities). We assume that, for each node-leaving, there is a 

node-joining, so that neither the total number of nodes nor the system's average available 

capacity changes. For example, when the churn occurs at a rate of 0.1 in a system with 

1000 nodes, the system would have 50 occurrences of node-leaving and 50 node-joining 

per round. If the duration of a round is T , the mean time interval between two 

consecutive occurrences of node joining or leaving is then 50

T
. Without load balancing, a 

system has the standard deviation of its available capacities increasing along with the 

advance of the experiment. This increase depends on the churn rate. For example, for a 

homogeneous-node system initially having a uniformly distributed workload, the 

standard deviation of available capacities increases by a factor of 3 when an experiment 

runs 50 rounds in the case that churn occurs at the rate of 0.1; the standard deviation 

increases by a factor of 8 in the case that the rate is 0.9. 

The practical decision algorithms, such as the DI and SI algorithms, are selected for 

the following experiments. In an experiment, an algorithm uses skip-list neighborhoods 

or random-walk neighborhoods. The configurations used for the experiments in Section 

4.3.2.2 are kept. These experiments collect the standard deviation of available capacities 

at the end of the rounds and the proportion of loads transferred during these rounds. We 

observed that, in a system with churn, the standard deviation of available capacities 

depends on the average workload of the system. The larger the average workload is, the 

larger the standard deviation is. Moreover, for systems only different in their average 

workloads, the ratios of the standard deviation of available capacities to the average 
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workload of the systems (i.e. those with homogeneous nodes) are always the same. We 

call this ratio the standard deviation of normalized available capacities and use it as a 

parameter for comparing the performance of different decision algorithms.  

Figure 5.4 shows the standard deviation of normalized available capacities and the 

proportions of loads transferred during the first 20 rounds of load balancing. We observe 

that, after a few rounds, both measurements do not increase along with the advance of the 

simulated time . We say that, in this kind of situation, the system is in a steady state. We 

say that the average of the standard deviation of normalized available capacities at the 

steady state is bounded. However, in a system, the size of the bound depends on the 

decision algorithm. For the case of the SI algorithm, the bound is about 30% larger than 

that for the case of the DI algorithm (0.15 for the DI algorithm and 0.2 for the SI 

algorithm case). This result showed that an algorithm with a faster convergence speed can 

better control the standard deviation of available capacities under churn. We note that the 

bounds, for a given algorithm using different kinds of neighborhoods, are not 

significantly different. Figure 5.4(b) indicates that the costs for load balancing are similar 

for both decision algorithms. Both these algorithms invoke almost the same proportions 

of loads transferred when the system is in the steady state. The proportion for a decision 

algorithm does not depend on what kinds of neighborhoods are used: skip-list 

neighborhoods or random-walk neighborhoods.   
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Figure 5.4 Effectiveness of the diffusive load balancing in a system with churn at a rate of 0.1, (a) standard deviation 
of normalized available capacities, and (b) proportion of loads transferred 

 

5.3.2. Varying churn rates  

Figure 5.5 shows the relation between the bound of standard deviation of normalized 

available capacities and the churn rate. The experiments used the same system and 

algorithms as described earlier. The churn rate of the system is varied from 0.1 to 0.9 

with increments of 0.1. An additional value of 0.01 is also included. The standard 

deviations are collected at the ends of rounds from 21 to 50 (the initial 20 rounds are not 

included), and the average of these standard deviations are taken for calculating the 

bounds. Each experiment is repeated 20 times. The means of the bounds and their 95% 

confidence intervals are displayed.  
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Figure 5.5 The bound of the standard deviation of available capacities in systems with varying churn, (a) the standard 

deviation of normalized available capacities, and (b) proportion of loads transferred 
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We observed that the bound increases along with the increase of the churn rate. We 

have seen in the previous subsections that, in the case that the system has no churn, the 

bound reaches zero under the effect of the load balancing. In the case that the churn rate 

is negligible, the load balancing can quickly resolve the load dynamics induced by the 

churn. Figure 5.5 shows the bounds of standard deviation of normalized available 

capacities when the system has non-negligible churn rates. In the case that the system has 

the churn rate of 0.1 and the average workload of 5 requests/second, the DI algorithm 

using the overlay network neighborhoods is able to control the standard deviation of 

available capacities around 0.7 (with a standard deviation of normalized available 

capacity of 0.139). In this case, few nodes would have their available capacities less than 

zero and be overloaded. In the case that the system has the churn rate of 0.9, the standard 

deviation is 1.5 (with a standard deviation of normalized available capacity of 0.3), and 

there are less than 10% of nodes overloaded. However, the bound is not a linear function 

of the churn rate. We observed that the size of the bound also depends on whether the DI 

algorithm or SI algorithm is used. Furthermore, the difference between the bounds of the 

two algorithms is increased when the churn rate increases. When the churn rate is as 

small as 0.01, the bounds for the two algorithms are almost the same. When the churn 

rate is as large as 0.9, a system using the SI algorithm would have a bound twice as large 

as a system using the DI algorithm (0.6 for the SI algorithm, and 0.3 for the DI 

algorithm). The system has fewer loads transferred when it uses the SI algorithm (Figure 

5.5(b)).  
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5.3.3. Nodes with heterogeneous capacities  

Since our load balancing scheme equalizes the available capacities of nodes, the 

scheme is able to perform load balancing for P2P systems with heterogeneous nodes, that 

is, in the case that the nodes have different capacities. We use the insights we found in 

previous sections to interpret the effectiveness of the scheme here. In a system with static 

workload, the analysis to the effectiveness of the scheme is also suitable here, and the 

results are the same. However, this is not the case for a system with churn. In this case, 

the variation of workloads caused by the leaving or joining of nodes depends on the 

capacities of nodes. The larger-capacity nodes which have larger workloads would induce 

larger variations than the smaller-capacity nodes (assuming that all nodes have the same 

available capacity).   

In the following experiment, the system has two types of nodes: small-capacity nodes 

with a capacity of 10 requests/second, and large-capacity nodes with a capacity of 1000 

request/second. There are 1000 nodes among which 0.1% are large capacity nodes, and 

the others are small capacity nodes. The churn rate is 0.1. Figure 5.6 shows the standard 

deviation of available capacities as a function of time. The figure shows several points 

with extraordinary high standard deviations. These points are caused by the leaving or 

joining of the high capacity nodes. Since the number of the high capacity nodes is small, 

the leaving or joining of these nodes results in some of other nodes becoming hot-spots. 

The diffusive load balancing resolves these hot spots in one or two rounds. Thereafter, 

the standard deviation of available capacities is reduced to the value maintained for the 

system where only the small-capacity nodes are joining or leaving.  
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Figure 5.6 Effectiveness of the diffusive load balancing in the heterogeneous node system with churn at a rate of 0.1 

 

As we observed in Section 5.2, the DI algorithm has larger convergence ratios in the 

one-hot-spot case than the SI or RI algorithm. We propose to modify the DI algorithm 

and allow the sender (or receiver) to distribute the excess load (i.e. available capacity) to 

all the under-loaded (or overloaded) nodes in the neighborhood in the case that there is 

only one overloaded (or under-loaded) node in the neighborhood. This modification is 

expected to improve the performance of the DI algorithm to deal with hot-spots. The 

solution in [15] that partitions a node into several virtual nodes and locates these virtual 

nodes in the different places of an overlay network is an alternative approach.    

5.4. Scalability  

Here discuss the scalability of the load balancing scheme in terms of its effectiveness 

in a system with a large number of nodes. The scheme is scalable in the case that its 

effectiveness is not degraded by the increase of the system size. We note that, using the 

diffusive scheme with the CB algorithm, the system has the standard deviation of the 

available capacities of its nodes) reduced by a factor close to 2

1 A

e

−

 in a round (where A is 
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the number of nodes in a neighborhood). For a P2P system, the value of A  grows along 

with the increase of the system size. Therefore, the larger the system size, the smaller the 

factor for the reduction is. For example, in the system with a skip-list overlay network (as 

discussed in Section 4.3.2.1), the factor for reduction of the standard deviation of 

available capacities would drop from 
 

2

log1 2 N

e

−

 to 
 

2

log

2

1log1 22 NN

ee

−+−

= (an improvement by a 

factor or a degree of reduction of 648.1≈e ), in the case that the number of nodes is 

doubled from N to 2N. Since the number of messages for a load balancing operation 

performed by a node is N2log3 , the growth of the number of message for load balancing 

is also limited. However, the total number of messages per round is more than doubled, 

since each node perform a load balancing operation per round. From these two 

perspectives, we conclude that the diffusive load balancing is scalable for P2P systems.  

In the following experiments, the system has various sizes. The size of the system is 

exponentially increased (e.g. N=128, 256, 512, and 1024). We assume that the workload 

of the system is a fixed proportion of the total capacity of the system. For these systems, 

the workloads are always set to 50% of the total capacity of the system. We first discuss 

the convergence ratios of the load balancing in a system without churn. The results of the 

experiments are shown in Figure 5.7. We can observe that the convergence ratios r1 of 

the scheme slightly drops in the case that the number of nodes in the system is 

exponentially increased. This decrease is not significant when the size of a system is 

doubled. However, when the size of the system increases by a factor of 8, for example, N 

is increased from 128 to 1024, r1 decreases by almost 40% (r1=0.021 for N=128, and 

0.012 for 1024). The degree of the reduction is around 1.75, which is much smaller than 

that calculated for the CB algorithm. After the first round, the convergence ratios of the 
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diffusive scheme increase gradually in these systems. We can further observe that the 

proportions of loads transferred between nodes are almost the same for the different 

systems. The results indicate that the scheme does not lead to a higher proportion of loads 

for transfers when the number of nodes is increased.  
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                             (a)                                                                   (b)  
Figure 5.7 Scalability of the diffusive load balancing in systems without churn: (a) convergence ratios (b) proportion of 

loads transferred between nodes 

 
We further discuss the effectiveness of the diffusive scheme in a system with churn. 

The following experiments use a system with sizes N=128 and 1024 respectively. Figure 

5.8 shows the normalized available capacities and the proportions of loads transferred for 

the two cases. We can observe that the differences between the measures for the cases are 

not significant. Therefore, the effectiveness of the diffusive scheme is not degraded by 

the increase of system size, and the diffusive scheme is scalable.      
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Figure 5.8 Scalability of the diffusive load balancing in systems with a churn rate of 0.1 or 0.9, (a) standard deviation 
of normalized available capacities, (b) proportion of loads transferred 
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5.5. Comparison with other schemes for 

peer-to-peer systems 

We compare the diffusive scheme with three other schemes proposed for P2P systems 

in Table 5.1. The other schemes are: distributed directory, k-ary tree, and random 

probing. 

First, the schemes are different in their decision components that take the role of 

deciding load transfers in the load balancing operations. In the distributed directory 

scheme, the number of directories is pre-configured. The effectiveness of the scheme 

depends on the number of directories and the interval between the two consecutive runs 

of a directory. For example, for a system with a large size, the scheme with a small 

number of directories is similar to a scheme with a central directory. For a system with a 

small size, the scheme with a large number of directories is similar to a distributed 

scheme using random probing. Different from the distributed directory scheme, both the 

random probing scheme and the diffusive scheme let every node in a system make these 

decisions. Therefore, the two schemes are more scalable compared with the distributed 

directory scheme with a fixed number of directories. The k-ary tree scheme uses the inner 

tree-nodes to make decisions for load transfers. Therefore, the number of decision 

components is a fraction of the number of nodes in a system, and the scheme is scalable.  

Second, in terms of the Information policy, among the four schemes, only the k-ary 

tree scheme uses the tree structure to aggregate the global load status information and 

disseminates this information to all computing nodes. As we reviewed in Section 3.2.3.3, 
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the global information of a system easily becomes stale in the case that the system has a 

dynamic workload. Moreover, churn in a P2P system induces a fluctuation of the tree-

structure in addition to the variation of workload. This further degrades the accuracy of 

the global load status information. Furthermore, Shen et al. [Shen2007] showed that the 

k-ary tree spends more messages on implementing its Information policy. The other three 

schemes all use the load status information collected from a subset of nodes. Compared 

to the k-ary tree, the other schemes spend fewer messages on their Information policy. 

Also, without using the global information, they are more effective in dealing with the 

dynamics of the P2P system. Third, only the random probing scheme uses a sender-

initiated Transfer policy for a load transfer. The other schemes use a directory-initiated 

policy where a decision component selects a sender and a receiver for a load transfer. Our 

previous experiments showed that the directory-initiated policy is superior to the send-

initiated policy. 

Table 5.1 Typical load balancing schemes in P2P systems 

 
Structure Decision 

component    
Information policy  Transfer policy Location policy  

Distributed Directory 
(d-directory) 
[Suranna2006]  

Directory  a directory collects load 
status of its nodes  

directory-initiated Nodes registered in each 
directory 

K-ary tree [Zhu1998] inner nodes of 
the tree 

tree-root aggregates load 
statuses of nodes by the 
tree structure, and the 
average load status of 
the system is 
disseminated to leaves   

directory-initiated  Nodes in the sub-trees of a 
decision component 

Random probing 
[Bharambe2004] 

each node a node collects the load 
statuses of randomly 
probed nodes  

sender-initiated Nodes been probed 

Diffusive scheme  each node a node collects the load 
statuses of nodes in a 
neighborhood  

directory-initiated Nodes in the neighborhood  
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To further distinguish the random probing scheme proposed in literature and the 

diffusive scheme, we implemented a random probing scheme and investigated its 

convergence speed using simulation experiments. Similar to the experiment in Section 

5.2, the operating node of an operation randomly picks N2log nodes in the system as 

neighborhood for an operation. The random probing scheme uses a sender-initiated 

policy. In the case that the running node turns out to be a sender (its available capacity is 

larger than the average available capacity of the nodes in the neighborhood), the running 

node locates the node with the smallest available capacity as a receiver. We compare two 

decision algorithms that are popular in random probing schemes. One algorithm lets the 

sender equalizes its available capacity with one receiver, and we call it the equalizaiton 

algorithm. Another algorithm lets the sender and the receiver have their available 

capacities equal to the neighorhood average, and we call it the neighborhood average 

algorithm. The other parameters of the simulated system are configured as the same as 

for the experiments in Section 5.2. Figure 5.9 shows that two decision algorithms are 

different in their convergence ratios. The equalization algorithm converges faster than the 

neighborhood average algorithm. However, the equalization algortihm induces 15% 

more load transfer than the neighborhood average algorithm (the equalization algorithm 

moves 45% and the other moves 30% of the total workload). Compared with the data 

shown in Figure 5.2, the convergence speed of the equalization algorithm is close to that 

of the SI algorithm using random neighborhood, which is slower than the DI algorithm. 

The experiment further indicates that random probing schemes with a sender-initated 

policy converge much slower than the diffusive scheme with a directory-initiated policy.  
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Figure 5.9 The convergence ratios of the random probing scheme 
 

5.6. Dealing with large sized services 

In our previous studies, we assumed that services are of fine granular sizes. For a load 

transfer, services with any size can migrate from a node to another. Therefore, all nodes 

are able to reach the same available capacity in a globally balanced state. However, in 

reality, some systems have large-sized services, and it is difficult to equalize the available 

capacities of the nodes, and the load imbalance (i.e., the maximum difference between 

the available capacities of nodes) can not be completely resolved.  

We propose two different decision algorithms in this subsection. They are for a 

diffusive load balancing scheme to decide load transfers between nodes in a P2P system. 

These two algorithms are variations of an algorithm proposed in [Cortés2002], where the 

tasks with equal amounts of resource requirements are considered. Our algorithms 

implement a directory-initiated policy; they consider the amount of resource requirements 

of services instead of the number of services on the nodes. They are intended for systems 

with homogeneous services (i.e., all services have the same resource requirements) and 

for systems with heterogeneous services (i.e., services have different resource 
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requirements), respectively. We investigate the standard deviation of available capacities 

and the impact of the sizes of services on this standard deviation for a system.  

We use the same notations as in Chapter 4 to describe the algorithms. As earlier, we 

assume that the overlay network would update the destination of a shared object or a 

virtual server during a load transfer. For example, a virtual server has its IP address 

changed when it is moved; thereafter, the virtual servers pointing to it update the IP 

address stored in their routing tables [Surana2006].  

5.6.1. Homogeneous services 

The DIHomoService algorithm decides load transfers between possibly several pairs 

of overloaded and under-loaded nodes within the neighborhood of a load balancing 

operation. The algorithm calculates the average available capacity of nodes in the 

neighborhood using the formula 
i

Aj

j

A
A

avc

avc i

i

∑
∈

= . Based on the average available node 

capacity
iAavc , it classifies a node j in the neighborhood as either overloaded (if its 

available capacity is smaller than 
iAavc ), under-loaded (if its available capacity is larger 

than 
iAavc ), or average loaded. The algorithm stores the information of the overloaded 

nodes in vector SVect and of the under-loaded nodes in vector RVect. Then the algorithm 

decides load transfers using the decision procedure shown in Figure 5.10. A service has 

its resource requirement equal to l .  

The Decision procedure is shown in Figure 5.10(a). For a pair of nodes that have the 

largest difference between their available capacities among all of the nodes in the two 
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vectors (line 3 and 4), the procedure resolves the load difference by calling the Selection 

function shown in Fig. 5.10(b) (line 5). The Selection function returns the number of 

services to be transferred. In the case that no service can be transferred, the procedure 

stops since it will not be able to schedule load transfer in this operation at all. In the other 

case the procedure decides the load transfer. Then the procedure goes back to line 2 to 

find the next node pair.  

The Selection function is shown in Figure 5.10(b). First, it calculates the required 

available capacity for the sender and the provided available capacity for the receiver 

according to the differences between their available capacity and 
iAavc  (line 1 and 2). 

The minimum of the provided and the required available capacities is the load difference 

that the algorithm should resolve (line 3). Then, in the case that the minimum is larger 

than the resource requirement of a single service, the function returns the integer part of 

the ratio of the minimum to the resource requirement of a service (line 5). Otherwise, it 

returns 1 in the case that the available capacity of the sender could be still less than that 

of the receiver right after the load transfer. In this way, the algorithm keeps the available 

capacities of nodes closest to the average. 
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Decision procedure: 

1 Do forever 

2   if SVect and RVect are not empty                          

           // select a load receiver 

3        select y such that 

         { }
j

RVectj
y avcavc

∈
= max   

          // select a load sender 

4       select x such that  

            { }
j

SVectj
x avcavc

∈
= min    

5       w= Selection(x, y); 

6       if w > 0  

7          decide the transfer with the load of w 

8          remove x from SVect  

9          remove y from RVect 

10     else break;    

11 else break;  

          (a)       
 

Selection(s,r) 

1   sArequired avcavcavc
i

−=   

2    
iArprovided avcavcavc −=  

3   { }
providedrequiredmoved avcavcavc ,min=  

4    if lavcmoved >  

5       return 






l

avcmoved  

6     else if lavclavc rs −≤+  

7            return 1  

8         else 

9           return 0      

(b)  

Figure 5.10 The DIHomoService algorithm: (a) the Decision procedure, (b) the Selection function 

 

We can see that, when following the above procedure, the diffusive load balancing 

eventually stops. In the following part, we assume that the system has a static workload. 

This means that no new service joins or leaves the system, and the request rates of 

existing services do not change. We also assume now that the P2P system has no churn. 

Cedo et al. [Cedo2007] presents assumptions for a general model of a partially 
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asynchronous load balancing scheme. These assumptions assure that the diffusive load 

balancing converges or stops in a system with homogeneous services. We show that our 

scheme with the DIHomoService algorithm has additional properties compared with the 

general model. First, the proposed scheme serializes the running of its operations in 

neighborhoods with common nodes. Compared with the assumption of partial 

asynchronous message passing for the general model, the local serialization guarantees 

that the load status of a neighborhood is always fresh and correct during an operation. 

Second, the general model assumes sender-initiated load transfers. Since the scheme uses 

the DIHomoService that decides load transfers for multiple pairs of senders and receivers, 

the scheme has a stronger load balancing power by invoking multiple sender-initiated 

load transfers in one operation. Third, the DIHomoService also guarantees that scav ′  is 

less than rcav ′  for a pair of sender and receiver. Hence, like the general model, our 

scheme using the DIHomoService will eventually stop load transfers (in a system with a 

static workload), and the system enters a globally stable state thereafter.  

We further claim that after the system enters a globally stable state, the local load 

imbalance of the system (i.e., the maximum difference between the available capacities 

of nodes in a neighborhood) is 2l. In the case that the decision algorithm of an operation 

decide no load transfer to be done between two nodes, for example, between the sender 

s1of SVect and the receiver r1 of RVect, either lavcavc sAi
<− 1  or lavcavc

iAr <−1  holds. 

Then, the inequality lavcavc sr 211 <− exists. In the case that there are p nodes in RVect, 

and 12)1( rrprrp avcavcavcavc ≤≤≤≤ − K , no receiver could be located as a receiver for 

s1. In the case that there are q nodes in SVect, and sqqsss avcavcavcavc ≤≤≤≤ − )1(21 K , 
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no sender could be found for r1. Hence, in the globally stable state, the local load 

imbalance (i.e. the difference between the available node capacities between s1 and r1) is 

at most 2l.  

Because of the local load imbalance, a global load imbalance (i.e. the maximum 

difference between the available capacities of the nodes in a system) can reach the value 

2ld where d is the diameter (i.e. maximum of the minimum hop distance between any two 

nodes) of the overlay network. We use an example to derive the global load imbalance. 

We consider that a node 1s  in neighborhood 1A  transfers its services to dr in the 

neighborhood dA  in d hops at most. We construct a path connecting the nodes according 

to the load transfers in the form of d

A

dd

AAA

rsrsrs
dd

→→→→ −

−

// 1211

121

L  where 1/ +ii sr represents 

a node that works as a receiver in  iA  and as a sender in 1+iA . Since the local load 

imbalance is bound by 2l, the global load imbalance between 1s and dr is bound by 2ld.  

5.6.2. Heterogeneous services 

The DIHeteroService algorithm deals with heterogeneous services. Similar to the 

DIHomoService algorithm, the Decision procedure of the DIHeteroService starts from 

selecting a pair of nodes for a load transfer. The DIHeteroService algorithm calls a 

different Selection function. The function returns a vector containing the services selected 

for a load transfer (Figure 5.11(a)). The services with the minimal resource requirements 

are selected (line 4 in Figure 5.11(a)) in a way that the total resource requirement of the 

selected services will not lead to the sender’s available capacity larger than the receiver’s 

available capacity thereafter. After calling the Selection function, the procedure removes 
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the sender and receiver from the SVect and RVect and continues the decision phase until 

no pair can further be identified. 

Selection (s,r): 

1   W = { }; 

2   P = { }sservice∈ ;  

3   Do   

4        { }service
Pservice

ll
∈

= minmin    

5       if minmin lavclavc rs −≤+  

6       then   

7          add v to W if minllv =  

8           minlavcavc ss +=  

9           minlavcavc rr −=  

10        remove v from P 

11       continue 

12     else  

13         return W   

       (a) 

 

Segment of Decision procedure: 

10      else 

11         remove x from SVect 

12         if SVect is not empty  

13                 go to line 4                              

14    else break;  

          (b) 

Figure 5.11 The DIHeteroService algorithm: (a) the Selection function, (b) the segment replacing lines 10 and 11 of the 
Decision procedure in Figure 5.10(a). 

 

Using the arguments we used for the DIHomoService algorithm, we can show that the 

load balancing with the DIHeteroService algorithm will stop in a system with a static 

workload. However, when the system reaches a globally stable state, the local load 

imbalance might not be the smallest. For example, for an operation, even when there is 

no service of 1s  that could be selected for a load transfer between the pair 1s  and 1r , it 

is possible that there are still some services in the other senders that could be transferred 

to 1r . In order to improve the DIHeteroService, we replace lines 10 and 11 of the 
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Decision procedure in Figure 5.10(a) by the segment shown in Figure 5.11(b). The 

Decision procedure of the operation stops when there is no sender in SVect or no receiver 

in RVect.  

Like the DIHomoService algorithm, the DIHeteroService algorithm reduces the 

differences between the available capacities of the nodes in each operation. Also, when 

the distribution of the loads in the system is unknown, in a globally stable state, the local 

imbalance is bounded by max2l where maxl is the maximum resource requirement of the 

services, and the global load imbalance is bounded by dlmax2 . 

5.6.3. The impact of the service sizes  

In this subsection, the effectiveness of the scheme is investigated in terms of the 

convergence ratios (defined in Section 4.3.2.2), and the number of load transfers that 

occur for load balancing. We assume that each load transfer requires the same amount of 

resources, such as CPU or bandwith, even though they may include multiple services. 

Accordingly, a larger number of load transfers indicates a higher cost of load balancing. 

We also investigate the standard deviation of available capacities when the system is in 

the presence of churn. This is the degree of load balancing that can be obtained; as we 

will see, it depends on the degree of churn (as can be expected). The impact of the 

resource requirements of services (i.e. the sizes of services) for load balancing is also 

further examined.  

The following experiments use the configuration described in Section 4.3.2.2. The 

difference is that a system installs large-sized services or small-sized services. These 

services are randomly distributed over the nodes at the beginning of an experiment. For 



 120 

example, for a system with large-sized homogeneous services, l is set as 2.5 

requests/second for a service, which is of the same order as the node capacity. A node can 

host 4 services at most. For a system with small-sized homogeneous services, l is set to 

0.25 requests/second, which is one tenth of that of a large service. A node can host 40 

such services at most. For the systems hosting heterogeneous services, services have their 

resource requirements uniformly distributed between 0 and a preconfigured maximum, 

e.g., 2.5 requests/second for a system with large-sized services, and 0.25 requests/second 

for a system with small-sized services. Therefore, the sum of the resource requirements 

of these services is equal to half of the total capacity of the system, and the average 

available capacity of nodes is 5 requests/second (and the average utilization of the system 

is 50%). 

Table 5.2 shows the results collected from 20 runs of experiements. The mean value 

and the 90% confidence interval (CI) for the mean of each item are given. For a system, 

the convergence ratio of the first round 1γ  is smaller than that of the second round. This 

indicates that, when load balancing first starts, the balancing operations largely reduce the 

differences of available node capacities. Along with the progress of load balancing, the 

reduction become smaller. Furthermore, 1γ for a system hosting small services is smaller 

than for a system hosting large services. This indicates that small services facilitate the 

load balancing. Since the load balancing operations could select the small services in the 

heterogeneous systems for further resolving load unbalances, the available capacities of 

the nodes in these systems can have a smaller standard deviation in subsequent rounds. 

However, moving services for load balancing in these heterogeneous systems introduces 

more load transfers. The number of load transfers in a heterogeneous system is about 
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three times larger than in a homogeneous system hosting only the maximum-sized 

services. From the Table 5.2, we also see that the global load imbalance of a system in 

the stable state is much smaller than the bound calculated in Section 5.6.1. The predicated 

global load imbalance is bound to ld2 , but the experiments show a value around l or l2 .  

 

Table 5.2 Results for the DIHomoService and DIHeteroService decision algorithms with skip-list overlay 
neighborhood 

 

Homogeneous system Heterogeneous system 

 
Small 

services 
Large 

services 
Small 

services 
Large 

services 

Mean 1825.9 617.65 5414.6 1608.05 Number of load 
transfers  90% CI 25.44 5.86 64.46 17.17 

Mean 0.034 0.141 0.013 0.124 
1γ  90% CI 0.002 0.009 0.001 0.002 

Mean 0.88 0.99 0.324 0.99 
2γ  90% CI 0.039 0.005 0.016 0.001 

Mean 0.09 0.49 0.012 0.355 Standard deviation of 
available capacities 90% CI 0.01 0.032 0.001 0.006 

Mean 0.36 4.5 0.139 2.64 Maximum difference 
of available capacity 90% CI 0.047 0.377 0.014 0.116 

 

 

In the following experiments, we study the effect of the load balancing in the 

presence of churn. These experiments use the churn model described in Section 5.3.1. 

Without load balancing, the standard deviation of the available node capacities always 

increases, and the degree of the increase depends on a churn rate. For example, in the 

case that the system has a churn rate of 0.1, after the system has run for 50 rounds, the 

standard deviation of the available node capacities is increased by a factor of three. In the 

case that the churn rate is 0.9, the standard deviation is increased by a factor of seven 

after 50 rounds. 
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                                    (c)                                                             (d) 

Figure 5.12 Load balancing in a system with churn: (a) the standard deviation of available capacities when churn rate is 
0.1; (b) the number of load transfers when churn rate is 0.1; (c) the standard deviation of available capacities of nodes 

when churn rate is 0.9; (d) the number of load transfers when churn rate is 0.9. (Note: “homo” is for homogeneous 
services, “hetero” is for heterogeneous services, “small” is for services with small resource usage, and “large” is for 

services with large resource usage) 

 

In a system using the diffusive scheme, the standard deviation of the available 

capacities of nodes depends on the churn. When the system has negligible churn, for 

example, one node joins or leaves in every 2 rounds, load balancing can quickly resolve 

the load unbalance, and its effectiveness is close to that shown in the previous 

experiments. Therefore, in the following experiments, two different churn rates are 

considered: a low rate of 0.1 and a high rate of 0.9. These experiments use the four 

systems described above. Figure 5.12 shows the standard deviation of the available 

capacities of nodes and the number of load transfers in each round of the first 50 rounds. 
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For a system, the standard deviation slightly varies around a certain value as the system 

evolves, and we say that the system enters a steady state. When the churn rate is 0.1, the 

bounds of the standard deviations for the steady states of the four systems are around 0.75 

with no significant difference (Figure 5.12(a)). However, the numbers of load transfers 

are largely different (Figure 5.12(b)). The systems hosting large services are favored by 

the load balancing operations with fewer load transfers. For example, the homogeneous 

system hosting large services has the fewest load transfers, and the heterogeneous system 

hosting small services has the largest number. Figure 5.12(c) shows the standard 

deviations of available capacities for the cases where the churn rate is 0.9. Compared 

with Figure 5.12(a), for a system, the bound of the standard deviation of available 

capacities is increased. A heterogeneous system hosting small services has a distinct 

bound around 2.2, and other systems have a bound of around 1.6. These bounds are close 

to those in systems with fine-grained objects. This observation indicates that the sizes of 

services has not much impact on the bound of the standard deviation of available 

capacities when a system has churn. Figure 5.12(d) shows that a homogeneous system 

hosting large services has the fewest load transfers, and this further confirms our intuition 

based on Figure 5.12(b).  

5.7. Summary 

In this chapter, we investigated the effectiveness of load balancing for P2P systems. 

Load balancing with random walks (or random probing) was proposed for P2P load 

balancing to deal with the change of file popularity and churn. According to our study, 

using random-walk neighborhoods, the SI and RI algorithms perform better; however, 
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their effectiveness is still worse than that of the DI algorithm. The performance of the DI 

algorithm does not depend on the kind of neighborhood, random-walk or skip-list. 

However, the scheme using random walks needs to probe O(logN) nodes for each 

balancing operation, which represents a large message overhead, unless a static random 

neighborhood is used. 

Load balancing in P2P systems has to consider churn. The DI algorithm is able to 

control the average of the standard deviations of available capacities of the nodes within a 

bound when the system experiences churn. The resulting bound is proportional to the 

churn rate. We are able to understand the effectiveness of the diffusive load balancing 

scheme under adverse factors, such as churn and heterogeneous node capacities.  

Since the services in a real P2P system are not fine-grained, we modified the 

directory-initiated algorithm of the scheme so that the scheme could work for a P2P 

system with large-sized services. The load balancing operations use the DIHomoService 

algorithm (i.e. directory-initiated algorithm for systems hosting homogeneous services), 

or the DIHeteroService algorithm (i.e. directory-initiated algorithm for systems hosting 

heterogeneous services). The results of the simulation experiments show that, when the 

churn is negligible, the small services hosted by a heterogeneous system facilitate load 

balancing. Hence, the node performance of a heterogeneous system has a smaller 

variance than that of a homogeneous system with the same maximum-sized services. The 

results also show that, when the systems has noticeable churn, the variances of the node 

performance of the systems are not significantly different. However, higher churn rates 

result in larger differences of node performance. The numbers of load transfers are also 
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increased. A system hosting larger services with homogeneous capacities always 

introduces the fewer load transfers. 
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6. Diffusive load balancing for 

clustered peer-to-peer systems 
We further designed a diffusive scheme for balancing the loads of the nodes in a 

clustered P2P system so that the services of the clustered system could have similar mean 

response times. We propose decision algorithms for the load balancing operations to 

transfer data (or services) or nodes between clusters. We show that the scheme is able to 

converge in a clustered system. We also discuss the difference between balancing the 

available capacities of nodes and balancing the available node capacities of clusters. We 

assume that, in a clustered system, the clusters have different sizes, and the nodes have 

different capacities.    

6.1. Structure of a clustered peer-to-peer 

system   

In a clustered P2P system, nodes are organized into clusters. Then, these clusters are 

organized into a structure, for example, a tree, hypercube, or just a big flat interconnected 

structure. Clustering helps a P2P system to perform better. We briefly discuss several 

clustered P2P systems here.  

In clustered P2P systems, nodes are grouped into clusters based on different criteria. 

Some systems, like Hierarchical Gnutella, group nodes at random. The nodes within a 
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cluster do not have any common property. In opposition, some systems group nodes 

based on their locations (for example, CBT [Yu2008] and eQuus [Locher2006]), or based 

on the similarities of their documents (e.g. the approach proposed by Yang et al. 

[Yang2007]). The HCPS system [Liang2007] groups nodes according to their resource 

capacities. We assume that within each cluster, all resource capacities of the nodes are 

shared effectively by some intra-cluster scheduling algorithm.  

The clusters in a clustered P2P system are usually interconnected into some kind of 

structure. For example, the systems proposed in [Krishnamurthy2001], [Stutzbach2005], 

and [Liang2006], let the super nodes of the clusters construct a network with a random-

graph topology. The HCPS proposed in [Liang2007] has a hierarchical tree structure. The 

nodes of the tree are clusters. The head (i.e. super node) of a child cluster participates in 

its parent cluster. In some systems, a cluster does not have a super-node or head. Some 

nodes in different clusters are connected directly. For example, in the system proposed in 

[Yang], a node has links (called long-distance links) that points to the nodes in some 

other clusters. In systems, such as eQuus [Locher2006] and Cycoid [Shen2006], clusters 

construct a structured P2P overlay network, where the nodes in a cluster connect to the 

nodes (regular nodes or super nodes) in neighbor clusters.  

The number of clusters within a system change by cluster splits or mergers. The sizes 

or members of a cluster change when nodes join or leave. There are two ways for a 

clustered P2P system to manage its clusters: centralized or distributed. In a centralized 

way, a system has a central server. For example, the system described in 

[Krishnamurthy2001] has a server that stores the network locations of the clusters in the 

system. A new node could find the cluster whose nodes share the same BGP (i.e. Border 



 128 

Gateway Protocol) router with it. The server in a HCPS system stores the information of 

the number of nodes and the total upload bandwidth regarding each cluster. This 

information is used when the server decides a cluster for a new node. The new node with 

a large (small) upload bandwidth joins a cluster whose average upload bandwidth is the 

minimum (maximum). Also, this central server splits a cluster into two clusters (or 

merges a cluster with another) in the case that the sizes or average upload bandwidth of 

the cluster is larger (or smaller) than the global average by a given factor. 

Differently, in a distributed way, a new node independently chooses a cluster to join, 

and clusters decide split or merger by themselves. Normally, a new node invokes a join 

service which forwards a “join” message in an overlay network. The forwarding 

procedure stops until it locates the cluster that shares the common property with the new 

node. For example, in the system proposed in [Yang2007], the join procedure locates the 

clusters whose nodes share the same categories with the new node. These categories are 

generated according to the documents stored on nodes. In eQuus, the procedure locates 

the cluster which is closest to the new node by geographic distance. In eQuus, a cluster 

performs a split (or a merger) in the case that its size is larger (or smaller) than a 

parameter D by a factor of 2. The parameter is called cluster size parameter. Using either 

way (centralized or distributed), a clustered P2P system has to update the connections in 

its overlay network when clusters split or merge.  

Using clustering, the system may improve certain properties, such as the performance 

of services, resilience to churn, or robustness to node (or link) failures. For example, a 

Hierarchical Gnutella is more resilient and robust than a regular Gnutella. Using the 

network-aware clustering technique proposed in [Krishnamurthy2001], the system can 
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locate files for a file-sharing query in fewer steps, and the chance for a search to succeed 

is also increased. The results in [Liang2007] showed that, by using the clustering 

structure of HCPS, the nodes can receive video chunks at a rate close to the theoretical 

maximum.  

Load balancing is proposed to improve the performance of nodes in clustered P2P 

systems. These schemes normally use two-level load balancing: intra-cluster load 

balancing for the nodes inside a cluster, and inter-cluster load balancing for the nodes in 

different clusters (e.g. [Shen2007] and [Garofalakis2009] ). A primary node (or super-

node) of a cluster conducts intra-cluster load balancing which transfers loads between 

nodes inside a cluster. For example, the intra-load balancing in [Shen2007] uses a load 

sharing scheme to transfer the loads from the overloaded nodes to the under-loaded 

nodes. They define an overloaded (under-loaded) node to be one that has a load larger 

(smaller) than its capacity. The capacity of a node is the maximum load that the node 

could have in order to serve its service requests within deadlines. In the case that the 

cluster still has unresolved overloaded nodes, the primary node perform an inter-cluster 

load balancing operation that implements the sender-initiated Transfer and random 

probing Information policies. The loads on the overloaded nodes in the sender cluster are 

transferred to the under-loaded nodes in a receiver cluster. The receiver cluster has the 

larger total free capacity (i.e. available capacity in this thesis) between two probed 

clusters. For a node, the free capacity is the difference between its capacity and used 

capacity; for a cluster, the total free capacity is the total of the free capacities of its under-

loaded nodes. The scheme in [Garofalakis2009] lets the super-node of a cluster to evenly 

dispatch the file downloading requests to the normal nodes according to the loads of these 



 130 

nodes. The inter-cluster load balancing takes charge of the sizes of clusters by moving 

peers (or nodes) between clusters or by performing cluster splits or mergers.      

We propose a diffusive scheme that takes charge of the inter-cluster load balancing 

for clustered P2P systems. The scheme balances the loads of the nodes in the system by 

moving services (called load migration or transfer) or by moving nodes (called node 

migration). These two kinds of movements are used for different kinds of system. The 

scheme could move services for a system that groups nodes based on the location of 

nodes, or move nodes for a system that uses replicas to improve the performance of 

applications. Using the diffusive scheme, the available capacities of the nodes in a 

clustered system converge to the average of the system. The scheme proposed in 

[Shen2007] only deals with the overloaded nodes (i.e. the nodes have their available 

capacity less than 0) for a system.    

6.2. Diffusive load balancing for 

clustered peer-to-peer system 

Here, we adapt the diffusive load balancing proposed in the previous chapters to 

clustered P2P systems. In a clustered P2P system, some node in each cluster performs the 

diffusive load balancing operations. These operations equalize the available capacities of 

all nodes in the system.  

The principle of our design is that the nodes are expected to have similar service 

mean response times. We model the performance of a clustered system as a system that 

contains groups of M/M/1 queues. One queue corresponds to one node; therefore a 
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cluster corresponds to a group of such queue. We have shown in Chapter 4 that the mean 

response time of a node is the inverse of its available capacity when an M/M/1 queue 

performance model is used. This implies that, if the nodes in the clustered system all have 

the same available capacity, they will provide the same mean response time. Therefore, in 

our approach, a clustered P2P system may use a scheme like the one in Chapter 4 and 5 

for balancing the available capacities of nodes inside each cluster (i.e. intra-cluster load 

balancing), and the diffusive scheme described in this chapter for equalizing the available 

capacities of nodes in different clusters (i.e. inter-cluster load balancing).  

The diffusive scheme for non-clustered P2P systems described in Chapter 4 and 5 can 

not be used for inter-cluster load balancing without any adaptation. The diffusive scheme 

for a non-clustered system would take the available capacity of a cluster as load measure 

in the clustered system. The available capacity of a cluster is the sum of the available 

capacities of the nodes in the cluster. Because the clusters run intra-cluster load balancing 

operations, the available capacities of the nodes within a given cluster are the same. In 

the case that two clusters are not of the same size, the available capacities of their nodes 

will not be the same when the available capacities of the two clusters are the same. 

Therefore, we modify the diffusive scheme, especially, the decision algorithms.  

The load balancing operations of the proposed diffusive scheme are conducted by the 

nodes of clusters. These operations invoke load transfers that move services between 

nodes, or node migrations that move nodes between clusters. One node in each cluster is 

selected (e.g. by the other nodes using an election algorithm) as a load balancing 

coordinator or simply coordinator of the cluster. A coordinator that is running a load 

balancing operation is called the operating coordinator of the operation. While not 
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running an operation, a coordinator monitors the load status of its own cluster. These 

coordinators asynchronously run their load balancing operations. An operating 

coordinator conducts the three stages of operations (described in Section 4.2.2), including 

the information, decision, and load migration stages. During the information stage, the 

coordinator chooses one node from each of its neighbor clusters and sends probing 

messages to them. The messages are forwarded to the coordinators of these clusters. A 

coordinator returns the load status of its cluster in the case that its cluster is not 

participating in another operation; otherwise, the coordinator returns a “reject” message 

to withdraw from the new operation. During the decision stage, the operating coordinator 

decides load migrations between the selected pairs of sender and receiver clusters in the 

neighborhood. Then, the decisions are sent to the coordinators of these selected clusters. 

During the load migration stage, the amount of loads to be exchanged (for the services) or 

number of nodes to be migrated are determined by the coordinators of the clusters 

involved.  

In the following sections, we will present two algorithms that are used in the decision 

stages. One applies load transfers and the other node migrations.    

6.3. Algorithms deciding load transfers  

This section presents the decision algorithms that decide load transfers between 

clusters in a clustered P2P system with fine-grained services. We also investigate the 

convergence of the scheme in a clustered system without churn, and the standard 

deviation of remaining loads of the system in a system under churn.  
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We define the notations used in this section here. The cluster that has an operating 

coordinator running an operation is called an operating cluster and denoted as cluster i. 

The neighborhood of the operation is denoted as iA , and iA  includes cluster i and the 

neighbor clusters of i. Cluster j is a cluster in iA (i.e. iAj ∈ ). The number of clusters in iA  

is denoted as | iA |. The number of nodes in a cluster, for example, cluster x, is denoted as 

|x|. We define the available node capacity of a cluster to be the average of the available 

capacities of the nodes in the cluster, and write xavc for cluster x. When loads are 

transferred between two clusters, the available node capacities of the clusters change. For 

example, after the loads with the resource requirements equal to l are transferred from 

cluster x to y, the available node capacities of the two clusters become 
x

l
avccav xx +=′  

and 
y

l
avccav yy −=′ , respectively, where xavc  and xcav ′ are the available node 

capacities of cluster x at the beginning and at the end of an operation.  

6.3.1. Decision algorithms  

In a clustered system, in order to make decisions, the decision algorithm of an 

operation has to know the load status of each cluster in the neighborhood. The load status 

of a cluster, including the number of its nodes and its available node capacity, is collected 

during the information stage of the operation by the operating coordinator. The decision 

algorithm calculates the average available node capacity of the neighborhood, selects the 

pairs of sender- and receiver-clusters, and decides the services that should migrate 

between the pairs.    
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Since our previous study shows that the classic Proportional algorithm is inferior to 

the other decision algorithms in terms of convergence speed and cost of load balancing 

(see Section 4.3.2.2), the Proportional algorithm is not further studied. However, we can 

adapt the other algorithms. The CBClustService algorithm is a version of the Complete 

Balancing algorithm (i.e. the CB algorithm described in Section 4.2.3.2). The algorithm 

equalizes the available node capacities of the clusters in a neighborhood. For example, 

the operating coordinator of cluster i is executing an operation. During the decision 

phase, the operation calculates the average available node capacity 
iAavc of the 

neighborhood iA  using the following equation:  

∑

∑

∈

∈
=

i

i

i

Aj

j

Aj

A
j

avcj

avc  (Equation 6.1). 

At the end of the operation, the equation 
ii AAji avccavcavcav =′=′=′ holds. 

We design the DIClustService algorithm which is a version of the Directory-Initiated 

algorithm (i.e. the DI algorithm described in Section 4.2.3.3) for a clustered P2P system. 

In a clustered system, the algorithm first identifies a cluster, for example j, as overloaded 

if 
iAj avcavc < , or under-loaded if 

iAj avcavc > . The algorithm stores the information of 

the overloaded clusters in the vector SVect, and the under-loaded clusters in the vector 

RVect. Then, the DIClustService algorithm performs the Decision procedure shown in 

Figure 6.1.  

First, in the case that the SVect and RVect are not empty, the procedure selects a pair 

of sender and receiver according to their avcacceptable or avcprovidable from the two vectors. 

The avcacceptable (avcprovidable) is the available capacity a sender (receiver) cluster should 
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receive (provide) so that its nodes could have their available capacities equal to the 

average. In order to maximally reduce the differences between the available node 

capacities of the clusters, the procedure selects the cluster with the largest avcacceptable as 

the sender and the cluster with the largest avcprovidable as the receiver from the vectors 

(line 3 and line 4). The total resource requirement of the services that migrate between s 

and r is equal to the minimum of  avcacceptable and avcprovidable (line 5). Therefore, after the 

service migration, the inequality rAs cavavccav
i

′≤≤′  holds.  

Decision Procedure 

 
1 Do forever 
2     if SVect and RVect are not empty 

3         }){(max javcavcs jA
SVectj i

−=
∈

 

4         }){(max javcavcr
iAj

RVectj
−=

∈
 

5        savcavcavc sAacceptable i
)( −=   

6        ravcavcavc
tArprovidable )( −=  

7        decides a service migration with the amount of   

               },min{ providableacceptable avcavc  from s to r 

8         remove s from SVect and r from RVect 
9      else 
10         break 

 

Figure 6.1 The decision procedure of the DIClustService algorithm 

 

The sender-initiated algorithm (i.e. SIClustService) and the receiver-initiated 

algorithm (i.e. RIClustService) for a clustered system can be similarly obtained from the 

corresponding algorithms for non-clustered systems. Similar to the DIClustService 

algorithm, these algorithms consider the avcacceptable or avcprovidable of the clusters while 

making decisions. We do not describe these two algorithms any further here.  
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6.3.2. Effectiveness of the decision 

algorithms 

In this subsection, we first present a clustered system whose clusters construct a 

network with a skip-list structure. Then, we derive the convergence ratio of the decision 

algorithms for a clustered system. At the end, we investigate the impact of the sizes of 

clusters on the effectiveness of the schemes in the clustered P2P system with a skip-list 

overlay network.  

6.3.2.1. A clustered peer-to-peer system with a 

skip-list overlay network  

We demonstrate the structure of a clustered system using Figure 6.2. The clusters of 

the system construct a network with a skip-list structure. In the figure, the clusters are 

represented by the dots. The nodes within a cluster (a dot) connect to each other by using 

connections called intra-cluster connections. The nodes in a cluster connect to the nodes 

in other clusters by using connections called inter-cluster connections. In this example, 

the clusters build the skip-list structure by using the inter-cluster connections between 

their nodes. Nodes use the connections in the skip-list structure to resolve the P2P lookup 

messages. Figure 6.2(a) shows the “fingers” (i.e. the inter-cluster connections) of cluster0; 

those fingers point to the neighbor clusters: cluster1, cluster2, cluster4, cluster8, cluster16. 

Figure 6.2(b) shows the routing table of a node inside cluster0. An entry of the routing 
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table contains pointers to up to k nodes of a specific cluster. The node chooses one of 

these nodes for forwarding a lookup message to the cluster.   

cluster0

cluster1

cluster2

cluster4

cluster8

cluster16

a cluster of nodes

 

(a)  

 

 (b)  

Figure 6.2 An example of a clustered peer-to-peer system: (a) the skip-list overlay network constructed by inter-cluster 
connections, (b) the routing table of a node in cluster0 

 

The members of clusters are changed when nodes join or leave these clusters. A node 

joins a cluster at random, and any of clusters can have a node leaving. The size (i.e. the 

number of nodes) of a cluster is controlled to remain in the range 







D

D
2,

2
; we call D the 

cluster size parameter of the clustered system. A cluster splits into two clusters in the case 

that its size is above or equal to 2D, and mergers with its predecessor in the case that its 
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size is below or equal to 
2

D
. When a cluster split or merger occurs between two clusters, 

the intra-cluster connections of the nodes in both clusters are updated, and the inter-

cluster connections pointing to or from the new cluster or the merged cluster are updated 

like non-clustered systems when nodes join or leave.  

6.3.2.2. Convergence speed  

The diffusive scheme converges in a clustered P2P system since the variance of the 

available capacities of the nodes in the system is monotonically non-increasing. While 

equalizing the available capacities of the nodes, the decision algorithm also equalizes the 

available node capacities of the clusters in the system. We assume that the system has a 

certain number of clusters (denoted as c), and a cluster (e.g. cluster j) in the system has a 

certain number of nodes (denoted as j ). At the beginning of an operation, 

∑

∑

∈

∈
=

i

i

i

Aj

Aj

j

A
j

javc

avc . In the case that all the clusters have the same number of nodes (e.g. 

m), the following equation holds for a neighborhood i, and the CBClustService algorithm 

can be regarded as a CB algorithm that works on clusters. 

i
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i
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==  (Equation 6.2) 

 

Therefore, the variance of available node capacities of clusters can be derived according 

to Equation 4.3 in Chapter 4 as )(
1

1)( 22 avc
c

A
cav

i σσ 






 −
−=′  for a clustered system. 
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Here, in a clustered system, )(2
avcσ and )(2

cav ′σ are the variances of the available node 

capacities of the clusters at the beginning and end of the operation, respectively, and 

iA is the number of clusters in the neighborhood of the operation. Since, in each 

operation, )(2 cav ′σ is smaller or equal to )(2 avcσ , the variance of the available node 

capacity of the clusters is monotonically non-increasing. Meanwhile, in a round, the 

standard deviation of loads of the clusters (i.e. the standard deviation of available node 

capacities of the clusters) is reduced by a factor of 
21

1

c

i

c

A








 −
− , which is approximately 

equal to 2

1 iA

e

−

. This factor indicates that the available node capacities of the clusters in 

the system converge to the average. Using the same reasoning as in Chapter 4, we can 

prove that the other schemes, such as DIClustService, SIClustService, and 

RIClustService, converge. Also, the DIClustService algorithm converges faster than the 

SIClustService or RIClustService algorithm.  

In the case that the sizes of the clusters are not exactly the same, Equation 6.2 does 

not hold any more. Moreover, although the variance of available node capacities of 

clusters is still monotonically non-increasing, the convergence speed of the scheme does 

not follow the above analysis. We use simulation experiments to determine the speed of 

convergence. The convergence speed of the scheme in a clustered system is evaluated 

based on the standard deviation of loads of clusters. The cost that the operations use for 

load balancing is measured as the proportion of loads that are transferred between the 

clusters. This cost is directly induced by the diffusive scheme for the inter-cluster load 
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balancing. In this section, the load balancing operations transfer fine-grained services. 

We collect these measurements by using the ways we used in Chapter 4 and 5. 

The simulated system in the experiments uses the structure like the one described in 

the Section 6.3.2.1. At the beginning of an experiment, the simulation program adds 

nodes to clusters randomly selected. The sizes of clusters are controlled by a parameter 

D. There are 10,000 nodes in the system, and the capacity of a node (i.e. the parameter 

NC) is equal to 10 requests/second. Initially, loads are randomly distributed to clusters; 

that is, a cluster installs the services with the total resource requirement uniformly 

distributed from 0 to its total capacity (i.e. the total of the capacities of its nodes). 

Therefore, the distribution of the available node capacities of the clusters follows a 

Uniform distribution with the range [0, 10] (i.e. with a mean of 5 requests/second and a 

standard deviation of 2.88) initially. Because of the intra-cluster load balancing, the 

nodes inside a cluster always have the same available capacity. 

The simulation software use the ways described in Section 5.3 to simulate the churn 

in the clustered system. When churn occurs, the simulated system changes the 

connections in its overlay network (described in Section 6.3.2.1). Moreover, the available 

node capacities of clusters are changed. For example, after node x with capacity C  joins 

cluster j, the cluster becomes j′ , and its available node capacity becomes 

1+

+
=′

j

Cjavc
avc

j

j . In the case that a node leaves cluster j, the available node capacity of 

the cluster becomes 
1−

−
=′

j

Cjavc
avc

j

j . Furthermore, the members of clusters can be 

changed by split or merger when churn occurs in the system. During a cluster-split, the 

nodes and the services of the original cluster are taken over evenly by the two new 
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clusters. During a cluster-merger, two clusters combine their nodes and services into the 

new cluster. In the case that the two clusters that are created by a cluster split, or 

combined by a cluster merger, have similar sizes and available node capacities, the 

available capacities of their nodes may not change much thereafter.  

Figure 6.3 shows the effectiveness of the scheme using the DIClustService algorithm 

in the clustered system from three perspectives: the standard deviation of available 

capacities and convergence ratio in the system without churn, and the standard deviation 

of available capacities in the system with churn. We note that the scheme displays some 

of the properties that we have observed in a non-clustered system. When the system does 

not have churn, the difference between the available node capacities for different clusters 

approaches zero in the progress of load balancing (i.e. the line for the standard deviation 

of the available capacities based on clusters in Figure 6.3(a)). Meanwhile, the scheme has 

the smallest convergence ratio based on clusters at the first round; then, the convergence 

ratio increases. After the second round, the convergence ratio does not change much (see 

Figure 6.3(b)). Furthermore, the standard deviation of available capacities based on 

clusters in the system with churn is bounded, and the size of the bound highly depends on 

the rate of churn (see Figure 6.3(c)). We will discuss the impact of the sizes of clusters in 

the following subsection.   

In Figure 6.3, for each perspective, two measures are collected: one is based on 

nodes, another is based on clusters. For example, (a) shows the standard deviations of 

available capacities based on nodes (i.e. the available capacities of the nodes) and based 

on clusters (i.e. the available node capacities of the clusters), respectively. We observed 

that, for a certain perspective, the difference between its two measures is not significantly 
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different. We conclude that, the reduction of the differences between the available node 

capacities of clusters is highly correlated to the reduction of the differences between the 

available capacities of nodes. This result indicates that the diffusive scheme is also a 

function that effectively equalizes the available node capacities of the clusters. Therefore, 

the diffusive scheme working in a clustered system is able to maintain its properties that 

are observed in non-clustered systems. We do not repeat for clustered systems the 

experiments about the effectiveness of the diffusive scheme described in Chapter 4 and 5 

here. 
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                                                                         (c)                                                                     
Figure 6.3 The effectiveness of the scheme on nodes or clusters in a clustered system with D=8, and C=512: (a) 
standard deviation of available capacity and (b) convergence ratio in the system without churn, (c) the standard 

deviation of available capacities of the system with churn rate=0.1 or 0.9 
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6.3.2.3. The impact of cluster sizes 

In this section we discuss how the effectiveness of load balancing depends on the 

number of clusters and the sizes of the clusters.  

First, we have varied the number of clusters (e.g. c=128, 256, 512, or 1024). The 

cluster size parameter was set to D=8. Figure 6.4(a) shows that convergence is slightly 

slower in systems that have fewer clusters (e.g. 1γ  is equal to 0.020 or 0.0168 in the case 

of c equal to 128 or 256). However, for the systems that have more than 512 clusters, the 

effectiveness of the scheme does not significantly change, where the convergence ratios 

of the scheme (shown in Figure 6.4(a)) and the proportions of loads moved (shown in 

Figure 6.4(b)) are not significantly different. This shows that the diffusive scheme for a 

clustered system is scalable. Furthermore, the data shown in Figure 6.4(a) and (b) is 

similar to those in Figure 5.7 which corresponds to non-clustered systems. This similarity 

indicates that the operations of the inter-cluster load balancing effectively reduce the 

differences between the available node capacities of clusters. The data in Figure 6.4(c) 

and (d) indicates that, for a system with churn, the standard deviation of available node 

capacities does not depend on the number of clusters.  

Then, we investigate the effect of the cluster size on the effectiveness of load 

balancing. Figure 6.5 shows the data collected from the experiments using systems with 

different cluster size parameters D (e.g. D=4, 8, 16, and 32). The number of nodes in the 

clusters is in the range 







D

D
2,

2
, and the average number of nodes is 

4

5D
. The numbers 

of clusters c of these systems are equal to 512. We observed that, in the absence of churn, 

the convergence speeds of the scheme in these systems are very similar. This indicates 



 144 

that the convergence speed does not depend on the cluster-size parameter of the system. 

Compared to the results shown in Figure 4.5(b) and (c) (those for a non-clustered 

system), the results in Figure 6.5(a) and (b) confirm the implication that the convergence 

speed of the diffusive scheme does not depend on whether the nodes are clustered or not 

(e.g. in a clustered system or a non-clustered system). 
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Figure 6.4 The effectiveness of the scheme in systems with different numbers of clusters: (a) convergence ratio and (b) 
proportion of services moved in systems without churn, (c) standard deviation of remaining available capacity and (d) 

proportion of loads transferred in systems with churn rate of 0.1 and 0.9, respectively 
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Figure 6.5 The effectiveness of the scheme in systems with the same number of clusters (e.g. C=512) and different 
cluster-size parameters: (a) convergence ratio and (b) proportion of loads transferred in systems without churn, (c) 

standard deviation of available capacities and (d) proportion of loads transferred in systems with churn rate of 0.1 or 
0.9 

 

However, we also observe that, when these system have churn (e.g. with a rate of 0.1 

or 0.9), the standard deviations of available capacities that the systems could maintained 

are different. Here, for a clustered system, the standard deviation of available capacities is 

the standard deviation of the available node capacities of clusters. The bound (i.e. the 

average of the standard deviations of available capacities) for the system with D=4 is 

about 10 times as large as that for the system with D=32. That is, in the case that the 

churn rate is 0.1, the bound is 0.131 for D=4 and 0.016 for D=32; in the case that the 

churn rate is 0.9, that is 0.382 for D=4 and 0.038 for D=32. According to our analysis for 
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non-clustered system (see Section 5.3), there are two factors that affect the size of the 

bound of the standard deviation of available capacities in a system: (1) the change of the 

workload distribution on nodes caused by churn, and (2) the convergence speed of the 

load balancing scheme in a system without churn. Since the convergence speed of the 

diffusive scheme does not depend on the cluster-size parameter of a system, the 

convergence speed in a system with D=4 is as same as that in a system with D=32. 

Therefore, we intuit that the change of workloads on nodes caused by churn is the major 

factor that causes the difference between the systems with different cluster size 

parameters.  

In a clustered system with churn, the change of the workloads on nodes depends on 

the number of nodes per cluster. For example, in the case that the clusters have their 

available node capacities equal to the system average (written as AVC ), and the 

workloads of the nodes are equal to the system average as well (written as l ). If a node 

leaves cluster i, the workload of the remaining nodes in the cluster increases to 
1−i

li
. In 

the case that a node joins a cluster j, the workload of the nodes in the cluster reduces to 

1+j

lj
. In the absence of load balancing, the leaving of one node from some cluster and 

the joining of a node into another cluster will therefore lead to a variance of the 

workloads of nodes (i.e. )(2
lNσ ) given by the equation:  
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22

2σ
 (Equation 6.2) 

where N is the number of nodes in the system. Since the number of nodes in a cluster is 

on average 
4

5D
, we have 

4

5
1

D
i ≈−  and 

4

5
1

D
j ≈+ . Then, Equation 6.2 can be 

simplified to 
DN

l

N

DD
l

lN
5

45

4

5

4

)(

2
2

2 =









+

≈σ . This indicates that the change of the 

workloads of nodes depends strongly on the average cluster size of the system. Therefore, 

between two clustered systems that have the same system size and different cluster size 

parameters, the system with the smaller cluster size parameter has the larger variance of 

workloads on clusters. We have seen that the bound of the standard deviation of available 

capacities does not depend on the number of clusters in the system. Therefore, between 

the two systems for Figure 6.5, the system with a cluster size parameter of 32 should have 

the smaller bound.   

In summary, the diffusive load balancing is scalable in a clustered system since its 

effectiveness does not depend on the number of clusters. Neither does the convergence 

speed of the load balancing depend on the sizes of clusters. However, systems with larger 

cluster sizes are less affected by churn, and have therefore smaller bound of the standard 

deviation on the available node capacities of clusters.  
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6.4. Load balancing through node 

migrations 

Moving nodes for balancing the loads on nodes has been proposed for P2P systems. 

For example, in addition to moving fine-grained data items between the nodes 

consecutively connected (in the space of node IDs for DHT systems or of object values 

for non-DHT systems), the load balancing schemes proposed in [Bharambe2004] and 

[Vu2009] also foresee the migration of nodes to improve the load balancing speed. A 

node is identified as overloaded (or under loaded) in the case that its load is larger (or 

smaller) than the average of the system by a factor. For obtaining load from an 

overloaded node, an under-loaded node sheds its workload to its original neighbors and 

leaves and rejoins to be the consecutive node of the overloaded node. However, these 

schemes require that the numbers of nodes in a local balancing operation (that performs 

load balancing for the nodes consecutively connected) are the same. Our algorithms 

described below can deal with clusters or neighborhoods having different numbers of 

nodes.   

We present two classes of algorithm here. One is the algorithm for systems having 

nodes with homogeneous capacity, and another is for systems having nodes with 

heterogeneous capacities. We describe these algorithms in the following sections using 

the same terminology used in Section 6.3.  
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6.4.1. Decision algorithms 

Since the diffusive scheme converges fastest with a directory-initiated decision 

algorithm, we propose a directory-initiated decision algorithm (called 

DIClustHomoNode) for deciding node migrations between the clusters in a 

neighborhood. These node migrations change the total capacities as well as the number of 

nodes of the clusters involved, which further changes the available node capacities of 

these clusters. For example, in the case that a node with capacity C is moved into cluster i 

during a load migration, then we have 
1+

+
=′

i

Cavci
cav

i

i ; or, if a node with capacity C is 

moved out, we have 
1−

−
=′

i

Cavci
cav

i

i . 

6.4.1.1. Handling homogeneous nodes 

We consider in this subsection the case that all nodes have the same capacity C (i.e. 

the homogeneous capacity). The decision algorithm is designed to decide the numbers of 

nodes to be migrated between a pair of sender-receiver clusters. After these node 

migrations, the available node capacities of the clusters in the neighborhood become 

closer to their average 
iAavc (calculated according to the operation using Equation 6.1 for 

a neighborhood Ai). For example, there is a migration between a pair of sender cluster s 

and receiver cluster r, and the migration includes k nodes. After the migration, the 

available node capacities of s and r become 
ks

kCsavc
cav

s

s
+

+
=′  and 

kr

kCravc
cav

r

r
−

−
=′  
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respectively. In order for the diffusive load balancing to converge, the inequalities 

rAs cavavccav
i

′≤≤′ have to be satisfied. For the sender, we have 










−

−
=

s

sA

acceptable
avcC

savcavc
k i

)(
 which is the largest number of nodes that s can receive 

without becoming under-loaded. For the receiver, we have  








−

−
=

r

Ar

providable
avcC

ravcavc
k i

)(
 

which is the largest number of nodes that r can provide without becoming over-loaded.  

Then, the decision algorithm chooses k such that },min{ providableacceptable kkk = . In this way, 

the migration reduces the differences between the available node-capacities of the 

clusters in the system.  

Similar to the DIClustService algorithm (see Section 6.3.1), the algorithm first 

identifies a cluster x as overloaded if 
iAx avcavc >  or as under-loaded otherwise. The 

information of overloaded and under-loaded clusters is stored in Vector SVect and RVect, 

respectively. Then, the algorithm calls the Decision procedure described in Figure 6.6.   

The Decision procedure stops in the case that one of the vectors SVect and RVect is 

empty (line 2 in Figure 6.6(a)). Otherwise, the procedure selects a pair of clusters. The 

selected sender cluster s has the largest kacceptable among the overloaded clusters, and the 

receiver cluster r has the largest kprovidable among the under-loaded clusters (line 3 and 4 in 

Figure 6.6(a)). Then, the procedure calls the Selection function (line 5). In the case that 

the Selection function returns a value larger than zero, the Decision procedure schedules 

the node migration including the value (line 7 in Figure 6.6(b)). The procedure continues 

to select the next pair of clusters thereafter. Otherwise, the Decision procedure stops (line 

10 in Figure 6.6(a)). At this moment, it is impossible for the procedure to find any 
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additional node migration between the clusters remaining in SVect and RVect. These 

clusters have smaller acceptablek or providablek  than the current pair. 

Decision Procedure 
 
1 Do forever 
2     if SVect and RVect are not empty 

3         }
)(

{max
j

jA

acceptabe
SVectj avcC

javcavc
ks i

−

−
==

∈
 

4         }
)(

{max
j

Aj

providable
RVectj avcC

javcavc
kr i

−

−
==

∈
 

5         k= selection(s,r) 
6        if (k > 0) 
7           move k nodes from r to s 
8          remove s from SVect and r from RVect 
9        else 
10         break;   
11     else 
12        break; 
13  end of Do 
 
(a)  
 
Selection(s, r) function 
1 k = 0; 

2 








−

−
=

s

sA

acceptable
avcC

savcavc
k i

)(
; 

3 








−

−
=

r

Ar

providable
avcC

ravcavc
k i

)(
; 

4 { }providableacceptable kkk ,min= ; 

5 if k=0 then  

6      if  
11 −

−
≤

+

+

r

Cravc

s

Csavc rs
then 

7         k = 1;  
8 return k;  
 
(b)    
 

Figure 6.6 The decision procedure and the selection function of the DIClustHomoNode algorithm (a) the Decision 
procedure, (b) the Selection function 
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The Selection function calculates the number of nodes that should be included in the 

node migration between r and s. The Selection function returns k in the case that 

{ } 0,min >= providableacceptable kkk  (line 4, 5, and 6 in Figure 6.6(b)). Otherwise, the Selection 

function returns one if rs cavcav ′≤′ could be satisfied after one node migrates (line 8 and 9 

in Figure 6.6(b)) or returns zero if rs cavcav ′>′ could happen. 

We analyze the convergence of the proposed diffusive scheme from three points of 

view. First, using the scheme with the DIClustHomoNode algorithm, a system is able to 

enter a globally stable state when it has a static workload. In this state, the system does 

not have any node migration. The scheme is to converge. We have shown that the scheme 

using DIHomoService is able to converge (see Section 5.6.1). Compared to that scheme, 

the proposed scheme only uses a different algorithm (i.e. DIClustHomoNode) for 

deciding node migration. Since the DIClustHomoNode guarantees that the differences of 

the available node capacities of clusters in a neighborhood are reduced in an operation, 

the proposed scheme conforms to the assumptions of the general model proposed in 

[Cedo2007]. Therefore, eventually, the operations of the proposed scheme do not decide 

any node migration for the system, and the system enters a globally stable state.  

Second, since the node migrations between clusters do not change the total capacity 

and workload of the system, the global average of the available capacities of nodes does 

not change. Therefore, the variances of the available capacities of nodes and of the 

available node capacities of clusters are monotonically non-increasing till the scheme 

stops. Third, we show that the differences of the available node capacities of clusters are 

bounded in a globally balanced state. When a system enters a globally stable state, the 

available node capacities of a receiver cluster r and a sender cluster s in a neighborhood 

satisfy the following inequality:  
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11 +

+
<

−

−

s

Csavc

r

Cravc sr  (Inequality 6.1) 

where the node capacity is u; otherwise, a node migration with at least one node is to be 

decided between the pair. Since 
11 −

−
<

−
−

r

Cravc

r

C
avc

r

r  and 
11 +

+<
+

+

s

C
avc

s

Csavc
s

s , 

the difference between the available node capacities of the two nodes satisfies the 

following inequality:  ε<− sr avcavc  where 
11 +

+
−

=
s

C

r

C
ε . Since the number of 

nodes in a clustered system is in the range 







D

D
2,

2
, we get 

4

4

14

4
22 −

<<
− D

D
C

D

D
C ε  (Inequality 6.2) 

where 2>D , and on average, 
1625

40
2 −

=
D

D
Cε . According to Inequality 6.2, the 

difference between the available node capacities of any two clusters in the system 

satisfies Lε where L is the diameter of the inter-cluster network of the clustered P2P 

system.   

We note that the DIClustHomoNode algorithm is different from the other DI 

algorithms. The DIClustHomoNode decides node migrations, and the others decide load 

transfers. In a node migration between two clusters, the total capacities and the numbers 

of nodes of the clusters change. Both kinds of change affect the available node capacities 

of the clusters. However, in a load transfer between two clusters, only the workloads of 

the clusters change.  

We compare our scheme with two other schemes that use node migrations for load 

balancing in P2P systems. First, the diffusive scheme proposed here is superior to the 
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sender-initiated scheme using random walks in Mercury [Bharambe2004]. Second, 

compared to our scheme, the scheme in [Vu2009] induces overhead to system by 

building an extra structure for aggregating the load statuses of the data areas. Third, while 

making decision for a node migration between two data area, both of the scheme does not 

consider the changes of loads of the data areas caused by a node migration. Therefore, the 

data area that loses a node could become overloaded. A node has to be moved to this data 

area soon. The decision algorithm of our diffusive scheme estimates the load changes of 

the both clusters for a node migration. This prevents a system from keeping moving 

nodes between two clusters. This kind of consideration is especially important in a 

system having nodes with heterogeneous capacities. The decision algorithm designed in 

the following subsection is for this issue.        

6.4.1.2. Handling heterogeneous nodes 

The DIClustHeteroNode algorithm is intended for a clustered P2P networks with 

nodes of heterogeneous capacities. Different from the DIClustHomoNode algorithm, this 

algorithm determines a migration including only a single node. There are two reasons for 

this design. First, in order to precisely select nodes from a receiver cluster, the decision 

algorithm has to know the load statuses of the nodes in the cluster. Including this 

information in messages that report the load status of a cluster increases the lengths of the 

messages and induces overheads to the system. We propose that an operation collects, in 

addition to the available node capacity and number of nodes, the minimum and maximum 

node capacities from each cluster at its information phase. Based on this information, a 

node with a capacity close to the required load exchange can be selected.  Second, when 
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more than one node is exchanged between two clusters, there are more chances for 

clusters to split or merge. Therefore, we think that it is better to exchange a single node 

for each node migration.  

In order to reduce the differences between the available node-capacities of the 

clusters in a neighborhood, the DIClustHeteroNode algorithm selects a sender cluster s 

and a receiver cluster r for node migration such that the following inequality are satisfied:  













≤
−

−
≤

≤
+

+
≤

r

movedr

A

A

moveds

s

avc
r

Cravc
avc

avc
s

Csavc
avc

i

i

1

1
 (Inequality 6.3) 

 where movedC is the capacity of the node that migrates. This inequality guarantees that 

rrss avccavcavavc ≤′≤′≤  right after the node migration. To satisfy this inequality, 

movedC (i.e. the capacity of the node that may be transferred from the receiver to the 

sender) must have a value between ravc  and { }providableacceptable CC ,min  where  

acceptableC (which is equal to 
ii AsA avcsavcavc +− )( ) is the maximum capacity the sender 

can receive without becoming under-loaded, and providableC (which is equal to 

ii AAr avcravcavc +− )( ) is the maximum capacity the receiver can provide without 

becoming over-loaded.  

The Decision procedure and Selection function of the DIClustHeteroNode algorithm 

are shown in Figure 6.7(a) and (b), respectively. The Decision procedure stops in the case 

that the SVect or RVect is empty (line 2 and 5 and line 6 and 9 in Figure 6.7(a)). 

Otherwise, the procedure selects the cluster that has the largest providableC  in RVect (line 3 

in (a)), and the cluster that has the largest acceptableC  among the clusters in SVect (line 7 in 
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(a)). Using the Selection function (line 10 in (a)), the Decision procedure determines the 

expected capacity Cexpected of the node that should migrate from r to s, and a node 

migration instruction containing Cexpected is sent to both clusters (line 12 in (a)). The 

coordinator of cluster r then selects a node with the largest capacity between ravc and 

Cexpected among all of its nodes. The selected node leaves-and-rejoins the overlay network 

and becomes a node in cluster s. In the case that the Selection function determines that 

there is no node in r that can be selected, the procedure removes s from SVect (line 15 in 

(a)), and select another s from SVect (line 6 in (a)) to continue. In this way, the receiver 

cluster is given a chance to provide a node to another sender cluster.  

The Selection function determines the desired capacity of the node that should 

migrate, written as Cexpected. For this purpose, it does the following tests. First, the 

acceptableC and providableC (i.e. Cexpected= { }providableacceptable CC ,min ) should be larger than avcr  

(line 4 in Figure 6.7(b)). Second, cluster r has a node with a capacity larger than  avcr and 

less than Cexpected (line 5 in (b)). In the case that both these tests succeed, the function 

returns Cexpected. Otherwise, the function do a third test: whether Cexpected is smaller than 

avcr, and rs cavcav ′≤′ after the node with the minimum capacity (i.e. min_rC ) moves from r 

to s (line 8). In the case that the test succeeds, the function returns the min_rC (line 9 in 

(b)); otherwise, the function returns zero.  
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Decision Procedure 

 
1 Do forever 
2     if RVect is not empty      

3          }){(max
ii AAj

RVectj
avcjavcavcr +−=

∈

 

4     else 
5          break;   
6    if SVect is not empty 

7          }){(max
ii AjA

SVectj
avcjavcavcs +−=

∈

 

8     else 
9          break;     
10     Cexpected= selection(s,r) 
11     if Cexpected >0  
12           send a node movement instruction with the value of Cexpected to r and s 
13           remove s from SVect and r from RVect 
14   else 
15         remove s from SVect 
16        goto line6  
17 end of Do 
(a)  
 
Selection(s, r)  
 

1  Cexpected=0 

2 
ii AsAacceptable avcsavcavcC +−= )(  

3 
ii AArprovidable avcravcavcC +−= )(  

4 if { } rprovidableacceptable avcCC ≥,min   

5 and { }providableacceptabler CCC ,minmin_ ≤ , and rr avcC ≥max_   

6 Cexpected= { }providableacceptable CC ,min  

7 else 

8     if  
11

min_min_

−

−
≤

+

+

r

Cravc

s

Csavc rrrs and rr avcC ≥min_  

9         Cexpected= min_rC  

10 return  Cexpected 
 
(b)  

 

Figure 6.7 The Decision procedure and the Selection function of the DIClustHeteroNode algorithm (a) the Decision 
procedure, and (b) the Selection function 
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We can prove the convergence of the diffusive scheme using the DIClustHeteroNode 

algorithm by the same technique as for the scheme with the DIClustHomoNode 

algorithm. The DIClustHeteroNode algorithm implements a Selection policy different 

than DIClustHomoNode. The policy specifies that only a node whose capacity is larger 

than avcr can move between two clusters. This policy prevents the case that, after a node 

migration, a sender cluster has an available node capacity even smaller than it has before 

the migration, or a receiver cluster has an available node capacity even larger (i.e. 

ss avccav <′ or rr avccav >′ ). This policy guarantees that the differences between the 

available node capacities of clusters are always non-increasing. Therefore, the scheme 

with the DIClustHeteroNode algorithm converges. We evaluate the effectiveness of the 

DIClustHeteroNode algorithm through simulations in the following subsections.   

6.4.2. Effectiveness of load balancing 

through node migration 

As shown by our convergence analysis above, load balancing in a clustered P2P 

system can be achieved by node migrations. However, this approach could display 

properties that are different from those shown when load balancing is achieved by the 

exchange of fine-grained services. We investigate these properties in terms of the 

convergence speed of the scheme, bound of the standard deviation of available capacities, 

and costs for load balancing, including the number of nodes moved and the number of 

cluster splits or mergers.  
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6.4.2.1. The impact of cluster sizes  

The DIClustHomoNode algorithm is designed based on the DIHomoServ algorithm. 

We have observed in Section 5.6.3 that the convergence speed of the DIHomoServ 

algorithm depends on the size of services (e.g. the services have the same resource 

requirement l). Now, we consider an ideal algorithm called CBHomoServ for a non-

clustered system with large-sized services. This algorithm maximally reduces the 

differences of the available capacities of the nodes in a neighborhood. After one load 

balancing operation by a given node finishes, the local load imbalance (i.e. the maximal 

difference between the available capacities of the nodes in the neighborhood) is bounded 

by 2l. Therefore, in a system with smaller l, the scheme converges faster. Then, we 

consider CBClustHomoNode algorithm as the CB algorithm for the scheme that moves 

nodes in a clustered system. With the CBClustHomoNode algorithm, the local load 

imbalance is bounded by 
4

4
2 −D

D
C (according to Inequality 6.2). Therefore, the 

convergence speed of CBClustHomoNode is affected by the cluster-size parameter D. 

The algorithm converges faster in a system with a larger D. We believe that this is the 

same for the DIClustHomoNode algorithm.  

Table 6.1 compares the effectiveness of the DIClustHomoNode in systems with 

various cluster size parameters (e.g. D=4, 8, 16 or 32). All these systems have 512 

clusters. Table 6.1(a) shows the effectiveness of the scheme in systems without churn. 

The data in the table confirms our intuition. In a system that has a D as large as 4, the 

convergence ratio 1γ  of the scheme is about 6 times as large as that in a system with 

D=32 (e.g. for the case of D=4, 1γ  is 0.17; for the case of D=32, 1γ  is 0.024). In addition, 
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the cluster size parameter D also affects the differences between the available capacities 

of clusters in a system. The differences in the system with D=4 are about 9 or 10 times as 

large as those in the system with D=32. For example, in Table 6.1(a), the standard 

deviation is 0.498 for D=4 or 0.057 for D=32, and the maximum difference is 2.98 for 

D=4 or 0.297 for D=32. However, in systems with larger cluster sizes, more nodes are 

moved between clusters. For example, for the case of D=4, the proportion of nodes 

moved is about 25%, and for the case of D=32, it is about 30%.  

Table 6.1 Effectiveness of the diffusive load balancing in systems with various cluster sizes (C=512) 
 

(a) Systems without churn 

 D=4 D=8 D=16 D=32 

Mean 0.498 0.2278 0.1158 0.057 Standard deviation of 
available capacities 

95% C.I. 0.0056 0.0032 0.0011 0.0003 

Mean 2.982 1.421 0.640 0.297 Maximum difference of 
available capacities 

95% C.I. 0.1334 0.0730 0.0227 0.0068 

Mean 0.172 0.077 0.041 0.024 
r1 

95% C.I. 0.0016 0.0010 0.0004 0.0001 

Mean 0.992 0.987 0.991 0.984 
r2 

95% C.I. 0.0048 0.0061 0.0052 0.0038 

Mean 25.513 28.083 29.639 30.513 Proportion of nodes 
moved  

95% C.I. 0.1048 0.1044 0.0623 0.0260 

 

(b) Systems with churn 
Churn=0.1 Churn=0.9 

 D=4 D=32 D=4 D=32 

Mean 0.195 0 0.375 0.017 
Split(%) 

95% CI 0.056 0 0.0719 0.0182 

Mean 0.073 0 0.348 0 
Merger(%) 

95% CI 0.0360 0 0.0512 0 

Mean 0.724 0.092 5.825 0.729 Proportion of nodes 
moved (%) 

95% CI 0.069 0.0069 0.1634 0.0210 

Mean 0.523 0.062 0.655 0.072 Bound of the standard 
deviation of available 
capacities 95% CI 0.006 0.0059 0.0107 0.0057 

 

 

Now, we compare the cases of moving nodes and moving services in systems with 

churn. First, for the case of moving nodes, the bound of the standard deviation of 

available node capacities also depend on the cluster size parameter of a system. That is, 
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the bound increases by a factor of about 9 with the decreasing of the parameter from 32 

to 4 (e.g. in Table 6.1(a), the bounds are 0.062 for D=32 and 0.523 for D=4 when the 

churn rate is 0.1, and 0.072 for D=32 and 0.655 for D=4 when the churn rate is 0.9). 

Second, while the load balancing operations move nodes instead of services, the system 

has the larger bound of the standard deviation of available capacities. Third, the 

difference between the bounds for the two cases depends on the rate of churn. For 

example, when the churn is at a rate of 0.1, the bounds of both systems (with D=4 and 

D=32, respectively) for the case of moving node are 3 times larger than those for the case 

of moving services. When the churn is at a rate of 0.9, the bounds for the case of moving 

nodes are one times larger. This observation indicates that the impacts of churn on the 

bounds are different for the two cases. For example, for the case of moving nodes, a 

system has its bound increased 20% with the increase of the churn rate from 0.1 to 0.9. 

For the case of moving services, the system has its bound increased by a factor of about 

3. This is because an operation will not decide a node migration unless the difference 

between the available node capacities of two clusters is large enough. But, an operation 

always decides service migrations with fine-grained services. Therefore, we conclude 

that, for the case of moving nodes, churn has less impact on the standard deviation of the 

available capacities of a system as well as the effectiveness of the scheme. 

Then, we discuss the costs in the case of moving nodes. Clearly, churn also influences 

the proportion of nodes moved for load balancing. First, the larger the churn rate is, the 

larger the proportion of nodes is moved. Table 6.1(b) shows that the proportions of nodes 

for the cases of a churn rate of 0.1 are 8 times as large as those for the cases of a churn 

rate of 0.9. Second, the larger the cluster size parameter is, the smaller the proportion of 
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nodes is moved. For example, between the two systems in the experiments, 13% more 

proportion of nodes are moved in the system with D=4. Third, while moving node for 

load balancing, the systems have less splits or mergers. In an unbalanced system with 

D=4, there are 0.34% clusters that split or merge in a round when churn is at the rate of 

0.1, and 1.7% when the rate is 0.9. Moving node for load balancing, the system only has 

0.195% clusters split or merge when the rate is 0.1, and 0.395% when the rate is 0.9. 

Furthermore, between the two systems, the system with the larger D has fewer clusters 

splitting or merging. We claim that, using the diffusive load balancing, the clusters in the 

clustered system (described in Section 6.3.2.1) has less splits or mergers.  

We conclude that, as an inter-cluster load balancing scheme, the diffusive scheme 

converges in a system by moving nodes. A system that has a larger cluster-size parameter 

maintains the smaller bound of the standard deviation of available capacities with fewer 

costs of load balancing when the system has churn. The scheme maintains the larger 

bound for a system while moving nodes instead of services. However, in this case, churn 

has fewer impacts to the effectiveness of the scheme. When nodes are moved for load 

balancing, a system has the frequency of cluster splits or mergers reduced. We also did 

experiments to investigate the factors, such as workload, capacities, or number of 

clusters; these factors have little impact on the effectiveness of the scheme. The results of 

these experiments are shown in Appendix B.  

6.4.2.2. Nodes with heterogeneous capacities 

In our previous experiments, the systems have nodes with homogeneous capacity. In 

this subsection, we investigate the available capacities of a system having nodes of 



 163 

heterogeneous capacities. The heterogeneous capacities of P2P nodes are often modeled 

by a capacity distribution with a large variance, such as a Pareto distribution. For 

example, Godfrey et al. [Godfrey2004] uses this kind of distribution where most (e.g. 

80%) have small capacities, and the remaining nodes (e.g. 20%) have large capacities.   

In the following experiments, the simulation program generates Pareto distributed 

random values for the capacities of the nodes in the systems. The distribution has the 

shape parameter equal to 2 and the scale parameter equal to 100. Therefore, the mean of 

the node capacities is 200 requests/second, and the variance is infinite. In the simulated 

systems, the maximum capacity for a node is 5000 requests/second, and the minimum is 

100 requests/second. There are N=10,000 nodes in the system. The system has a small 

portion of nodes with extremely high capacities.  

As we have shown, in the presence of churn, the standard deviation of available 

capacities of a system highly depends on the variance (or heterogeneity) of its node 

capacities when the system has churn (see Section 5.3.3). In the following, we first 

compare the effectiveness of the diffusive scheme in two different systems have the same 

average node capacity. One system is a homogeneous system that has nodes with the 

homogeneous capacity of 200 requests/second. Another is a heterogeneous system that 

has nodes with heterogeneous capacities (e.g. the Pareto distribution described above). 

They use D equal to 8. In Figure 6.8, we observe that the bounds of standard deviations 

of available capacities for the case of the heterogeneous system are about 5 to 6 times 

larger than those for the case of the homogeneous system. For example, in the case that 

the churn rate is equal to 0.1 (or 0.9), for the homogeneous system, the bound is around 

7.2 (or 10). However, for the heterogeneous system, the bound is around 45 (or 55).   
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                                (a)                                                               (b)  

Figure 6.8 The standard deviation of available capacities of the systems using virtual nodes or without (a) churn rate 
equal to 0.1 and (b) churn rate equal to 0.9 

 

We propose two alternatives for a heterogeneous system to reduce the size of its 

bound. The system could use a large cluster-size parameter (e.g. D=32) or use virtual 

nodes. In the approach of virtual nodes, a physical node with the capacity larger by a 

given factor (e.g. 2) than the mean node capacity of the system, is divided into multiple 

virtual nodes, and each virtual node has the capacity equal to the mean (e.g. 200 

requests/second in our example). A virtual node joins a cluster picked at random when its 

physical node joins the system, and the virtual node leaves the system when its physical 

node leaves. Similar to virtual servers proposed in [Surana2006], virtual nodes host 

services. However, a virtual node has a fixed capacity in addition to the resource 

requirements of its services.  

These two alternatives both effectively reduce the bound of the standard deviation of 

available capacities for a system whose nodes have heterogeneous capacities. Figure 

6.8(b) shows that, using virtual nodes, a heterogeneous system with virtual nodes has a 

bound whose size is similar to that of a homogeneous system. However, using virtual 

nodes adds extra costs to a system. First, a system has more clusters when virtual nodes 
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are used (e.g. the heterogeneous system in the example has 20% more clusters when it 

uses virtual nodes). The system uses more messages in order to manage these extra 

clusters. These messages are for managing the membership of clusters and the 

connections between clusters. Second, the system using virtual nodes has the larger 

number of node movements (e.g. around 6000 node movements when the churn rate is 

0.9). Table 6.2 shows that this number is twice as large as that of the system without 

virtual nodes.  

Table 6.2 Costs caused by load balancing in the heterogeneous systems 

 
churn = 0.1 Churn = 0.9 

 no VN with VN 
D=32, 
no VN no VN with VN 

D=32, 
no VN 

Mean 33.129 36.484 3.613 99.903 145.903 0.839 
Number of splits 

95% CI 1.6339 2.3022 0.5589 2.9193 3.1581 0.2751 

Mean 2.795 2.641 1.407 8.896 11.053 0.325 Proportion of 
clusters split 

95% CI 0.1388 0.1683 0.2178 0.2659 0.2455 0.1062 

Mean 32.903 35.581 3.355 99.935 146.355 0.935 Number of 
merges 

95% CI 1.9781 1.7863 0.5374 2.9041 3.9735 0.3789 

Mean 2.775 2.574 1.303 8.896 11.084 0.362 Proportion of 
clusters merge 

95% CI 0.1654 0.1256 0.2071 0.2488 0.2891 0.1461 

Mean 1039.871 1511.129 987.097 3139.58 6342.516 968.581 Number of node 
movements 

95% CI 18.6032 29.0615 30.8143 67.4946 46.2513 15.3889 

 

Using a cluster-size parameter as large as D=32, the heterogeneous system does not 

have these costs while the sizes of the bound of the available capacities are still smaller 

than those of a system with D=8. In Figure 6.8(b), the standard deviation of available 

capacities for the case of the heterogeneous system is slightly larger than for the case of 

the homogeneous system with D=8 when the churn rate is equal to 0.1 or 0.9. Table 6.2 

also shows that the numbers of cluster that split or merge are much smaller than in the 

other cases. The number of node movements does not increase with the increase of churn. 

Therefore, the heterogeneous system is suggested to use a cluster-size parameter as large 
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as 32. The standard deviation of available capacities would be bounded slightly larger 

than for a system using virtual nodes. However, it has a much smaller cost compared with 

the system using virtual nodes. A comprehensive study that compares these techniques 

(using virtual nodes and using large sized clusters) is suggested.  

6.5. Summary 

The decision algorithms for load balancing push the available capacities of the nodes 

in a neighborhood to their average in a clustered P2P system. The average of a 

neighborhood does not change in an operation. Therefore, the variance of the available 

capacities of the nodes in the system is monotonically non-increasing, and the available 

capacities of the nodes converge in a clustered system. We have shown that the diffusive 

load balancing scheme effectively reduces the differences between the available node 

capacities of clusters. The convergence speed of the diffusive scheme is not affected by 

the number of clusters in the system; therefore, the scheme is scalable to large system 

sizes. Moreover, the convergence speed of the scheme does not depend on the sizes of the 

clusters. However, a system has a smaller standard deviation of available capacities in the 

case that it has larger sized clusters since these clusters effectively reduce the variation of 

workload caused by churn.   

The scheme also converges when the load balancing operations move nodes between 

clusters for inter-cluster load balancing. When a system is in a globally stable state, no 

further node movement will be initiated. The differences between the available node 

capacities of clusters are fixed. The scheme maintains the larger bound for a system while 

moving nodes instead of services. However, in this case, churn has fewer impacts to the 
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effectiveness of the scheme. When nodes are moved for load balancing, a system with 

churn has the frequency of cluster splits or mergers reduced.  

While having churn, compared to a homogeneous system whose nodes have the same 

mean capacity, a heterogeneous system maintains the standard deviation of its available 

capacities in a larger bound. Using virtual nodes, a heterogeneous system (e.g. whose 

node capacities follow a Pareto distribution) can have a bound of available capacities 

close to that of a homogeneous system, however, with extra costs for maintaining more 

clusters and managing more cluster splits and mergers. Using a cluster size parameter as 

large as 32, the heterogeneous system spends much less costs on load balancing while 

maintaining the standard deviation of its available capacities in a bound slightly larger 

than a homogeneous system with the cluster size of 8.  
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7. Conclusion 

7.1. Summary 

Our research applies a diffusive load balancing scheme to P2P systems. P2P nodes 

asynchronously run the operations of this scheme. These operations adjust the load of 

nodes in the neighborhoods within the overlay network according to the characteristics of 

these systems.  

An operation has three stages. It begins with the Information stage where the 

operating node pulls load information from its neighbors within the overlay network. 

Then, at the Decision stage, the operation decides load transfers by using a decision 

algorithm. The determined load transfers are realized during the Load Transfer stage. A 

node only participates in one load balancing operation at a time, which guarantees non-

interference between different load balancing operations.   

The load balancing operations equalize the available capacities of nodes so that these 

nodes could have similar response times while providing services. The available 

capacities of the nodes converge to an average in a system with static workload. In this 

case, no services are added nor removed from the system, and the requests rates of 

services do not change. In the case that the services are fine-grained, the available 

capacities of nodes approach the global average. In the case that the services are large-

sized, there is a remaining imbalance. In a system that has larger services or an overlay 

network with a larger diameter, the remaining imbalance is larger.    
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The effectiveness of the proposed scheme depends on various factors. Several 

decision algorithms have been designed for use during the decision stage. The traditional 

Proportional algorithm is inferior to others since that algorithm converges at the lowest 

speed and induces the largest costs. The Complete Balancing (CB) algorithm is an ideal 

case; however, it is difficult to implement in a real system. The Directory-initiated (DI), 

Sender-initiated (SI), and Receiver-initiated (RI) algorithms are practical algorithms that 

are feasible in real systems. The scheme performs best when a directory-initiated decision 

algorithm is used. Moreover, the convergence speed of the load balancing scheme 

depends on the structure of the P2P overlay network and the load distribution of nodes. 

Furthermore, in a P2P system with churn, the scheme is able to control the average of the 

standard deviation of the available capacities of the nodes within a bound. Since the 

effectiveness of the diffusive scheme does not depend on the number of nodes in a P2P 

system, the scheme is scalable.  

The diffusive scheme can also be applied to inter-cluster load balancing in clustered 

P2P systems. By equalizing the available capacities of the nodes in a clustered system, 

the scheme effectively equalizes the available node capacities of the clusters. The sizes of 

the clusters do not affect the convergence speed of the diffusive scheme. However, when 

a system has churn, the variation of loads caused by node leaving or joining is smaller in 

the case that the clusters are larger-sized. As a result, the system with larger-sized clusters 

has the smaller bounds of available capacities. The scheme maintains the larger bound for 

a system while moving nodes instead of services. However, in this case, churn has less 

impact on the effectiveness of the scheme. A system having nodes with heterogeneous 

capacities can have its bound reduced by using virtual nodes or using large-sized clusters.     
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7.2. Contributions 

Diffusive load balancing schemes are used in parallel computing systems, and these 

schemes deal with the characteristics of parallel computing programs and of hardwired 

processors in these systems. We proposed a diffusive scheme according to the 

characteristics of P2P systems. The diffusive scheme described in this thesis can also be 

used in a distributed computing system whose characteristics are similar to those of P2P 

systems.  

Our contributions are as follows: 

• We developed diffusive load balancing for P2P systems. We designed the policies 

of the scheme, the stages of the load balancing operations, and the decision 

algorithms. We further compared the different decision algorithms in terms of 

their effectiveness for load balancing by extensive simulation studies. The results 

from this research will be published in [Qiao2012].   

• We have proposed to use the available capacites of nodes as load index. Using 

this load index, the decision algorithms of these operations can precisely calculate 

the workload that should be transferred between nodes. As a result, the mean 

response times of the services in the system become similar. Other researchers 

proposed to use the utilization, or the workload of nodes as load index. These 

indexes can not equalize the mean response time of services in a P2P system.  

• Using the available capacity as load index for the nodes, the diffusive load 

balancing can deal with heterogeneity (e.g. services with heterogeneous resource 
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requirements, and/or nodes with heterogeneous capacities). These results were 

published in [Qiao2011].  

• We have used new measures of the performance and the effectiveness of diffusive 

load balancing. In the literature, the maximum difference of loads among nodes 

[Vu2009], or the portion of failed requests [Surana2006] in the steady state of a 

dynamic system have been considered. We use the standard deviation of the load 

distribution in the steady state. We also investigate the convergence speed of load 

balancing and the cost of load migrations during the load balancing operations. 

This approach allows us to analyze the effectiveness of load balancing from 

different perspectives.     

• We also extend the diffusive load balancing to clustered P2P system. We 

developed the decision algorithms that lead to similar available capacities for the 

nodes. We further proposed a clustered P2P system that uses the diffusive load 

balancing for its services to have similar response times [Qiao2010]. Some earlier 

results along these lines were published in [Qiao2009A and Qiao2009B]. In these 

papers, the clustered system used the structure of eQuus [Locher2006]. 

7.3. Future work 

Our results on diffusive load balancing can be extended in the following ways. First, 

some other aspects of P2P systems could be considered in the study of the effectiveness 

of the load balancing scheme. For example, the formation of clusters could be 

theoretically analyzed (e.g. by using a Markov chain). In our study, we use the average 

number of nodes for indicating the sizes of clusters. Also, the online times of nodes could 
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be considered for systems with churn. As we reviewed in Section 2.5.1, P2P nodes with 

larger capacities stay online longer than nodes with smaller capacities in P2P systems. In 

our research, the probabilities for nodes to leave an overlay network are assumed to be 

the same.        

Second, the load balancing operations could use a flexible running period. Each node 

in the system runs periodically a load balancing operations. We have assumed that the 

period between two consecutive runs is configured by a system parameter. A node could 

run operations in flexible running periods and always have its available capacity larger 

than zero. When the system has high churn (e.g. at a rate of 0.9), the nodes may use a 

running period shorter than the fixed system parameter. The load variations caused by 

churn at the rate could be resolved faster so that the standard deviation of available 

capacities could be further reduced. When the system has small churn (e.g. at a rate of 

0.1), the nodes could use a running period longer than the parameter. The system could 

reduce the cost of load balancing while maintaining an acceptable performance. Using a 

flexible running period, the operations of the scheme would work more efficiently.  

Third, our scheme currently equalizes the available capacities of the nodes. The 

scheme could be modified to equalize another performance parameter, for example, the 

utilization of storage space, CPU, or network bandwidth. Also, multiple performance 

parameters could be combined into one load index.  

Fourth, each operation of the scheme could have multiple decision components in the 

neighbourhood. These decision components could consider different perspectives, for 

example, performance, locality, or power cost of the nodes. Each decision component 

makes its own decision. The decision components negotiate to reach a local equilibrium 
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in the neighbourhood. The global equilibrium can be achieved by using the diffusive 

approach.  

The proposed diffusive load balancing scheme could be deployed in a large scale 

distributed computing system. The system provides services to end-users. These services 

are moveable. That is, they can be removed from a node and installed on another node. 

The system is able to locate them wherever they are; however, such service movements 

should be transparent to the user.      
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Appendix A: Proof of 

convergence of asynchronous 

load balancing with local 

synchronism 
This appendix proofs the convergence of an algorithm called asynchronous load 

balancing with local synchronism. First, we define this algorithm by using two assumed 

properties: one defines local synchronism (i.e. Assumption A-1), and the other concerns 

the decision algorithm (i.e. Assumption A-2). Following the definition, we prove that the 

algorithm converges when these two assumptions are satisfied in each load balancing 

operation. The load balancing scheme presented in Chapter 4 realizes these assumptions. 

That is, the Information and Load Transfer stages of the load balancing operations realize 

the assumption of local synchronism, and the Decision stage realizes the second 

assumption.  

We adopt the notations used in [Bertsekas1997] in this appendix. These notations are 

different from those used in the main body of this thesis. For example, workloads are 

used in [Bertsekas1997] as the load indexes of nodes. Since the proposed load balancing 

scheme in the thesis uses available capacity of nodes as load index, the notations for 

workloads are changed to those for available capacities. The decision algorithm defined 

by Assumption A-2 corresponds to the Receiver-initiated algorithm (i.e. RI). Considering 

these changes, we conclude that the proof in this appendix implies that the load balancing 

scheme proposed in the thesis converges. We can prove the correctness of other decision 

algorithms proposed in this thesis in a similar way as in Section A.2.2 below.  
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A.1. Definition of load balancing     

We define the proposed load balancing by following the notations used in Section 7.3 of 

[Bertsekas1997] for a partially asynchronous load balancing algorithm. We present this 

partially asynchronous algorithm first, and the asynchronous algorithm with local 

synchronism next.  

In the following sections, we use the following notations. We define a network for the 

system using a load balancing algorithm for the following proof. This system has n 

nodes. Its network is described by a graph >=< ENG , , where N is the set for the nodes, 

and E is the set for the edges between these nodes. The edges are directed. A node can 

reach any other node through these edges. t represents the time in the system. The total of 

the workloads in the system is denoted by L which is equal to the sum of the workloads 

of all nodes. This total does not change during the progress of load balancing. i is the 

index of a node that conducts a decision action, and iA  is the neighborhood of node i in 

the system. i

dT  is the set of the times instants when node i runs a decision action. The 

workload of a node i at time t is )(txi . A node j reports its load status to its neighbors 

from time to time. Node i stores the information of the load statuses of its neighbors. The 

load status information denoted as )(tx
i

j  stored by node i at time t is contained in a report 

sent from j to i at time )(tt ji

r , that is, ))(()( ttxtx
ji

rj

i

j = . For the node i, this information is 

collected at time t, that is, )()( txtx i

i

i = . For a time when node i starts the decision stage, 

that is, for a time dt with i

dd Tt ∈ , we have ))(()( d

ji

rjd

i

j ttxtx =  and )()( did

i

i txtx = . During 

the decision action at time dt , node i may decide a load transfer with the amount 

)( dij ts from i to j, and node j receives this load at time )( d

ij

l tt . Figure A.1 shows the times 

for the actions of load balancing.  
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Figure A. 1 The times when actions of load balancing are conducted 

 

A.1.1. Partially asynchronous load 

balancing     

Bertsekas defined a partially asynchronous load balancing (we call it Bert algorithm in 

this appendix) in [Bertsekas1997] by two assumptions: Assumption 4.1 (we call it Bert-1) 

and 4.2 (we call it Bert-2). Assumption Bert-1 specifies when the actions of this load 

balancing are executed, and Assumption Bert-2 applies to the decision algorithm used by 

a load sender. We call this algorithm “partially asynchronous iterative method” for load 

balancing since it requires the message delays to be bounded to B time units.  

Assumption Bert-1 has three sub-assumptions. Assumption (a) specifies that a node runs 

a decision action at least once during any time interval of B units. Assumption Bert-1(b) 

specifies that, at any time t, the information stored on node i is the load status of a node j 

at some time after t-B. This assumption guarantees that the running node uses the updated 

information for its decision actions. Assumption Bert-1(c) specifies that, when a node 

sends the load to another node determined by an operation at time dt , the load is received 

at some time before Btd + . Figure A.2 shows two report actions and two decision-load 

transfer actions. These actions are defined by Assumption Bert-1. The times related to 

one of the decision actions are labeled.  

 

t 

Node i 

Node j 

)( d

ji

r tt )( d

ij

l ttdt
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Figure A. 2 The actions for load balancing defined by Assumption Bert-1 

 

Partial Asynchronism: 

Assumption Bert-1. 

There exists a positive integer B such that:  

(a) For every i and for every 0≥t , at least one of the elements of the 

set{ }1,,1, −++ Bttt K  belongs to i

dT .   

 (b)  The inequality  tttBt ji

r ≤<− )( holds, for all i and t, and all iAj ∈  

 (c) For node i, at some time i

dd Tt ∈ , the load )( dij ts is sent from node i . The inequality 

Btttt dd

ij

ld +≤< )(  holds for node j to receive this load at time )( d

ij

l tt .  

 

Bert-2 specifies two properties that should be satisfied by a load balancing decision 

action. The first one defines a property about the amounts of load contained in the load 

transfers from a sender to the least loaded receivers. The second one implies that, after 

the sender removes the excess loads and the receivers add the load transferred, the sender 

still keeps its position the list of nodes in the neighborhood, arranged in ascending order 

of their workloads.  

Btd −

Btttt dd

ji

ld +<≤ )(

dd

ji

rd tttBt ≤<− )(

t 

Node i 

Node j 

)( d

ji

r tt )( d

ij

l ttdt

Btd +
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Assumption Bert-2. 

(a) The amount transferred from a sender i at time i

dd Tt ∈  to the receiver j with the 

lightest load (i.e. ( ) ( )d

i

kiAkd

i

j txtx )(min ∈= ) satisfies ( ) ( ) ( )( )d

i

jdidij txtxts −≥ α , where α is a 

constant with ( )1,0∈α . 

(b) For a sender i, and a time i

dd Tt ∈ , for any iAj ∈  with ( ) ( )d

i

jdi txtx > , the following 

inequality is satisfied: 

 ( ) ( ) ( ) ( )dijd

i

j

iAk

dikdi tstxtstx +≥− ∑
∈ )(

 

 

We present R-Bert-2 as follows. This is a revised version of Assumption Bert-2. The (a) 

is the same as Bert-2(a). The (b) says that, after the sender removes the excess loads, and 

the receivers add the load transferred, the sender still has its load larger than its receivers.  

 

Assumption R-Bert-2. 

(a) The amount transferred from a sender i at time i

dd Tt ∈  to the receiver j with the 

lightest load (i.e. ( ) ( )d

i

kiAkd

i

j txtx )(min ∈= ) satisfies ( ) ( ) ( )( )d

i

jdidij txtxts −≥ α , where α is a 

constant with ( )1,0∈α . 

(b) For a sender i, and a time i

dd Tt ∈ , for any iAj ∈  with ( ) ( )d

i

jdi txtx >  and ( ) 0>dij ts , 

the following inequality is satisfied: 

 ( ) ( ) ( ) ( )dijd

i

j

iAk

dikdi tstxtstx +≥− ∑
∈ )(

 

 

A.1.2. Asynchronous load balancing with 

local synchronism 

 Similar to the Bert algorithm presented in the last section, we also use two assumptions 

to specify this load balancing. Assumption A.1 defines the concept of local synchronism. 

Assumption A.2 defines a decision algorithm. Different from Bert algorithm, this load 
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balancing algorithm has an extra probing action in addition to decision and load transfer 

actions. A load balancing operation is a sequential running of these three actions. Besides 

the notations defined above, we further define i

pT  to be the set of times when the probing 

action starts. Then, for a node i and an operation that starts its probing stage at time pt  

and conducts its decision stage at time dt , we have i

pp Tt ∈  and i

dd Tt ∈ . We assume that 

the message delay is bound to B time units.  

 

Local synchronism: 

Assumption A-1.  

There exist positive integers B and H such that:  

(a) For every i and every 0≥t , a time between [ ]1, −+ Htt  belongs to i

pT . For a pt , 

with i

pp Tt ∈ , there is a i

dd Tt ∈ . 

(b) For any i, any pair of i

pp Tt ∈   and i

dd Tt ∈ , and any iAj ∈  , the following 

inequalities hold:  

( ) ( ) ( ) BttttBttttBtttt pd

ij

ldpdd

ji

rpd

ji

rp 3,2, +<≤+≤≤+<≤  , and . HB <3 . 

And H is large enough so that every node in the system could run an operation at 

least once.  

(c) A node participates in only one operation at a time, either as a running node, or as 

a neighbor. 

 

Figure A.3 shows the times related to the actions defined by A-1. During the time interval 

between t and t+H-1 (inclusively), node i runs an operation starting at time pt , that is, 

i

pp Tt ∈ . It sends probing messages out to its neighbors, and a probing message is 

received by a neighbor j at time )( d

ji

r tt . Right after receiving this probing message, node 

j sends a reporting message which contains its current workload equal to ))(( d

ji

rj ttx  to 

node i. The reporting message is received by i before time dt . Since a node is allowed to 

participate in only one operation at a time, we have the following equations for the loads 

on the nodes in the neighborhood iA : )()( pidi txtx = for node i, and 
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)())(()( d

i

jd

ji

rjdj txttxtx == for all nodes j with iAj ∈ . At time dt , node i calculates the 

load equal to )( dij ts for a load transfer to node j and initiates the load transfer. Thereafter, 

this operation is finished, at time  i

dd Tt ∈ . The load equal to )( dij ts is received by node j at 

time )( d

ij

l tt . 

 

 
Figure A. 3 The local synchronism defined by Assumption A-1 

 

Assumption A-2 specifies the decision algorithm used by the decision action of load 

balancing.  

 

Assumption A-2. 

(a) For any i

pp Tt ∈  and corresponding i

dd Tt ∈ , node i becomes the sender when 

( ) ( )dAdi txtx
i

>  is satisfied where ( )
( )

i

Aj

d

i

j

dA
A

tx

tx i

i

∑
∈

= and iA  is the size of the 

neighborhood. 

(b) For ( ) ( )dAd

i

ji txtxAjj
i

<∧∈∀ : , we have ( ) ( ) ( ) ( )( )dAdidijdij txtxtts
i

−= α  where 

( )
( ) ( )

( ) ( )( )
( ) ( )

∑
<

∈ −

−
=

diAd
i
k

i
i

i

txtx

Ak
d

i

kdA

d

i

jdA

dij
txtx

txtx
t

;
α . 

 

Assumption A-2 corresponds to the Receiver-Initiated decision algorithm (i.e. RI) in 

Chapter 4. After we replace the workload x with available capacity avc and “sender” with 

“receiver”, Assumption A-2 indicates that the receiver reduces its available capacity and 

increases the available capacities of the senders.   

t for node j 

t for node i 

t for the system 
d

t)( d

ji

r tt )( d

ij

l ttpt Htp +

Btttt pd

ji

rp +<≤ )(

Btttt pdd

ji

r 2)( +≤≤

Btttt dd

ij

ld +<≤ )(

Probing: 

Load status reporting: 

Load transferring: 

HB <3One operation: 
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A.2. Proof of convergence 

We prove that the workloads on nodes converge to their average in a system using the 

asynchronous load balancing algorithm with local synchronism. First, we proof that, a 

load balancing algorithm which is specified by local synchronism (i.e. A-1) and the 

revised Bertsekas’ decision algorithm (i.e. R-Bert-2) converges. Then, we proof that A-2 

implies R-Bert-2. Therefore, we can conclude that the load balancing of Chapter 4, which 

is defined by the assumptions of A-1 and A-2, converges.  

A.2.1. Assumptions A-1 and R-Bert-2 

imply convergence  

Now, for a system, we define the minimum of workloads at time t equal to the minimum 

of workloads in the duration ( ]tHt ,− . 

Definition A.1. The minimum of the workloads on nodes at time t is 

( ) ( )τ
τ

i
tHti
xtm

≤<−
= minmin . 

 

Since ( )tm is not larger than any workload in the system, then, at time t, the 

inequality ( ) ( )( ) 0≥− tmtxiβ  is satisfied for any ( )1,0∈β . The following Lemma A.1 

says that the workload on node i at time 1+t  is not less than the sum of the minimum 

and ( ) ( )( )tmtxi −β  at time t.  

 

Lemma A.1.  

There exists some, ( )1,0∈β such that, for any i and any t,  

( ) ( ) ( ) ( )( )tmtxtmtx ii −+≥+ β1  A.1 

Proof. 

For a time t, in the case that the workload on node i does not change, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )tmtxtmtmtmtxtxtx iiii −+≥−+==+ β1  for some β  that 



 182 

satisfies ( )1,0∈β . In the case that the workload on node i increases by receiving loads 

from another node at this time, ( ) ( ) ( ) ( ) ( )( )tmtxtmtxtx iii −+≥>+ β1  for some ( )1,0∈β . 

Therefore, the inequality A.1 holds for the above two cases.  

In the case that, for a time t equal to dt with i

dd Tt ∈ , node i decides load transfers to its 

neighbors as a sender. According to Assumption R-Bert-2, the inequality 

( ) ( ) ( ) ( ) ( )dijd

i

j

Ak

dikdii tstxtstxtx
i

+≥−=+ ∑
∈

1   

is satisfied for ( ) ( ) ( ) 0: >∧>∧∈∀ dijd

i

jdii tstxtxAjj . If there are k nodes like j in the 

neighborhood, we have ( ) ( )
( ) ( )
( )

( )∑∑
∈>

>

∈ +≥+
idij

d
i
jdi

i

Ak

dik

ts

txtx

Aj
d

i

ji tstxtkx
0

1 .  

Since ( ) ( )τ
τ

i
tHti

d xtm
dd ≤<−

= minmin , and HB <3 , we have, for a node j, 

( ) dd

ji

rpdd ttttBtHt ≤≤<−<− 3  , and ( ) ( )( ) ( )dd

ji

rjd

i

j tmttxtx ≥= . Also, 

( ) ( ) ( )1+−=∑
∈

didi

Ak

dik txtxts
i

. We have ( ) ( ) ( ) ( )( )11 +−+≥+ dididdi txtxtkmtkx .  

Then, we have ( ) ( ) ( ) ( ) ( ) ( )( )ddiddiddi tmtx
k

tmtx
k

tm
k

k
tx −

+
+=

+
+

+
≥+

1

1

1

1

1
1 . If we 

set 
n

1
=β  for a system with n nodes, then we have ( ) ( ) ( ) ( )( )ddiddi tmtxtmtx −+≥+ β1 .  

According to the above analysis, we see that Inequality A.1 holds.              □ 

 

Lemma A.2. 

(a) The sequence ( )tm  is non-decreasing and converges eventually 

(b) For every i and every t, 0≥s , we have  

( ) ( ) ( ) ( )( )tmtxtmstx i

s

i −+≥+ β  A.2 

 

Proof. 

We can prove Lemma A.2 by using a similar reasoning as was used for proving Lemma 

4.2 in [Bertsekas 1997].  
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(a) Because of Lemma A.1 and the definition of ( )tm , we have ( ) ( )tmtm ≥+1 , and 

( )tm is monotonically non-decreasing. Since the total workload of the system has a limit, 

( )tm can not increase infinitely. Therefore, ( )tm converges.  

 

(b) We prove Inequality A.2 by induction over t. If, at time t+s, inequality A.2 is satisfied 

for node i, that is:  ( ) ( ) ( ) ( )( )tmtxtmstx i

s

i −+≥+ β . 

Then, at time 1++ st ,  

  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )tmtxtm

tmstxtm

stmstxstmstx

i

s

i

ii

−+≥

−++≥

+−+++≥++

+1

1

β

β

β

.  

This proves Lemma A.2(b).                                                                                □ 

 

Lemma A.3. 

We assume that, for a specific node i, time 0t , and an operation that starts at time 0ttp ≥ ,  

such that i

pp Tt ∈ and i

dd Tt ∈ ,  then there is among the nodes iAj ∈ , a lightest loaded 

node j satisfying  ( ) ( ) ( ) ( )( )000
0

2
tmtxtmtx i

tt

d

i

j
d −+< −β

α
. At time dt , node i sends load to 

node j satisfying ( ) ( ) ( )( )d

i

jdidij txtxts −= α . Then, for any Htpp +≥τ , and i

pp T∈τ  and 

i

dd T∈τ , we have 

( ) ( ) ( ) ( )( )000
0

2
tmtxtmx i

t

d

i

j
d −+≥ −τβ

α
τ  A.3 

 

Proof. 

Let us assume that at time i

pp Tt ∈ and i

dd Tt ∈ , and dp ttt <≤0 , the load transfer described 

above occurs. According to Lemma A.2(b), ( ) ( ) ( ) ( )( )000
0 tmtxtmtx i

tt

di
d −+≥ −β .  

Since  

( ) ( ) ( ) ( )( )000
0

2
tmtxtmtx i

tt

d

i

j
d −+< −β

α
, 

we have 
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( ) ( ) ( ) ( )( ) ( ) ( )( )0000
00

2

1

2
1 tmtxtmtxtxtx i

tt

i

tt

d

i

jdi
dd −≥−








−≥− −− β

α
β ,  

and  

( ) ( ) ( )( ) ( ) ( )( )000 )(
2

0 tmttxtxtxts i

tt

d

i

jdidij
d −≥−= −β

α
α . 

Then, at time ( )d

ij

l tt  , 

  

( )( ) ( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )000

000

0

0

2

2

tmtxtm

tmtxtm

tstm

tstxtsttxttx

i

ttt

i

tt

dijd

dijd

i

jdijd

ji

rjd

ij

lj

d
ij
l

d

−+≥

−+≥

+≥

+=+=

−

−

β
α

β
α .  

For time i

pp T∈τ  , Htpp +≥τ , and i

dd T∈τ  and dd

ji

rppd

ij

l tHttt τττ <≤≤+< )()( ,   

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( )( )00

00

00

0

0

2

2

tmtx

tmtx

tmtxtmx

i

t

i

tt

d

ji

rjd

i

j

d

d
ji

r

−≥

−≥

−=−

−

−

τ

τ

β
α

β
α

ττ

. 

Therefore, Inequality A.3 is proved.           □ 

                                                                                          

Lemma A.4. 

For any i,  0t , any iAj ∈ , and any nHtt +≥ 0 , we have  

( ) ( ) ( ) ( )( )000
0

2
tmtxtmtx i

tt
B

j −+≥ −β
αβ

 A.4 

 

Proof. 

According to Lemma A.3, in the case that node i starts an operation at time i

pp Tt ∈  and 

decides a load transfer to the least loaded neighbor j at time i

dd Tt ∈ , the neighbor has its 

load satisfying ( ) ( ) ( ) ( )( )000
0

2
tmtxtmx i

t

d

i

j
d −+≥ −τβ

α
τ  for the time satisfying i

dd T∈τ , 

dp Ht τ<+ . Lemma 4.3 indicate that, for a system with n nodes, after n (the maximum 
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number of nodes in a neighborhood) periods with the length H, all nodes in the 

neighborhood could have experience this kind of load transfer at most once. Then, there 

are the following two cases for a load transfer.  

The first case is for a node that experiences this kind of load transfer. For example, for a 

node j that experienced this kind of load transfer decided by node i at time 

dt where i

dd Tt ∈ , time dτ is the first element in i

dT  after dt . When nHtt dd +<< 0τ , we 

have ( )( ) ( ) ( ) ( ) ( )( )000
0

2
tmtxtmxtx i

t

d

i

jd

ji

rj
d −+≥= −τβ

α
ττ .  

The second case is for a node that experiences a load transfer described below. For a 

node j, at time dt , with i

dd Tt ∈ ,we have ( ) ( ) ( ) ( )( )000
0

2
tmtxtmtx i

tt

d

i

j
d −+≥ −β

α
. Node i 

decides to transfer load to node j, and node j receives the load ( ) 0>dij ts at time ( )d

ij

l tt . 

Then, we write dτ for the time that is the first element in i

dT  after dt . 

When nHtt dd +<< 0τ , we have ( )( ) ( ) ( ) ( ) ( )( )000
0

2
tmtxtmxtx i

t

d

i

jd

ji

rj
d −+≥= −τβ

α
ττ . 

Because of the above two cases, for any nHtt +≥ 0 , the load of j satisfies:   

 

( )( ) ( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )000

000

00

2

2

)(

0

0

tmtxtm

tmtxtm

tmxtm

tmtxtmtx

i

ttt

i

ttt

d

i

j

tt

d

ji

rd

ji

rj

tt

d

ji

rj

dd
ji

r

dd
ji

r

d
ji

r

d
ji

r

−+≥

−+≥

−+≥

−+≥

−+−

−−

−

−

α
β

β
α

β

τβ

ττβτ

ττ

ττ

τ

τ

 

Since Bt d

ji

rd ≤− )(ττ ,  the above inequality becomes 

( ) ( ) ( )( )000
0

2
)( tmtxtmtx

i

tt
B

j −+≥ −β
αβ

. Therefore inequality A.4 holds.                 □  
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Lemma A.5. 

For any i, 0t , and any j, where the shortest distance from i to j is equal to l,  and for any 

nlHtt +≥ 0 , we have  

( ) ( ) ( ) ( )( )000
0

2
tmtxtmtx i

l

tt
B

j −







+≥ −β

αβ
 A.5 

 

Proof.  

Lemma A.4 proves the inequality A.5 is true when l is 1. Then, we prove the inequality 

by induction over l. 

First, we assume that for a node j, the inequality exists in the case that the shortest 

distance from i to j is l. 

That is: 

 ( ) ( ) ( ) ( )( )0000 2
tmtxtmnlHtx i

l

nlH
B

j −







+≥+ β

αβ
 

Then, for a node k, jAk ∈ , for any  t, nHnlHtt ++≥ 0 ,  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )00

1

0

000

000

000

000

0

00

0

0

0

2

22

22

2

2

tmtxtm

tmtxtm

tmtxtm

tmnlHtxtm

nlHtmnlHtxnlHtmtx

i

l

tt
B

i

l

tt
B

tt
B

i

l

nHnlH
B

tt
B

j

nlHtt
B

j

nlHtt
B

k

−







+≥

−







+≥

−







+≥

−++≥

+−+++≥

+

−

−−

−−

−−

+−

β
αβ

β
αβ

β
αβ

β
αβ

β
αβ

β
αβ

β
αβ

 

Therefore, the inequality holds for node k. And inequality A.5 is proved.         □                  

 

Proposition A.1. 

For a load balancing algorithm with local synchronism as defined by Assumption A.1 and 

a decision algorithm satisfying the assumption Bert.2, the loads on nodes satisfy 
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n

L
txi i

t
=∀

∞→
)(lim:  where L is the total load of the system, and n is the number of nodes in 

the system. We say that the load balancing algorithm converges. 

 

Proof. 

According to Lemma A.5, if we choose l=n, for a node i, we have  

( ) ( ) ( ) ( )( )000

2

2
tmtxtmtx i

n

HHn
B

j −







+≥ +β

αβ
 for ],[, 2

0
2

0 HHntHnttj +++∈∀∀ . 

According to the definition of ( )tm  (i.e. Definition A.1), we have 

( ) ( ) ( ) ( )( )000
2

0

2

2
tmtxtmHHntm i

n

HHn
B

−







+≥++ +β

αβ
. 

Then, there exists a factor 

n

HHn
B









= +2

2
β

αβ
δ , such that  

( ) ( ) ( ) ( )( )000
2

0 tmtxtmHHntm i −+≥++ δ  

This inequality is also satisfied when node i is the heaviest loaded node at time 0t . 

Therefore, for any t, the inequality ( ) ( ) ( ) ( )( )tmtxtmHHntm i
i

−+≥++ max2 δ  holds. 

Since ( )tm converges, we have ( ) ( ) 0maxlim =−
∞→

tmtxi
it

. Therefore, ( )
n

L
txi i

t
=∀

∞→
lim: . The 

load balancing algorithm converges.                                                                      □                                                                                            

A.2.2. Assumptions A-1 and A-2 imply 

convergence 

We prove in this section that Assumption A.2 is stronger than the Assumption R-Bert-2. 

With the result of Section A.2.1, this proves that Assumption A-1 and A-2 imply 

convergence. 
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Lemma A.6. 

Condition A-2(a) implies condition R-Bert-2(a).  

 

Proof. 

For any i, any pair of i

pp Tt ∈ and i

dd Tt ∈ , when node i decides load transfers 

0)( >∑
∈ iAk

dik ts at time dt by using Assumption A-2(a), then, )()( dAdi txtx
i

> . Also, for the 

least loaded neighbor j )(min)( d

i

k
Ak

d

i

j txtx
i∈

=  , the inequality ( ) ( )d

i

jdi txtx > is satisfied. 

Therefore, in the case that the decision algorithm is defined by Assumption R-Bert-2(a), 

node i still decides load transfers 0)( >∑
∈ iAk

dik ts  in the same situation (the same neighbors 

and the same workloads on them). But, the decision algorithm defined by A-2 may not 

decide load transfers in a case where the algorithm defined by R-Bert-2 may. For 

example, we assume this is the case where, for node i, and i

dd Tt ∈ , )()( d

i

jdi txtx >  holds 

for the least loaded neighbor )(min)( d

i

k
Ak

d

i

j txtx
i∈

= , but ( ) ( )dAdi txtx
i

≤ . This case satisfies 

Assumption R-Bert-2(a) instead of A-2 for deciding a load transfer. Therefore, A-2(a) is 

stronger than R-Bert-2(a).                                         □  

 

Lemma A.7: 

Condition A-2(b) implies condition R-Bert-2(b).  

 

Proof. 

For a node i, i

pT and i

dT are the sets of times of the beginning and ending of load balancing 

operations that decide load transfers (that is, 0)( >∑
∈ iAk

dik ts ).  

According to condition A-2(b), ( ) 1=∑
∈ iAk

dij tα . Therefore, )()()( dAdi

Aj

dij txtxts
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d

i
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∑
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=

)(

)(  (defined in A-

2(a)).  
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According to A-2(a), the inequality: 
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And finally, we have ( ) ( ) ( ) ( ) ( )dijd

i

jdA
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dikdi tstxtxtstx
i

i

+≥≥− ∑
∈

. This shows that 

condition R-Bert-(b) is satisfied.                                                   □ 

 

Therefore, the algorithm defined by assumptions A-1 and A-2 converges.  
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Appendix B 
 

Table B. 1 The effectiveness of the scheme in systems with various numbers of clusters when moving 
nodes with homogeneous capacity, systems without churn, and D=8 

 
 c=128 c=256 c=512 c=1024 

Mean 0.211 0.217 0.210 0.211 Standard deviation of 
available capacities 

95% C.I 0.0026 0.0049 0.0032 0.0024 

Mean 1.338 1.426 1.421 1.502 Maximum difference of 
available capacities 

95% C.I 0.010 0.0748 0.0730 0.070 

Mean 0.081 0.075 0.074 0.074 
r1 

95% C.I 0.0002 0.0019 0.0010 0.0008 

Mean 0.899 0.994 0.987 0.989 
r2 

95% C.I 0.0129 0.0039 0.0060 0.0033 

Mean 6.628 5.712 5.986 6.113 Proportion of nodes 
moved  

95% C.I 0.1430 0.1278 0.1044 0.0728 

 
 
 

Table B. 2 The load variance and the normalize load variance of the systems with different workload 
factors 

 
 Churn=0.1 Churn=0.9 

Average workload on nodes 2.5 5 7.5 2.5 5 7.5 

Mean 0.121 0.084 0.096 0.533 0.603 0.584 
Split (%) 

95% CI 0.0411 0.0400 0.0317 0.0766 0.0771 0.0740 

mean 0.016 0.016 0.014 0.437 0.508 0.493 
Merge (%) 

95% CI 0.0125 0.0147 0.0143 0.0633 0.0577 0.0762 

mean 3.450 3.426 3.445 19.828 19.799 19.841 
Proportion of nodes moved (%)  

95% CI 0.0690 0.0580 0.0688 0.1260 0.1344 0.1352 

mean 0.1505 0.298 0.441 0.292 0.5899 0.883 Standard deviation of available 
capacities 

95% CI 0.0018 0.0032 0.0048 0.004 0.0086 0.0106 

mean 0.060 0.0591 0.0585 0.116 0.117 0.117 Standard deviation of normalized 
available capacities 

95% CI 0.0007 0.0006 0.0006 0.0016 0.0017 0.0014 
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Table B. 3 The effectiveness of the diffusive load balancing in systems with node capacities equal to 10 and 
20 requests/second, respectively,  C=1024, D=8 

            
                                                            (a) system without churn 

 
 c=10 c=20 

Mean 0.211 0.417 Standard deviation of 
available capacities 

95% C.I 0.0024 0.0034 

Mean 1.502 2.824 Maximum difference of 
available capacities 

95% C.I 0.0701 0.1256 

Mean 0.074 0.074 
r1 

95% C.I 0.0008 0.0004 

Mean 0.989 0.988 
r2 

95% C.I 0.0033 0.0036 

Mean 6.113 6.048 
Proportion of nodes moved  

95% C.I 0.0728 0.0534 

 

(b) in a system with churn rate of 0.1 or 0.9, average workload of nodes is 5 requests/second 

 
 Churn=0.1 Churn=0.9 

  c=10 c=20 c=10 c=20 

Mean 0.084 0.105 0.603 0.560 
Split (%) 

95% CI 0.0400 0.0485 0.0771 0.0810 

Mean 0.016 0.007 0.508 0.468 
Merge (%) 

95% CI 0.0147 0.0090 0.0580 0.0710 

Mean 3.426 3.496 19.799 19.946 
Proportion of nodes moved 

95% CI 0.0580 0.0569 0.1344 0.1297 

Mean 0.298 0.294 0.589 0.589 Standard deviation of available 
capacities 

95% CI 0.0032 0.0028 0.0086 0.0068 

Mean 0.059 0.0585 0.117 0.117 Standard deviation of normalized 
available capacities 

95% CI 0.0006 0.0005 0.0017 0.0014 

 
 

Table B. 4 The convergence of the scheme in the systems where node capacities follow a Pareto 
distribution 

 
 Pareto Pareto, virtual node 

Standard deviation of 
available capacities 28.50005 2.956524 
Maximum difference of 
available capacities 265.9245 65.39656 

r1 0.461558 0.065586 

r2 0.971683 0.943207 

Proportion of nodes moved 38.79747 34.91807 
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