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Abstract
Server replication is a common approach to improve the scalability of a service on the Internet. In this approach, the task of finding an appropriate server from a set of replicas is a critical issue. We have proposed in a previous work an architecture based on independent entities called brokers to provide server selection and quality of service functionality on a per session basis. Brokers in this architecture process performance reports sent by servers and respond to selection requests received from clients. When the number of servers and/or the number of client becomes large, a single broker may not have sufficient capacity to handle to load. The scalability of the server selection process for our broker architecture is investigated. The strategy under consideration is based on the replication of brokers. We first discuss the alternative organizations that support access to multiple brokers and the needed cooperation between brokers in order to achieve server selection effectively. We also propose a server selection policy that selects a server over multiple clusters and evaluate its performance by simulation.
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6.1 Introduction

Server replication is a common approach to improve the scalability of a service on the Internet. In this approach, the task of finding an appropriate server from a set of replicas is a critical issue. Several architectures have been proposed and investigated [56, 82, 28, 29] for the replication of services and some of them are nowadays used for popular services on the Internet. We have also proposed in [87] an architecture based on independent entities called brokers to provide server selection and quality of service (QoS) functionality on a per session basis. Brokers in this architecture process performance reports sent by servers and respond to selection requests received from clients. Our architecture allows flexible organization of resources used by web sites. The broker could be at the server side under the same authority as the replicated servers. This case is applicable for example to sites with heavy load and high degree of replication. Different sites may also share the same broker. In this case, the broker could be an independent brokerage service that manages the assignment of servers for affiliated sites. In both cases, we assume in that:

(1) Each site (service) has its unique public name and this public name resolves to the address of its broker; and 

(2) Each selection request sent by a user contains the name of the desired service, which allows the broker to identify the site (service) for which the request is received.

When the number of servers becomes large (because of increased user population), a single broker machine may become insufficient. It may then be necessary to scale up the brokerage service by replicating the broker. An example of our architecture with two brokers is shown in Figure 6‑1. Each broker manages the same service but interacts with a different set of servers. In our architecture, the various brokers need to communicate and cooperate in order to optimize the use of the resources available at their respective clusters. A client has first to locate one of these brokers, and then he interacts with this broker for the selection of a server. This is illustrated in Figure 1 where broker B selects a server for client X (steps 3 and 4). Each broker is capable of selecting a server from a remote cluster if the servers it manages are overloaded. In Figure 1, suppose the servers managed by broker A are overloaded. Broker A, who is interacting with client Y, exchanges messages with broker B in order to select a server for client Y’s session (see steps 7 to 10).
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Figure 6‑1: Cooperation between brokers

In this paper, we investigate the scalability of the server selection process for our broker architecture. The salient features of our architecture are (1) each broker manages a cluster of servers independently; and (2) brokers cooperate with each other through the exchange of summary reports on their status and share load in periods of high demand.

This paper is organized as follows. In Section 6.2 we discuss alternative organizations for accessing multiple brokers of the same service. In Section 6.3 we address issues that are related to supporting the cooperation between multiple brokers. In Section 6.4 we propose a server selection policy that is capable of selecting a server globally among the brokers. The performance of our proposed policy is evaluated by simulation, and the results are discussed in Section 6.5. Section 6.6 presents an overview of some of the related work. Section 6.7 contains a summary of our findings and a discussion of some related issues.

6.2 Access to Brokers

Brokers represent the entry point to the system of servers. Access to one of the brokers may be realized in many different ways using for example domain name servers [42], connection routers [37] and also the network layer anycast feature [55]. For the case where the addresses of the brokers are publicized using name servers, the public name of a given service is resolved to the IP address of one of the brokers. Name servers may be configured on a regional basis to map users to nearby brokers that often redirect them to nearby servers in order to avoid as much as possible long network delays. This approach may also be useful for the case of brokers that implement specific policies for users at specific regions. 

Alternatively, one can place the addresses of the available brokers available at all name servers. In this case, a special purpose DNS can be used to distribute clients evenly among the brokers. Another solution, which has gained interest recently in the research community, is the use of the network layer anycast feature [55]. In anycast, data packet sent to an anycast address will be delivered to at least one of the participating machines in that anycast address. To apply the anycast feature to our architecture, all brokers share the same anycast address. 

Studies on DNS traffic [28] showed that address caching at intermediate DNS servers often introduces some skewness in the distribution of requests among these servers. Also, existing network layer anycast proposals do not guarantee balance in the distribution of the requests among members of the same address. An important objective in cooperation between brokers in our architecture is therefore to distribute users’ sessions evenly among servers regardless of the point of entry (broker in our case). In addition, even though server selection requests are expected to be very simple queries that do not necessitate heavy processing at brokers, precautions have to be taken to avoid severe imbalance in the distribution of requests between the brokers of the same service.

6.3 Management of a group of brokers

Consider a group of brokers supporting the same service. The cooperation between these brokers should provide the following functionality:

· Mechanisms for membership management that allow a broker to join and leave an existing group of brokers.

· The periodic exchange of information on the status of the cluster of servers managed by each broker.

· A negotiation mechanism that allows each broker to enquire the help from other brokers when it runs out of resources or when a better quality of service may be provided elsewhere.

We will look in the rest of this section into the different functionality. 

6.3.1 Joining and leaving a group of brokers

Each broker keeps information on the members of the same group. This information includes the addresses of the brokers and the status of the cluster of servers associated with each broker. Each member is assumed to be able to receive queries on the membership of the group and respond with the latest information it has gathered on the members. When a group is first created, the first member has only information on its own cluster of servers. Subsequently, Each newly joining broker sends a query message to one of the running brokers in order to get a list of existing members. Upon receiving the list, the newly joining broker sends a “join” message to all existing members. Each member, upon receiving the join message, adds the new member to its list, and responds with the status of its cluster. 

When a broker goes offline, it informs the rest of the group by sending a “leave” message to all other members. Upon reception of the “leave” message, these other members mark the broker as inactive and stop interacting with it.  

6.3.2 Reporting Performance information 

The objective of the coordination between multiple brokers, as earlier stated, is to be able to select the best server for a user globally. In order to do so, the brokers must be able to report the status of their server clusters to each other. The following approaches may be considered:

· Continuous reporting: A summary of the status of each cluster is periodically broadcast to all members of the group.

· Explicit status request: Information on cluster status is sent only when explicitly requested by a broker. In this case it is the responsibility of a broker that needs help to query its peers about their status.

· Selective continuous reporting: Periodic status reports exchanged among brokers that are interested in such exchanges only. Each broker may subscribe or unsubscribe to this type of cooperation at any time. All brokers in this case must be able to respond to subscribe and unsubscribe messages and send status report to interested brokers. 

6.3.3 Server selection

Each broker implements a server selection algorithm for selecting a server from its local cluster as indicated in [87]. The algorithm may be dynamic based on the status of the servers; as it may be static based, for example, on some predefined weighted classification of servers; or it may simply be based on a round robin selection. Brokers may also take QoS constraints into consideration when performing server selection.  Furthermore, different brokers may implement different algorithms. The major difference between server selection in the case of single-broker and multiple-broker architectures is the scope of the selection. In the later case, each broker has to decide when it should limit the scope of server selection to its local resources (servers) and when it should start looking for better alternatives in other clusters. There are two possible alternatives:

(1) The selection of the best server is always extended to include candidates in remote clusters. This approach may not scale very well, because of the potentially large number of interactions between brokers as the number of users increases.

(2) The search for a server is done locally among those managed by the broker except in special overload conditions. This broker uses predefined thresholds to decide whether it would look for help from other brokers or not.

If a broker decides to extend the scope of server selection to remote clusters, the selection proceeds as follows. The broker identifies the most suitable cluster, and sends a selection request to its broker. Upon reception of the response, the address of the selected server is forwarded to the client. If the remote broker rejects the request, the same process may be repeated with other brokers. If all other brokers reject the selection request, then a rejection is sent to the client.

6.4 A global server selection method

In this section we present a global server selection policy for our architecture, referred to as Global Least Utilized (GLU) server. This policy is essentially an extension of the Least Utilized (LU) policy that we proposed and evaluated in [87] to the case of multiple brokers.

The group management protocol between brokers presented in Section 6.3 allows each broker to gather summary information from other clusters in order to build an up-to-date view of the status of the overall system. This global view allows overloaded brokers to identify potential brokers to which they can shift part of the load. A simple scheme is used to classify the state of each cluster (see Figure 6‑2) into two different zones of operation: green and red. A cluster is said to be in the green zone if it is operating with an acceptable performance and can handle the incoming load. The red zone defines the state where a cluster may still be able to handle the load but with a QoS that is not necessarily the best compared to other clusters. It may also define the state of a cluster that is overloaded. A performance threshold T is defined as the boundary between the two zones.
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Figure 6‑2 State of a cluster of servers

At a given cluster, say cluster i, the state of the cluster is computed by its broker and given by 
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, the average utilization of cluster i taken over all servers in that cluster. At any instant in time, cluster i is considered to be in the green group (GG) if 
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< T, otherwise it is in the red group (RG).

Each broker uses the “Least Utilized” algorithm LU to choose a server from its cluster. A GG broker will respond to its client requests by selecting a server from its own cluster; there is no need to seek help from other brokers. On the other hand, a RG broker will seek help from other GG brokers. A GG broker will not reject a request for assistance from other brokers. In the event that such a request is received by a RG, the request is rejected, and this request is not forwarded to a third broker to avoid infinite loops in server selection.

We distinguish between two variants of the policy depending on whether the threshold T is statically set by administrators or dynamically adjusted by brokers. We will refer to the two variants by static GLU (SGLU) and dynamic GLU (DGLU). SGLU uses a predefined threshold that is common to all clusters and remains the same regardless of the load on the system. The threshold is selected such that the utilization of each server does not exceed a given level. This has the drawback that a cluster must wait until it is overloaded before any attempts to use global resources are made. 

DGLU uses a dynamic threshold that depends on the status of the overall system. This threshold is computed as follows. Each broker periodically computes the overall average utilization using the latest information received from other brokers and uses this value as its threshold. A cluster that has utilization less than the average utilization of all clusters marks itself as green and may accept requests from others. A cluster that is utilized more than the average on the other hand marks itself red and start dispatching part of its load to its peers. This has the effect of keeping all clusters utilized at the same level at any instant of time. Of course, the threshold should be below some pre-defined maximum such that the overall system will not be overloaded.
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An important design parameter for DGLU is the frequency with which reports on state information are exchanged. Excessive overhead may incur if the reports are exchanged too frequently. On the other hand, if the time interval between successive reporting is too long, the state of any given cluster may be changed from GG to RG during this time interval (because more local clients are accessing its servers) even though the overall system load is not heavy. This may result in reduced flexibility in load balancing.

Figure 6‑3:Global Least Utilized Algorithm (GLU)

6.5 Performance evaluation

6.5.1 Simulation Model

Our simulation model consists of K brokers each of which manages a cluster of N servers. Each cluster is situated in a different region and has its own DNS server. Each DNS server resolves the public name of the service to the address of the broker in its region. The load on the system is controlled using a load generator that permanently maintains M concurrent active sessions. A newly generated session has a probability Pi to be from region i and uses the broker at that region. The length of a user session follows an exponential distribution with a mean value of 36 pages in accordance with the results presented in [89].

We assume that at the client, object requests are submitted sequentially as specified in HTTP 1.0.  This is modeled as follows. When a response is received for an object request, the next object request is submitted after some processing at the client. When all the objects have been received, the page request is satisfied, and the client starts the next user think time. We further assume that objects are not cached and network delays are assumed to be negligible. As in [86], two heavy-tailed distributions, namely Pareto and Weibull, are used to model the user think time, the number of objects per page, and the processing time between object requests on the same page.

Each server is modeled by a capacity parameter measured by the time required to process one byte of data [28]. For example, if a server has a capacity of 106 bytes/sec and the average size of an object is 10,000 bytes, then the server can process on average 100 objects per second.

6.5.2 Simulation experiments

In our simulation experiments, each cluster is composed of two servers, each of which has a capacity of 106 bytes/sec. The broker uses the leased utilized (LU) algorithm described in [55] for the selection of the best server locally in each cluster. If all servers have the same utilization, a random selection is used to break the tie. Data on server performance in each cluster are collected and sent to the corresponding broker every 10 seconds. 

Two levels of load are simulated: heavy load and moderate load. The heavy load is generated by 2000 concurrent clients and yields an average utilization of approximately 96% among the servers at all the clusters. The moderate load is generated by 1500 concurrent clients and yields an average utilization of approximately 79% among the servers. For each newly generated session, the probability Pi that the session is in region i is set according to one of the following two configurations: 

· Configuration 1 – three clusters: P1=0.20, P2=0.3, and P3=0.5

· Configuration 2 – two clusters: P1=0.65 and P2=0.35

6.5.3 Simulation Results

The performance of the LU policy was investigated in details using extensive simulation in [87]. It was shown that LU is capable of realizing very good load balancing between servers of different capacities and under different load conditions. The main interest in this work is to investigate the performance and the feasibility of load balancing on a global level. Consider first Configuration 1 where there are three clusters. Both variants of the GLU algorithm, namely SGLU and DGLU are simulated. The performance measure of interest is the percentiles of the response time achieved globally for all the requests completed during the simulation.

Figure 6‑4 shows the performance achieved by SGLU under high load conditions. The figure shows the results for four values (65%, 75%, 85%, 95%) for the performance threshold T. For smaller values of the threshold, e.g., 65% and 75%, since the load on the system is high, each cluster receives enough load to reach the red zone leaving little room for load coming from overload clusters. The cooperation between brokers is then very limited and a large number of users get served in their original cluster with whatever QoS available. As the threshold is increased towards values that are closed to the offered load, e.g., 85% and then 95%, the overall QoS improves rapidly as indicated in the figure. This is due to the improved flexibility in load balancing.

As references for comparison purposes, we include in Figure 6‑4 the results for the following two cases: (1) all servers are included in the same cluster and (2) no cooperation between the three clusters. These two cases correspond to configurations with maximum and minimum flexibility for load balancing respectively. These results show that with proper settings for the threshold T, namely, 95% for the heavy load condition, SGLU performs significantly better than the case of no cooperation, indicating that cooperation among brokers yields improved scalability. The performance of SGLU also compares favorably with the case of all servers in one cluster, which offers maximum flexibility for load balancing.

Figure 6‑5 shows similar results for the moderate load conditions. These results further support the merit of SGLU. For the case of T = 80%, its performance is practically the same as that of the ideal case with maximum flexibility for load balancing.
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Figure 6‑4: SGLU in high load conditions (Configuration 1)
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Figure 6‑5: SGLU in moderate load conditions (Configuration 1)

The results presented in Figure 6‑4 and Figure 6‑5 lead to two key observations: (1) Cooperation between brokers yields very benefic results in load sharing if the threshold is properly selected; and (2) the best value for the threshold depends largely on the load on the overall system. These results have motivated the design of the DGLU algorithm. 

Figure 6‑6 shows the simulation results for DGLU under high load conditions. As discussed earlier in Section 6.4, DGLU computes the threshold dynamically based on performance data exchanged periodically between brokers. The simulation was performed for three different values for the length of the reporting interval: 11, 51, and 101 seconds. We observe from the results in Figure 6‑6 that the performance of DGLU is very close to that of the ideal case of all servers belonging to the same cluster. DGLU also performs significantly better than SGLU. The superior performance of DGLU is due to the dynamic adjustment of the threshold, allowing brokers to quickly balance the load among themselves. 

The simulation results also showed the performance of DGLU is rather insensitive to the length of the reporting intervals considered. Under high load conditions, the performance degradation resulting from the use of a reporting interval of 100 seconds instead of 10 seconds is very small. Under moderate load conditions, the performance of DGLU is virtually the same for the three values of reporting interval considered (see Figure 6‑7).

We have also conducted simulations for Configuration 2 where there are two clusters. In Figure 6‑8 and Figure 6‑9, we show the performance achieved by DGLU and SGLU respectively. These results are very similar performance to those obtained previously for Configuration 1.
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Figure 6‑6: DGLU in high load conditions (Configuration 1)
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Figure 6‑7: DGLU in moderate load conditions (Configuration 1)
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Figure 6‑8: DGLU in high load conditions (Configuration 2)

[image: image10.wmf]Response time achieved by SGLU for different values of the 

cooperation threshold 

(2 clusters under high laod conditions)

0.20

0.40

0.60

0.80

1.00

0.15

0.45

0.75

1.05

1.35

1.65

1.95

2.25

2.55

2.85

3&+

Upper limit (sec.)

Percentiles

one cluster

SGLU/65%

SGLU/75%

SGLU/85%

SGLU/95%

indep. Clusters

 


Figure 6‑9: SGLU in high load conditions (Configuration 2)

6.6 Related work

Several architectures have been proposed in the literature for the management and realization of scalable services [87, 82, 28, 29]. In these architectures, an important issue is the scalability of the server selection process. One of the earlier works on this issue was the proposal of an anycast service at the network layer that can be used for service discovery and selection [55]. This service provides a best effort delivery of data packets to at least one of the machines participating in the anycast. This proposal faced some difficulties regarding scalability and its stateless nature. There is no guarantee that data packet from the same source using an anycast address will reach the same destination.  In [57] an approach was proposed to maintain the association between an anycast address and the unicast address of one of the hosts in the anycast group for the duration of a connection. The network community has also investigated the question of scalability of the anycast service itself as part of the IP network [58]. 

In [56] an application layer anycast paradigm was proposed for the location of servers across the Internet. The proposed architecture consists of entities called anycast resolvers that gather and exchange information on service providers around the Internet. Each network location is configured with a local anycast resolver, which is in charge of responding to clients’ queries for server selection. Each anycast resolver maintains the information necessary to perform the mapping from an Anycast Domain Name (ADN) to IP addresses. When a local resolver receives a query from a client, the resolver can respond directly if it is the authoritative resolver for the ADN or if it has previously gathered the necessary information for the decision. Otherwise it has to obtain the necessary information by communicating with the authoritative resolver. 

A two-level assignment approach named SWEB was proposed in [36] in which DNS performs a first level of dispatching of users among servers, and if necessary overloaded servers perform a redirection to other servers. In [95], a three-level architecture was proposed. At the first level, DNS servers assign users to a Web cluster dispatcher. At the second level, this dispatcher routes user connections to a selected server. If a user’s request reaches an overloaded server, this server activates a third-level assignment and uses HTTP redirection to redirect the user to another cluster. 

In all the above proposals, the whole server assignment process is done on a per connection/request basis. This has the advantage that redirection can be based on types of requests and/or their sizes [95]. However, the servers are involved in redirection. This may add a significant delay to the response time. The servers also need to know the status of the other clusters. In our architecture [87], each user is given a server for the duration of its session. Control information is centralized at brokers and servers do not need to be involved.    

Our approach and the application anycast approach both necessitate some modification to clients’ software to implement server selection. In our approach however all information necessary for server selection decisions is kept at the server side and more precisely at brokers. In anycast, resolvers around the Internet gather and cache information on distant servers. Beside the potential scalability problems in the collection and update of such information [58], we believe that it is much more appropriate that performance data remains strictly at the server side. It gives service providers the flexibility to implement server selection policies that suit their specific objectives; it provides enhanced scalability as the storage, collection, and update of performance data are done by brokers only.  

6.7 Conclusions

We have investigated the scalability of the server selection process for the architecture that we proposed in [87]. Our approach involves the use of replicated brokers. Each broker manages a cluster of servers, and cooperates with the other brokers in periods of high load. The addresses of the different brokers are accessed through DNS or through the use of an IP anycast address. Once a client reaches one of the brokers, he either gets a server form the local cluster managed by that broker, or from a remote cluster if no server is locally available or if a better response time is possible elsewhere.  

We have also defined a simple group management protocol that allows brokers to cooperate. This protocol provides membership management, exchange of performance data, and an inter-brokers negotiation function. A server selection policy where global selection is triggered when performance of local cluster is below a given threshold has been developed. We have experimented with two different variants of this policy in which, the threshold are either statically specified or dynamically deduced from the state of the overall system. Our simulation results showed that both methods yield a very significant improvement of performance and load balancing when compared to the case of totally independent clusters. We however noted that the dynamic variant has by far a better performance than static variant. This is mainly due to the fact that the best threshold for global cooperation between brokers depends largely on the load of the system.

If � EMBED Equation.3  ���


	Use LU to select a server from the local cluster


Else (� EMBED Equation.3  ���)


if Group GG is not empty


		Choose the best broker in GG to select a server


	Else (� EMBED Equation.3  ���)


		Use LU to select a server from the local cluster or reject user
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