
Finite State
Protocols

Description of Communication

Gregor V. B o c h m a n n *
Ddpartement de Mathdmatiques, Ecole Polytechnique
Fdddrale de Lausanne, Lausanne, Switzerland

A finite state model for the specification and validation of
communication protocols is considered. The concept of
"direct coupling" between interacting finite state compo-
nents is used to describe a hierarchical structure of protocol
layers. The paper discusses different aspects of protocol vali-
dation, some verification tools based on the finite state for-
malism, and the basic limitations of the finite state modelling
of protocols. An "empty medium abstraction" is proposed
for reducing the complexity of the overall system descrip-
tion. The concept of "adjoint states" can be useful for sum-
marizing the relative synchronization between the communi-
cating system components. These concepts are applied to the
analysis of a simple alternating bit protocol, and to the X.25
call set-up and clearing procedures. The analysis of X.25
shows that the procedures are stable in respect to intermit-
tant perturbations in the synchronization of the interface
introduced for different reasons, including occasional packet
loss. ttowever, on very rare occasions, an undesirable cyclic
behaviour could be encountered.

Keywords: Communication protocols, specification
methods, verification, finite-state description,
X.25 interface.

Gregor V. Bochmann is Associate
Professor in the D6partment d'Infor-
matique et de Recherche Op6ration-
nelle of the University of Montreal.
He received a Diplom in physcis from
the University of Munich in 1968,
and a PhD from McGiU University,
Montreal, in 1971. His experience
includes work in the area of pro-
gramming languages and compiler
design, communication protocols,
and software engineering. Present

work is aimed at design methods for communication proto-
cols and distributed systems. In 1977-78, he was visiting
professor at the Ecole Polytechnique F6d6rale at Lausanne.

* On leave from the Univer~it6 de Montr6al, Canada.

This work has been supported in part by the National Re-
search Council of Canada and the Minist6re de l'education du
Qu6bec.

This paper has been presented at the Computer Network
Protocols Symposium held in Liege (Belgium) in February
1978 and organized by the University of Liege. The permis-
sion to reprint this paper is gratefully acknowledged.

© North-Holland Publishing Company
Computer Networks 2 (1978) 361-372

1. Introduction

Formalized methods for the specification and veri-
fication of communication protocols are developed
for simplifying the problems of design, validation and
implementation. Two basically different approaches
have been used for this purpose: modelling by finite
state machines, and specifications using high-level
programming languages.

The purpose of this paper is two-fold. The paper
gives an overview of a modelling approach with finite
state machines and points out its advantages and limi-

tations. It also suggests the use of the "empty
medium abstraction" for reducing the complexity of
the state space of the system, and the concept of

"adjoint states" for summarizing the relative synchro-
nization between the communicating entities. The
second purpose of the paper is the deatiled presenta-
tion of an analysis of the X.25 call set-up and clear-
ing procedures. Most of the ideas and results in this

paper have already been described in an unpublished
report [1].

2. Finite state description of protocols

The basic approach of the description method con-

sists of subdividing the system into a number of com-

municating components, such that each component is
a finite state machine. For the i-th component of the
system, we use the following notation: The possible
states of the component are written s i. A transition
between two states s i and s} is identified by these
states: si -~ s}. T h e transitions of the component are
partitioned into a number of transition types. We

t
write si -+ si to indicate that the transition si ~ ' s i is of

type t.

2.1. D i r e c t c o u p l i n g

A possible basic communication mecanism
between the different components of the system is
what we call "direct coupling". For a given compo-
nent, certain types of transitions are directly coupled
with transition types in other components. Such a

361

362 G. V. Bochmann / Finite state description of communication protocols

transition can only be executed in parallel with a cor-
responding transition in another component. All non -
coupled transitions of a component can be executed
independently from the other components. (In the
examples given in this paper, most transition types
turn ou~ to be coupled).

For each pair of communicating components i and
j, the coupling is specified by a list of pairs of directly
coupled transition types {t i II tj}. We write ti II tj to
indicate that transition type t i of component i is
directly coupled with transition type tj of compo-
nent j. For example, the direct communication of a
sender and receiver component in the form of mess-
age transmission can be modelled by the direct cou-
pling /?/sender II mreceiver, which means that a transi-
tion of type m of the sender can only be executed
with a simultaneous transition of type m of the
receiver. (We use the notation where sending transi-
tion types are underlined, and receiving transition
types are non-underlined).

The concept of direct coupling can be used to
describe the interaction between the two stations of a
communications protocol through a medium (see sec-
tion 3), between a station and the medium (see sec-
tion 2.2 below), and between different components
within the same stations [2]. One way of realizing
direct coupling is by identifying certain output sym-
bols of the automaton of one component with certain
input symbols of the other component, without any
intermediate buffering [3,4].

2.2. Modelling communication protocols

In the following, we consider the modelling of the
communication between two stations. In the case of a
hierarchical protocol structure in several layers, we
consider the specification and validation of one layer,
and its relationship to the layers above and below.

Fig. 1 shows the component structure of the two
stations, from the point of view of the protocol layer
implemented in two particular system components,
called entity 1 and enti ty 2. These components use
facilities of the component called medium for the
exchange of information (at the lowest protocol level,
this would be the physical transmission medium
between the two stations). In turn, they provide a.
communication facility for the components, called
user 1 and user 2, of the next higher protocol layer.
Therefore, together, the components entity 1, entity
2, and medium can be considered the communication
medium to the used by this next higher layer.

I !

I I
user 1 I

(source)

ent i ty 1 i
(sender)

J l _
med i um

! !

f t
I user 2

(sink)

enti ty 2]
I

(receiver) I
If

I
Figure 1 : Architectural structure of a communication system.

Each component, including the medium, is
modelled by a finite state machine. For example, a
medium providing unreliable transmission of messages
between a sender and receiver component can be
modelled by the state diagram of fig. 2.

The interface between the components, in our
model, are modelled by direct couplings. In the above
example, the interface between the sender and the
medium would be characterized by the direct cou-
pling ___msender II mmedium, and the interface between
the receiver and the medium by mreceiver II mmedium,
and Ereceiver II Emedium (the latter transitions indi-
cating the reception of an erroneous message). The
transition type loss and error of the medium would
be uncoupled (spontaneous).

A similar formalism for the modelling of protocols
has been developed independently by Rusbridge and
Langsford [3], who also give a characterization of dif-
ferent kinds of simple transmission media.

Figure 2: Finite state model of a simple transmission
medium.

G. V. Boehmann / Finite state description of communication protocols 363

2.3. Protocol validation

The validation of protocols specified in terms of
interacting finite state components can be automated
to a large extend [5,6]. Compared to the approach
of specifying protocols in terms of a programming
language, where this does not seem feasable, this is an
advantage of the finite state approach; although it
sometimes seems to be a necessity because of the
space explosion of the considered problems.

It is difficult to define what protocol validation
means. The following points, each describes a certain
aspect of the operation of a protocol. Protocol valida-
tion can be considered as the analysis of these
different aspects, and the comparison of the results
obtained with the operational requirements [7].
These principles are the same for protocols and other
systems of parallel processes [8].

2.3.1. Reachability analysis

The basis for all subsequent validation aspects is an
analysis of the possible transitions of the overall sys-
tem, the state space of which is the Cartesian product
of the state spaces of the interacting components.
The reachability analysis yields the transition diagram
of the overall system.

2.3.2. Deadlocks

A deadlock is characterized by a state of the over-
all system, reachable from the initial state of the sys-
tem, for which no further transition is possible. Dead-
locks must be avoided, since once the system has
arrived in a deadlock state, it is blocked forever.

2.3.3. Liveness

the protocol. In addition, mostly during the design
phase of a new protocol, other loops can possibly be
found in the transition diagram. They are undesirable
since their execution does not advance tile useful pro-
cessing of the protocol. Because they could be fol-
lowed by the system an unlimited number of times,
depending on the relative speed of different opera-
tions, they have been called "tempo-blockings" [6].

It seems difficult to automatically distinguish
between loops that are useful and necessary, and
loops that are undesirable. To make this distinction,
it is important that the transition diagram of the
overall system be comprehensible to the (human)
designer. (For the other points of the validation, com-
plete automation seems to be possible).

2.3.5. Self-synchronization and stability

A system is self-synchronizing if, started up in any
possible state of the overall system, it always returns,
after some finite number of transitions, into the nor-
mal cycle of operation including the home state. This
property is imporant for error recovery in an unreli-
able environment where, for example, the transmis-
sion medium does not always function properly, one
station does not follow the prescribed protocol due
to a software or hardware bug, or the protocol is not
properly initialized.

The self-synchronizing property implies protocol
stability, because it ensures that the protocol reverts
directly to its normal mode of operation after any
initial or intermittent perturbation in the synchroni-
zation of the two communicating subsystems, intro-
duced for whatever reason.

2.3.6. Characterization o f the operation by action
sequences

A state (or transition) is live if it can be reached
from all states of the overall system that are reachable
from the initial state. Usually a protocol contains a
so-called "home state", or "steady state", which is
live and from which all pertinent operations of the
protocol can be reached.

2.3.4. Loops

To verify that the actions executed by the proto-
col correspond to the operations to be performed, it
may be useful to characterize the possible action
sequences of the overall system by regular expressions
[9]. Since the system usually contains loops, the pos-
sibility of infite action sequences must be foreseen.
This requires an extension [9,10] of the classical for-
malism of regular expressions.

Each protocol with a home state contains a loop
in the transition diagram of the overall system start-
ing at the home state and leading back to it. Usually,
there are other loops necessary for the operation of

2.4. Abstraction

We consider again the hierarhical aspect of the pro-
tocol model shown in figure 1. As explained above,

364 G. V. Bochmann / Finite state description o f communication protocols

the operation of the three components in the broken
box is described by an overall transition diagram
which is the product of the three interacting compo-
nents. From the point of view of the next higher pro-
tocol layer, i.e. as seen from the components user 1
and user 2, these three components together form a
transmission medium. From this point of view the
broken box should be described by a finite state dia-
gram containing essentially the transitions that are
directly coupled with transitions of the higher level
entities user 1 and user 2. Clearly, this diagram may
be much simpler than the overall transition diagram
of the box, and is therefore an abstraction of the
latter.

A possible method for obtaining this abstraction is
the following: Derive an extended regular expression
for the possible action sequences of the protocol (see
section 23.6), including as relevant actions only
those transitions that are directly coupled with the
next higher protocol layer. Then construct a (simple)
finite state machine which realizes exactly the action
sequences specified by the regular expression. A
simple example is given in section 4.

2.5. Limitations o f the f ini te state approach

The main limitation of the finite state approach to
the modelling of protocols is the "state space explo-
sion". A very large number of states are needed to
describe a component of a protocol which involves
counters or more complex data structures. The
number of states is multiplied when the transition
diagram of the overall system is constructed (see sec-
tion 2.3.1). To a certain degree, these problems can
be overcome by automated validation tools [5,6].

Another limitation is inherent in the finite state
modelling of the transmission medium. This limita-
tion restricts the analysis to situations with only a
small number of messages in transit at any given time.
In the case of a datagram service or a full duplex link,
these conditions are not always satisfied. As an exten-
sion to the finite state model described in this paper,
regular expressions may be used to model message
queues [1] without imposing a limit on the number
of messages in transit.

The approach using a high-level programming
language with assertions on program variables for the
specification and validation of protocols seems to be
especially useful in cases where the finite state
approach encounters problems. Therefore a unified
method combining both approaches has been pro-
POsed [11].

3. The "empty medium" a b s t r a c t i o n

We call "empty medium abstraction" a simplified
view of the overall transition diagram of the protocol,
i.e. of the broken box in figure 1, which consists of
considering only those states in the product state
space of the overall system for which the medium
component is empty, i.e. no messages are in transit.
This abstraction is particularly useful when the proto-
col is such that only a small number of messages are
in transit at any given time, such as
(a) protocols using a two-way alternate mode of

transmission (HDX),
(b) protocols using a two-way simultaneous mode of

transmission (FDX)
in a conversational mode, i.e. only a small number of
messages are outstanding at any time in each direc-
tion. Most initialization protocols are of this nature,
and in particular the example treated in section 6.

Since the medinm is in the empty state for all
states of the protocol considered, the medium compo-
nent is no longer needed for the description of the
protocol in the empty medium abstraction, as indi-
cated in figure 3.

Instead, the communicating entities 1 and 2 are
directly coupled. The nature of this coupling takes
into account the internal structure of the medium.
Taking the example of section 2.2. and figure 2, we
arrive at a direct coupling between the components
sender and receiver which is characterized by the fol-
lowing pairs of coupled transition types:
(i) re'sender II mreceiver (correct message transmis-

sion, transition path in the medium: i n . m)

(ii) ___msender II greceiver (message transmission with
error, t~ansition path in the medium: m . error.
e)

(iii) ___msender II /'receiver (message loss, transition path
in the medium." m . loss).

We note that I denotes the identity transitions, i.e. no
transition.

In general, the direct coupling between the two

I I a I

r I - I t - t 1

'[H J' I e n t i t y 1 e n t i t y 2

I (sender) (r ece ive r)] I
k. - J

Figure 3: Architectural structure of a system with direct cou-
pling between the communicating entities.

G. V. Bochmann / Finite state description o f communication protocols 365

entities is characterized by the set of all paths of tran-
sitions within the medium component that lead from
the empty state back to this state. Let o = t ~ 1) .
t (k2) t(m kn) be the sequence of transition types cor- m ""
responding to such a path. (In the above example, we
may for instance consider o =m__. error. E). Then the
direct coupling between the two entities contains all
pairs of coupled transition type sequences 01 Jl o2,
where o i = t~ i I) • t~ i :) ... t~ in ') and o : = t (j ') . t (j 2) ...
t Un') are sequences of transition types of the compo-
nents entity 1 and entity 2, respectively, such that
the transition types of the medium directly coupled
with the entity 1 or entity 2 components occur in o
in an order compatible with the order of the corre-
sponding transition types in cri and o2. Without loss
of generality, we may assume that the sequences ol
and o2 begin and end with a transition type coupled
to a transition type of o. (In the above example, we
obtain ol = m and u2 = E). In general, there may be
several pairs o~ II o2 that correspond to one given o,
because the oi(i = 1,2) may contain intermediate un-
coupled transitions.

We note that only a few of all the possible pairs
ol I1'o2 are relevant to the communication between
the two entities since most of them represent transi-
tion sequences which cannot be realized either by
entity 1 or entity 2, or both. Examples are given in
sections 4 and 6.

A1

n e w ~ -L

~~new
A o

Sender

use

A!

D1

E ,D I use

D o
Receiver

Figure 4: State diagram of sender and receiver components.

the overall system shown in figure 5 (fat transitions
only).

If we allow for transmission errors, then the follow-
ing pairs of transition types must be added to the
direct coupling:

D o[IE, D~[IE, EI IAo, EI[A~a

The corresponding transition diagram is shown in
figure 5 (fat and thin transitions).

If, in addition, we allow for message loss, then the
following pairs must be added:

Ool lL D I H I , I I IAo, I l iA1

The corresponding transition diagram is shown in fig-

4. A simple example: the alternating bit protocol

We consider the alternating bit protocol of Bartlett
et al. [12], and use our own notation [11]. The pro-
tocol uses the transmission medium usually in a two-
way alternate mode. Therefore the empty medium
abstraction is suitable for describing the overall tran-
sition diagram of the protocol, as explained below.

4.1. Normal operation

If we consider a reliable transmission medium with
neither transmission errors nor losses, we obtain a
direct coupling between the sender and receiver com-
ponents characterized by the pairs

Do II Do, D~ II D1, Ao II A__o, A1 IIA__!.

Based on the transition diagrams of the sender and
receiver shown in figure 4 and assuming initialization
in the states lo, one obtains the transition diagram of

Dt , ~

[' fl

Figure 5: Transition diagram of the overall system. (Nota-
tion: D1 stands forD1 IID1,/~I forD1 IIE, D~I forD1 Ill,
etc.)

366 G. 1I. Bochmann / Finite state description of communication protocols

ure 5 (including the dashed transitions). The message
loss transitions lead to deadlock states. To recover
from these situations, a time-out transition is pro-
vided in the sender component, which is supposed to
trigger only after a D or A message has been lost, as
indicated in figure 5.

4.2. Self-synchronization

To check the self-synchronization of the protocol,
the overall transition diagram has to be constructed
for arbitrary initial states, as shown in figure 6. One
sees by inspection that the protocol is self-synchron-
izing. It is interested to note that, during reliable
transmission, a second cycle of operation exists. This
cycle (through the states (20, 3~>, etc.) is character-
ized by simultaneous message transmission through
the medium in both directions. In practice this cycle
would not be very stable, since message loss could

n e w

easily occur due to a small mismatch of the process-
ing speeds of the communication components, and
would lead back to the normal cycle of operation.

To describe the transitions involving simultaneous
message transmission in both directions, as shown in
figure 6, we have to introduce the following addi-
tional pairs of transition types for the direct coupling
of the sender and receiver components:

D~Ay II A__g.yDx (correct transmission),

DxE [I AyDx, DxAy 11 Ay_E, DxE I[A y E (transmission

errors),

Dx 11AyDx, D___xAy l[Ay , Dx l[Ay (loss),

D xE I[Ay, D x II A_!yE (transmission error and loss),

where x and y take the values 0 and 1.
If the time-out value in the sender is not properly

adjusted, or no maximum response time can be estab-
lished, it is possible that the time-out transition of the
sender will occur before the expected response of the
receiver actually arrives. This may lead the system
from the normal operation cycle onto the second
cycle mentioned above. The dotted transitions in
figure 6 are those transitions of the overall system
which are introduced by assuming no real-time rela-
tion between the time-out transition of the sender
and the other transitions of the system. The transi-
tions shown are those involving at most one out-
standing message in each direction. We note that a
very short time-out period may lea~l to cyclic retrans-
mission and several messages in transit (if this is sup-
ported by the medium). Although not shown in the
figure, these complex transitions do not invalidate the
conclusions below.

new

Figure 6: Complete transition diagram of the overall system
(only the part corresponding to the right part of figure 5 is
included). Notation: same as in figure 5, and D O II A0 stands
for DoA o II AoDo, DO II A0E for DoE II AoDo, etc.

4.3. Abstraction

From the point of view of the user of the protocol
(the next higher protocol layer) only the transitions
new and use are of interest. By inspecting figure 6, it
is clear that, after proper initialization of the system,
the only possible action sequence involving the new
and use transitions only is o f the form (new. use) °~,
i.e. a regular alternation between new. use. new.
use ... etc. Therefore the transition diagram of figure
7 is a suitable abstraction of the protocol for the next
higher protocol layer.

To prove that the transition use actually submits
the data that has been obtained during the transition
new, it is sufficient to show that between a transition

G. V. Bochmann / Finite state description of commun&ation protocols 367

Figure 7: Finite state model of the service provided to the
higher level by the alternating bit protocol (abstraction of
figure 5).

new and the consecutive transition use of the overall
system, there is a correct reception of a D message at
the receiver. This is obvious from figure 6. We note
that the analysis of action sequences (see section
2.3.6) provides a more general proof method.

It is also clear from inspection of figure 6 that the
protocol may initially introduce up to two spurious
data packets or loose one if it is not properly initial-
ized.

or exist
t] ,

sl , t'l such that s~ E adj(sl) and sl ~ sl

or exist
t~ ,

sy, t ; such that s2 E adj(s'l) and s2 -+ sy,

where s i and s~ are states of component i(i = 1,2),
t~ lit2 is a pair of directly coupled transition types,
and t~ are uncoupled transition types of component
i(i = 1,2).

This property may be transformed into a set of
equations of the form

adj(s~ i)) = UFij(adj(sl])))
/

where

t l t 2 p
= ~ A S 2 --~ S2} Eft(X) U (S'2 I Sl (]') S~ i) E X A S 2

tl II t2,s2

5. Adjoint states

Considering the protocol model of figure 1, we
define for each state sl of the component ent i ty 1
the adjoint states of sa to be all those states s2 of the
component enti ty 2 for which there is a state
(Sl, Sm,Sy) of the overail system (where Sm is some
state of the medium) which is reachable from the
initial state by arbitrarily long paths, i.e. for any given
L, there is a path longer then L which leads from the
initial state to (Sl, sin, sy).

Knowledge of the adjoint states gives information
about the relative synchronization between the com-
ponents enti ty l and ent i ty 2. When the component
ent i ty 1 is in a given state s~, all it knows about the
state of enti ty 2 is that the latter is in one of the
adjoint states ofs~ [9]. Clearly, the adjoint states may
be obtained from the overall transition diagram of the
protocol.

In the case of the "empty medium" abstraction or,
more generally, in the case of two directly coupled
components, the adjoint states satisfy the following
property which allows their determination without
the construction of the overall transition diagram.
Writing adj(sl) for the set of adjoint states of sl , the
property may be stated as follows:

s~ E adj(s'l) iff

exist

sl, sy, tl II t2 such that s2 E adj(sl), sl ~ sl and
t2 t

$2 ---> S2

U U (s'2 Is2 ~ s'2 ̂ s2 ~ X}
t'2,s2

t '
U X if exists t ' such that s 0) " - ~ I

and sl i) is the i-th state of component 1. Such a sys-
tem of equations may be solved by recursive substitu-
tion. Using as initial values adj(s l i))=s (k) and
adj(s~ i)) = 0 for all j v~i yields as the solution, the
adjoint states for the case where the components are
initialized in states sl i) and s~ k), respectively. Using as
initial values adj(s~ i)) = (all sy) for all i yields as the
solution the adjoint states for the case in which
nothing can be assumed about the initialization. Ex-
amples are given elsewhere [1].

6. An analysis of the X.25 call set-up and clearing
procedures

Some results of an analysis of the X.25 call set-up
and clearing procedures have been presented previ-
ously [13]. This section gives more details about this
analysis, removes some restrictions of the previous
work, and shows how the principles outlined in the
above sections apply to the analysis of the X.25 pro-
cedures. It is also shown that the procedures are
stable enough for working in an environment where
packets are occasionally lost.

368 G. V. Bochmann / Finite state description o f communication protocols

6.1. The specification of the protocol 6.2. The analysis

The following analysis is based on the protocol
defined by figure 8. Contrary to the official X.25
document [14] which uses a single diagram for speci-
fying the procedures, we use two distinct transition
diagrams for the two communicating components,
one for the DTE and one for the DCE. The advantage
of our approach has been pointed out previously
[13].

The protocol of figure 8 corresponds to the speci-
fications of X.25, with the following restrictions:
a) A clear request and a clear indication may not be

sent from the states 1, 2, 5 and 1, 3 respectively.
There are two reasons for this restriction: (i) i t
simplifies the analysis (excluding the repeated
clear request and clear indication transitions in the
states 6 and 7, respectively, makes the protocol
conversational, in the sense of section 3), and (ii)
it avoids certain protocol instabilities discussed by
Belsnes and Lynning [15].

b) The handling of packets received in the error state
is not specified in the standard [14]. On the con-
trary to our previous work [13], we assume that
packets may be received when the component is in
the error state. These packets are ignored.

The protocol occasionally uses the medium in
both directions simultaneously. A typical example is
given in figure 9 which shows the possible transitions
starting in the ready state (1,1 >. The example shows
the possibility of call collision, and abnormal system
states due to packet loss. The figure also demon-
strates the simplification obtained by the use of the
"empty medium" abstraction.

The main difficulty of the "empty medium"
abstraction is to decide which pairs of directly cou-
pled transition types must be included in the analysis
for completeness, and which pairs are redundant for
the analysis. For example, in order to take care of the
possible two-way simultaneous operations, the pairs
__m .m' lira .m f o r m E {r, a, £,f} and m' E (i, c, d , f)
must be included in addition to the primitive pairs
_m l[m and m' II m'. But pairs such as
/n (1) . m ' ._mm (2) IIm' . m (O . m(2) need not be
included because they are equivalent to the successive
execution of the transition pairs__m (1) . m' II m ' . m (1)
and m (2) II m (2).

The protocol also allows for two consecutive
packets to be in transit in one direction. To deal with
the possibility of simultaneous packets in the other
direction, the transition pairs

from states from states from states from states
3,4 I 1 ,2 ,3 ,4 ,5 1 ,2 ,3 ,4 ,5 2,4,5

DTE DCE

Figure 8: State diagram of the X.25 call set-up and clearing
procedures. Notation: r: call request; a: call accepted; Q: clear
request; f: clear confirmation; i: incoming call; c: call con-
nected; d: clear indication.

OSS

Figure 9: Partial transition diagram of the X.25 interface,

including states with packets in transit (for instance, (~ is

the state where the DTE is in state 2, the DCE in state 1, and
a call request is in transit).

G. V. Boehmann /Finite state description of communication protocols 369

m (O . m (2) . m' lira' , m (1) • m (2) with m (1) . m (2) =

a . l or f . r, and m . m '(1) . m '(2) lira '(1) .m '(~) . m
with m '(1) . m ' (2) = c , d or f . i must be included in
the analysis.

In order to take care o f possible packet loss, addi-
tional pairs of transitions must be considered which
are derived from the above by replacing one or more
reception transition types by the identity transition
(no transition). The annex contains a list of all possi-
ble transitions of the overall system in the empty
medium abstraction.

6.3. The results

The complete transition diagram of the overalt sys-
tem is too complex to be shown. The adjoint states
are given in table 1 for the following cases:
(a) no packet loss

(a 1) with initial synchronization
(a2) for arbitrary initial states

(b) with possible packet loss, and arbitrary initial
states
(b l) protocol of figure 8
(b2) protocol o f figure 8 with time delay after

the transmission of a clear confirmation
packet.

The two unexpected adjoint state in case (a2) are due
to the two undesired cycles in fig. 10. These poten-
tially infinite cycles may in practice "not persist long
given the intrinsic variable time delays and any intelli-
gent processing of the clear by either the DTE or
DCE" [16]. These cycles could be completely
avoided by introducing, after the transmission of a
clear confirmation packet, a time delay longer than
the transmission time of the medium, i.e. the X.25
link access procedure [case (b2)].

Table 1
Adjoint states of the DCE for a given state of the DTE.

s ta te o f DTE
l 2 3 4 5 6 7 E

l 2 3 4 5

l 2 3,6 4 5

1,2, 1,3, 1,2, 3,4,
3,4, 4,6, 3,4, 5,7
6,7 a l l 7 6,7,
E E

1,3, 1,2, 3 3,4, 3,4,
7,E 3,4, 7,E 5,7

5,7,
E

6 7

6 7,2

1,2,
a l l 3,4,

7,E

I ,3~
4,6 ,
7,E

7,E

all

1 ,3~
4,6 ,
7

S /
/ f r dlLd f r / ~: i11Li ~',

Figure 10: Two undesired cycles.

We have assumed that a similar time delay is intro-
duced in the error state E before the clear request, or
indication respectively, is sent. I f this delay is not pre-
sent, a station in the error state may send the clear
before it has received all packets in transit (the other
station may have sent two consecutive packets, of
which the first has led into the error state). In this
way an infinite cycle may occur during which the
medium would never be empty, although this is not
probable.

The adjoint states for the case (a2) indicate that
the protocol is stable (except for the cycles men-
tioned above). This means that after an initial or
intermittent perturbation of the synchronization
between the two communicating components, intro-
duced for whatever reason, the protocol recovers into
its normal mode of operation.

The adjoint states for the case (b2) indicate that
this is also true when the cycles mentioned above are
avoided, and packets may be lost. In this case the
DTE knows less about the state of the DCE (for most
states of the DTE, there are several adjoint states of
the DCE), since after one station has sent a given
packet, the other may or may not receive it. It is
interesting to note that when the DTE :is in state 3,
the DCE is necessarily in the same state.

The overall states (2, 3 > and <6, 7> (pairs of adjoint
states) are deadlock states. In these states, both com-
ponents wait {or a response, which will never be sent.
This situation can possibly be recovered by retrans-
mission after a time-out period, as in the case of the
alternating bit protocol discussed in sec, tion 4. The
same time-out mecanism could also recover from the
packet loss leading into the states <2, 1), <1,3>. etc.
We have not included possible retransmissions in the
analysis of the protocol.

The results indicate that the X.25 procedures
for call set-up and clearing may be used with an
underlying link level protocol that simply detects
transmission errors, ignores erroneous frames, but
does not recover from losses.

370

Tab le A1

G. V. Bochmann /Finite state description of communication protocols

11 r] r :!2

r 21

i I I i 33

i 13

r i i~,ir 55

12 r l l r 2E

r 22

cl lc E4
c 14

dl ld 77

d 17

re l i c t 4E

rd I ldr 7E

_rcd l i ccj ~ 7 E

rc II cdr 4E

]3 x l l r 2S

r 23

14 r l I r 2E

r 24

d l id 77

d 17

rdHdr 7E

15 same as f o r 12, except
r 25

16 rl '~r 2E

r 26

fl l_f El

f I I

r f i l f r E2

r f i El_fir E5

r f I I f i r E5

17 rlir 2E

r 27

i [_r_ll r 2E

r 2E

dt ld 77

d 17

rd d r 7E

21 (by symmetry)

22 c l ic 44 35 same as f o r 32, ex-
_c 24 cept

a 45
dl ld 77

d 27 36 al l a 4E

a 46
W3 (deadlock) f l l f El

w4 dlld 77 f 31

_d 27 ~II ~ 66

66 Z5 Salile as f o r 22
a f l [f a EE

~G f l t f El
~fl l_f£ 16

f 21
a f i II f i a E4

?7 (deadlock) _af [t f i a E4

~f i H ~i~ 36 WE dll_d 77 -

d 27 i f [Ift~ 16

a£fi ll_fia~ 36

~I (by symmetry) a~_f ll_fl_'a£ 16

32 al la 4E aEf i II f i a 34

a 42 a~f II_fi a 14

cli c E4 37 a l ia 47

c 34 a 47

aci lca EE Lli% 61

a~'cllca, 6E £ 67

.aici[ca 6E
3E al l a 4E

acdilcda EE
a 4E

ac llEda EE LI [4 6E
2Lcdl cda'; 1 E

;~ 6E
aF, c lEd a; 6E dlld - 77

i _a ':cd El cda 1 E
d 37

a~'c Icda 6E
adllda 77

33 (by sym.letry) ;d l ld~ II

34 alla 4E _a~d II d_.aZ I I

a 44 aLdll_da 17

dild 77
41 (by symmetry)

d 37

_ill ~' 66 42 (by symmetry)

.L 64 43 (by symmetry)

adl lda 77
44 ~ i]~ 66

Adlld~ l l
64

aZ_dllda~ 11 -
a_~d ll_da 17 d lid 77

d 47

~d[Id~]]

45 same as f o r 42,
except

65
I

46 _~ II ~! 66

66

fEIL E1

f 4l

~ f l t f ~ 16

Lf~ II f i e 36
L f II _fL~ 16

47 LIi k 61

~' 67
I

4E LII~ 6E

6E

dl[d 77

d 47

~d l ldz 11

51 i l I i E3

i 53

52 cIIc 44

c 54
I

dl]d 77

d 57

53 (deadlock)

54 dI ld 77

d 57

55 clI_£ 44
c 54

d!ld 77
d 57

56 fElL El
f 51

57 (deadlock)

5E dIId 77

d 57

G. V. Bochmann / Finite state description of communication protocols 371

Table A1

61 (by symmetry)

62 (by symmetry)

63 (by symmetry)

64 (by symmetry)

65 same as f o r 62

66 f ! l ~

f

67 (deadlock)

6E d i ld

d

71 (by symmetry

72 (by symmetry)

73 (by symmetry)

I I

61

17

67

74 (by symmetry) f r f i [! f i f EE E3 (by symmetry)

75 same as f o r 72, f r f If_fir EE E4 (by symmetry)

except E5 same as f o r E2,
t~ 15 77 f H f I I except

f 17
76 fl[f l E - _~' 65

f 16 7E f i i : f IE E6 (by symmetry)

f l l f El _f IE El (by symmetry)

f 71 dI1d 77 EE ~I_Ii ; 6E

f f II f f EE _d 77 'L 6E

_ff i I]_f i f EE fdL id f 71 di!d E1

-ff Ii f i f EE f rd il d f r 72 d E7

f r f l I _ f f r EE f rd [Idf 71 ~dil d~ l l

f r f I~ f f EE

_fr f i ',I f i f r EE El (by symmetry)

f r f l l f i f r EE E2 (by symmetry) _ _ i _ _

Acknowledgements

I would like to thank Jan Gecsei, Bill Armstrong and
Mark Gold for many interesting discussions on the subject ot
this paper, and Don Weir for pointing out an error in an
earlier version.

Appendix

Transitions of the X.25 interface in the empty
medium abstration

Table A1 lists all possible transitions of the X.25
interface for the overall system including the DTE
and DCE, and is based on figure 8. Only the states
with no packets in transit are considered (empty
medium abstraction). The list includes all transi-
tions involving, in each direction, the transmis-
sion of one or two packets, which may be 10st in
transit.

Each line of the table represents one transition.
For example, the first two lines read: From the state
< 1,1 >, there is a transition of type r II r to the state
<2, 2), and a transition of type r 111 to the state <2, 1 >,
etc. Except for the transition from states 5 to 4, the
state diagrams of the DTE and DCE (see figure 8) are
symmetric in respect to an exchange of the DTE and
DCE, and an interchange of the packets r, a, £ with

i, c, d, and the states 2, 3, 6, 7 with 3, 2, 7, 6, respec-
tively. The note "by symmetry" in the table means
that the transitions from a given state of the system
can be obtained from the transitions from another
state (listed in the table) by applying the symmetry
transformation.

Only those transitions are included in the table
which cannot be obtained by two or more consecu-
tive transitions already listed. For example, the transi-
t ionr c II r c is equivalent to the two consecutive tran-
sitions £ IJ r and c IIc. Similarly, equivalences of the
following kinds exist:

r i - l , i . r l l

r . i ! i ', : r ' ! l . ~ i , i , ,

r I i , - I : l i r ! r ' etc
. . . . , - . i ~ , .

References

[1] G.V. Bochmann, Finite state description of communica-
tion protocols, Publication 236, D6partment d'Informa-
tique, Universit6 de Montr6al, July 1976.

[2] G.V. Bochmann and R.J. Chung, "A formalized specifi-
cation of HDLC classes of procedures", Proc. National
Telecommunications Conference, Los Angeles, Dec.
1977, pp. 03A. .2 -1 to 11.

[3] R.E. Rusbridge and A. Langsford, "Formal representa-
tion of protocols for computer networks", AERE Har-

372 G.V. Bochmann / Finite state description o f communication protocols

well, Oxfordshire, UK, Technical Report AERE-R
7826, Dec. 1974.

[4] C.A.R. Hoare, "Communicating sequential processes",
Technical Report, Queen's University, Belfast, 1977.

[5] C.H. West, "A general technique for communications
protocol validation", submitted for publication to IBM
Journal of Res. and Dev. (1977).

[6] J. Hajek, "Automatically verified data transfer proto-
cols", Proe. Int. Comp. Comm. Conf. (1978).

[7] P.M. Merlin, "A methodology for the design and imple-
mentation of communication protocols", IEEE Trans.
on Comm., Vol. COM-24, pp. 614-621 (1976).

[8] R.M. Keller, "Formal verification of parallel programs",
C.ACM, 7 (1976) pp. 371-384.

[9] G.V. Bochmann, "Communication protocols and error
recovery procedures", Proc. ACM Interprocess Com-
munications Workshop, March 1975, pp. 45-50, Op.
Syst. Review 9, No. 3.

[10] R.R. Redziejowski, "Parallel processes and languages
with infinite words", submitted for publication to
J.ACM, March 1977.

[11] G.V. Bochmann and J. Gecsei, "A unified model for the
specification and verification of protocols", Proc. IFIP
Congress 1977, pp. 229-234.

[12] K.A. Bartlett, R.A. Scantlebury and P.T. Wilkinson, "A
note on reliable full-duplex transmission over half-
duplex links", C.ACM 12, 260 (1969).

[13] G.V. Bochmann, "Notes on the X.25 procedures for
virtual call establishment and clearing", ACM Computer
Commmunieation Review 7, No 4 (Oct. 1977), pp.
53-59.

[14]CCITT Recommendation X.25, "Interface between
data terminal equipment (DTE) and data circuit termi-
nating equipment (DCE) for terminals operating in the
packet mode on public data networks", Sept. 1976.

[15] D. Belsnes and E. Lynning, "Some problems with the
X.25 packet level protocol", ACM Computer Commu-
nication Review 7, No. 4 (Oct. 1977), pp. 41-51.

[16] D.F. Weir, Bell Canada, private communication (1976).

¸¸

~ ~i~ ~ ~i !!~ ~ii~i ~ ~i~!~i ~ i ~i~i~i ~!~! i~ i~i~!~ I ~ ~ ~!~i ~

