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1. Introduction 

Formalized methods for the specification and veri- 
fication of communication protocols are developed 
for simplifying the problems of design, validation and 
implementation. Two basically different approaches 
have been used for this purpose: modelling by finite 
state machines, and specifications using high-level 
programming languages. 

The purpose of this paper is two-fold. The paper 
gives an overview of a modelling approach with finite 
state machines and points out its advantages and limi- 

tations. It also suggests the use of the "empty 
medium abstraction" for reducing the complexity of 
the state space of the system, and the concept of 

"adjoint states" for summarizing the relative synchro- 
nization between the communicating entities. The 
second purpose of the paper is the deatiled presenta- 
tion of an analysis of the X.25 call set-up and clear- 
ing procedures. Most of the ideas and results in this 

paper have already been described in an unpublished 
report [1]. 

2. Finite state description of  protocols 

The basic approach of the description method con- 

sists of subdividing the system into a number of com- 

municating components,  such that each component is 
a finite state machine. For the i-th component of the 
system, we use the following notation: The possible 
states of the component are written s i. A transition 
between two states s i and s} is identified by these 
states: si  -~ s}. T h e  transitions of the component are 
partitioned into a number of transition types. We 

t 
write si -+ si  to indicate that the transition si ~ ' s i is of  

type t. 

2.1.  D i r e c t  c o u p l i n g  

A possible basic communication mecanism 
between the different components of the system is 
what we call "direct coupling". For a given compo- 
nent,  certain types of transitions are directly coupled 
with transition types in other components. Such a 
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transition can only be executed in parallel with a cor- 
responding transition in another component. All non - 
coupled transitions of a component can be executed 
independently from the other components. (In the 
examples given in this paper, most transition types 
turn ou~ to be coupled). 

For each pair of communicating components i and 
j, the coupling is specified by a list of pairs of directly 
coupled transition types {t i II tj}. We write ti II tj to 
indicate that transition type t i of component i is 
directly coupled with transition type tj of compo- 
nent j. For example, the direct communication of a 
sender and receiver component in the form of mess- 
age transmission can be modelled by the direct cou- 
pling /?/sender II mreceiver, which means that a transi- 
tion of type m of the sender can only be executed 
with a simultaneous transition of type m of the 
receiver. (We use the notation where sending transi- 
tion types are underlined, and receiving transition 
types are non-underlined). 

The concept of direct coupling can be used to 
describe the interaction between the two stations of a 
communications protocol through a medium (see sec- 
tion 3), between a station and the medium (see sec- 
tion 2.2 below), and between different components 
within the same stations [2]. One way of realizing 
direct coupling is by identifying certain output sym- 
bols of the automaton of one component with certain 
input symbols of the other component, without any 
intermediate buffering [3,4]. 

2.2. Modelling communication protocols 

In the following, we consider the modelling of the 
communication between two stations. In the case of a 
hierarchical protocol structure in several layers, we 
consider the specification and validation of one layer, 
and its relationship to the layers above and below. 

Fig. 1 shows the component structure of  the two 
stations, from the point of view of the protocol layer 
implemented in two particular system components, 
called entity 1 and enti ty 2. These components use 
facilities of the component called medium for the 
exchange of information (at the lowest protocol level, 
this would be the physical transmission medium 
between the two stations). In turn, they provide a. 
communication facility for the components, called 
user 1 and user 2, of the next higher protocol layer. 
Therefore, together, the components entity 1, entity 
2, and medium can be considered the communication 
medium to the used by this next higher layer. 
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user 1 I 

(source) 

ent i ty  1 i 
(sender) 

J l _  
med i um 

! ! 

f t  
I user 2 

(sink) 

enti ty 2 ] 
I 

(receiver) I 
If 

I 
Figure 1 : Architectural structure of a communication system. 

Each component, including the medium, is 
modelled by a finite state machine. For example, a 
medium providing unreliable transmission of messages 
between a sender and receiver component can be 
modelled by the state diagram of fig. 2. 

The interface between the components, in our 
model, are modelled by direct couplings. In the above 
example, the interface between the sender and the 
medium would be characterized by the direct cou- 
pling ___msender II mmedium, and the interface between 
the receiver and the medium by mreceiver II mmedium, 
and Ereceiver II Emedium (the latter transitions indi- 
cating the reception of an erroneous message). The 
transition type loss and error of the medium would 
be uncoupled (spontaneous). 

A similar formalism for the modelling of protocols 
has been developed independently by Rusbridge and 
Langsford [3], who also give a characterization of dif- 
ferent kinds of simple transmission media. 

Figure 2: Finite state model of a simple transmission 
medium. 
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2.3. Protocol validation 

The validation of protocols specified in terms of 
interacting finite state components can be automated 
to a large extend [5,6]. Compared to the approach 
of specifying protocols in terms of a programming 
language, where this does not seem feasable, this is an 
advantage of the finite state approach; although it 
sometimes seems to be a necessity because of the 
space explosion of the considered problems. 

It is difficult to define what protocol validation 
means. The following points, each describes a certain 
aspect of the operation of a protocol. Protocol valida- 
tion can be considered as the analysis of these 
different aspects, and the comparison of the results 
obtained with the operational requirements [7]. 
These principles are the same for protocols and other 
systems of parallel processes [8]. 

2.3.1. Reachability analysis 

The basis for all subsequent validation aspects is an 
analysis of  the possible transitions of  the overall sys- 
tem, the state space of which is the Cartesian product 
of the state spaces of the interacting components. 
The reachability analysis yields the transition diagram 
of the overall system. 

2.3.2. Deadlocks 

A deadlock is characterized by a state of the over- 
all system, reachable from the initial state of the sys- 
tem, for which no further transition is possible. Dead- 
locks must be avoided, since once the system has 
arrived in a deadlock state, it is blocked forever. 

2.3.3. Liveness 

the protocol. In addition, mostly during the design 
phase of a new protocol, other loops can possibly be 
found in the transition diagram. They are undesirable 
since their execution does not advance tile useful pro- 
cessing of the protocol. Because they could be fol- 
lowed by the system an unlimited number of  times, 
depending on the relative speed of different opera- 
tions, they have been called "tempo-blockings" [6]. 

It seems difficult to automatically distinguish 
between loops that are useful and necessary, and 
loops that are undesirable. To make this distinction, 
it is important that the transition diagram of the 
overall system be comprehensible to the (human) 
designer. (For the other points of the validation, com- 
plete automation seems to be possible). 

2.3.5. Self-synchronization and stability 

A system is self-synchronizing if, started up in any 
possible state of the overall system, it always returns, 
after some finite number of transitions, into the nor- 
mal cycle of operation including the home state. This 
property is imporant for error recovery in an unreli- 
able environment where, for example, the transmis- 
sion medium does not always function properly, one 
station does not follow the prescribed protocol due 
to a software or hardware bug, or the protocol is not 
properly initialized. 

The self-synchronizing property implies protocol 
stability, because it ensures that the protocol reverts 
directly to its normal mode of operation after any 
initial or intermittent perturbation in the synchroni- 
zation of the two communicating subsystems, intro- 
duced for whatever reason. 

2.3.6. Characterization o f  the operation by action 
sequences 

A state (or transition) is live if it can be reached 
from all states of the overall system that are reachable 
from the initial state. Usually a protocol contains a 
so-called "home state", or "steady state", which is 
live and from which all pertinent operations of  the 
protocol can be reached. 

2.3.4. Loops 

To verify that the actions executed by the proto- 
col correspond to the operations to be performed, it 
may be useful to characterize the possible action 
sequences of  the overall system by regular expressions 
[9]. Since the system usually contains loops, the pos- 
sibility of infite action sequences must be foreseen. 
This requires an extension [9,10] of the classical for- 
malism of regular expressions. 

Each protocol with a home state contains a loop 
in the transition diagram of the overall system start- 
ing at the home state and leading back to it. Usually, 
there are other loops necessary for the operation of 

2.4. Abstraction 

We consider again the hierarhical aspect of the pro- 
tocol model shown in figure 1. As explained above, 
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the operation of the three components in the broken 
box is described by an overall transition diagram 
which is the product of the three interacting compo- 
nents. From the point of view of the next higher pro- 
tocol layer, i.e. as seen from the components user 1 
and user 2, these three components together form a 
transmission medium. From this point of view the 
broken box should be described by a finite state dia- 
gram containing essentially the transitions that are 
directly coupled with transitions of the higher level 
entities user 1 and user 2. Clearly, this diagram may 
be much simpler than the overall transition diagram 
of the box, and is therefore an abstraction of the 
latter. 

A possible method for obtaining this abstraction is 
the following: Derive an extended regular expression 
for the possible action sequences of the protocol (see 
section 23.6),  including as relevant actions only 
those transitions that are directly coupled with the 
next higher protocol layer. Then construct a (simple) 
finite state machine which realizes exactly the action 
sequences specified by the regular expression. A 
simple example is given in section 4. 

2.5. Limitations o f  the f ini te  state approach 

The main limitation of the finite state approach to 
the modelling of protocols is the "state space explo- 
sion". A very large number of states are needed to 
describe a component of a protocol which involves 
counters or more complex data structures. The 
number of  states is multiplied when the transition 
diagram of the overall system is constructed (see sec- 
tion 2.3.1). To a certain degree, these problems can 
be overcome by automated validation tools [5,6]. 

Another limitation is inherent in the finite state 
modelling of  the transmission medium. This limita- 
tion restricts the analysis to situations with only a 
small number of messages in transit at any given time. 
In the case of a datagram service or a full duplex link, 
these conditions are not always satisfied. As an exten- 
sion to the finite state model described in this paper, 
regular expressions may be used to model message 
queues [1] without imposing a limit on the number 
of messages in transit. 

The approach using a high-level programming 
language with assertions on program variables for the 
specification and validation of protocols seems to be 
especially useful in cases where the finite state 
approach encounters problems. Therefore a unified 
method combining both approaches has been pro- 
POsed [11]. 

3. The "empty medium" a b s t r a c t i o n  

We call "empty medium abstraction" a simplified 
view of the overall transition diagram of the protocol, 
i.e. of the broken box in figure 1, which consists of 
considering only those states in the product state 
space of the overall system for which the medium 
component is empty, i.e. no messages are in transit. 
This abstraction is particularly useful when the proto- 
col is such that only a small number of messages are 
in transit at any given time, such as 
(a) protocols using a two-way alternate mode of 

transmission (HDX), 
(b) protocols using a two-way simultaneous mode of 

transmission (FDX) 
in a conversational mode, i.e. only a small number of 
messages are outstanding at any time in each direc- 
tion. Most initialization protocols are of this nature, 
and in particular the example treated in section 6. 

Since the medinm is in the empty state for all 
states of the protocol considered, the medium compo- 
nent is no longer needed for the description of the 
protocol in the empty medium abstraction, as indi- 
cated in figure 3. 

Instead, the communicating entities 1 and 2 are 
directly coupled. The nature of this coupling takes 
into account the internal structure of the medium. 
Taking the example of section 2.2. and figure 2, we 
arrive at a direct coupling between the components 
sender and receiver which is characterized by the fol- 
lowing pairs of coupled transition types: 
(i) re'sender II mreceiver (correct message transmis- 

sion, transition path in the medium: i n .  m) 

(ii) ___msender II greceiver (message transmission with 
error, t~ansition path in the medium: m .  error. 
e )  

(iii) ___msender II /'receiver (message loss, transition path 
in the medium." m .  loss). 

We note that I denotes the identity transitions, i.e. no 
transition. 

In general, the direct coupling between the two 

I I a I 

r I - I  t - t  1 

'[ H J' I e n t i t y  1 e n t i t y  2 

I (sender) ( r ece ive r )  ] I 
k. - J 

Figure 3: Architectural structure of a system with direct cou- 
pling between the communicating entities. 
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entities is characterized by the set of all paths of tran- 
sitions within the medium component that lead from 
the empty state back to this state. Let o = t ~  1) . 
t (k2) t(m kn) be the sequence of transition types cor- m "" 
responding to such a path. (In the above example, we 
may for instance consider o =m__. error.  E). Then the 
direct coupling between the two entities contains all 
pairs of coupled transition type sequences 01 Jl o2, 
where o i  = t~ i I )  • t~ i : )  ... t~ in ' )  and o :  = t ( j  ' )  . t ( j  2) ... 
t Un') are sequences of transition types of the compo- 
nents entity 1 and entity 2, respectively, such that 
the transition types of the medium directly coupled 
with the entity 1 or entity 2 components occur in o 
in an order compatible with the order of the corre- 
sponding transition types in cri and o2. Without loss 
of generality, we may assume that the sequences ol 
and o2 begin and end with a transition type coupled 
to a transition type of o. (In the above example, we 
obtain ol = m  and u2 = E). In general, there may be 
several pairs o~ II o2 that correspond to one given o, 
because the oi(i = 1,2) may contain intermediate un- 
coupled transitions. 

We note that only a few of all the possible pairs 
ol I1'o2 are relevant to the communication between 
the two entities since most of them represent transi- 
tion sequences which cannot be realized either by 
entity 1 or entity 2, or both. Examples are given in 
sections 4 and 6. 

A1 

n e w ~  -L 

~~new 
A o 

Sender 

use 

A! 

D1 

E ,D I use 

D o 
Receiver 

Figure 4: State diagram of sender and receiver components. 

the overall system shown in figure 5 (fat transitions 
only). 

If we allow for transmission errors, then the follow- 
ing pairs of  transition types must be added to the 
direct coupling: 

D o[IE, D~[IE, EI IAo,  EI[A~a 

The corresponding transition diagram is shown in 
figure 5 (fat and thin transitions). 

If, in addition, we allow for message loss, then the 
following pairs must be added: 

Ool lL  D I H I ,  I I IAo,  I l iA1 

The corresponding transition diagram is shown in fig- 

4. A simple example: the alternating bit protocol 

We consider the alternating bit protocol of Bartlett 
et al. [12], and use our own notation [11]. The pro- 
tocol uses the transmission medium usually in a two- 
way alternate mode. Therefore the empty medium 
abstraction is suitable for describing the overall tran- 
sition diagram of the protocol, as explained below. 

4.1. Normal operation 

If  we consider a reliable transmission medium with 
neither transmission errors nor losses, we obtain a 
direct coupling between the sender and receiver com- 
ponents characterized by the pairs 

Do II Do, D~ II D1, Ao II A__o, A1 IIA__!. 

Based on the transition diagrams of the sender and 
receiver shown in figure 4 and assuming initialization 
in the states lo, one obtains the transition diagram of 

Dt , ~  

[' fl 

Figure 5: Transition diagram of the overall system. (Nota- 
tion: D1 stands forD1 IID1,/~I forD1 IIE, D~I forD1 Ill, 
etc.) 
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ure 5 (including the dashed transitions). The message 
loss transitions lead to deadlock states. To recover 
from these situations, a time-out transition is pro- 
vided in the sender component,  which is supposed to 
trigger only after a D or A message has been lost, as 
indicated in figure 5. 

4.2. Self-synchronization 

To check the self-synchronization of  the protocol,  
the overall transition diagram has to be constructed 
for arbitrary initial states, as shown in figure 6. One 
sees by inspection that the protocol is self-synchron- 
izing. It is interested to note that, during reliable 
transmission, a second cycle of  operation exists. This 
cycle (through the states (20, 3~>, etc.) is character- 
ized by simultaneous message transmission through 
the medium in both directions. In practice this cycle 
would not be very stable, since message loss could 

n e w  

easily occur due to a small mismatch of  the process- 
ing speeds of  the communication components,  and 
would lead back to the normal cycle of  operation. 

To describe the transitions involving simultaneous 
message transmission in both  directions, as shown in 
figure 6, we have to introduce the following addi- 
tional pairs of  transition types for the direct coupling 
of  the sender and receiver components:  

D~Ay II A__g.yDx (correct transmission), 

DxE [I AyDx,  DxAy 11 Ay_E, DxE I[ A y E  (transmission 

errors), 

Dx 11AyDx, D___xAy l[ Ay ,  Dx l[ Ay  (loss), 

D xE I[ Ay, D x II A_!yE (transmission error and loss), 

where x and y take the values 0 and 1. 
If  the time-out value in the sender is not properly 

adjusted, or no maximum response time can be estab- 
lished, it is possible that the time-out transition of the 
sender will occur before the expected response of the 
receiver actually arrives. This may lead the system 
from the normal operation cycle onto the second 
cycle mentioned above. The dotted transitions in 
figure 6 are those transitions of  the overall system 
which are introduced by assuming no real-time rela- 
tion between the time-out transition of  the sender 
and the other transitions of  the system. The transi- 
tions shown are those involving at most one out- 
standing message in each direction. We note that a 
very short time-out period may lea~l to cyclic retrans- 
mission and several messages in transit (if this is sup- 
ported by the medium). Although not shown in the 
figure, these complex transitions do not invalidate the 
conclusions below. 

new 

Figure 6: Complete transition diagram of the overall system 
(only the part corresponding to the right part of figure 5 is 
included). Notation: same as in figure 5, and D O II A0 stands 
for DoA o II AoDo, DO II A0E for DoE II AoDo, etc. 

4.3. Abstraction 

From the point of  view of  the user of  the protocol 
(the next higher protocol layer) only the transitions 
new and use are of  interest. By inspecting figure 6, it 
is clear that, after proper initialization of  the system, 
the only possible action sequence involving the new 
and use transitions only is o f  the form (new. use) °~, 
i.e. a regular alternation between new.  use. new.  
use ... etc. Therefore the transition diagram of figure 
7 is a suitable abstraction of  the protocol for the next 
higher protocol layer. 

To prove that the transition use actually submits 
the data that has been obtained during the transition 
new, it is sufficient to show that between a transition 
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Figure 7: Finite state model of the service provided to the 
higher level by the alternating bit protocol (abstraction of 
figure 5). 

new and the consecutive transition use of  the overall 
system, there is a correct reception of  a D message at 
the receiver. This is obvious from figure 6. We note 
that the analysis of  action sequences (see section 
2.3.6) provides a more general proof  method.  

It is also clear from inspection of figure 6 that the 
protocol may initially introduce up to two spurious 
data packets or loose one if it is not properly initial- 
ized. 

or exist 
t] , 

sl ,  t'l such that s~ E adj(sl) and sl ~ sl 

or exist 
t~ , 

sy, t ;  such that s2 E adj(s'l) and s2 -+ sy, 

where s i and s~ are states of  component  i(i = 1,2),  
t~ lit2 is a pair of  directly coupled transition types, 
and t~ are uncoupled transition types of  component  
i(i = 1,2).  

This property may be transformed into a set of  
equations of  the form 

adj(s~ i)) = UFij(adj(sl]))) 
/ 

where 

t l  t 2 p 
= ~ A S 2 --~ S2}  Eft(X)  U (S'2 I Sl (]') S~ i) E X A S 2 

tl II t2,s2 

5. Adjoint states 

Considering the protocol model of  figure 1, we 
define for each state sl of  the component  ent i ty  1 
the adjoint states of  sa to be all those states s2 of  the 
component  enti ty  2 for which there is a state 
(Sl, Sm,Sy) of  the overail system (where Sm is some 
state of  the medium)  which is reachable from the 
initial state by arbitrarily long paths, i.e. for any given 
L, there is a path longer then L which leads from the 
initial state to (Sl, sin, sy). 

Knowledge of  the adjoint states gives information 
about the relative synchronization between the com- 
ponents enti ty  l and ent i ty  2. When the component  
ent i ty  1 is in a given state s~, all it knows about the 
state of  enti ty  2 is that the latter is in one of the 
adjoint states ofs~ [9]. Clearly, the adjoint states may 
be obtained from the overall transition diagram of the 
protocol. 

In the case of  the "empty  medium" abstraction or, 
more generally, in the case of  two directly coupled 
components,  the adjoint states satisfy the following 
property which allows their determination without 
the construction of  the overall transition diagram. 
Writing adj(sl) for the set of  adjoint states of  sl ,  the 
property may be stated as follows: 

s~ E adj(s'l) iff 

exist 

sl,  sy, tl II t2 such that s2 E adj(sl), sl ~ sl and 
t2 t 

$2 ---> S2 

U U (s'2 Is2 ~ s'2 ̂  s2 ~ X} 
t'2,s2 

t '  
U X  if exists t '  such that s 0) " - ~ I  

and sl i) is the i-th state of  component  1. Such a sys- 
tem of equations may be solved by recursive substitu- 
tion. Using as initial values adj(s l i ) )=s  (k) and 
adj(s~ i)) = 0 for all j v~i yields as the solution, the 
adjoint states for the case where the components are 
initialized in states sl i) and s~ k), respectively. Using as 
initial values adj(s~ i)) = (all sy) for all i yields as the 
solution the adjoint states for the case in which 
nothing can be assumed about the initialization. Ex- 
amples are given elsewhere [1]. 

6. An analysis of the X.25 call set-up and clearing 
procedures 

Some results of  an analysis of  the X.25 call set-up 
and clearing procedures have been presented previ- 
ously [13]. This section gives more details about this 
analysis, removes some restrictions of  the previous 
work, and shows how the principles outlined in the 
above sections apply to the analysis of  the X.25 pro- 
cedures. It is also shown that the procedures are 
stable enough for working in an environment where 
packets are occasionally lost. 
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6.1. The specification of the protocol 6.2. The analysis 

The following analysis is based on the protocol 
defined by figure 8. Contrary to the official X.25 
document [14] which uses a single diagram for speci- 
fying the procedures, we use two distinct transition 
diagrams for the two communicating components, 
one for the DTE and one for the DCE. The advantage 
of our approach has been pointed out previously 
[13]. 

The protocol of figure 8 corresponds to the speci- 
fications of X.25, with the following restrictions: 
a) A clear request and a clear indication may not be 

sent from the states 1, 2, 5 and 1, 3 respectively. 
There are two reasons for this restriction: ( i ) i t  
simplifies the analysis (excluding the repeated 
clear request and clear indication transitions in the 
states 6 and 7, respectively, makes the protocol 
conversational, in the sense of section 3), and (ii) 
it avoids certain protocol instabilities discussed by 
Belsnes and Lynning [15]. 

b) The handling of packets received in the error state 
is not specified in the standard [14]. On the con- 
trary to our previous work [13], we assume that 
packets may be received when the component is in 
the error state. These packets are ignored. 

The protocol occasionally uses the medium in 
both directions simultaneously. A typical example is 
given in figure 9 which shows the possible transitions 
starting in the ready state (1,1 >. The example shows 
the possibility of call collision, and abnormal system 
states due to packet loss. The figure also demon- 
strates the simplification obtained by the use of the 
"empty medium" abstraction. 

The main difficulty of the "empty medium" 
abstraction is to decide which pairs of directly cou- 
pled transition types must be included in the analysis 
for completeness, and which pairs are redundant for 
the analysis. For example, in order to take care of the 
possible two-way simultaneous operations, the pairs 
__m .m'  lira .m f o r m E  {r, a, £,f} and m' E (i, c, d , f )  
must be included in addition to the primitive pairs 
_m l[ m and m' II m'. But pairs such as 
/n (1) . m '  ._mm (2) IIm' . m ( O .  m(2) need not be 
included because they are equivalent to the successive 
execution of the transition pairs__m (1) . m' II m ' .  m (1) 
and m (2) II m (2). 

The protocol also allows for two consecutive 
packets to be in transit in one direction. To deal with 
the possibility of simultaneous packets in the other 
direction, the transition pairs 

from states from states from states from states 
3,4 I 1 ,2 ,3 ,4 ,5  1 ,2 ,3 ,4 ,5  2,4,5 

DTE DCE 

Figure 8: State diagram of the X.25 call set-up and clearing 
procedures. Notation: r: call request; a: call accepted; Q: clear 
request; f: clear confirmation; i: incoming call; c: call con- 
nected; d: clear indication. 

OSS 

Figure 9: Partial transition diagram of the X.25 interface, 

including states with packets in transit (for instance, ( ~  is 

the state where the DTE is in state 2, the DCE in state 1, and 
a call request is in transit). 
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m (O . m (2) . m'  lira' ,  m (1) • m (2) with m (1) . m (2) = 

a .  l or f .  r, and m .  m '(1) . m '(2) lira '(1) .m  '(~) . m 
with m '(1) . m ' ( 2 ) = c ,  d or f .  i must be included in 
the analysis. 

In order to take care o f  possible packet loss, addi- 
tional pairs of  transitions must be considered which 
are derived from the above by replacing one or more 
reception transition types by the identity transition 
(no transition). The annex contains a list of  all possi- 
ble transitions of  the overall system in the empty 
medium abstraction. 

6.3. The results 

The complete transition diagram of  the overalt sys- 
tem is too complex to be shown. The adjoint states 
are given in table 1 for the following cases: 
(a) no packet loss 

(a 1) with initial synchronization 
(a2) for arbitrary initial states 

(b) with possible packet loss, and arbitrary initial 
states 
(b l )  protocol of  figure 8 
(b2) protocol o f  figure 8 with time delay after 

the transmission of  a clear confirmation 
packet. 

The two unexpected adjoint state in case (a2) are due 
to the two undesired cycles in fig. 10. These poten- 
tially infinite cycles may in practice "not  persist long 
given the intrinsic variable time delays and any intelli- 
gent processing of  the clear by either the DTE or 
DCE" [16]. These cycles could be completely 
avoided by introducing, after the transmission of  a 
clear confirmation packet, a time delay longer than 
the transmission time of  the medium, i.e. the X.25 
link access procedure [case (b2)]. 

Table 1 
Adjoint states of the DCE for a given state of the DTE. 

s ta te  o f  DTE 
l 2 3 4 5 6 7 E 

l 2 3 4 5 

l 2 3,6 4 5 

1,2, 1,3, 1,2, 3,4, 
3,4, 4,6,  3,4, 5,7 
6,7 a l l  7 6,7,  
E E 

1,3, 1,2, 3 3,4, 3,4, 
7,E 3,4, 7,E 5,7 

5,7, 
E 

6 7 

6 7,2 

1,2, 
a l l  3,4, 

7,E 

I ,3~ 
4,6 ,  
7,E 

7,E 

all 

1 ,3~ 
4,6 ,  
7 

S / 
/ f r dlLd f r / ~: i11Li ~', 

Figure 10: Two undesired cycles. 

We have assumed that a similar time delay is intro- 
duced in the error state E before the clear request, or 
indication respectively, is sent. I f  this delay is not pre- 
sent, a station in the error state may send the clear 
before it has received all packets in transit (the other 
station may have sent two consecutive packets, of  
which the first has led into the error state). In this 
way an infinite cycle may occur during which the 
medium would never be empty, although this is not 
probable. 

The adjoint states for the case (a2) indicate that 
the protocol is stable (except for the cycles men- 
tioned above). This means that after an initial or 
intermittent perturbation of  the synchronization 
between the two communicating components, intro- 
duced for whatever reason, the protocol recovers into 
its normal mode of  operation. 

The adjoint states for the case (b2) indicate that 
this is also true when the cycles mentioned above are 
avoided, and packets may be lost. In this case the 
DTE knows less about the state of  the DCE (for most 
states of  the DTE, there are several adjoint states of  
the DCE), since after one station has sent a given 
packet, the other may or may not receive it. It is 
interesting to note that when the DTE :is in state 3, 
the DCE is necessarily in the same state. 

The overall states (2, 3 > and <6, 7> (pairs of  adjoint 
states) are deadlock states. In these states, both com- 
ponents wait {or a response, which will never be sent. 
This situation can possibly be recovered by retrans- 
mission after a time-out period, as in the case of  the 
alternating bit protocol discussed in sec, tion 4. The 
same time-out mecanism could also recover from the 
packet loss leading into the states <2, 1), <1,3>. etc. 
We have not included possible retransmissions in the 
analysis of  the protocol. 

The results indicate that the X.25 procedures 
for call set-up and clearing may be used with an 
underlying link level protocol that simply detects 
transmission errors, ignores erroneous frames, but 
does not recover from losses. 
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11 r ] r  :!2 

r 21 

i I I i  33 

i 13 

r i  i~,ir 55 

12 r l l r  2E 

r 22 

cl lc E4 
c 14 

dl ld 77 

d 17 

re l i c t  4E 

rd I ldr 7E 

_rcd l i ccj ~ 7 E 

rc  II cdr 4E 

]3 x l l r  2S 

r 23 

14 r l I r  2E 

r 24 

d l id  77 

d 17 

rdHdr  7E 

15 same as f o r  12, except  
r 25 

16 rl '~r 2E 

r 26 

fl l_f El 

f I I  

r f i l f r  E2 

r f i  El_fir E5 

r f  I I f i r  E5 

17 rlir 2E 

r 27 

i [  _r_ll r 2E 

r 2E 

dt ld 77 

d 17 

rd d r  7E 

21 (by symmetry) 

22 c l ic  44 35 same as f o r  32, ex- 
_c 24 cept 

a 45 
dl ld 77 

d 27 36 al l  a 4E 

a 46 
W3 (deadlock)  f l l f  El 

w4 dlld 77 f 31 

_d 27 ~II ~ 66 

66 Z5 Salile as f o r  22 
a f l [ f a  EE 

~G f l t f  El 
~fl l_f£ 16 

f 21 
a f i  II f i  a E4 

?7 (deadlock)  _af [ t f i a  E4 

~f i  H ~i~ 36 WE dll_d 77 - 

d 27 i f [Ift~ 16 

a£fi ll_fia~ 36 

~I (by symmetry) a~_f ll_fl_'a£ 16 

32 al la 4E aEf i  II f i a  34 

a 42 a~f II_fi a 14 

cli c E4 37 a l ia  47 

c 34 a 47 

aci lca EE Lli% 61 

a~'cllca, 6E £ 67 

.aici[ ca 6E 
3E al l  a 4E 

acdilcda EE 
a 4E 

ac llEda EE LI [4 6E 
2Lcdl cda'; 1 E 

;~ 6E 
aF, c lEd a; 6E dlld - 77 

i _a ':cd El cda 1 E 
d 37 

a~'c Icda 6E 
adllda 77 

33 (by sym.letry) ;d l ld~ II 

34 alla 4E _a~d II d_.aZ I I  

a 44 aLdll_da 17 

dild 77 
41 (by symmetry) 

d 37 

_ill ~' 66 42 (by symmetry) 

.L 64 43 (by symmetry) 

adl lda 77 
44 ~ i]~ 66 

Adlld~ l l  
64 

aZ_dllda~ 11 - 
a_~d ll_da 17 d lid 77 

d 47 

~d[Id~ ] ]  

45 same as f o r  42, 
except  

65 
I 

46 _~ II ~! 66 

66 

fEIL E1 

f 4l 

~ f l t f ~  16 

Lf~ II f i e  36 
L f  II _fL~ 16 

47 LIi k 61 

~' 67 
I 

4E LII~ 6E 

6E 

dl[d 77 

d 47 

~d l ldz  11 

51 i l I i  E3 

i 53 

52 cIIc 44 

c 54 
I 

dl ]d 77 

d 57 

53 (deadlock)  

54 dI ld 77 

d 57 

55 clI_£ 44 
c 54 

d!ld 77 
d 57 

56 fElL El 
f 51 

57 (deadlock)  

5E dIId 77 

d 57 



G. V. Bochmann / Finite state description of  communication protocols 371 

Table A1 

61 (by symmetry) 

62 (by symmetry) 

63 (by symmetry) 

64 (by symmetry) 

65 same as f o r  62 

66 f ! l ~  

f 

67 (deadlock)  

6E d i ld  

d 

71 (by symmetry 

72 (by symmetry) 

73 (by symmetry) 

I I  

61 

17 

67 

74 (by symmetry) f r f i [ ! f i f  EE E3 (by symmetry) 

75 same as f o r  72, f r f  If_fir EE E4 (by symmetry) 

except  E5 same as f o r  E2, 
t~ 15 77 f H f  I I  except  

f 17 
76 fl[ f l E - _~' 65 

f 16 7E f i i : f  IE E6 (by symmetry) 

f l l f  El _f IE El (by symmetry) 

f 71 dI1d 77 EE ~I_Ii ; 6E 

f f  II f f  EE _d 77 'L 6E 

_ff i  I ]_f i f  EE fdL id f  71 di!d E1 

-ff Ii f i f  EE f rd  il d f r  72 d E7 

f r f l I _ f f r  EE f rd  [ Idf 71 ~dil d~ l l 

f r f  I~ f f EE 

_fr f i  ',I f i f r  EE El (by symmetry) 

f r f  l l f i f r  EE E2 (by symmetry) _ _  i _ _  
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Appendix 

Transitions of  the X.25 interface in the empty 
medium abstration 

Table A1 lists all possible transitions of  the X.25 
interface for the overall system including the DTE 
and DCE, and is based on figure 8. Only the states 
with no packets in transit are considered (empty 
medium abstraction). The list includes all transi- 
tions involving, in each direction, the transmis- 
sion of  one or two packets, which may be 10st in 
transit. 

Each line of  the table represents one transition. 
For example, the first two lines read: From the state 
< 1,1 >, there is a transition of  type r II r to the state 
<2, 2), and a transition of  type r 111 to the state <2, 1 >, 
etc. Except for the transition from states 5 to 4, the 
state diagrams of  the DTE and DCE (see figure 8) are 
symmetric in respect to an exchange of  the DTE and 
DCE, and an interchange of  the packets r, a, £ with 

i, c, d, and the states 2, 3, 6, 7 with 3, 2, 7, 6, respec- 
tively. The note "by symmetry" in the table means 
that the transitions from a given state of  the system 
can be obtained from the transitions from another 
state (listed in the table) by applying the symmetry 
transformation. 

Only those transitions are included in the table 
which cannot be obtained by two or more consecu- 
tive transitions already listed. For example, the transi- 
t ionr c II r c is equivalent to the two consecutive tran- 
sitions £ IJ r and c IIc. Similarly, equivalences of  the 
following kinds exist: 

r i - l , i  . r l l  

r . i ! i ', : r ' ! l  . ~ i , i , , 

r I i , -  I : l i  r ! r  ' etc  
. . . .  , - . i  ~ , . 
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