A Formal Analysis of the Web Services
Atomic Transaction Protocol with UPPAAL

Anders P. Ravn, Jiti Srba*, and Saleem Vighio**

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, DK-9220 Aalborg East, Denmark.
{apr,srba,vighio}@cs.aau.dk

Abstract. We present a formal analysis of the Web Services Atomic
Transaction (WS-AT) protocol. WS-AT is a part of the WS-Coordination
framework and describes an algorithm for reaching agreement on the out-
come of a distributed transaction. The protocol is modelled and verified
using the model checker UPPAAL. Our model is based on an already
available formalization using the mathematical language TLAT where
the protocol was verified using the model checker TLC. We discuss the
key aspects of these two approaches, including the characteristics of the
specification languages, the performances of the tools, and the robustness
of the specifications with respect to extensions.

1 Introduction

Web Services (WS) are distributed applications that interoperate across hetero-
geneous networks and provide services that are hosted and executed on remote
systems. Web services infrastructures employ one or more layers of a web service
protocol stack (see e.g. [8]), containing various standardization initiatives on as-
pects which need to be implemented and described in web services environments.
Many protocols in the stack use the SOAP [15] conventions and are currently at
various adoption stages, ranging from approved standards to proposals.

Several protocols for web services require transactional support in order to
preserve consistency. A classical transaction terminates with two possible out-
comes: committed or aborted. In the committed case, the outcome is made per-
sistent and visible outside the transaction, whereas in the aborted case, all the
actions taken during the transaction are cancelled. Standards for supporting
transactions among web services include the WS-Coordination framework [9]
developed by BEA Systems, IBM and Microsoft. Web Services Atomic Trans-
action (WS-AT) is a part of this framework. This specification defines three
coordination protocols that are used by distributed applications which require
consistent agreements on the outcome of short-lived distributed activities.

* The author is partially supported by the Ministry of Education of The Czech Re-
public, project 1M0545 — Institute for Theoretical Computer Science.

** The author is supported by Quaid-e-Awam University of Engineering, Science, and
Technology, Nawabshah, Pakistan.

Web services protocols are in general nontrivial and their correctness is not
obvious. Therefore we model WS-AT as a network of abstract state machines
communicating via shared variables and, beside some other properties, verify its
correctness using the model checker UPPAAL [1]. Verification of communication
protocols is in general not a new topic (see e.g. [3]) but WS-AT was formally
specified only recently, and analysed in [4] using the language TLA™ [5] and its
model checker TLC [7]. The TLAT formalization of the protocol remained very
useful for the creation of our UPPAAL model. In fact, we have transferred the
state transition tables specified in TLA™ into our UPPAAL model so that we can
make a fair comparison of the two specification languages.

We compare the TLAT model with our abstract state machine model with
respect to several criteria. First of all, we consider the performance of the veri-
fication tools TLC and UprpPAAL. We were able to verify the protocol for up to
five participants but the verification in UPPAAL was significantly faster. Then
we discuss the foundations of the two approaches as TLA™ is based on a formal
mathematical language while UPPAAL automata rely on imperative program-
ming constructs and transition graphs. We mention the expressiveness of these
formalisms and consider the robustness of the models with respect to a wider
applicability in other protocols with a particular focus on measuring the quality
of service. In conclusion, the two formalization languages complement each other
and we discuss a combination of these approaches for future applications in the
specification and analysis of web services protocols.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the web services atomic transaction protocol. Section 3 discusses the TLAT
modelling approach. A UPPAAL model of the protocol is presented in Section 4.
Model properties and verification results are discussed in Section 5. Finally,
Section 6 provides a detailed comparison and discusses ideas for future work.

2 Overview of WS-Atomic Transaction Protocol

WS-Coordination [9] is a specification framework for the description of protocols
that coordinate the actions of applications in a distributed environment. WS-
Atomic Transaction [10] (or WS-AT for short) is a part of this framework that
defines an atomic transaction coordination type based on the well-known ACID
(Atomicity, Consistency, Isolation, Durability) principle [2]. WS-AT defines three
specific agreement coordination protocols: Completion, Volatile two-phase com-
mit, and Durable two-phase commit. The goal of the protocols is to reach an
agreement between a protocol initiator and a number of protocol participants
on whether the transaction should be committed or aborted. It is following the
“all or nothing” policy with no compensation mechanism. All communication
between the initiator and the participants is established via a transaction coor-
dinator. See Figure 1 for the parties involved in the protocol and their commu-
nication.

The completion protocol is a simple communication scheme between the ini-
tiator and the coordinator. It is essentially used by the initiator to ask the

_y| Participant 1
L= . _ . -»| Participant 2

A S
“Al Participant n

~ Completion Protocol - Two-Phase Commit Protocol

<

\

volatile or durable

Fig. 1. WS-AT communication scheme

coordinator to try to commit or abort the transaction. The other two protocols
are both based on the two-phase commit (2PC) protocol (see Figure 2) which
coordinates registered participants in reaching their commit or abort decisions.
First, coordinator invites the registered participants to prepare for committing
the transaction, on which a participant can either vote for abort and termi-
nate, or answer that it is either prepared to commit or is read-only (meaning
that the participant’s commit does not require any further action). The sec-
ond phase of the protocol handles the actual commit, provided that the first
phase was successful. In the wvolatile variant of 2PC protocol, the specification
describes the communication between the coordinator and participants man-
aging volatile resources (like a cache register). The durable variant deals with
the coordinator-participant conversation for participants managing durable re-
sources (like a database register). The WS-AT protocol combines the two pro-
tocols into a new three-phase (i) prepare volatile, (ii) prepare durable and (iii)
commit protocol. Moreover it allows the participants to register for the protocol
at any time before the prepare phase of their respective category is completed;
thus as an example, durable participants can still register while the registration
of volatile participants is already closed.

3 Formalization and Modelling of the Protocol

The WS-AT standard [10] provides a high-level description of the protocol. It is a
collection of protocol behaviours described in English accompanied by diagrams
like the two-phase commit state transition graph presented in Figure 2 and
state tables for the parties involved in the protocol, see part a) in Figure 3.
Unfortunately, there is no generally accepted method for formally specifying WS
protocols and, as documented in [4], the WS-AT description is not sufficiently
precise for a direct formalization. For example, the roles in the protocol are not

Aborting

Rollback

~ Se
~ ~ - .

1 ‘\
- —\Prepared Commit . Committed
e o) o

PR
~ -
-
-

S.. “~~.ReadOnly or Aborted_.--" .~
el ReadOnly or Aborted _.--~ -
Coordinator generated Participant generated
> mmmmmmmmmdeea-- >

Fig. 2. Two-phase commit state transition graph

sufficiently separated from each other, which causes confusion in the protocol
description as well as in the state tables. The description is silent also about
what kind of communication between the parties in the protocol is assumed, as
well as what data the coordinator stores about each participant.

Let us take a look at Figure 3 a) describing how the transaction coordina-
tor handles the message Prepared arriving from some participant. The WS-AT
description says that if the coordinator is in the state Preparing and receives
the message Prepared, then it should register the vote and change its state to
Prepared. How this rule should be interpreted when another participant sends
its Prepared message is not explicitly formulated and the WS-AT description
says only that a coordinator with multiple participants can be understood as a
collection of independent coordinator state machines, each with its own state.
Furthermore, the state tables do not describe the details of how and when the
decision about commit or abort is made.

The WS-AT description can be formalized using the TLAT language as shown
in Figure 3 b) taken from [4]. TLAT [5] is a formal mathematical language for
specifying high-level descriptions of distributed systems. The language is very
expressive; it uses predicate logic with first order quantification, which allows for
expressing the protocol behaviour in a rather elegant way. There are no built-in
constructs for protocol primitives like message passing, but they can be encoded
using the mathematical formalism, for example as sets in case of the message
passing. The TLA™ expression in Figure 3 b) describes that if there is a message
m of the type Prepared in the set msgs containing all messages sent so far, and
the transaction coordinator is in the state preparingVolatile and the sender of the
message is registered as volatile, or the coordinator is in preparingDurable and the

(a) WS-AT:)

The coordinator accepts the message Prepared. Upon receipt of this notification, the

coordinator knows the participant is prepared and votes to commit the transaction.
States

Preparing [Prepared[. ..

Inbound Events [

Prepared ... |Record vote; goto Prepared

\.

(b) TLAT:
Im € msgs : m.type = “Prepared”
A CASE
V A tcData.st = “preparingVolatile”
A teData.reg[m.src] = “volatile”
V A tcData.st = “preparingDurable”
A tcData.reg[m.src] = “durable”

A teData' = [tcData EXCEPT !.reg[m.src] = “prepared”]
A UNCHANGED msgs

\.

rc) Uppaal Timed Automata:
An edge in the coordinator automaton with the construct select parId:
Participant, guard guard9(parId) and update action9(parId), where

bool guard9(Participant parld) {
if ((msgSrc[parId] [PREPARED] == true) &&
((tcData.st == TC_PREPARING_VOLATILE && tcData.reg[parId] == TC_VOLATILE)
|
(tcData.st == TC_PREPARING_DURABLE && tcData.reg[parId] == TC_DURABLE)))
return true;
return false;

}

void action9(Participant parld) {
tcData.reg[parId] = TC_PREPARED;

})

\.

Fig. 3. Specification of a selected WS-AT transition in TLAT and UPPAAL

sender is registered as durable, then the coordinator will note that this particular
participant is now prepared to commit the transaction. In TLA™ it is necessary
to explicitly assert that this rule does not change the current set of messages.
This is given by the clause “UNCHANGED msgs” .

During the formalization of WS-AT in TLA™, the authors in [4] had to make
a few design decisions. First of all, it was agreed that the completion protocol be-
tween the initiator and the coordinator is modelled via internal communication
as one single process. The 2PC protocol is modelled via unreliable asynchronous
message passing, where the messages can be reordered, lost or duplicated. In-
ternal timing events like “expires times out” in the state tables are modelled
via nondeterminism, which provides a safe over-approximation of the behaviour
but disallows the verification of any time-dependent properties. The full TLAT
model is described in [4] and its correctness has been verified using the TLC
model checker [7] for up to four protocol participants. In [4, 7], it is concluded
that the formalization of the protocol was nontrivial and a discussion with de-
signers involved in the formulation of WS-AT was necessary, because the WS-AT
definition employs informal descriptions being imprecise, ambiguous and often
fail to consider unusual cases.

The authors in [4] support their choice of TLAT as modelling language by
the argument that there is a place in the specification where one process depends
on the internal state of another process, and that this can be hard to model in
some languages designed expressly for distributed systems.

In the section to follow, we explain an alternative way to model the WS-AT
protocol with a network of state machines as provided by the model checker
UPPAAL [12, 1] (see Figure 3 part c¢) for an example of UPPAAL syntax) and
compare the advantages and disadvantages of both approaches. We also explain
how the difficulty with rules that depend on internal states of other processes
can be solved in our approach via the use of global variables and a special form
of process templates.

4 The UPPAAL Model

In this section we provide the details about our UPPAAL model of WS-AT proto-
col. UPPAAL [12] is a tool for modelling, simulation and verification of networks
of timed automata. The language allows to describe communicating abstract
state machines with handshake synchronization and communication via shared
variables. It provides a powerful C-like syntax for describing guards and updates
on transitions. UPPAAL allows also real time clocks. However, this feature is not
used in the present model. We refer the reader to [1] for a thorough introduction
to the UPPAAL modelling language.

The protocol model in UPPAAL consists of a process that models the initia-
tor together with the transaction coordinator (TC for short) and a participant
template that can be instantiated to as many participant processes as we want
to consider.

4.1 Global Declarations

Global variable declarations of the protocol model contain the set of states for
the initiator, for TC, and for the participants. We also define a set of registration

types and outcomes for TC and the participants. Finally, we model the set of
messages sent between TC and participants as a bit-vector.
The protocol model consists of n participants. A type Participant identifies
a participant using the indices among 0, 1, ..., n — 1.
const int NO_OF_PARTICIPANTS = n;
typedef int[0,NO_OF_PARTICIPANTS-1] Participant;

Initiator and TC related declarations. The initiator’s state is stored in the vari-
able iState which may contain one of the following values.

iState € {I_ACTIVE, I_COMMITTED, I_ABORTED, I _COMPLETING}

The information about TC is stored in the variable tcData. It is defined as a
variable of the record type DataTC.

typedef struct {StateTC st; RegTC regl[Participant];
ResTC res;} DataTC;
DataTC tcData;

The record type DataTC contains three components.
— A variable st of type StateTC represents all possible control states of TC.

st € {TC_ACTIVE, TC_PREPARING_VOLATILE, TC_PREPARING DURABLE,
TC_ABORTING, TC_COMMITTING, TC_ENDED}

— The array reg[Participant] is defined as RegTC type and stores the regis-
tration state (known to the TC) for each participant parId.

reglparId] € {TC_UNREGISTERED, TC_VOLATILE, TC_DURABLE,
TC_PREPARED, TC_READ_ONLY, TC_COMMITTED}

— Finally, a variable res of type ResTC represents the outcome of the protocol.

res € {TC_.COMMITTED RES, TC_ABORTED RES }

Participants’ related declarations. The array pData[Participant] represents
the data maintained by each participant and is declared as DataP record type.

typedef struct {StateP st; RegP reg; ResP res;} DataP;
DataP pData[Participant];

The record type DataP contains three components.
— A variable st of type StateP represents the control states of a participant.

st € {P_UNREGISTERED, P_PREPARED, P _REGISTERING, P_ACTIVE,
P_PREPARING, P_ENDED}

— A variable reg of type RegP records the registration status of a participant.
reg € {P_VOLATILE, P_DURABLE}

— Finally, res of type ResP represents the outcome of the protocol as recorded
by the given participant.
res € {P_READ_ONLY, P_COMMITTED, P_ABORTED }

guard5s()
guard4() action5() guard6(pard,regMsgType)
actiond() actionB(parld,regMsgType)

guard3()
action3() guard7(parld.regMsgType)

action7(parld,regMsgType)

;;L‘I'D“né'(') guard8(parid,regMsg Type)
action8(parld,regMsgType)

guard1() Aauardaimard)

action1() guardd(parid)

action9(parld)

guard13(parld)

action13(parld)

guard10{parld)
action10(parld)

guardi2(parld) guard11(parld)
action12(parld) action11(parld)
initial()
START @

Fig. 4. Initiator-Coordinator process

4.2 Messages

Following the TLA™ model, we decided to model the completion protocol be-
tween the initiator and the TC by a direct communication. For the commu-
nication between TC and participants, we adopted the model of asynchronous
message passing where messages can be reordered, duplicated or lost. Unlike in
TLA*, we model messages as two dimensional Boolean arrays. There are two
types of messages, either sent by the TC to a concrete participant or sent by a
participant to the TC.

— The array msgDest [Participant] [MsgsTC] stores messages of type MsgsTC
sent from the TC to a participant where MsgsTC = {REGISTER_RESPONSE,
PREPARE, COMMIT, ROLLBACK}. Given a participant parId and a message
msg of type MsgsTC, the array element msgDest [parId] [msg] has the value
true if and only if the TC has already sent the message msg to the participant
parld.

— The array msgSrc[Participant] [MsgsP] represents messages of type MsgsP
sent from a participant to TC where MsgsP = {PREPARED, READ_ONLY,
COMMITTED, ABORTED, REGISTER_VOLATILE, REGISTER,DURABLE} . Asbe-
fore, if a participant parId has already sent a message msg to the TC, then
msgSrc [parId] [msg] has the value true, otherwise it is false.

This representation ensures that duplicate messages are ignored, and that the
arrival order of messages is ignored as well.

4.3 Initiator-Coordinator Process

The model for the Initiator-Coordinator process is shown in Figure 4. The exe-
cution starts in the location START from which the protocol is set to its initial
values by the function initial(). After this initial phase, the model has just
one location which is urgent (no time elapse is allowed). Each of the transitions
in the model has a guard and an update, both modelled as a function in C-like
code. Due to the space limitation we present here in detail only rule 9, as already
displayed in Figure 3 c). The rule has a select statement parId: Participant
which is a convenient UPPAAL abbreviation for a set of transitions where the
parId variable is instantiated to all possible participant identities (as defined by
the type Participant).

Referring to Figure 3 ¢), the boolean function guard9(parId) has a param-
eter parId. The function checks if the TC has already received a prepared mes-
sage from the selected participant by the test (msgSrc[parId] [PREPARED] ==
true). It also checks if the TC is currently in the preparing volatile phase of the
protocol (tcData.st == TC_PREPARING_VOLATILE) and the registration state
for the participant that the TC has recorded is volatile (tcData.reg[parId] ==
TC_VOLATILE). The guard is satisfied also if the current TC’s state is preparing
durable (tcData.st == TC_PREPARING_DURABLE) and TC’s recorded registra-
tion state of the participant is durable (tcData.reg[parId] == TC_DURABLE).
If one of these conditions is satisfied then the guard returns true, otherwise it
returns false.

If the guard guard9(parId) is true then the transition can be executed and
the function action9(parId) is called for the selected participant. The call
of action9(parId) simply sets the TC’s registration state for the participant
parId to prepared (tcData.reg[parId] = TC_PREPARED).

The reader may observe that some rules in Figure 4 do not have any se-
lect statements, others select a parId, and a few select the registration type of
messages regMsgType as well. The full UPPAAL model is available as [11].

4.4 Participant Process

The template for the participants has a similar shape as the initiator-coordinator
template. The final UPPAAL model contains one copy of this template for each
participant in the network. Like the initiator-coordinator process, the participant
process also starts in the location START and performs the initialization first.
The participant model then consists of loop-transitions with guards and updates
(actions) numbered from 14 to 22. Consult [11] for the complete model.

Following the TLA™T specification, we encoded into the rules the behaviour
of each participant. An example of such a rule is a situation when the partic-
ipant identified as id receives a rollback message from the TC. As long as the
participant is in one of the four prescribed states (defined in the code to follow),
it will be able to read this message and end the transaction with the aborted
outcome and confirm this by sending a message to the TC.

r

Consistency £
A (iState = “committed”)
= V A tcData.st = “ended”
A tcData.res = “committed”
A VY p € Participant :
V' pDatalp].st = “unregistered”
VA pData[p].st = “ended”
A pData[p].res = {“?7” , “committed” }
V A tcData.st = “committing”
AN V p € Participant :
V pDatalp].st = {“unregistered” ;| “prepared” }
VA pData[p].st = “ended”
A pData[p].res = {“?” , “committed”}
A V p € Participant :
A pData[p].st = “ended”
A pData[p].res = “committed”
= A iState = “committed”
AV A tcData.st = “ended”
A tcData.res = “committed”
A iState = “committed”
V tcData.st = “committing”
A Y pp € Participant :
V' pDatalpp].st = {“unregistered” , “prepared” }
VA pData[pp].st = “ended”
A pData[pp].res = {“?” , “committed”}

Fig. 5. Consistency Property in TLA™

bool guard22() {
return (msgDest [id] [ROLLBACK] == true &&
(pDatalid] .st == P_REGISTERING || pDatal[id].st == P_ACTIVE ||
pData[id] .st == P_PREPARING || pData[id].st == P_PREPARED))

}

void action22() {
pData[id] .st = P_ENDED; pDatalid].res = P_ABORTED;
msgSrc[id] [ABORTED] = true;

}

The other participant rules follow a similar pattern.

5 Model Properties and Verification Results

We discuss now the properties of the UPPAAL WS-AT model we described in
the previous section and compare its verification results with those of the TLC

model checker.

5.1 Model Properties

Consistency: The main correctness requirement is that the participants to-
gether with the initiator unanimously agree to commit or abort the transaction.
This property is called consistency in [4], and its formulation in TLA™ can be
seen in Figure 5. Consistency is a safety property, and it is expressed by an
invariant assertion. It states that the protocol is never in an inconsistent con-
figuration where one process thinks that the transaction is committed while
another process claims that it was aborted. There are two separate conjuncts
in the invariant, one asserting what should be true if the initiator reached the
decision to commit, and the other one asserting what is true if a participant has
reached the commit decision.

We verified the same consistency property given in [4] by reformulating it to
the UrPPAAL syntax. The UPPAAL expression for checking consistency is given
as the function Consistency() in Figure 6. The query is then formulated in
UprpaAL’s CTL logic as AD Consistency() which checks whether on all com-
putations every state satisfies the consistency invariant. It is no surprise that
the WS-AT protocol satisfies this property as it is a rather standard protocol
and it was recently verified using the model checker TLC [4], resulting in some
modifications and improvements in the official specification.

Rules Usage: The next question one can ask is whether all rules implemented
in the UPPAAL model are actually necessary, in other words if for any given rule
there is some execution where the rule is actually used.

For this purpose we introduce an observer, which is a function added to the
update of every transition in our model which simply records the number of the
rule that was executed.

typedef int[1,22] Rules; bool flag[Rules];
void observer(int x) { flagl[x] = true; }

As we numbered all the rules in our models (see e.g. Figure 4) it is now easy to
add the calls observer (1), ..., observer(22) to the updates of the transitions
representing the rules 1 to 22, respectively. Now in order to verify whether for
example the rule 9 is ever used, we ask UPPAAL the query EQ flag[9]. In this
way we verified (again as expected) that all rules specified in the protocol are
actually used at some execution.

5.2 Performance Results

We measured the time needed for the verification of the consistency property,
which is the most time demanding one as it searches the whole state-space.
The tests were performed on a iMac 27in, 4 GB 1067 MHZ RAM, 3.06 GHz
Intel Core 2 Duo and Leopard Snow operating system. We used UPPAAL 4.1.2
and TLA Toolbox version 1.1.0, both with the default settings. The results are
shown below along with the results obtained using the TLC model checker for
the protocol description given in [4]. Execution times are rounded up to seconds
and we also report on the number of explored states.

(bool Consistency() {
return InitiatorCommittedOK() && ParticipantCommittedOK() ;
}
bool InitiatorCommittedOK() {
return iState != I_COMMITTED | |
(tcData.st == TC_ENDED && tcData.res == TC_COMMITTED_RES &&
AllParticipantsCommitted()) ||
(tcData.st == TC_COMMITTING && AllParticipantsCommitting());
}
bool AllParticipantsCommitted() {
for (p=0; p<NO_OF_PARTICIPANTS; p++)
if (!(pDatalp].st == P_UNREGISTERED || (pDatalp].st == P_ENDED &&
(pDatalp] .res == P_READ_ONLY || pDatal[p].res == P_COMMITTED))))
return false;
return true;
}
bool AllParticipantsCommitting() {
for (p=0; p<NO_OF_PARTICIPANTS; p++)
if (! ((pDatalp].st == P_UNREGISTERED || pDatalp].st == P_PREPARED) ||
(pDatalp] .st == P_ENDED &&
(pDatalp] .res == P_READ_ONLY || pDatal[p].res == P_COMMITTED))))
return false;
return true;
}
bool ParticipantCommittedOK() {
for (p=0; p<NO_OF_PARTICIPANTS; p++)
if (pDatalp].st == P_ENDED && pDatal[p].res == P_COMMITTED) {
if (!InitCoorCommitted0rCommiting() || !'AllParticipantsCommitting()
return false;
}
return true;
}
bool InitCoorCommittedOrCommiting() {
return iState == I_COMMITTED &&
((tcData.st == TC_ENDED && tcData.res == TC_COMMITTED_RES) | |
tcData.st == TC_COMMITTING) ;

Fig. 6. Consistency property in UPPAAL

Performance Results for Checking Consistency

Number of TLC UPPAAL

participants Time | States Time | States
1 1s 132 1s 143
2 1s 2 082 1s 2 621
3 6s 32 244 2s 50 537
4 1m 49s 504 306 33s 1014 497
5 40m 37s 8 000 412 14m 36s 21 100 793

Tool TLC UPPAAL
specification TLA+ timed automata network
language with shared variables
necessary user’s . .
background mathematical programming
. . . restricted, communicating
very expressive, infinite

expressiveness of
spec. language

sets, relations, quantifiers,
co-inductive approach

state machines, C-like (but
finite) data-structures,
inductive approach

model checker restricted to bounded do- | verifies the full specification
characteristics mains, exhaustive search language (with time)
modelling/veri- fast modelling, slower verifi- | slower modelling, faster ver-

fication speed

cation

ification

verification of
time/cost features

manual encoding necessary
but no verification support

straightforward modelling
and state-of-the-art verifica-
tion support

parameterized
reasoning

modelling yes,
verification no

modelling yes,
verification no

Fig. 7. Comparison of the model checkers TLC and UPPAAL

Comparison of the verification results indicates that UPPAAL is more efficient
than the model checker TLC in terms of execution time, even though it actually
explores more states. Beyond five participants, it is almost certain that UPPAAL
will run out of RAM (and start swapping) and TLC may take a very long time
(probably days). However, we have not tried to optimize the UPPAAL model
in any way yet and we believe that related tools, like for example UPPAAL
CoVer [14], may significantly improve its performance.

6 Comparison and Conclusion

We conclude by discussing the key aspects of the two approaches presented for
formalization and verification of WS protocols. A summary table is in Figure 7.

Perhaps the main difference is that TLC can analyse (a subset of) the TLA™
language which is based on mathematical reasoning: first order logic and a sim-
ple set theory. Reading of TLA™T specifications requires training, but the authors
claim that it is about as difficult as learning a new programming language [4].
The UPPAAL model of WS-AT may look more familiar to engineers even with-
out any prior training in concurrency theory. The model in fact uses only a
limited set of UPPAAL primitives. For example no synchronization between pro-
cesses is employed as all message passing is asynchronous and modelled using

shared variables. The rules of the protocol are encoded in a C-like programming
language.

Yet, UPPAAL requires a lower-level encoding of some protocol fragments like
message passing. Messages in UPPAAL are encoded as bit-vectors, while TLAT
offers an elegant and easy to read set notation. This necessarily implies a more
verbose encoding of message passing in UPPAAL, but also allows for more control
and a possible optimization of the performance. We have not looked in detail
into the code optimization yet, but it seems that e.g. the UPPAAL CoVer tool [14]
may bring a further improvement in the verification performance.

We note that while in TLA™ specification of WS-AT we can count up to 33
rules used in the model, the UPPAAL code implements only 22 rules. While still
modelling the protocol at exactly the same level of abstraction, the reason is that
in the TLA™ language one has to explicitly assert what variables an execution of
a rule leaves unchanged. This is due to the co-inductive approach used in TLAT
and user that thinks in imperative programming terms may find it confusing.
As UPPAAL uses an inductive approach (what is not described in the rules, is
not allowed), we eliminate the need to consider rules that have no effect on the
protocol behaviour.

Another point we shall discuss is the possibility to extend the approaches with
quantitative analysis. The quality of service has recently become an important
aspect and one may wish to explicitly model for example time and cost attributes
of a protocol. Already the WS-AT specification mentions the time aspects, cit-
ing [10]: “A coordination context may have an Expires attribute. This attribute
specifies the earliest point in time at which a transaction may be terminated
solely due to its length of operation.” Both in TLAT and UPPAAL specifications
the time-outs are currently modelled using a nondeterministic choice, which on
one hand provides a safe over-approximation of the behaviour, but on the other
hand does not allow us to ask time related queries. While time features can be
specified in both formalisms, TLC does not provide any verification support for
it. The analysis of time aspects in UPPAAL is straightforward, as UPPAAL is a
state-of-the-art tool for continuous time modelling and (automatic) verification.
Moreover, the UPPAAL related tool UPPAAL CORA [13] for cost-optimal reacha-
bility will allow an easy addition of cost features for analysis and verification of
a variety of quality of service questions. For further discussion on this topic the
reader may consult also [6].

To sum up, it is possible to verify the consistency of the WS-AT for up to
five participants both in TLC and UPPAAL. The main problem in the process is
actually the understanding of the WS-AT specification which, in its textual form,
is incomplete and imprecise. The authors in [4] relied during the formalization
phase on two experts that participated in designing the WS-AT protocol. Our
modelling task was easier because TLA™T is a fully formal language and we could
find all the answers about the behaviour of the protocol in their specification.
We can roughly conclude that TLA™ is a more suitable language for higher-level
specification of WS protocols because of it succinctness and flexibility. On the
other hand, any protocol that is described in UPPAAL timed automata framework

can be also verified, which is not the case for the TLC model checker. The
experimental results also show that the UPPAAL engine is noticeably faster than
TLC and hence more suitable for complex protocols. For further applicability in
automatic verification UPPAAL provides readily available extensions with time
and cost, features that can be encoded in TLA™ specifications but not necessarily
verifiable in TLC nor any presently available tool.

The formalization of WS-AT shows the need for introducing a standard for
the description of WS protocols. The current practice is insufficient and the
standardized protocols can be ambiguous and incomplete. In our future work,
we plan to investigate a higher-level language that would share some of the ad-
vantages of TLA™ as specification formalism, while being more targeted directly
towards WS protocols, easily understandable by software engineers, and allowing
an automatic translation to verification tools such as UPPAAL.

Acknowledgments. We would like to thank Kaustuv Chaudhuri, Leslie Lamport
and Stephan Merz for answering our questions related to TLC.

References

[1] G.Behrmann, A. David, and K.G. Larsen. A tutorial on UPPAAL. In Proceedings
of SFM-RT’04, volume 3185 of LNCS, pages 200-236. Springer-Verlag, 2004.

[2] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[3] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1991.

[4] J.E. Johnson, D. E. Langworthy, L. Lamport, and F. H. Vogt. Formal specification
of a web services protocol. Journal of Logic and Algebraic Programmaing, 70(1):34—
52, 2007.

[5] L. Lamport. Specifying Systems. Addison-Wesley, 2003.

[6] L. Lamport. Real-time model checking is really simple. In Proceedings of
CHARME’05, volume 3725 of LNCS, pages 162—175. Springer, 2005.

[7] L. Lamport and Y. Yu TLC — the TLA+ model checker, 2003.
http://research.microsoft.com/en-us/um/people/lamport/tla/tlc.html.

[8] B. Mathew, M. Juric, and P. Sarang. Business Process FEzecution Language for
Web Services 2nd Edition. Packt Publishing, 2006.

[9] E. Newcomer and I. Robinson (chairs). Web services coordination (WS-
coordination) version 1.1, 2007. http://docs.oasis-open.org/ws-tx/wstx-wscoor-
1.1-spec-os/wstx-wscoor-1.1-spec-os.html.

[10] E. Newcomer and I. Robinson (chairs). Web services atomic transaction (WS-
atomic transaction) version 1.2, 2009. http://docs.oasis-open.org/ws-tx/wstx-
wsat-1.2-spec.html.

[11] A.P. Ravn, J. Srba, and S. Vighio. UPPAAL model of the WS-AT protocol.

Available in the UPPAAL example section at http://www.uppaal.com/.

] UPPAAL. http://www.uppaal.com.

[13] UPPAAL CORA. http://www.cs.aau.dk/~behrmann/cora/.

] UPPAAL CoVer. http://www.hessel.nu/CoVer/.

] W3C. SOAP version 1.2 part 0: Primer (second edition), 2007. W3C Recommen-
dation.

