Timed Automata - From Theory to Implementation

Patricia Bouyer
LSV - CNRS \& ENS de Cachan
France

Roadmap

© Timed automata, decidability issues
๑ Some extensions of the model

- Implementation of timed automata

Timed automata, decidability issues

厅 presentation of the model
© decidability of the model
© the region automaton construction

Timed automata

x, y : clocks

Timed automata

x, y : clocks

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?
© reachability properties
(final states)
© basic liveness properties
(Büchi (or other) conditions)

Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?
© reachability properties
(final states)
© basic liveness properties
(Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable. It is PSPACE-complete.

[^0]
The region abstraction

Equivalence of finite index

The region abstraction

Equivalence of finite index

6 "compatibility" between regions and constraints

The region abstraction

Equivalence of finite index

6 "compatibility" between regions and constraints
๑ "compatibility" between regions and time elapsing

The region abstraction

Equivalence of finite index

ஏ "compatibility" between regions and constraints
๑ "compatibility" between regions and time elapsing

The region abstraction

Equivalence of finite index

6 "compatibility" between regions and constraints
© "compatibility" between regions and time elapsing
\rightarrow a bisimulation property

The region abstraction

Equivalence of finite index

region defined by

$$
\begin{gathered}
\left.I_{x}=\right] 1 ; 2\left[, I_{y}=\right] 0 ; 1[\\
\{x\}<\{y\}
\end{gathered}
$$

の "compatibility" between regions and constraints
© "compatibility" between regions and time elapsing
\rightarrow a bisimulation property

The region automaton

timed automaton \otimes region partition

$q \xrightarrow{g, a, C:=0} q^{\prime}$ is transformed into:
$(q, R) \xrightarrow{a}\left(q^{\prime}, R^{\prime}\right)$ if there exists $R^{\prime \prime} \in \operatorname{Succ}_{t}^{*}(R)$ s.t.

$$
\begin{array}{ll}
\text { ๑ } & R^{\prime \prime} \subseteq g \\
\text { ๑ } & {[C \leftarrow 0] R^{\prime \prime} \subseteq R^{\prime}}
\end{array}
$$

$$
\mathcal{L}(\text { reg. aut. })=\text { uNTIME (} \mathcal{L}(\text { timed aut. }))
$$

where $\operatorname{UNTIME}\left(\left(a_{1}, t_{1}\right)\left(a_{2}, t_{2}\right) \ldots\right)=a_{1} a_{2} \ldots$

An example [AD 90's]

Partial conclusion

\rightarrow a timed model interesting for verification purposes
Numerous works have been (and are) devoted to:
© the "theoretical" comprehension of timed automata
© extensions of the model (to ease the modelling)

- expressiveness
- analyzability
© algorithmic problems and implementation

Some extensions of the model

厅 adding constraints of the form $x-y \sim c$
© adding silent actions
厅 adding constraints of the form $x+y \sim c$
๔ adding new operations on clocks

Adding diagonal constraints

$$
x-y \sim c \quad \text { and } \quad x \sim c
$$

© Decidability: yes, using the region abstraction

© Expressiveness: no additional expressive power

Adding diagonal constraints (cont.)

\rightarrow proof in [Bérard,Diekert,Gastin,Petit 1998]

Adding diagonal constraints (cont.)

Open question: is this construction "optimal"?
 In the sense that timed automata with diagonal constraints are explonentially more concise than diagonal-free timed automata.

Adding silent actions

$$
\xrightarrow{g, \varepsilon, C:=0}
$$

[Bérard,Diekert,Gastin,Petit 1998]
© Decidability: yes (actions has no influence on the previous construction)
© Expressiveness: strictly more expressive!

Adding constraints of the form $x+y \sim c$

$$
x+y \sim c \quad \text { and } \quad x \sim c
$$

厅 Decidability: - for two clocks, decidable using the abstraction

- for four clocks (or more), undecidable!
© Expressiveness: more expressive! (even using two clocks)

$$
\left\{\left(a^{n}, t_{1} \ldots t_{n}\right) \mid n \geq 1 \text { and } t_{i}=1-\frac{1}{2^{i}}\right\}
$$

The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two counters (x and y):

G Incrementation:

$$
\text { (p): } \quad x:=x+1 ; \text { goto (q) }
$$

๑ Decrementation:

$$
\text { (p): if } x>0 \text { then } x:=x-1 \text {; goto (q) else goto (r) }
$$

Theorem. [Minsky 67] The emptiness problem for two counter machines is undecidable.

Undecidability proof

\rightarrow simulation of \bullet decrement of d

- increment of c

We will use 4 clocks: • u, "tic" clock (each time unit)

- x_{0}, x_{1}, x_{2} : reference clocks for the two counters
$\begin{aligned} " x_{i} \text { reference for } c " \equiv & \text { "the last time } x_{i} \text { has been reset is } \\ & \text { the last time action } c \text { has been performed" }\end{aligned}$
[Bérard,Dufourd 2000]

Undecidability proof (cont.)

๑ Increment of counter c :

ref for c is x_{0}
ref for c is x_{2}
G Decrement of counter c :

$$
x_{0}<2, u+x_{2}=1, c, x_{2}:=0
$$

Adding constraints of the form $x+y \sim c$

© Two clocks: decidable! using the abstraction

б Four clocks (or more): undecidable!

Adding constraints of the form $x+y \sim c$

σ Two clocks: decidable! using the abstraction

Three clocks: open question

๑ Four clocks (or more): undecidable!

Adding new operations on clocks

Several types of updates: $x:=y+c, x:<c, x:>c$, etc...

Adding new operations on clocks

Several types of updates: $x:=y+c, x:<c, x:>c$, etc...
© The general model is undecidable.
(simulation of a two-counter machine)

Adding new operations on clocks

Several types of updates: $x:=y+c, x:<c, x:>c$, etc...
© The general model is undecidable.
(simulation of a two-counter machine)
© Only decrementation also leads to undecidability

- Incrementation of counter x

- Decrementation of counter x

Decidability

$$
\text { image by } y:=1
$$

\rightarrow the bisimulation property is not met

The classical region automaton construction is not correct.

Decidability (cont.)

$\mathcal{A} \rightsquigarrow$ Diophantine linear inequations system
$\rightsquigarrow \quad$ is there a solution?
$\rightsquigarrow \quad$ if yes, belongs to a decidable class

Examples:

(6) constraint $x \sim c$

constraint $x-y \sim c$
$\max _{x} \leq \max _{y}+c$
update $x: \sim y+c$
and for each clock $z, \max _{x, z} \geq \max _{y, z}+c, \max _{z, x} \geq \max _{z, y}-c$
σ update $x:<c$
$c \leq \max _{x}$
and for each clock $z, \max _{z} \geq c+\max _{z, x}$
The constants $\left(\max _{x}\right)$ and $\left(\max _{x, y}\right)$ define a set of regions.

Decidability (cont.)

The bisimulation property is met.

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

What's wrong when undecidable?

Decrementation $x:=x-1$

$$
\max _{x} \leq \max _{x}-1
$$

Decidability (cont.)

	Diagonal-free constraints	General constraints
$x:=c, x:=y$		PSPACE-Complete
	PSPACE-Complete	Undecidable
$x:=x+1$		
$x:=x-1$	Undecidable	
$x:<c$		PsPACE-complete
$x:>c$		Undecidable
$x: \sim y+c$		
$y+c<: x:<y+d$		
$y+c<: x:<z+d$		Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]

Implementation of Timed Automata

厅 analysis algorithms
© the DBM data structure
© a bug in the forward analysis

Notice

The region automaton is not used for implementation:
© suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)
6 no really adapted data structure

Notice

The region automaton is not used for implementation:
© suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)
© no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...
[Alur \& Co 1992] [Tripakis,Yovine 2001]

Notice

The region automaton is not used for implementation:
© suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)
© no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed...
[Alur \& Co 1992] [Tripakis,Yovine 2001]
...but on-the-fly technics are preferred.

Reachability analysis

σ forward analysis algorithm:
compute the successors of initial configurations

Reachability analysis

б forward analysis algorithm:
compute the successors of initial configurations

Reachability analysis

© forward analysis algorithm:
compute the successors of initial configurations

σ backward analysis algorithm: compute the predecessors of final configurations

Reachability analysis

© forward analysis algorithm:
compute the successors of initial configurations

σ backward analysis algorithm: compute the predecessors of final configurations

Note on the backward analysis of TA

Note on the backward analysis of TA

Z

Note on the backward analysis of TA

Note on the backward analysis of TA

Note on the backward analysis of TA

$$
\xrightarrow[{[C \leftarrow 0]^{-1}(Z \cap(C=0)) \cap} g]{C}
$$

Note on the backward analysis of TA

The exact backward computation terminates and is correct!

Note on the backward analysis of TA (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.
Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Note on the backward analysis of TA (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.
Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

But, the backward computation is not so nice, when also dealing with integer variables...

$$
i:=j . k+\ell . m
$$

Forward analysis of TA

A zone is a set of valuations defined by a clock constraint

$$
\varphi::=x \sim c|x-y \sim c| \varphi \wedge \varphi
$$

Forward analysis of TA

zones
Z

$$
[C \leftarrow 0](\vec{Z} \cap g)
$$

Z

Forward analysis of TA

zones
Z

$$
[C \leftarrow 0](\vec{Z} \cap g)
$$

Z

Forward analysis of TA

zones
Z

$$
[C \leftarrow 0](\vec{Z} \cap g)
$$

Forward analysis of TA

zones
Z

$$
[C \leftarrow 0](\vec{Z} \cap g)
$$

Z

Forward analysis of TA

zones
Z

$$
[C \leftarrow 0](\vec{Z} \cap g)
$$

Z

\rightarrow a termination problem

Non Termination of the Forward Analysis

\rightarrow an infinite number of steps...

"Solutions" to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

ఠ inclusion checking: if $Z \subseteq Z^{\prime}$ and Z^{\prime} still handled, then we don't need to handle Z
\rightarrow correct w.r.t. reachability

"Solutions" to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

ఠ inclusion checking: if $Z \subseteq Z^{\prime}$ and Z^{\prime} still handled, then we don't need to handle Z
\rightarrow correct w.r.t. reachability
© activity: eliminate redundant clocks
\rightarrow correct w.r.t. reachability

$$
q \xrightarrow{g, a, C:=0} q^{\prime} \Longrightarrow \quad \operatorname{Act}(q)=\operatorname{clocks}(g) \cup\left(\operatorname{Act}\left(q^{\prime}\right) \backslash C\right)
$$

"Solutions" to this problem (cont.)

© convex-hull approximation: if Z and Z^{\prime} are computed then we overapproximate using " $Z \sqcup Z^{\prime \prime}$.
\rightarrow "semi-correct" w.r.t. reachability

"Solutions" to this problem (cont.)

σ
convex-hull approximation: if Z and Z^{\prime} are computed then we overapproximate using " $Z \sqcup Z^{\prime \prime}$ ".
\rightarrow "semi-correct" w.r.t. reachability

© extrapolation, a widening operator on zones

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Dill89]

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Dill89]

$$
\left(x_{1} \geq 3\right) \wedge\left(x_{2} \leq 5\right) \wedge\left(x_{1}-x_{2} \leq 4\right)
$$

$$
\left.\begin{array}{c}
\\
x_{0} \\
x_{1} \\
x_{2}
\end{array} \quad \begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
+\infty & -3 & +\infty \\
+\infty & +\infty & 4 \\
5 & +\infty & +\infty
\end{array}\right)
$$

(6) Existence of a normal form

$$
\left(\begin{array}{ccc}
0 & -\mathbf{3} & 0 \\
9 & 0 & \mathbf{4} \\
\mathbf{5} & 2 & 0
\end{array}\right)
$$

The DBM data structure

DBM (Difference Bounded Matrice) data structure
[Dill89]

$$
\left(x_{1} \geq 3\right) \wedge\left(x_{2} \leq 5\right) \wedge\left(x_{1}-x_{2} \leq 4\right)
$$

$$
\left.\begin{array}{c}
\\
x_{0} \\
x_{1} \\
x_{2}
\end{array} \quad \begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
+\infty & -3 & +\infty \\
+\infty & +\infty & 4 \\
5 & +\infty & +\infty
\end{array}\right)
$$

© Existence of a normal form

$$
\left(\begin{array}{ccc}
0 & -\mathbf{3} & 0 \\
9 & 0 & \mathbf{4} \\
\mathbf{5} & 2 & 0
\end{array}\right)
$$

6 All previous operations on zones can be computed using DBMs

The extrapolation operator

Fix an integer $k(*$ represents an integer between $-k$ and $+k)$

© "intuitively", erase non-relevant constraints
\rightarrow ensures termination

The extrapolation operator

Fix an integer $k(*$ represents an integer between $-k$ and $+k)$

E
© "intuitively", erase non-relevant constraints

2

The extrapolation operator

Fix an integer $k(*$ represents an integer between $-k$ and $+k)$

© "intuitively", erase non-relevant constraints

\rightarrow ensures termination

Challenge

Propose a good constant for the extrapolation:
© keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton
๑ Several correctness proofs can be found
${ }^{6}$ Implemented in tools like Uppaal, Kronos, RT-Spin...
© Successfully used on real-life examples

Challenge

Propose a good constant for the extrapolation:
© keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton
๑ Several correctness proofs can be found
${ }^{6}$ Implemented in tools like Uppaal, Kronos, RT-Spin...
© Successfully used on real-life examples

A problematic automaton

A problematic automaton

$$
\left\{\begin{array}{l}
v\left(x_{1}\right)=0 \\
v\left(x_{2}\right)=d \\
v\left(x_{3}\right)=2 \alpha+5 \\
v\left(x_{4}\right)=2 \alpha+5+d
\end{array}\right.
$$

A problematic automaton

Error

$$
\left\{\begin{array}{l}
v\left(x_{1}\right)=0 \\
v\left(x_{2}\right)=d \\
v\left(x_{3}\right)=2 \alpha+5 \\
v\left(x_{4}\right)=2 \alpha+5+d
\end{array}\right.
$$

The problematic zone

The problematic zone

If α is sufficiently large, after extrapolation:

does not imply

$$
x_{1}-x_{2}=x_{3}-x_{4}
$$

General abstractions

Criteria for a good abstraction operator Abs:

General abstractions

Criteria for a good abstraction operator Abs:
ஏ easy computation
[Effectiveness]
$\operatorname{Abs}(Z)$ is a zone if Z is a zone

General abstractions

Criteria for a good abstraction operator Abs:
ஏ easy computation
[Effectiveness]
$\operatorname{Abs}(Z)$ is a zone if Z is a zone
© finiteness of the abstraction
[Termination]
$\{\operatorname{Abs}(Z) \mid Z$ zone $\}$ is finite

General abstractions

Criteria for a good abstraction operator Abs:
厅 easy computation
[Effectiveness]
$\operatorname{Abs}(Z)$ is a zone if Z is a zone
© finiteness of the abstraction
[Termination]
$\{\operatorname{Abs}(Z) \mid Z$ zone $\}$ is finite
© completeness of the abstraction
[Completeness]
$Z \subseteq \operatorname{Abs}(Z)$

General abstractions

Criteria for a good abstraction operator Abs:
๑ easy computation [Effectiveness]
$\operatorname{Abs}(Z)$ is a zone if Z is a zone
๑ finiteness of the abstraction
[Termination]
$\{\operatorname{Abs}(Z) \mid Z$ zone $\}$ is finite
6 completeness of the abstraction
[Completeness]
$Z \subseteq \operatorname{Abs}(Z)$
๑ soundness of the abstraction
[Soundness]
the computation of $(\mathrm{Abs} \circ \mathrm{Post})^{*}$ is correct w.r.t. reachability

General abstractions

Criteria for a good abstraction operator Abs:
๑ easy computation [Effectiveness]
$\operatorname{Abs}(Z)$ is a zone if Z is a zone
© finiteness of the abstraction
[Termination]
$\{\operatorname{Abs}(Z) \mid Z$ zone $\}$ is finite
6 completeness of the abstraction
[Completeness]
$Z \subseteq \operatorname{Abs}(Z)$
๑ soundness of the abstraction
the computation of $(\mathrm{Abs} \circ \mathrm{Post})^{*}$ is correct w.r.t. reachability

For the previous automaton, no abstraction operator can satisfy all these criteria!

Why that?

Assume there is a "nice" operator Abs.
The set $\{M$ DBM representing a zone $\operatorname{Abs}(Z)\}$ is finite.
$\rightarrow k$ the max. constant defining one of the previous DBMs
We get that, for every zone Z,

$$
Z \subseteq \operatorname{Extra}_{k}(Z) \subseteq \operatorname{Abs}(Z)
$$

Problem!

Open questions: - which conditions can be made weaker?
 - find a clever termination criterium?
 - use an other data structure than zones/DBMs?

What can we cling to?

Diagonal-free: only guards $x \sim c$
(no guard $x-y \sim c$)
Theorem: the classical algorithm is correct for diagonal-free timed automata.

What can we cling to?

Diagonal-free: only guards $x \sim c$

$$
\text { (no guard } x-y \sim c \text {) }
$$

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards $x \sim c$ and $x-y \sim c$
Proposition: the classical algorithm is correct for timed automata that use less than 3 clocks.
(the constant used is bigger than the maximal constant...)
[Bouyer03]

Conclusion \& Further Work

© Decidability is quite well understood.

6 A rather big problem with the forward analysis of timed automata needs to be solved.

- a very unsatisfactory solution for dealing with diagonal constraints.
- maybe the zones are not the "optimal" objects that we can deal with.

To be continued...
© Some other current challenges:

- adding C macros to timed automata
- reducing the memory consumption via new data structures

Bibliography

[ACD+92] Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. Minimization of Timed Transition Systems. CONCUR'92 (LNCS 630).
[AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP'90 (LNCS 443).
[AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.
[AL02] Aceto, Laroussinie. Is your Model-Checker on Time? On the Complexity of Model-Checking for Timed Modal Logics. To appear in JLAP 2002.
[BD00] Bérard, Dufourd. Timed Automata and Additive Clock Constraints. IPL 75(1-2), 2000.
[BDFP00a] Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV’00 (LNCS 1855).
[BDFP00b] Bouyer, Dufourd, Fleury, Petit. Expressiveness of Updatable Timed Automata. MFCS’00 (LNCS 1893).
[BDGP98] Bérard, Diekert, Gastin, Petit. Characterization of the Expressive Power of Silent Transitions in Timed Automata. Fundamenta Informaticae 36(2-3), 1998.
[BF99] Bérard, Fribourg. Automatic Verification of a Parametric Real-Time Program: the ABR Conformance Protocol. CAV'99 (LNCS 1633).

Bibliography (cont.)

[Bouyer03] Bouyer. Untameable Timed Automata! To appear in STACS'03.
[Dill89] Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems. Aut. Verif. Methods for Fin. State Sys. (LNCS 1989).
[DT98] Daws, Tripakis. Model-Checking of Real-Time Reachability Properties using Abstractions. TACAS'98 (LNCS 1384).
[DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed Automata. RTSS'96.
[LPY97] Larsen, Pettersson, Yi. UppaAL in a Nutshell. Software Tools for Technology Transfer 1(1-2), 1997.
[Minsky67] Minsky. Computation: Finite and Infinite Machines. 1967.
[TY01] Tripakis, Yovine. Analysis of Timed Systems using Time-Abstracting Bisimulations. FMSD 18(1), 2001.

Hytech: http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/
Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/
Uppaal: http://www.uppaal.com/

[^0]: [Alur \& Dill 1990's]

