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Roadmap

Timed automata, decidability issues

Some extensions of the model

Implementation of timed automata
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Timed automata, decidability issues

presentation of the model

decidability of the model

the region automaton construction
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Timed automata

x, y: clocks [Alur & Dill - 1990’s]

p q

y < 4, a, x := 0

x = 5, b

c, y := 0

guard action reset

p
a−−→

3.2
q

c−−→
5.1

q
b−−→

8.2
p . . .

value of x 0 0 1.9 5 . . .

value of y 0 3.2 0 3.1 . . .

➜ timed word (a, 3.2)(c, 5.1)(b, 8.2)...
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Emptiness checking

Emptiness problem: is the language accepted by a timed automaton empty?

reachability properties (final states)

basic liveness properties (Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable.
It is PSPACE-complete.

[Alur & Dill 1990’s]
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The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing
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The region abstraction

0 1 2 3 x

1

2

y

Equivalence of finite index

region defined by

Ix =]1; 2[, Iy =]0; 1[

{x} < {y}

“compatibility” between regions and constraints

“compatibility” between regions and time elapsing

➜ a bisimulation property
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The region automaton

timed automaton
⊗

region partition

q
g,a,C:=0−−−−−−−→ q′ is transformed into:

(q,R)
a−−−−→ (q′, R′) if there exists R′′ ∈ Succ∗t (R) s.t.

R′′ ⊆ g
[C ← 0]R′′ ⊆ R′

L(reg. aut.) = UNTIME(L(timed aut.))

where UNTIME((a1, t1)(a2, t2) . . . ) = a1a2 . . .
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An example [AD 90’s]

0 1 x

1

y
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Partial conclusion

➜ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

the “theoretical” comprehension of timed automata

extensions of the model (to ease the modelling)

− expressiveness

− analyzability

algorithmic problems and implementation
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Some extensions of the model

adding constraints of the form x− y ∼ c

adding silent actions

adding constraints of the form x+ y ∼ c

adding new operations on clocks
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Adding diagonal constraints

x− y ∼ c and x ∼ c

Decidability: yes, using the region abstraction

0 1 2 x

1

y

Expressiveness: no additional expressive power
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Adding diagonal constraints (cont.)

c is positive

x− y ≤ c

x := 0

y := 0

copy where x− y ≤ c

x := 0

y := 0

x ≤ c

x > c
y := 0

x := 0

y := 0

copy where x− y > c
➜ proof in [Bérard,Diekert,Gastin,Petit 1998]
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Adding diagonal constraints (cont.)

Open question: is this construction “optimal”?
In the sense that timed automata with diagonal constraints

are explonentially more concise than diagonal-free timed automata.
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Adding silent actions

g, ε, C := 0

[Bérard,Diekert,Gastin,Petit 1998]

Decidability: yes (actions has no influence on the previous construction)

Expressiveness: strictly more expressive!

x = 1
a

x := x− 1 0 < x < 1, b

x = 1, ε, x := 0

a

0 1

a b

2

b

3 4

a
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Adding constraints of the form x + y ∼ c

x+ y ∼ c and x ∼ c [Bérard,Dufourd 2000]

Decidability: - for two clocks, decidable using the abstraction

0 1 2 x

1

2

y

- for four clocks (or more), undecidable!

Expressiveness: more expressive! (even using two clocks)

{(an, t1 . . . tn) | n ≥ 1 and ti = 1− 1
2i
}

x+ y = 1, a, x := 0
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The two-counter machine

Definition. A two-counter machine is a finite set of instructions over two
counters (x and y):

Incrementation:
(p): x := x+ 1; goto (q)

Decrementation:
(p): if x > 0 then x := x− 1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is
undecidable.
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Undecidability proof

20 21 22 23 24 25 26 time

c c c c c c c c ccd ddd d dd d dd

c is unchanged c is incremented

d is decremented

➜ simulation of • decrement of d
• increment of c

We will use 4 clocks: • u, “tic” clock (each time unit)
• x0, x1, x2: reference clocks for the two counters

“xi reference for c” ≡ “the last time xi has been reset is
the last time action c has been performed”

[Bérard,Dufourd 2000]
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Undecidability proof (cont.)

Increment of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 ≤ 2, u+ x2 = 1, c, x2 := 0

u+ x2 = 1

x0 > 2, c, x2 := 0

ref for c is x0 ref for c is x2

Decrement of counter c:

u = 1, ∗, u := 0

x2 := 0

x0 < 2, u+ x2 = 1, c, x2 := 0

u+ x2 = 1

x0 = 2, c, x2 := 0

u = 1, x0 = 2, ∗, u := 0, x2 := 0
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Adding constraints of the form x + y ∼ c

Two clocks: decidable! using the abstraction

0 1 2 x

1

2

y

Three clocks: open question

Four clocks (or more): undecidable!
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Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

The general model is undecidable.
(simulation of a two-counter machine)

Only decrementation also leads to undecidability

− Incrementation of counter x

z = 1, z := 0 z = 0, y := y − 1z = 0

− Decrementation of counter x

x ≥ 1 z = 0, x := x− 1z = 0

x = 0
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Decidability

y := 0 y := 1 x− y < 1

1

1

0

image by y := 1

➜ the bisimulation property is not met

The classical region automaton construction is not correct.
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Decidability (cont.)

A  Diophantine linear inequations system

 is there a solution?

 if yes, belongs to a decidable class

Examples:

constraint x ∼ c c ≤ maxx

constraint x− y ∼ c c ≤ maxx,y

update x :∼ y + c maxx ≤ maxy +c

and for each clock z, maxx,z ≥ maxy,z + c, maxz,x ≥ maxz,y − c

update x :< c c ≤ maxx

and for each clock z, maxz ≥ c+ maxz,x

The constants (maxx) and (maxx,y) define a set of regions.
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Decidability (cont.)

y := 0 y := 1 x− y < 1





maxy ≥ 0

maxx ≥ 0 + maxx,y

maxy ≥ 1

maxx ≥ 1 + maxx,y

maxx,y ≥ 1

=⇒





maxx = 2

maxy = 1

maxx,y = 1

maxy,x = −1

The bisimulation property is met.
1 2

1

0 x

y
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What’s wrong when undecidable?

Decrementation x := x− 1

maxx ≤ maxx − 1
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What’s wrong when undecidable?

Decrementation x := x− 1

maxx ≤ maxx − 1

etc...
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Decidability (cont.)

Diagonal-free constraints General constraints

x := c, x := y PSPACE-complete

x := x+ 1 PSPACE-complete

x := y + c Undecidable

x := x− 1 Undecidable

x :< c

PSPACE-complete

PSPACE-complete

x :> c

Undecidable
x :∼ y + c

y + c <: x :< y + d

y + c <: x :< z + d Undecidable

[Bouyer,Dufourd,Fleury,Petit 2000]
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Implementation of Timed Automata

analysis algorithms

the DBM data structure

a bug in the forward analysis
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Notice

The region automaton is not used for implementation:

suffers from a combinatorics explosion
(the number of regions is exponential in the number of clocks)

no really adapted data structure

Algorithms for “minimizing” the region automaton have been proposed...
[Alur & Co 1992] [Tripakis,Yovine 2001]

...but on-the-fly technics are preferred.
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Reachability analysis

forward analysis algorithm:
compute the successors of initial configurations

F

I
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Note on the backward analysis of TA

` `′
g, a, C := 0

←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g Z

Z [C ← 0]−1(Z ∩ (C = 0))
←−−−−−−−−−−−−−−−−−−−−−
[C ← 0]−1(Z ∩ (C = 0)) ∩ g

The exact backward computation terminates and is correct!
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Note on the backward analysis of TA (cont.)

IfA is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

“Every set of valuations which is computed along the backward
computation is a finite union of regions”

But, the backward computation is not so nice, when also dealing with
integer variables...

i := j.k + `.m
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Forward analysis of TA

` `′
g, a, C := 0

Z [C ← 0](
−→
Z ∩ g)zones

A zone is a set of valuations defined by a clock constraint

ϕ ::= x ∼ c | x− y ∼ c | ϕ ∧ ϕ

Z −→
Z

−→
Z ∩ g [y ← 0](

−→
Z ∩ g)

➜ a termination problem
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Non Termination of the Forward Analysis

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

➜ an infinite number of steps...
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“Solutions” to this problem

(f.ex. in [Larsen,Pettersson,Yi 1997] or in [Daws,Tripakis 1998])

inclusion checking: if Z ⊆ Z ′ and Z ′ still handled, then we don’t need
to handle Z

➜ correct w.r.t. reachability

activity: eliminate redundant clocks [Daws,Yovine 1996]

➜ correct w.r.t. reachability

q
g,a,C:=0−−−−−−−→ q′ =⇒ Act(q) = clocks(g) ∪ (Act(q′) \ C)

. . .
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“Solutions” to this problem (cont.)

convex-hull approximation: if Z and Z ′ are computed then we
overapproximate using “Z t Z ′”.

➜ “semi-correct” w.r.t. reachability

extrapolation, a widening operator on zones
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The DBM data structure

DBM (Difference Bounded Matrice) data structure [Dill89]

(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

x0 x1 x2

x0

x1

x2




+∞ −3 +∞
+∞ +∞ 4

5 +∞ +∞




Existence of a normal form

3 4 9

5

2




0 −3 0

9 0 4

5 2 0




All previous operations on zones can be computed using DBMs
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The extrapolation operator

Fix an integer k (∗ represents an integer between−k and +k)




∗
�� ��> k ∗

∗ ∗ ∗�� ��< −k ∗ ∗


  




∗
�� ��+∞ ∗

∗ ∗ ∗�� ��−k ∗ ∗




“intuitively”, erase non-relevant constraints

2

2

II ensures termination
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Challenge

Propose a good constant for the extrapolation:

keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

Several correctness proofs can be found

Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

Successfully used on real-life examples
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Challenge

Propose a good constant for the extrapolation:

keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

Several correctness proofs can be found

Implemented in tools like UPPAAL, KRONOS, RT-SPIN...

Successfully used on real-life examples

However...
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A problematic automaton

x3 ≤ 3

x1, x3 := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 − x1 > 2

x4 − x3 < 2
Error

The loop
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v(x1) = 0

v(x2) = d

v(x3) = 2α+ 5

v(x4) = 2α+ 5 + d

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α+ 5]

[2α+ 5]
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The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α+ 5]

[2α+ 5]

[2α+ 2; 2α+ 4]

[2α+ 6; 2α+ 8]

implies x1 − x2 = x3 − x4.
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The problematic zone

x1

x2

x3 x4

[1; 3]

[1; 3]

[2α+ 5]

[2α+ 5]

[2α+ 2; 2α+ 4]

[2α+ 6; 2α+ 8]

implies x1 − x2 = x3 − x4.

If α is sufficiently large, after extrapolation:

x1

x2

x3 x4

[1; 3]

[1; 3]

> k

does not imply
x1 − x2 = x3 − x4.
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General abstractions

Criteria for a good abstraction operator Abs:

easy computation [Effectiveness]
Abs(Z) is a zone if Z is a zone

finiteness of the abstraction [Termination]
{Abs(Z) | Z zone} is finite

completeness of the abstraction [Completeness]
Z ⊆ Abs(Z)

soundness of the abstraction [Soundness]
the computation of (Abs ◦ Post)∗ is correct w.r.t. reachability

For the previous automaton,
no abstraction operator can satisfy all these criteria!

[Bouyer03]
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Why that?

Assume there is a “nice” operator Abs.

The set {M DBM representing a zone Abs(Z)} is finite.

➜ k the max. constant defining one of the previous DBMs

We get that, for every zone Z,

Z ⊆ Extrak(Z) ⊆ Abs(Z)
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Problem!

Open questions: - which conditions can be made weaker?
- find a clever termination criterium?
- use an other data structure than zones/DBMs?
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What can we cling to?

Diagonal-free: only guards x ∼ c
(no guard x− y ∼ c)

Theorem: the classical algorithm is correct for diagonal-free timed
automata.

General: both guards x ∼ c and x− y ∼ c
Proposition: the classical algorithm is correct for timed automata that use
less than 3 clocks.

(the constant used is bigger than the maximal constant...)

[Bouyer03]
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Conclusion & Further Work

Decidability is quite well understood.

A rather big problem with the forward analysis of timed automata
needs to be solved.
− a very unsatisfactory solution for dealing with diagonal

constraints.
− maybe the zones are not the “optimal” objects that we can deal

with.

To be continued...

Some other current challenges:

− adding C macros to timed automata

− reducing the memory consumption via new data structures
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