Timed Automata – From Theory to Implementation

Patricia Bouyer

LSV – CNRS & ENS de Cachan France

- 6 Timed automata, decidability issues
- 6 Some extensions of the model
- Implementation of timed automata

Timed automata, decidability issues

- 6 presentation of the model
- 6 decidability of the model
- 6 the region automaton construction

Timed automata

x, y: clocks

[Alur & Dill - 1990's]

x, y: clocks

[Alur & Dill - 1990's]

→ timed word (a, 3.2)(c, 5.1)(b, 8.2)...

Emptiness problem: is the language accepted by a timed automaton empty?

- 6 reachability properties
- 6 basic liveness properties

(final states)

(Büchi (or other) conditions)

Emptiness problem: is the language accepted by a timed automaton empty?

- 6 reachability properties
- 6 basic liveness properties

(final states)

(Büchi (or other) conditions)

Theorem: The emptiness problem for timed automata is decidable. It is PSPACE-complete.

[Alur & Dill 1990's]

Equivalence of finite index

Equivalence of finite index

6 "compatibility" between regions and constraints

Equivalence of finite index

- 6 "compatibility" between regions and constraints
- 6 "compatibility" between regions and time elapsing

Equivalence of finite index

- 6 "compatibility" between regions and constraints
- 6 "compatibility" between regions and time elapsing

Equivalence of finite index

- 6 "compatibility" between regions and constraints
- 6 "compatibility" between regions and time elapsing

→ a bisimulation property

Equivalence of finite index

region defined by $I_x =]1; 2[, I_y =]0; 1[$ $\{x\} < \{y\}$

- 6 "compatibility" between regions and constraints
- 6 "compatibility" between regions and time elapsing

→ a bisimulation property

The region automaton

timed automaton \otimes region partition

$$q \xrightarrow{g,a,C:=0} q'$$
 is transformed into:
 $(q,R) \xrightarrow{a} (q',R')$ if there exists $R'' \in \text{Succ}_t^*(R)$ s.t.
6 $R'' \subseteq g$

$$\mathbf{6} \quad [C \leftarrow 0] R'' \subseteq R'$$

 \mathcal{L} (reg. aut.) = UNTIME(\mathcal{L} (timed aut.))

where $UNTIME((a_1, t_1)(a_2, t_2)...) = a_1a_2...$

An example [AD 90's]

Chennai – january 2003

Timed Automata – From Theory to Implementation – p.8

→ a timed model interesting for verification purposes

Numerous works have been (and are) devoted to:

- 6 the "theoretical" comprehension of timed automata
- 6 extensions of the model (to ease the modelling)
 - expressiveness
 - analyzability
- 6 algorithmic problems and implementation

Some extensions of the model

- 6 adding constraints of the form $x y \sim c$
- 6 adding silent actions
- 6 adding constraints of the form $x + y \sim c$
- 6 adding new operations on clocks

Adding diagonal constraints

$$\begin{bmatrix} x - y \sim c & \text{and} & x \sim c \end{bmatrix}$$

6 Decidability: yes, using the region abstraction

6 Expressiveness: no additional expressive power

Adding diagonal constraints (cont.)

copy where x - y > c

Adding diagonal constraints (cont.)

Open question: is this construction "optimal"?

In the sense that timed automata with diagonal constraints

are explonentially more concise than diagonal-free timed automata.

Adding silent actions

$$\boxed{g, \varepsilon, C := 0}$$

[Bérard, Diekert, Gastin, Petit 1998]

- **6 Decidability:** yes (actions has no influence on the previous construction)
- **6 Expressiveness:** strictly more expressive!

Adding constraints of the form $x + y \sim c$

$$x + y \sim c$$
 and $x \sim c$

[Bérard, Dufourd 2000]

6 Decidability: - for two clocks, decidable using the abstraction

- for four clocks (or more), undecidable!

6 Expressiveness: more expressive! (even using two clocks)

$$(a^n, t_1 \dots t_n) \mid n \ge 1 \text{ and } t_i = 1 - \frac{1}{2^i}$$

 $x + y = 1, a, x := 0$

Chennai – january 2003

Timed Automata – From Theory to Implementation – p.14

Definition. A two-counter machine is a finite set of instructions over two counters (*x* and *y*):

- 6 Incrementation:
 - (p): x := x + 1; goto (q)
- **6** Decrementation:

(p): if x > 0 then x := x - 1; goto (q) else goto (r)

Theorem. [Minsky 67] The emptiness problem for two counter machines is undecidable.

Undecidability proof

→ simulation of • decrement of d
• increment of c

We will use 4 clocks: • u, "tic" clock (each time unit) • x_0, x_1, x_2 : reference clocks for the two counters

" x_i reference for c" \equiv "the last time x_i has been reset is the last time action c has been performed"

[Bérard, Dufourd 2000]

Chennai – january 2003

Undecidability proof (cont.)

6 Increment of counter *c*:

ref for c is x_0

ref for c is x_2

6 Decrement of counter *c*:

Timed Automata – From Theory to Implementation – p.17

Adding constraints of the form $x + y \sim c$

6 Two clocks: decidable! using the abstraction

6 Four clocks (or more): undecidable!

Adding constraints of the form $x + y \sim c$

6 Two clocks: decidable! using the abstraction

6 Three clocks: **open question**

6 Four clocks (or more): undecidable!

Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

6 The general model is undecidable.

(simulation of a two-counter machine)

Adding new operations on clocks

Several types of updates: x := y + c, x :< c, x :> c, etc...

6 The general model is undecidable.

(simulation of a two-counter machine)

- 6 Only decrementation also leads to undecidability
 - Incrementation of counter x

- Decrementation of counter x

Decidability

The classical region automaton construction is not correct.

Decidability (cont.)

- $\mathcal{A} \quad \rightsquigarrow \quad \text{Diophantine linear inequations system}$
 - \rightsquigarrow is there a solution?
 - \rightsquigarrow $\;$ if yes, belongs to a decidable class $\;$

Examples:

6	constraint $x \sim c$	$c \leq \max_x$
6	constraint $x - y \sim c$	$c \leq \max_{x,y}$
6	update $x :\sim y + c$	$\max_x \leq \max_y + c$ and for each clock z , $\max_{x,z} \geq \max_{y,z} + c$, $\max_{z,x} \geq \max_{z,y} - c$
6	update $x :< c$	$c \leq \max_x$ and for each clock $z, \max_z \geq c + \max_{z,x}$

The constants (\max_x) and $(\max_{x,y})$ define a set of regions.

Decidability (cont.)

The bisimulation property is met.

What's wrong when undecidable?

Decrementation x := x - 1

 $\max_x \le \max_x - 1$

What's wrong when undecidable?

Decrementation x := x - 1

 $\max_x \leq \max_x - 1$

What's wrong when undecidable?

Decrementation x := x - 1

 $\max_x \leq \max_x - 1$

Decrementation x := x - 1

	Diagonal-free constraints	General constraints	
x := c, $x := y$		PSPACE-complete	
x := x + 1	PSPACE-complete	Undecidable	
x := y + c			
x := x - 1	Undecidable		
x :< c		PSPACE-complete	
x :> c	PSPACE-complete	Undecidable	
$x:\sim y+c$			
y + c <: x :< y + d			
y + c <: x :< z + d	Undecidable		

[Bouyer,Dufourd,Fleury,Petit 2000]

Implementation of Timed Automata

- 6 analysis algorithms
- 6 the DBM data structure
- 6 a bug in the forward analysis

The region automaton is not used for implementation:

- suffers from a combinatorics explosion(the number of regions is exponential in the number of clocks)
- 6 no really adapted data structure

The region automaton is not used for implementation:

- suffers from a combinatorics explosion(the number of regions is exponential in the number of clocks)
- 6 no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed... [Alur & Co 1992] [Tripakis,Yovine 2001] The region automaton is not used for implementation:

- suffers from a combinatorics explosion(the number of regions is exponential in the number of clocks)
- 6 no really adapted data structure

Algorithms for "minimizing" the region automaton have been proposed... [Alur & Co 1992] [Tripakis,Yovine 2001]

...but **on-the-fly technics** are preferred.

6 forward analysis algorithm:

compute the successors of initial configurations

6 forward analysis algorithm:

compute the successors of initial configurations

6 forward analysis algorithm:

compute the successors of initial configurations

6 backward analysis algorithm:

compute the predecessors of final configurations

6 forward analysis algorithm:

compute the successors of initial configurations

6 backward analysis algorithm:

compute the predecessors of final configurations

$$g, a, C := 0$$

$$(\ell)$$

$$(C \leftarrow 0]^{-1}(Z \cap (C = 0)) \cap g$$

$$Z$$

$$g, a, C := 0$$

$$(\ell)$$

$$(C \leftarrow 0)^{-1}(Z \cap (C = 0)) \cap g$$

$$Z$$

 \sim

$$g, a, C := 0$$

$$(\ell')$$

$$(C \leftarrow 0)^{-1}(Z \cap (C = 0)) \cap g$$

$$Z$$

The exact backward computation terminates and is correct!

Note on the backward analysis of TA (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

Note on the backward analysis of TA (cont.)

If \mathcal{A} is a timed automaton, we construct its corresponding set of regions.

Because of the bisimulation property, we get that:

"Every set of valuations which is computed along the backward computation is a finite union of regions"

But, the backward computation is not so nice, when also dealing with integer variables...

 $i := j.k + \ell.m$

A zone is a set of valuations defined by a clock constraint

$$\varphi ::= x \sim c \mid x - y \sim c \mid \varphi \wedge \varphi$$

Ζ

→ a termination problem

Non Termination of the Forward Analysis

→ an infinite number of steps...

"Solutions" to this problem

(f.ex. in [Larsen, Pettersson, Yi 1997] Or in [Daws, Tripakis 1998])

6 **inclusion checking**: if $Z \subseteq Z'$ and Z' still handled, then we don't need to handle Z

→ correct w.r.t. reachability

"Solutions" to this problem

(f.ex. in [Larsen, Pettersson, Yi 1997] Or in [Daws, Tripakis 1998])

6 **inclusion checking**: if $Z \subseteq Z'$ and Z' still handled, then we don't need to handle Z

→ correct w.r.t. reachability

6 **activity**: eliminate redundant clocks

[Daws,Yovine 1996]

. . .

→ correct w.r.t. reachability

$$q \xrightarrow{g,a,C:=0} q' \implies \operatorname{Act}(q) = \operatorname{clocks}(g) \cup (\operatorname{Act}(q') \setminus C)$$

"Solutions" to this problem (cont.)

6 **convex-hull approximation**: if *Z* and *Z'* are computed then we overapproximate using " $Z \sqcup Z'$ ".

→ "semi-correct" w.r.t. reachability

"Solutions" to this problem (cont.)

6 **convex-hull approximation**: if *Z* and *Z'* are computed then we overapproximate using " $Z \sqcup Z'$ ".

→ "semi-correct" w.r.t. reachability

6 **extrapolation**, a widening operator on zones

The DBM data structure

DBM (Difference Bounded Matrice) data structure

 $(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$

$$\begin{array}{cccc} x_0 & x_1 & x_2 \\ x_0 & \begin{pmatrix} +\infty & -\mathbf{3} & +\infty \\ +\infty & +\infty & \mathbf{4} \\ x_2 & \mathbf{5} & +\infty & +\infty \end{pmatrix}$$

[Dill89]

The DBM data structure

DBM (Difference Bounded Matrice) data structure

 $(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$

$$\begin{array}{cccc} x_0 & x_1 & x_2 \\ x_0 & \begin{pmatrix} +\infty & -\mathbf{3} & +\infty \\ +\infty & +\infty & \mathbf{4} \\ x_2 & \mathbf{5} & +\infty & +\infty \end{pmatrix}$$

[Dill89]

6 Existence of a normal form

0	-3	0	
9	0	4	
5	2	0]

The DBM data structure

DBM (Difference Bounded Matrice) data structure

$$(x_1 \ge 3) \land (x_2 \le 5) \land (x_1 - x_2 \le 4)$$

$$\begin{array}{cccc} x_0 & x_1 & x_2 \\ x_0 & \begin{pmatrix} +\infty & -\mathbf{3} & +\infty \\ +\infty & +\infty & \mathbf{4} \\ x_2 & \mathbf{5} & +\infty & +\infty \end{pmatrix}$$

[Dill89]

6 Existence of a normal form

6 All previous operations on zones can be computed using DBMs

The extrapolation operator

Fix an integer k (* represents an integer between -k and +k)

6 "intuitively", erase non-relevant constraints

The extrapolation operator

Fix an integer k (* represents an integer between -k and +k)

6 "intuitively", erase non-relevant constraints

ensures termination

The extrapolation operator

Fix an integer k (* represents an integer between -k and +k)

6 "intuitively", erase non-relevant constraints

ensures termination

Challenge

Propose a **good** constant for the extrapolation:

6 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

- 6 Several correctness proofs can be found
- 6 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
- 6 Successfully used on real-life examples

Challenge

Propose a **good** constant for the extrapolation:

6 keep the correctness of the forward computation

Solution by the past: maximal constant appearing in the automaton

- 6 Several correctness proofs can be found
- 6 Implemented in tools like UPPAAL, KRONOS, RT-SPIN...
- 6 Successfully used on real-life examples

However...

A problematic automaton

A problematic automaton

$$\begin{cases} v(x_1) = 0\\ v(x_2) = d\\ v(x_3) = 2\alpha + 5\\ v(x_4) = 2\alpha + 5 + d \end{cases}$$

Chennai – january 2003

A problematic automaton

Chennai – january 2003

The problematic zone

The problematic zone

implies $x_1 - x_2 = x_3 - x_4$.

If α is sufficiently large, after extrapolation:

Criteria for a good abstraction operator Abs :

Criteria for a good abstraction operator Abs :

• easy computation Abs(Z) is a zone if Z is a zone [Effectiveness]

[Bouyer03] Timed Automata – From Theory to Implementation – p.39

Criteria for a good abstraction operator Abs:

- easy computation Abs(Z) is a zone if Z is a zone
- 6 finiteness of the abstraction $\{Abs(Z) \mid Z \text{ zone}\}$ is finite

[Effectiveness]

[Termination]

[Bouyer03] Timed Automata – From Theory to Implementation – p.39

Criteria for a good abstraction operator Abs:

- **6** easy computation Abs(Z) is a zone if Z is a zone
- 6 finiteness of the abstraction $\{Abs(Z) \mid Z \text{ zone}\}$ is finite
- 6 completeness of the abstraction $Z \subseteq Abs(Z)$

[Effectiveness]

[Termination]

[Completeness]

[Bouyer03] Timed Automata – From Theory to Implementation – p.39

Criteria for a good abstraction operator Abs:

- **6** easy computation Abs(Z) is a zone if Z is a zone
- 6 finiteness of the abstraction $\{Abs(Z) \mid Z \text{ zone}\}$ is finite
- 6 completeness of the abstraction $Z \subseteq Abs(Z)$
- soundness of the abstraction the computation of (Abs o Post)* is correct w.r.t. reachability

[Effectiveness]

[Termination]

[Completeness]

[Soundness]

[Bouyer03]

Criteria for a good abstraction operator Abs:

- easy computation Abs(Z) is a zone if Z is a zone
- 6 finiteness of the abstraction $\{Abs(Z) \mid Z \text{ zone}\}$ is finite
- completeness of the abstraction $Z \subseteq Abs(Z)$
- soundness of the abstraction
 the computation of (Abs o Post)* is correct w.r.t. reachability

For the previous automaton,

no abstraction operator can satisfy all these criteria!

[Termination]

[Effectiveness]

[Completeness]

[Soundness]

[Bouyer03]

Timed Automata – From Theory to Implementation – p.39

Assume there is a "nice" operator Abs.

The set $\{M \text{ DBM representing a zone } Abs(Z)\}$ is finite.

 \rightarrow *k* the max. constant defining one of the previous DBMs

We get that, for every zone Z,

 $Z \subseteq \operatorname{Extra}_k(Z) \subseteq \operatorname{Abs}(Z)$

Problem!

Open questions:- which conditions can be made weaker?- find a clever termination criterium?- use an other data structure than zones/DBMs?

Diagonal-free: only guards $x \sim c$ (no guard $x - y \sim c$)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

[Bouyer03]

Diagonal-free: only guards $x \sim c$ (no guard $x - y \sim c$)

Theorem: the classical algorithm is correct for diagonal-free timed automata.

General: both guards $x \sim c$ and $x - y \sim c$

Proposition: the classical algorithm is correct for timed automata that use *less than 3 clocks*.

(the constant used is bigger than the maximal constant...)

[Bouyer03]

Conclusion & Further Work

- 6 Decidability is quite well understood.
- A rather big problem with the forward analysis of timed automata needs to be solved.
 - a very unsatisfactory solution for dealing with diagonal constraints.
 - maybe the zones are not the "optimal" objects that we can deal with.

To be continued...

- 6 Some other current challenges:
 - adding C macros to timed automata
 - reducing the memory consumption *via* new data structures

Bibliography

[ACD+92] Alur, Courcoubetis, Dill, Halbwachs, Wong-Toi. *Minimization of Timed Transition Systems*. CONCUR'92 (LNCS 630).

- [AD90] Alur, Dill. Automata for Modeling Real-Time Systems. ICALP'90 (LNCS 443).
- [AD94] Alur, Dill. A Theory of Timed Automata. TCS 126(2), 1994.
- [AL02] Aceto, Laroussinie. *Is your Model-Checker on Time? On the Complexity of Model-Checking for Timed Modal Logics.* To appear in JLAP 2002.
- [BD00] Bérard, Dufourd. *Timed Automata and Additive Clock Constraints*. IPL 75(1–2), 2000.
- [BDFP00a] Bouyer, Dufourd, Fleury, Petit. Are Timed Automata Updatable? CAV'00 (LNCS 1855).
- [BDFP00b] Bouyer, Dufourd, Fleury, Petit. *Expressiveness of Updatable Timed Automata*. MFCS'00 (LNCS 1893).
- [BDGP98] Bérard, Diekert, Gastin, Petit. *Characterization of the Expressive Power of Silent Transitions in Timed Automata.* Fundamenta Informaticae 36(2–3), 1998.
 - [BF99] Bérard, Fribourg. Automatic Verification of a Parametric Real-Time Program: the ABR Conformance Protocol. CAV'99 (LNCS 1633).

Bibliography (cont.)

[Bouyer03] Bouyer. Untameable Timed Automata! To appear in STACS'03.

- [Dill89] Dill. *Timing Assumptions and Verification of Finite-State Concurrent Systems.* Aut. Verif. Methods for Fin. State Sys. (LNCS 1989).
- [DT98] Daws, Tripakis. *Model-Checking of Real-Time Reachability Properties using Abstractions.* TACAS'98 (LNCS 1384).
- [DY96] Daws, Yovine. Reducing the Number of Clock Variables of Timed Automata. RTSS'96.
- [LPY97] Larsen, Pettersson, Yi. UPPAAL in a Nutshell. Software Tools for Technology Transfer 1(1–2), 1997.
- [Minsky67] Minsky. Computation: Finite and Infinite Machines. 1967.
 - [**TY01**] Tripakis, Yovine. *Analysis of Timed Systems using Time-Abstracting Bisimulations.* FMSD 18(1), 2001.

Hytech: http://www-cad.eecs.berkeley.edu:80/~tah/HyTech/

Kronos: http://www-verimag.imag.fr/TEMPORISE/kronos/

Uppaal: http://www.uppaal.com/