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1 Introduction

Formal methods for specifying, analyzing, and manipulating the behavior of concurrent systems
become much more attractive in practical use if they can be automated. A number of methods
based on finite-state representations have achieved considerable success in practical applications
such as protocol and hardware verification, precisely because many problems are decidable for
finite-state representations. Finite-state verification methods include checking equivalences (such as
bisimulation), preorders (such as simulation), temporal logic properties (eg. CTL model-checking),
and inclusion of the language of one automaton in another.

Until recently, temporal logics and finite automata were primarily concerned with qualitative
temporal reasoning about systems. For example, whether a system deadlocks or livelocks, whether
a property is always true, or whether some response eventually occurs. More recently, ways of
extending finite-state techniques to timed systems have been discovered, which retain many of the
desirable properties of conventional finite representations.

In this chapter, we will concentrate on linear-time models, although finite-state real-time tech-
niques can also be applied to branching-time problems, such as (timed) CTL model-checking and
bisimulation checking. In the linear time model, it is assumed that an execution can be completely
modeled as a sequence of states or system events, called a trace. The behavior of the system is a
set of such traces. Since a set of sequences is a formal language, this leads naturally to the use of
automata for the specification and verification of systems. When the systems are finite-state, we
can use finite automata, leading to effective constructions and decision procedures for automatically
manipulating and analyzing system behavior.

In qualitative models, it is useful to describe non-terminating executions, so that liveness prop-
erties, such as “if a request occurs infinitely often, so does the response” can be expressed. Con-
sequently many verification theories are based on the theory of w-regular languages, which reasons
about sets of infinite strings, instead of the finite strings usually considered in ordinary regular
languages (e.g. the system CospaN [Kur94] or the system Hsis [ABBT94]). In our linear real-time
model, an execution is an infinite trace of events, and time is added by pairing each event of a trace
with a time value. Time values are chosen from the set of reals. Such a model is called a dense-time
model. The alternative discrete-time model uses integer time values, and requires that continuous



time be approximated by choosing some fixed quantum «a priori, which limits the accuracy with
which physical systems can be modeled. Dealing with dense time in a finite-automata framework is
more difficult than dealing with discrete time, because the transformation from a set of dense-time
traces into an ordinary formal language is not obvious. Instead, we have developed a theory of timed
formal languages and timed automata to support automated reasoning about such systems. The
study of timed finite automata has yielded interesting theoretical results, and, if progress continues
at its current rate, is likely to succeed in practice just as qualitative finite-state methods have.

Overview

We begin with an overview of w-automata and verification for untimed systems (Section 2). Then,
we define timed automata by augmenting w-automata with a set of real-valued variables called
clocks. The clocks can be reset to 0 (independently of each other) with the transitions of the
automaton, and keep track of the time elapsed since the last reset. The transitions of the automaton
put certain constraints on the clock values: a transition may be taken only if the current values of
the clocks satisfy the associated constraints. With this mechanism we can model timing properties
such as “the channel delivers every message within 3 to 5 time units of its receipt”. Timed automata
accept timed words — infinite sequences in which a real-valued time of occurrence is associated
with each symbol. Timed automata can capture several interesting aspects of real-time systems:
qualitative features such as liveness, fairness, and nondeterminism; and quantitative features such
as periodicity, bounded response, and timing delays.

We present an overview of the formal language theory for timed automata. Due to the real-
valued clock variables, the state space of a timed automaton is infinite. The untiming algorithm,
discussed in detail in Section 5, constructs a finite quotient of this space, and is the key to algo-
rithmic solutions to decision problems for timed automata.

Section 6 outlines the application of timed automata to verification of timed systems. A timed
system is modeled as a collection of timed automata representing the various components of the
system. The specification to be checked is given as a deterministic timed automaton representing the
correct behaviors. The system satisfies the property if the language of the product of the automata
modeling the components is contained in the language of the specification automaton. We present
an algorithmic solution to the verification problem. To alleviate the high computational complexity
of the verification algorithm, different verification tools use different heuristics. We discuss some of
the implemented solutions.

2 Automata-theoretic Verification of Untimed Systems

In this section we will briefly review the relevant aspects of the theory of w-regular languages, and
its application to modeling and automatic verification of untimed systems. We refer the reader to
[Tho90] for a summary of the theory of w-regular languages, and to [Kur94] for its application to
verification.

2.1 Biuchi automata

The more familiar definition of a formal language is as a set of finite words over some given (finite)
alphabet. As opposed to this, an w-language consists of infinite words. Thus an w-language over



Figure 1: Biichi automaton accepting words with infinitely many b’s

a finite alphabet X is a subset of ¥ — the set of all infinite words over Y. w-automata provide a
finite representation for certain types of w-languages. An w-automaton is essentially the same as
a nondeterministic finite-state automaton, but with the acceptance condition modified suitably so
as to handle infinite input words.

A transition table A is a tuple (3,8, Sp, E), where ¥ is an input alphabet, S is a finite set of
automaton states, Sg C S is a set of start states, and E C SxSx X is a set of edges. The automaton
starts in an initial state, and if (s, s’,a) € E then the automaton can change its state from s to s’
reading the input symbol a. Formally, for an infinite word @ = o105 ... over the alphabet X, we
say that

T380i>81£>82£>"'

is a run of the transition table A over o, provided so € Sg, and (s;_1,s;,0;) € E for all i > 1. For
such a run, the set inf(r) consists of the states s € S such that s = s; for infinitely many ¢ > 0.

Different types of w-automata are defined by adding an acceptance condition to the definition
of the transition tables. We will use Biichi acceptance condition (alternatives such as Streett
acceptance or Muller acceptance lead to expressively equivalent definitions, see [Tho90]). A Biichi
automaton A is a transition table (3,5, S, E) with an additional set F' C S of accepting states.
A run r of A over a word o € X¥ is an accepting run iff inf(r) N F # 0. In other words, a run
r is accepting iff some state from the set I repeats infinitely often along r. The language L(.A)
accepted by the Biichi automaton A consists of the words o € X% such that A has an accepting
run over o.

Example 2.1 Consider the 2-state automaton of Figure 1 over the alphabet {a,b}. Both states
are start states and sy is the accepting state. The automaton accepts all words with an infinite
number of b’s. Thus, the automaton expresses the constraint that every a is followed by b. B

An w-language is called w-regular iff it is accepted by some Biichi automaton. The class of w-
regular languages is closed under all the Boolean operations. Language intersection is implemented
by a product construction for Biichi automata. There are known constructions for complementing
Biichi automata.

When Biichi automata are used for modeling finite-state concurrent processes, the verification
problem reduces to that of language inclusion. The inclusion problem for w-regular languages is
decidable. To test whether the language of one automaton is contained in the other, we check for
emptiness of the intersection of the first automaton with the complement of the second. Testing



for emptiness is easy; we only need to search for a cycle that is reachable from a start state and
includes at least one accepting state. In general, complementing a Biichi automaton involves an
exponential blow-up in the number of states, and the language inclusion problem is known to be
Pspacge-complete. However, checking whether the language of one automaton is contained in the
language of a deterministic automaton can be done in polynomial time.

A transition table A = (3,S,So, E) is deterministic iff there is a single start state, and the
number of a-labeled edges starting at s is at most one for all states s € S and for all symbols a € 3.
Thus, for a deterministic transition table, the current state and the next input symbol determine
the next state uniquely. Consequently, a deterministic automaton has at most one run over a given
word, and this allows an efficient way to complement.

2.2 Trace semantics

In trace semantics, we associate a set of observable events with each process, and model the process
by the set of all its fraces. A trace is a (linear) sequence of events that may be observed when the
process runs. For example, an event may denote an assignment of a value to a variable, or pressing
a button on the control panel, or arrival of a message.

In our model, a trace will be a sequence of sets of events. Thus if two events a and b happen
simultaneously, the corresponding trace will have a set {a,b} in our model. Formally, given a set
A of events, a trace @ = 0103 ... is an infinite word over P(A) — the set of nonempty subsets of
A. An untimed process is a pair (A, X) comprising of the set A of its observable events and the set
X of its possible traces.

Example 2.2 Consider a channel P connecting two components. Let a represent the arrival of a
message at one end of P, and let b stand for the delivery of the message at the other end of the
channel. The channel cannot receive a new message until the previous one has reached the other
end. Consequently the two events a and b alternate. Assuming that the messages keep arriving,
the only possible trace is 7p = {a},{b},{a},{b}... Often we will denote the singleton set {a}
by the symbol a, and infinite repetition abababa ... by (ab)¥. The process P is represented by

({a,b}, (ab)¥). m

Various operations can be defined on processes; these are useful for describing complex systems
using the simpler ones. We will consider only the most important of these operations, namely,
parallel composition. The parallel composition of a set of processes describes the joint behavior of
all the processes running concurrently.

The parallel composition operator can be conveniently defined using the projection operation.
The projection of @ € P(A)¥ onto B C A (written | B) is formed by intersecting each event set in
o with B and deleting all the empty sets from the sequence. For instance, in Example 2.2 p[{a}
is the trace a“. Notice that the projection operation may result in a finite sequence; but for our
purpose it suffices to consider the projection of a trace ¢ onto B only when ¢; N B is nonempty for
infinitely many ¢. For a set of processes {FP, = (A;, X;) |1 =1,2,...n},

i B = (UiA;, {7 € P(UA)” | oA € X fori=1,...n}.

Thus 7 is a trace of ||; P; iff @[ A; is a trace of P; for each i = 1,...n. When there are no common
events the above definition corresponds to the unconstrained interleavings of all the traces. On the



other hand, if all event sets are identical then the trace set of the composition process is simply the
set-theoretic intersection of all the component trace sets.

Example 2.3 Consider another channel ) connected to the channel P of Example 2.2. The event
of message arrival for () is same as the event b. Let ¢ denote the delivery of the message at the
other end of Q). The process Q) is given by ({b, ¢}, (bc)¥).

When P and ) are composed we require them to synchronize on the common event b, and
between every pair of b’s we allow the possibility of the event a happening before the event ¢, the
event ¢ happening before a, and both occurring simultaneously. Thus [ P || ] has the event set
{a,b, c}, and has an infinite number of traces. m

In this framework, the verification question is presented as a language inclusion problem: is the
language of the implementation automaton a subset of the language of the specification automaton?
Intuitively, the specification automaton gives the set of allowed behaviors, so the implementation is
included in the specification if and only if every actual behavior of the implementation is allowed.
Both the implementation and the specification are given as untimed processes. The implementa-
tion process is typically a composition of several smaller component processes. We say that an
implementation (A, X;) is correct with respect to a specification (A4, Xg) iff X; C Xg.

Example 2.4 Consider the channels of Example 2.3. The implementation process is [P || Q].
The specification is given as the process S = ({a, b, ¢}, (abc)¥). Thus the specification requires the
message to reach the other end of () before the next message arrives at P. In this case, [P || @] does
not meet the specification S, for it has too many other traces, specifically, the trace ab(ach)“. m

2.8 w-automata and verification

Observe that for an untimed process (A4, X'), X is an w-language over the alphabet P(A). If it is a
regular language it can be represented by a Biichi automaton.

We model a finite-state (untimed) process P with event set A using a Biichi automaton Ap over
the alphabet P(A). The states of the automaton correspond to the internal states of the process.
The automaton Ap has a transition (s,s’,a), with @ C A, if the process can change its state from
s to s’ participating in the events from a. The acceptance conditions of the automaton correspond
to the fairness constraints on the process. The automaton Ap accepts (or generates) precisely the
traces of P; that is, the process P is given by (A, L(Ap)). Such a process P is called an w-regular
process.

The user describes a system consisting of various components by specifying each individual
component as a Biichi automaton. In particular, consider a system I comprising of n components,
where each component is modeled as an w-regular process P, = (A;, L(A;)). The implementation
process is [||; F;]. We can automatically construct the automaton A; for the implementation [
using the construction for language intersection for Biichi automata.

The specification is given as a Biichi automaton Ag over the alphabet P(A). The implemen-
tation meets the specification iff L(A7) C L(Ag). In this case, the verification problem reduces
to checking emptiness of L(Aj) N L(Ag)¢. The verification problem is provably computationally
expensive, namely, PspacE-complete. The size of A is exponential in the description of its in-
dividual components. If Ag is nondeterministic, taking the complement involves an exponential



blow-up, and hence, in practice, either deterministic automata are used for specifications, or the
user provides complement of the specification (i.e. the automaton that accepts “bad” traces).

A variety of heuristics are used to implement the verification strategy outlined above. Note that
testing language inclusion corresponds to finding cycles in the product of the automata A; together
with the complement AS. There is no need to explicitly construct the product automaton, and thus
the search is done on-the-fly. The search may be done by enumerating states in a depth-first fashion,
or by manipulating sets of states in a breadth-first fashion. The latter technique—also called
symbolic model checking—sometimes turns out to be effective even for systems with a large number
of states (see [McM93] for an overview of symbolic model checking using binary decision diagrams).
For complex problems, the verification algorithm is used in conjunction with compositional and
hierarchical proof methods that allow a systematic decomposition of the verification problem (see
[Dil89b, Kur94, LT87] for some of the methodologies, and also the article by Lynch in this volume).

2.4 Train-Gate Controller

We consider an example of an automatic controller that opens and closes a gate at a railroad
crossing. The system is composed of three components: TRAIN, GATE and CONTROLLER as shown
in Figure 2. All of them are modeled as Biichi automata. The example is simplified, however, it
suffices to illustrate the basic concepts in automata-theoretic automated verification. Note that,
for now, we model only the sequencing of events within each component, and timing will be added
to the model later.

The event set for the train automaton is {approach, exit, in, out, idr}. The event idy represents
its idling event; the train is not required to enter the gate. The train communicates with the
controller with two events approach and exit. The events in and out mark the events of entry and
exit of the train from the railroad crossing. The event set for the gate automaton is {raise, lower,
up, down, idg}. The gate is open in state sy and closed in state sp. It communicates with the
controller through the signals lower and raise. The events up and down denote the opening and
the closing of the gate. The gate can take its idling transition ¢dg in states sg or s forever. Finally,
the event set for the controller is {approach, exit, raise, lower, idc}. The controller idle state is sg.
Whenever it receives the signal approach from the train, it responds by sending the signal lower to
the gate. Whenever it receives the signal exit, it responds with a signal raise to the gate.

The entire system is then TRAIN || GATE || CONTROLLER. The event set is the union of the
event sets of all the three components. In this example, all the automata are particularly simple;
they are deterministic, and do not have any fairness constraints (every run is an accepting run). The
automaton Ay specifying the entire system is obtained by composing the above three automata.

The safety correctness requirement for the system is that whenever the train is inside the gate,
the gate should be closed. The safety property is specified by the automaton of Figure 3. An edge
label in stands for any event set containing in, and an edge label “in, mout” means any event set
not containing out, but containing in. The automaton disallows in before down, and up before
out. All the states are accepting states.

To verify the safety requirement, we need to check whether the language of Ay is contained in
the language of the safety automaton. This can be done using an automated tool such as COsPaN.
The desired inclusion does not hold, and the verification tool reports a trace of Ay that violates
the safety property (the trace consists of only two events, approach followed by in). We need
to introduce sufficient delay between the events approach and in so that the safety property is
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Figure 2: Train-gate controller

satisfied.

3 Timed Languages

To introduce time in trace semantics, we define timed words by coupling a real-valued time with
each symbol in a word.

3.1 Timed languages

The set of nonnegative real numbers, RT, is chosen as the time domain. A time sequence T = 779 - - -
is an infinite sequence of time values ; € R with 7; > 0, satisfying the following constraints:

1. Monotonicity: T increases strictly monotonically; that is, 7, < 7;41 for all ¢ > 1.
2. Progress: For every t € RT, there is some ¢ > 1 such that =; > ¢.

A timed word over an alphabet ¥ is a pair (7,7) consisting of an infinite word @ = oy103... over
> and a time sequence 7. A timed language over X is a set of timed words over Y. If each symbol
o; is interpreted to denote an event occurrence then the corresponding component 7; is interpreted
as the time of occurrence of o;. The progress requirement ensures that we disallow infinitely many
events to occur within a finite interval of time. Let us consider some examples of timed languages.
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Example 3.1 Let the alphabet be {a,b}. Define a timed language L; to consist of all timed words
(@,7) such that there is no b after time 5.6. Thus the language L; is given by

Ly = {@7) | Vi.((r: > 5.6) = (0; = a))}.

Another example is the language L, consisting of timed words in which @ and b alternate, and
for the successive pairs of ¢ and b, the time difference between a and b keeps increasing. The
language Lo is given as

Ly = {((ad)*,7) [ Vi. (720 — T2i-1) < (T2i42 — T2i41)) }- L]

The language-theoretic operations such as intersection, union, complementation are defined for
timed languages as usual. In addition we define the Untime operation which discards the time
values associated with the symbols, that is, it considers the projection of a timed trace (&,7) on
the first component: for a timed language L over ¥, Untime(L) is the w-language consisting of
words @ such that (7,7) € L for some time sequence 7. For instance, referring to Example 3.1,
Untime(Ly) is the w-language with words that contain only finitely many b’s, and Untime(Ls)
consists of a single word (ab)“.

3.2 Adding timing to traces

An untimed process models the sequencing of events but not the actual times at which the events
occur. Thus the description of the channel in Example 2.2 gives only the sequencing of the events
a and b, and not the delays between them. Timing can be added to a trace by coupling it with a
sequence of time values.

A timed trace over a set of events A is a pair (7,7) where T is a trace over A, and T is a
time sequence. In a timed trace (@,7), each 7; gives the time at which the events in o; occur. In
particular, 7 gives the time of the first observable event; we always assume 7 > 0, and define
10 = 0. A timed process is a pair (A, L) where A is a finite set of events, and L is a set of timed
traces over A.

Example 3.2 Consider the channel P of Example 2.2 again. Assume that the first message arrives
at time 1, and the subsequent messages arrive at fixed intervals of length 3 time units. Furthermore,
it takes 1 time unit for every message to traverse the channel. The process has a single timed trace
pp = (a,1),(b,2),(a,4),(b,5)...and it is represented as a timed process PT = ({a,b}, {pp}). m



The operations on untimed processes are extended in the obvious way to timed processes. To get
the projection of (7,7) onto B C A, we first intersect each event set in @ with B and then delete all
the empty sets along with the associated time values. The definition of parallel composition remains
unchanged, except that it uses the projection for timed traces. Thus in the parallel composition
of two processes, we require that both the processes should participate in the common events at
the same time. This rules out the possibility of interleaving: the parallel composition of two timed
traces is either a single timed trace or is empty.

Example 3.3 As in Example 2.3 consider another channel ) connected to P. For (), as before,
the only possible trace is 79 = (bc)*. In addition, the timing specification of () says that the time
taken by a message for traversing the channel, that is, the delay between b and the following ¢, is
some real value between 1 and 2. The timed process Q7 has infinitely many timed traces, and it is
given by

[{b,c}, {(Tg,T) | Vi. (Toim1 + 1 < Toi < 721+ 2)}].

The description of [ PT || Q7] is obtained by composing pp with each timed trace of Q7. The
composition process has uncountably many timed traces. An example trace is

(a,1), (b,2), (c,3.8), (a,4), (b,5), (c,6.02) .. m

The time values associated with the events can be discarded by the Untime operation. For a timed
process P = (A, L), Untime[(A, L)] is the untimed process with the event set A and the trace set
consisting of traces @ such that (7,7) € L for some time sequence 7.
Note that
Untime(Py || Py) C Untime(Py) || Untime(P).

However, as Example 3.4 shows, the two sides are not necessarily equal. In other words, the timing
information retained in the timed traces constrains the set of possible traces when two processes
are composed.

Example 3.4 For the channels of Example 3.3, Untime(PT) = P and Untime(QT) = Q. The
composition PT || QT has a unique untimed trace (abc)®, but P || Q has infinitely many traces:
between every pair of b events all possible orderings of an event @ and an event ¢ are admissible. B

The verification problem is again posed as an inclusion problem. The implementation is given as a
composition of several timed processes, and the specification is also given as a timed process.

Example 3.5 Consider the verification problem of Example 2.4 again. If we model the implemen-
tation as the timed process PT || QT then it meets the specification S. The specification S is now
a timed process ({a, b, c}, {((abc)*,7)}). Observe that, though the specification S constrains only
the sequencing of events, the correctness of PT || QT with respect to S crucially depends on the
timing constraints of the two channels. B

4 Timed automata

We augment the definition of w-automata so that they accept timed words, and use them to develop
a theory of timed regular languages analogous to the theory of w-regular languages.
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Figure 4: Example of a timed transition table

4.1 Transition tables with timing constraints

We extend transition tables to timed transition tables so that they can read timed words. When an
automaton makes a state-transition, the choice of the next state depends upon the input symbol
read. In case of a timed transition table, we want this choice to depend also upon the time of the
input symbol relative to the times of the previously read symbols. For this purpose, we associate a
finite set of (real-valued) clocks with each transition table. A clock can be set to zero simultaneously
with any transition. At any instant, the reading of a clock equals the time elapsed since the last time
it was reset. With each transition we associate a clock constraint, and require that the transition
may be taken only if the current values of the clocks satisfy this constraint. Before we define the
timed transition tables formally, let us consider some examples.

Example 4.1 Consider the timed transition table of Figure 4. The start state is sg. There is a
single clock . An annotation of the form 2 := 0 on an edge corresponds to the action of resetting
the clock  when the edge is traversed. Similarly an annotation of the form (2 < 2)?7 on an edge
gives the clock constraint associated with the edge.

The automaton starts in state s, and moves to state s; reading the input symbol a. The clock
x gets set to 0 along with this transition. While in state sq, the value of the clock 2 shows the time
elapsed since the occurrence of the last ¢ symbol. The transition from state s; to sy is enabled
only if this value is less than 2. The whole cycle repeats when the automaton moves back to state
sg. Thus the timing constraint expressed by this transition table is that the delay between a and
the following b is always less than 2. m

Thus to constrain the delay between two transitions e; and ey, we require a particular clock to
be reset on ey, and associate an appropriate clock constraint with e;. Note that clocks can be set
asynchronously of each other. This means that different clocks can be restarted at different times,
and there is no lower bound on the difference between their readings. Having multiple clocks allows
multiple concurrent delays, as in the next example.

Example 4.2 The timed transition table of Figure 5 uses two clocks & and y, and accepts the
language
Lz = {((abed)”,7) | V] ((Taj3 < Tajyr + 1) A (Tajea > Tajy2 +2)) )

The clock & gets set to 0 each time the automaton moves from sy to s; reading a. The check
(z < 1)7 associated with the c-transition from s, to s3 ensures that ¢ happens within time 1 of the
preceding a. A similar mechanism of resetting another independent clock y while reading b and

10
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Figure 5: Timed transition table with 2 clocks

checking its value while reading d, ensures that the delay between b and the following d is always
greater than 2. ®

Notice that in the above example, to constrain the delay between a and ¢ and between b and d
the automaton does not put any explicit bounds on the time difference between a and the following
b, or ¢ and the following d. This is an important advantage of having multiple clocks which can be
set independently of one another. We remark that the clocks of the automaton do not correspond
to the local clocks of different components in a distributed system. All the clocks increase at
the uniform rate counting time with respect to a fixed global time frame. They are fictitious
clocks invented to express the timing properties of the system. Alternatively, we can consider the
automaton to be equipped with a finite number of stop-watches which can be started and checked
independently of one another, but all stop-watches refer to the same clock.

4.2 Clock constraints and clock interpretations

To define timed automata formally, we need to say what type of clock constraints are allowed on the
edges. An atomic constraint compares a clock value with a time constant, and a clock constraint
is a conjunction of atomic constraints. Any value from Q, the set of nonnegative rationals, can be
used as a time constant. Formally, for a set X of clock variables, the set ®(.X) of clock constraints
¢ is defined inductively

di=ax<cle<az|la<c|le<ald Ay,

where z is a clock in X and ¢ is a constant in Q.

A clock interpretation v for a set X of clocks assigns a real value to each clock; that is, it is a
mapping from X to RT. We say that a clock interpretation v for X satisfies a clock constraint &
over X iff ¢ evaluates to true using the values given by v.

For t € RT | v+t denotes the clock interpretation which maps every clock z to the value v(z)+t.
For Y C X, [Y — t]v denotes the clock interpretation for X which assigns ¢ to each # € Y, and
agrees with v over the rest of the clocks.

4.3 Timed transition tables

A timed transition table A is a tuple (3,5, Sg, C, E), where

11



> is a finite alphabet,

S is a finite set of states,

So € S is a set of start states,

C is a finite set of clocks, and

E C SxSxXx2%x®(C) gives the set of transitions. An edge (s, s, a, A, §) represents
a transition from state s to state s’ on input symbol a. The set A C C gives the
clocks to be reset with this transition, and § is a clock constraint over C.

Given a timed word (@, 7), the timed transition table A starts in one of its start states at time
0 with all its clocks initialized to 0. As time advances, the values of all clocks change, reflecting
the elapsed time. At time 7;, A changes state from s to s using some transition of the form
(s,s',0:, A, 0) reading the input oy, if the current values of clocks satisfy 6. With this transition
the clocks in A are reset to 0, and thus start counting time with respect to the time of occurrence
of this transition. This behavior is captured by defining runs of timed transition tables. A run r,
denoted by (5,7), of a timed transition table (3,5, Sg, C, E) over a timed word (@, 7) is an infinite
sequence of the form

r: (so, Vo) AT (s1,v1) 22 (s2,12) LT
T1 T2 T3

with, for all ¢ > 0, s; € S and v; is a clock interpretation for C, satisfying the following requirements:
e [nitiation: sg € Sp, and vg(z) = 0 for all z € C.

e Consecution: for all ¢ > 1, there is an edge in E of the form (s;_1,s;,0;, A;, ;) such that
(Vi1 4+ 7 — Ti—1) satisfies §; and v; equals [A\; — 0](v;—1 + 7 — Tiz1).

The set inf(r) consists of those states s € S such that s = s; for infinitely many ¢ > 0.

Example 4.3 Consider the timed transition table of Example 4.2, and the word («, 2), (b,2.7), (¢, 2.8), (d,5) ...
Below we give the initial segment of the run. A clock interpretation is represented by listing the
values [z, y].

(50,0,01) = (s1,[0,20) 7 (52, [0.7,00) - (53,[0.8,0.1]) = (s0,[3,2.3) - - m

4.4 Timed regular languages

We can couple acceptance criteria with timed transition tables, and use them to define timed lan-
guages. A timed Biichi automaton (in short TBA) is a tuple (3,S,So, C, E, F), where (¥, S, So, C, E)
is a timed transition table, and F' C S is a set of accepting states. A run r = (5,7) of a TBA over
a timed word (7, 7) is called an accepting run iff inf(r) NF # (. For a TBA A, the language L(.A)
of timed words it accepts is defined to be the set {(7,7) | A has an accepting run over (7,7)}.

In analogy with the class of languages accepted by Biichi automata, we call the class of timed
languages accepted by TBAs timed regular languages: a timed language L is a timed regular language

iff L = L(A) for some TBa A.

Example 4.4 The language L3 of Example 4.2 is a timed regular language (the timed transition
table of Figure 5 coupled with the acceptance set consisting of all the states, accepts Ls).
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For every w-regular language L over ¥, the timed language {(@,7) | & € L} is timed regular.

A typical example of a nonregular timed language is the language Ly of Example 3.1. It requires
that the time difference between the successive pairs of ¢ and b form an increasing sequence. Another
nonregular language is {(a*,7) | Vi. (r; = 2)}. m

4.5 Properties of Timed Automata

The closure properties and decision problems for timed automata play an important role in their
application to verification. We mention the relevant results here, and refer the reader to [AD94]
for details.

The class of timed regular languages is closed under intersection. That is, given TBaAs A;,
it is possible to construct a TBA that accepts the intersection of L(A;)’s. The construction is a
modification of the product construction for Biichi automata.

Consider TBas A; = (3,S,,S;,,C;, Ei, F)), ¢ = 1,2,...n with disjoint clock sets. The set of
clocks for the product automaton A is U;C;. The states of A are of the form (sy,...s,, k), where
each s; € S;, and 0 < k& < n. The i-th component of the tuple keeps track of the state of A;,
and the last component is used as a counter for cycling through the accepting conditions of all
the individual automata. Initially the counter value is 0, and it is incremented from & to (k4 1)
(modulo n) iff the current state of the k-th automaton is an accepting state.

The initial states of A are of the form (s1,...s,,0) where each s; is a start state of A;. A
transition of A is obtained by coupling the transitions of the individual automata having the same
label. Let {(s;, s}, a,\;,d;) € E; | i=1,...n} be a set of transitions, one per each automaton, with
the same label a. Corresponding to this set, there is a joint transition of A out of each state of
the form (sq,...s,, k) labeled with a. The new state is (s|,...s/,j) with j = (k4 1) mod n if
Sg+1 € Fry1, and j = k otherwise. The set of clocks to be reset with this transition is U;\;, and
the associated clock constraint is A;d;.

The counter value cycles through the whole range 0,...(n — 1) infinitely often iff the accepting
conditions of all the automata are met. Consequently, we define the accepting set for A to consist
of states of the form (sy,...s,,n — 1), where s,, € I,,.

The class of timed regular languages is also closed under union. However, it is not closed under
complement.

Example 4.5 The language accepted by the automaton of Figure 6 over {a} is
{(a*,7) | Fi> 1.3 > i (= + 1)}

The complement of this language cannot be characterized using a TBA. The complement needs
to make sure that no pair of a’s is separated by distance 1. Since there is no bound on the number
of a’s that can happen in a time period of length 1, keeping track of the times of all the «’s within
the past 1 time unit, would require an unbounded number of clocks. B

In Section 5, we give an algorithm for testing whether the language of a TBA is empty. Recall
that to test whether the language of one Biichi automaton is contained in another, we test the
emptiness of the language of the product of the first automaton with the complement of the latter.
This strategy cannot be used for TBAs, as it is not possible to automatically complement a TBA.
In fact, there is no algorithm for testing whether the language of one TBA is contained in another
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Figure 6: Noncomplementable automaton

(the language inclusion problem is undecidable). The language inclusion problem is solvable if we
use deterministic TBAs as specification automata.

4.6 Deterministic timed automata

Recall that in the untimed case a deterministic transition table has a single start state, and from
each state, given the next input symbol, the next state is uniquely determined. We want a similar
criterion for determinism for the timed automata: given an extended state and the next input
symbol along with its time of occurrence, the extended state after the next transition should be
uniquely determined. So we allow multiple transitions starting at the same state with the same
label, but require their clock constraints to be mutually exclusive so that at any time only one of
these transitions is enabled. A timed transition table (3,8, Sg, C, E) is called deterministic iff

1. it has only one start state, |So| = 1, and

2. forall s € S, for all @ € X, for every pair of edges of the form (s, —, a, —, 61) and (s, —, a, —, &),
the clock constraints §; and §; are mutually exclusive (i.e., 01 A 7 is unsatisfiable).

A timed automaton is deterministic iff its timed transition table is deterministic. Deterministic
timed automata can be easily complemented because a deterministic timed transition table has at
most one run over a given timed word. The algorithm for checking emptiness can be used to test
whether the language of one TBA is included in the language of a deterministic TBaA. More details
regarding deterministic TBAs can be found in [AD94].

5 Checking emptiness

In this section we describe an algorithm for checking the emptiness of the language of a timed
automaton. The existence of an infinite accepting path in the underlying transition table is clearly
a necessary condition for the language of an automaton to be nonempty. However, the timing
constraints of the automaton rule out certain additional behaviors. We will show that a Biichi
automaton can be constructed that accepts exactly the set of untimed words that are consistent
with the timed words accepted by a timed automaton.

Recall that our definition of timed automata allows clock constraints which involve compar-
isons with rational constants. If the clock constraints of the given automaton A involve rational
constants, we can multiply each constant by the least common multiple of denominators of all
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the constants appearing in the clock constraints of A. This transformation leaves the untimed
language unchanged. Consequently, for checking emptiness, we can restrict ourselves to timed
automata whose clock constraints involve only integer constants.

5.1 Clock Regions

At every point in time the future behavior of a timed transition table is determined by its state
and the values of all its clocks. This motivates the following definition: for a timed transition table
(3,S,S0,C,E), an extended state is a pair (s,v) where s € S and v is a clock interpretation for
C. Since the number of such extended states is infinite (in fact, uncountable), we cannot possibly
build an automaton whose states are the extended states of A. But if two extended states with
the same A-state agree on the integral parts of all clock values, and also on the ordering of the
fractional parts of all clock values, then the runs starting from the two extended states are very
similar. The integral parts of the clock values are needed to determine whether or not a particular
clock constraint is met, whereas the ordering of the fractional parts is needed to decide which clock
will change its integral part first. For example, if two clocks z and y are between 0 and 1 in an
extended state, then a transition with clock constraint (z = 1) can be followed by a transition with
clock constraint (y = 1), depending on whether or not the current clock values satisfy (z < y).

The integral parts of clock values can get arbitrarily large. But if a clock z is never compared
with a constant greater than ¢, then its actual value, once it exceeds ¢, is of no consequence in
deciding the allowed paths.

Now we formalize this notion. For any ¢ € RY, fract(t) denotes the fractional part of ¢, and [¢]
denotes the integral part of ¢; that is, t = [t] + fract(t). We assume that every clock in C appears
in some clock constraint. For each & € C, let ¢, be the largest integer ¢ such that  is compared
with ¢ in some clock constraint appearing in E.

The equivalence relation ~ is defined over the set of all clock interpretations for C; v~v/’ iff all
the following conditions hold:

1. For all z € C, either |v(z)] and [v/(z)] are the same, or both v(z) and v/(z) exceed ¢,.
2. For all z,y € C with v(z) < ¢; and v(y) < ¢y, fract(v(z)) < fract(v(y)) iff
fract(V'(z)) < fract(V'(y)).

3. For all 2 € C with v(z) < ¢, fract(v(z)) = 0 iff fract(v'(z)) = 0.
A clock region for A is an equivalence class of clock interpretations induced by ~.

We will use [v] to denote the clock region to which v belongs. Each region can be uniquely
characterized by a (finite) set of clock constraints it satisfies. For example, consider a clock in-
terpretation v over two clocks with v(z) = 0.3 and v(y) = 0.7. Every clock interpretation in [v]

satisfies the constraint (0 < 2 < y < 1), and we will represent this region by [0 < # < y < 1]. The
nature of the equivalence classes can be best understood through an example.

Example 5.1 Consider a timed transition table with two clocks # and y with ¢, =2 and ¢, = 1.
The clock regions are shown in Figure 7. B

The role of the region equivalence can be understood by defining a (time-abstract) transition
relation over the extended states. For two extended states (s,v) and (s',v'), and an alphabet
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6 Corner points: e.g. [(0,1)]
14 Open line segments: e.g. [0 < 2 =y < 1]

8 Open regions: e.g. [0 <z <y < 1]

Figure 7: Clock regions

symbol a, define (s,v) % (s/, /) iff there exists a time increment ¢ € Rt and an edge (s, s',a, A, §)
such that v + ¢ satisfies § and v/ = [\ = 0](v+1). Thus, (s,v) = (s',v') iff the automaton in
extended state (s,v) can let some time elapse, and read the input symbol a to transition to (s',').
The crucial property of the equivalence relation ~ is the following;:

If vy ~vy and (s,11) - (s',v]) then there exists a clock interpretation v} such that vj~v}
and (s, 19) = (s, 14).

Due to this property, the equivalence relation ~ is called a time-abstract bisimulation.

Note that there are only a finite number of regions. Also note that for a clock constraint § of A,
if v~1' then v satisfies ¢ iff 1/ satisfies §. We say that a clock region « satisfies a clock constraint
6 iff every v € « satisfies §. Each region can be represented by specifying

(1) for every clock x, one clock constraint from the set
{t=cle=0,1,...c;,}U{c—1<a<c|lec=1,...c;}U{z > c;},

(2) for every pair of clocks # and y such that c— 1 < 2z < cand d — 1 < y < d appear
in (1) for some ¢, d, whether fract(z) is less than, equal to, or greater than fract(y).

By counting the number of possible combinations of equations of the above form, we conclude that
the number of clock regions is bounded by [|C|!- 2I°I.1I.c¢(2¢, 4+ 2)]. Thus, the number of clock
regions is exponential in the encoding of the clock constraints.

5.2 The region automaton

The first step in the decision procedure for checking emptiness is to construct a transition table
whose paths mimic the runs of A in a certain way. We will denote the desired transition table by
R(A), the region automaton of A. A state of R(A) records the state of the timed transition table
A, and the equivalence class of the current values of the clocks. It is of the form (s, ) with s € S
and « being a clock region. The intended interpretation is that whenever the extended state of A
is (s,v), the state of R(A) is (s,[v]). The region automaton starts in some state (sg, [rp]) where
so is a start state of A, and the clock interpretation vy assigns 0 to every clock. The transition
relation of R(A) is defined so that the intended simulation is obeyed. It has an edge from (s, &) to
(s, a’) labeled with « iff A in state s with the clock values v € o can make a transition on a to the
extended state (s',v’) for some ' € o,

For a timed transition table A = (X,S, Sy, C, E), the corresponding region automaton R(A) is
a transition table over the alphabet .
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e The states of R(A) are of the form (s, a) where s € S and « is a clock region.
e The initial states are of the form (sq, [1©]) where sq € Sg and vy(z) = 0 for all z € C.
e R(A) has an edge ((s,a), (s, &), a) iff (s,v) 5 (s/,v) for some v € a and some V' € «'.

Example 5.2 Consider the timed automaton 4y shown in Figure 8. The alphabet is {a, b, ¢, d}.
Every state of the automaton is an accepting state. The corresponding region automaton R(Ap)
is also shown. Only the regions reachable from the initial region (sg, [z = y = 0]) are shown. Note
that ¢, =1 and ¢, = 1. The timing constraints of the automaton ensure that the transition from
s2 1o s3 is never taken. The only reachable region with state component s, satisfies the constraints
[y = 1,2 > 1], and this region has no outgoing edges. Thus the region automaton helps us in
concluding that no transitions can follow a b-transition. m

Let us establish a correspondence between the runs of A and the runs of R(A). For a run

r = (5,7) of A of the form

r o (so,l0) AT (s1,v1) 22 (s2,12) LT
T1 T2

73
define its projection [r] = (5, [7]) to be the sequence

[r] = (so.[wal) =5 (s1,[m]) =5 (s2,[]) 5 -

From the definition of the edge relation for R(A), it follows that [r] is a run of R(A) over o. Since
time progresses without bound along r, every clock = € C is either reset infinitely often, or from a
certain time onwards it increases without bound. Hence, for all z € C, for infinitely many ¢ > 0,
[v;] satisfies [(z = 0) V (2 > ¢;)]. This prompts the following definition: a run r = (5, @) of the
region automaton R(A) is progressive iff for each clock & € C, there are infinitely many ¢ > 0 such
that «; satisfies [(z = 0) V (2 > ¢;)]. The correspondence between the runs of A and the runs of
R(A) can be made precise now: if r is a progressive run of R(A) over ¢ then there exists a time
sequence 7 and a run 1’ of A over (7,7) such that r equals [r].

Example 5.3 Consider the region automaton R(Ag) of Figure 8. Every run r of R(Ap) has a
suffix of one of the following three forms: (i) the automaton cycles between the regions (s, [y =
0 <z < 1])and (s3,[0 < y < z < 1]), (ii) the automaton stays in the region (s3,[0 <y <1 < z])
using the self-loop, or (iii) the automaton stays in the region (ss,[z > 1,y > 1]).

Only the case (iii) corresponds to the progressive runs. For runs of type (i), even though y gets
reset infinitely often, the value of x is always less than 1. For runs of type (ii), even though the
value of z is not bounded, the clock y is reset only finitely often, and yet, its value is bounded.
Thus every progressive run of Ag corresponds to a run of R(Ap) of type (iii). m

5.3 The untiming construction

For a timed automaton A, its region automaton can be used to recognize Untime[L(A)]. For this
purpose, we need to add acceptance conditions so that only progressive runs satisfy the accepting
conditions. This leads to the main theorem for timed automatas:

17



d, (x>1)7?

a, (y<1)?,y:=

3
O<y<x<l1

Figure 8: Automaton Ay and its region automaton
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Given a TBA A = (3,5,50,C,E,F), there exists a Biichi automaton over ¥ which
accepts Untime[L(A)],

or equivalently,

If a timed language L is timed regular then Untime(L) is w-regular.

Example 5.4 Let us consider the region automaton R(Ag) of Example 5.2 again. Since all states
of Ay are accepting, from the description of the progressive runs in Example 5.3 it follows that
the transition table R(Ag) can be changed to a Biichi automaton by choosing the accepting set to
consist of a single region (ss, [z > 1,y > 1]). Consequently

Untime[L(Ap)] = L[R(Ap)] = ac(ac)"d”. m

To check whether the language of a given TBA is empty, we can check for the emptiness
of the language of the corresponding Biichi automaton. Given a timed Biichi automaton A =
(2,8,S0, C, E, F) the emptiness of L(A) can be checked in time O[(|S|+ |E|)-2|5(“4)|]7 where [6(.A)]
is the length of the encoding of the clock constraints of A. This blow-up in the length of clock
constraints seems unavoidable; technically, the problem of checking emptiness of a TBA is PSPACE-
complete. Note that the source of this complexity is not the choice of RT to model time. The
Pspack lower bound holds even if we leave the syntax of timed automata unchanged, but use the
discrete domain N to model time.

6 Verification

In this section we discuss how to use the theory of timed automata to prove correctness of finite-state
real-time systems.

6.1 Verification using timed automata

For a timed process (A, L), L is a timed language over P(A). A timed regular process is one for
which the set L is a timed regular language, and can be represented by a timed automaton.

Finite-state systems are modeled by TBAs. The underlying transition table gives the state-
transition graph of the system. We have already seen how the clocks can be used to represent the
timing delays of various physical components. As before, the acceptance conditions correspond to
the fairness conditions. Notice that the progress requirement imposes certain fairness requirements
implicitly. Thus, with a finite-state process P, we associate a TBA Ap such that L(Ap) consists
of precisely the timed traces of P.

An implementation is described as a composition of several components. Each component
should be modeled as a timed regular process P, = (A4;, L(A;)). It is possible to construct a TBA
Aj which represents the composite process [||; F;]. However, in the verification procedure we are
about to outline, we will not explicitly construct the implementation automaton Aj.

The specification of the system is given as another timed regular language S over the alphabet
P(A), where A = U;A;. The system is correct iff L(A;) C 5. If S is given as a deterministic
TBA Ag, then we can solve this algorithmically. Consider TBAs A; = (P(4;),Si,Siy, Ciy Ei, Fy),
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i = 1,...n, and the deterministic TBA Ag = (P(A), So, Soy, Co, Eo, Fo). Assume without loss of
generality that the clock sets C;, ¢+ = 0,...n, are disjoint.

The verification algorithm constructs the transition table of the region automaton corresponding
to the product A of the timed transition tables of A; with Ag. The set of clocks of A is C = U;C,.
The states of A are of the form (sg,...s,) with each s; € S;. The initial states of A are of the
form (s, ...s,) with each s; € S;,. A transition of A is obtained by coupling the transitions of the
individual automata labeled with consistent event sets. The transitions of the region automaton
R(A) are defined from the edges of A as described in Section 5. To test the desired inclusion, the
algorithm searches for a cycle in the region automaton such that

(1) it is accessible from an initial state of R(A),

(2) it satisfies the progressiveness condition: for each clock z € C, the cycle contains at
least one region satisfying [(z = 0) V (z > ¢;)],

(3) since our definition of the composition requires that we consider only those infinite
runs in which each automaton participates infinitely many times, we require that,
for each 1 < ¢ < n, the cycle contains a transition in which the automaton A;
participates,

(4) the fairness requirements of all implementation automata .A; are met: for each
1 € i < n, the cycle contains some state whose ¢-th component belongs to the
accepting set F;,

(5) the fairness condition of the specification is not met: the cycle does not contain a
state whose 0-th component belongs to the accepting set Fy.

The desired inclusion does not hold iff a cycle with all the above conditions can be found.

6.2 Verification example

Let us revisit the railroad controller example. We introduce the following timing characteristics
to the model of Section 2.4. The train is required to send the signal approach at least 2 minutes
before it enters the crossing. Furthermore, we know that the maximum delay between the signals
approach and exit is b minutes. The gate responds to the signal lower by closing within 1 minute,
and responds to the signal raise within 1 to 2 minutes. The response time of the controller to the
approach signal is 1 minute, and to the signal exit is at most 1 minute. These constraints can easily
be expressed using clocks, and the revised model is shown in Figure fig:timedgre. As before, the
implementation timed automaton Ay is the parallel composition TRAIN || GATE || CONTROLLER.

In addition to the safety requirement, we can now consider the real-time liveness requirement
that the gate is never closed at a stretch for more than 10 minutes. The real-time liveness property
is specified by the timed automaton of Figure 10. The automaton requires that every down be
followed by wp within 10 minutes. Note that the automaton is deterministic, and hence can be
complemented. Furthermore, observe that the acceptance condition is not necessary; we can include
state s1 also in the acceptance set. This is because the progress of time ensures that the self-loop
on state s; with the clock constraint (z < 10) cannot be taken indefinitely, and the automaton will
eventually visit state sg.

The correctness of Aj against the two specifications can be checked separately as outlined in
Section 6. Observe that though the safety property is purely a qualitative property, it does not
hold if we discard the timing requirements. In case of both properties, the region automaton of
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Figure 9: Train-gate controller with timing

the product has only a few reachable vertices (approximately 100), and all the tools can verify the
property quickly (less than 1 minute).
6.3 Heuristics

The number of regions in a region automaton is exponential in the total number of clocks, and is
proportional to the magnitudes of constants in the clock constraints. To alleviate this blow-up a
variety of heuristics have been proposed.

Manipulating with Zones

The first heuristic attempts to group regions together. Consider a timed transition table A =
(2,5,50, C,E). A clock zone is a union of one or more clock regions. The zone automaton Z(.A) is
a transition table over the alphabet X

e The states of Z(A) are of the form (s, a) where s € S and « is a clock zone.
e The initial states are of the form (sq, [1©]) where sq € Sg and vy(z) = 0 for all z € C.

e Z(A) has an edge (s,a) = (s, /) iff the zone o’ contains all clock interpretations v’ such
that (s,v) = (s, for some v € a.
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Figure 11: Reachable zone automaton

Example 6.1 Let us revisit the region construction of Example 5.2 (see Figure 8). The reachable
part of the zone automaton is shown in Figure 6.3. Note that, unlike the region automaton, in the
zone automaton, each vertex has at most one successor per input symbol. The number of vertices
of Z(Ap) is less than the number of vertices of R(Ap). ®

The emptiness of the language of a timed automaton A can be checked by searching for cycles
in the zone automaton Z(A). Theoretically, the number of zones is exponential in the number of
regions, and thus, the zone automaton may be exponentially bigger than the region automaton.
However, in practice, the zone automaton has fewer reachable vertices, and thus, leads to an
improved performance. Furthermore, while the number of clock regions grows with the magnitudes
of the constants used in the clock constraints, experience indicates that the number of reachable
zones is relatively insensitive to the magnitudes of constants.

Observe that if the timed transition table A has n clocks, then each zone is a subset of the
n-dimensional euclidean space Rt". Each zone can be represented by linear inequalities over the
clock variables. Let us call a zone simple if it can be described as a conjunction of clock constraints
and formulas of the form ¢ —y < ¢, 2 —y > ¢, x — y < ¢, and  — y > ¢ for clocks 2 and y, and
constant ¢. Thus, a simple zone is convex, and is described by comparing either a clock value, or
difference of two clocks, with constants. The structure of timed transition tables ensures that
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If a vertex (s, ) of the zone automaton Z(A) is reachable from an initial state, then
the zone « is a (finite) union of simple zones.

A simple zone can be nicely represented by a structure called difference-bound-matriz (DBM) (see
[Dil89a] for details). While searching for cycles in the zone automaton, each zone is maintained
as a union of DBMs, and the edges of the zone automaton are computed on the fly. The DBM
representation allows efficient computation of the successors of a vertex. Furthermore, the DBM
representation is canonical, hence, testing equality between two zones is easy.

The tool KroNOS allows verification of timed automata based on search using zones. Instead of
deterministic timed automata as specifications, KRONOS uses timed p-calculus as the specification
language. We refer the reader to [HNSY94] for the theory underlying KroNos, and to [NOSY93]
for the description of the tool and its applications.

Approximations

A variety of abstract interpretation techniques can be used to improve the performance of searching
in the zone automaton. As we indicated, manipulating with simple zones is efficient. The vertices
of the zone automaton contain unions of simple zones. The search can be speeded up by replacing
a union of simple zones by the smallest simple zone containing them. For instance, the zone
x < 1V2<z<3is replaced by the simple zone x < 3.

Formally, for a timed transition table A, the approximate-zone automaton Z*(A) is a transition
table as follows. A state of Z*(A) is a pair (s, ) consisting of a state s € S and a simple zone a.
A state (s, «) is initial if s € Sg and « contains the single clock interpretation that assigns 0 to all
clocks. Z*(A) has an edge (s, a) % (s', @) iff the zone o/ is the smallest simple zone that contains
all clock interpretations v/ such that (s,v) % (s',/) for some v € a. In other words, if the zone
automaton has the edge (s, ) = (s/,a”’), and o/ is the convex hull of o then Z*(A) has the edge
(s,a) 5 (s, ).

The transition table Z*(.A) approximates Z(.A). The acceptance conditions on Z(.A) are trans-
lated to the acceptance conditions on Z*(A). Thus, instead of searching Z(A) we can search for
cycles in Z*(A). Note that searching in the approximate-zone automaton Z*(A) can be done
efficiently manipulating DBMs.

If the language of Z*(A) is empty then so is the language of Z(A), and so is the language
of A (when A represents the product of the components together with the complement of the
specification, this means that the system satisfies its specification). However, when the language
of Z*(A) is nonempty, we cannot conclude nonemptiness of the language of Z(A). In this case,
we may need to perform the search in Z(A). More effective techniques that perform repeated
search using only simple zones have been developed. See [Won94] for a variety of approximation
techniques for zone automata, and experimental results on its applications.

Iterative Verification

Consider a TBa A = (X,5,S0,C, E). The computational complexity of the verification problem
depends upon the number of clocks and magnitudes of constants in clock constraints. The iterative
approximation strategy considers TBas Ap, Ay, Aq,... and in iteration i, tests the emptiness of
L(A;). The approximations satisfy the following property:
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Each TBA A; is an approximation of A: L(A) C L(A;).
Each TBaA A; has the same state-transition structure as A, but simpler clock con-

straints than A (i.e. the constraints on edges of A; use less number of clocks, or
constants with smaller magnitudes).

As i increases, A; is a better approximation of A: L(A;+1) C L(A;).

The approximations converge in finite number number of iterations: for some ¢,

L(A) = L(A;).

Specifically, Ag has the same state-transition structure as A except that every clock constraint of A
is simplified to true. Testing emptiness of Ay is easy: we simply need to search for a reachable cycle
that contains an accepting state. If L(Ap) is empty then so is L(.A), and we are done. If not, then
there is a word @ and an accepting run s of Ay over @. The next step is to test whether there exists

a time sequence 7 such that A has a run over (7, 7) that follows the state-sequence 5. This problem
is computationally easy, and can be solved efficiently in polynomial-time. If there is such a run,
then @ € Untime(L(A)), and we can infer that L(A) is nonempty. If not, then the algorithm needs
to compute the next approximation A;. The approximation is computed by adding a minimal set
of constraints of A to Ap so that Ay has no run corresponding to 5. A variety of heuristics are used
for this purpose. The next example illustrates the ideas.

Example 6.2 Consider the TBA A shown in Figure 6.3 (the alphabet is unary, and 5 is the
accepting state). The automaton uses 3 clocks, and the largest constant is 20. Thus, the region
automaton has large number of vertices. Observe that L(.A) is empty.

The first approximation is Ag. The language L(Ap) is nonempty, and the accepting run is 5 =
012345“. This run 5 is checked against the constraints of A, and the run is found to be inconsistent
(i.e. A cannot follow the run 5). The algorithm then computes a minimal set C' C {z,y, 2z} of
clocks such that thee constraints on the clocks in C’ are sufficient for the inconsistency of 5. In
this case, C' = {y, z}. Next, the algorithm attempts to relax the constraints: lower bounds can be
decreased, and upper bounds can be increased. In particular, ¥ < 15 can be replaced by y < 20.
Also, it is possible to divide all constants by the greatest common divisor of all the constants. This
leads to the approximation A;. The automaton A; has only 2 clocks, and the constants are small.
The region automaton of A; is used to conclude that L(A;) is empty, and this implies L(A) is
empty. B

Thus at each step of the iteration, either we can conclude the emptiness or nonemptiness of
L(A), or need to add additional constraints (with relaxed bounds) to obtain a better approximation.
For precise details of the iterative scheme, see [AIKY95]. This heuristic is implemented in the tool
CospPaN (see [AIKY95] for experimental results). In many cases, the original emptiness question
can be answered in a few iterations. Another advantage of the method is that in many cases the
algorithm computes the tight bounds that are needed to prove the specification.

7 Discussion

In this chapter, we have shown how to extend the theory of finite automata to incorporate timing,
and illustrated its application to verification of real-time systems. Various tools such as COSPAN,
Hsis, and KrRONOS incorporate timing verification based on these principles. For further details on
the implementations and experimental results the reader is referred to [NOSY93, AIKY95, Won94].
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Figure 12: Iterative verification

Related work

There is an extensive literature on verification of timed systems. Examples of formalisms that
admit modeling real-time systems include timed Petri nets [Ram74], timed transition systems
[Ost90, HMP91], timed 1/O automata [LA92], process algebras such timed CSP [RR88] and ATP
[NRSV90], and Modecharts [JM87]. The algorithmic techniques developed for timed automata
apply to these other models also.

In this paper, we used automata not only to describe the system, but also to write correctness
requirements. Alternatively, real-time requirements can be written as formulas of timed temporal
logics. Model-checking algorithms for various timed temporal logics have been developed: examples
include discrete linear-time logics [JM86, Ost90, AH94], dense linear-time logics [AFH91], discrete
branching-time logics [EMSS90, CC94], and dense branching-time logics [ACD93, HNSY94]

We have considered only algorithmic methods for verification that can be fully automated, and
apply only to finite-state systems. Real-world problems need decomposition of the given verification
problem into subproblems to which the verification algorithms can be applied. This decomposition
requires a careful modeling that admits compositional and hierarchical reasoning. Such issues are
discussed in, for instance, [AL91, LV92, Sha92].

Hybrid systems

Recently, the model of timed automata has been extended so that continuous variables other clocks,
such as temperature and imperfect clocks, can be modeled. Hybrid automata are useful in modeling
discrete controllers embedded within continuously changing environment. Verifying correctness of
hybrid automata is computationally more expensive than of timed automata, but in simple cases,
such as the railroad controller, it allows reasoning with parametric bounds. We refer the reader to
[ACH*95] for an introduction to hybrid automata, and to [HH95] for an introduction to the verifier
HyTECH.
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