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� Introduction

Formal methods for specifying� analyzing� and manipulating the behavior of concurrent systems
become much more attractive in practical use if they can be automated� A number of methods
based on �nite�state representations have achieved considerable success in practical applications
such as protocol and hardware veri�cation� precisely because many problems are decidable for
�nite�state representations� Finite�state veri�cation methods include checking equivalences �such as
bisimulation�� preorders �such as simulation�� temporal logic properties �eg� CTL model�checking��
and inclusion of the language of one automaton in another�

Until recently� temporal logics and �nite automata were primarily concerned with qualitative

temporal reasoning about systems� For example� whether a system deadlocks or livelocks� whether
a property is always true� or whether some response eventually occurs� More recently� ways of
extending �nite�state techniques to timed systems have been discovered� which retain many of the
desirable properties of conventional �nite representations�

In this chapter� we will concentrate on linear�time models� although �nite�state real�time tech�
niques can also be applied to branching�time problems� such as �timed� CTL model�checking and
bisimulation checking� In the linear time model� it is assumed that an execution can be completely
modeled as a sequence of states or system events� called a trace� The behavior of the system is a
set of such traces� Since a set of sequences is a formal language� this leads naturally to the use of
automata for the speci�cation and veri�cation of systems� When the systems are �nite�state� we
can use �nite automata� leading to e�ective constructions and decision procedures for automatically

manipulating and analyzing system behavior�
In qualitative models� it is useful to describe non�terminating executions� so that liveness prop�

erties� such as �if a request occurs in�nitely often� so does the response� can be expressed� Con�
sequently many veri�cation theories are based on the theory of ��regular languages� which reasons
about sets of in�nite strings� instead of the �nite strings usually considered in ordinary regular
languages �e�g� the system Cospan 	Kur
�� or the system Hsis 	ABB�
���� In our linear real�time
model� an execution is an in�nite trace of events� and time is added by pairing each event of a trace
with a time value� Time values are chosen from the set of reals� Such a model is called a dense�time

model� The alternative discrete�time model uses integer time values� and requires that continuous






time be approximated by choosing some �xed quantum a priori� which limits the accuracy with
which physical systems can be modeled� Dealing with dense time in a �nite�automata framework is
more di�cult than dealing with discrete time� because the transformation from a set of dense�time
traces into an ordinary formal language is not obvious� Instead� we have developed a theory of timed

formal languages and timed automata to support automated reasoning about such systems� The
study of timed �nite automata has yielded interesting theoretical results� and� if progress continues
at its current rate� is likely to succeed in practice just as qualitative �nite�state methods have�

Overview

We begin with an overview of ��automata and veri�cation for untimed systems �Section ��� Then�
we de�ne timed automata by augmenting ��automata with a set of real�valued variables called
clocks � The clocks can be reset to � �independently of each other� with the transitions of the
automaton� and keep track of the time elapsed since the last reset� The transitions of the automaton
put certain constraints on the clock values� a transition may be taken only if the current values of
the clocks satisfy the associated constraints� With this mechanism we can model timing properties
such as �the channel delivers every message within � to � time units of its receipt�� Timed automata
accept timed words � in�nite sequences in which a real�valued time of occurrence is associated
with each symbol� Timed automata can capture several interesting aspects of real�time systems�
qualitative features such as liveness� fairness� and nondeterminism� and quantitative features such
as periodicity� bounded response� and timing delays�

We present an overview of the formal language theory for timed automata� Due to the real�
valued clock variables� the state space of a timed automaton is in�nite� The untiming algorithm�
discussed in detail in Section �� constructs a �nite quotient of this space� and is the key to algo�
rithmic solutions to decision problems for timed automata�

Section � outlines the application of timed automata to veri�cation of timed systems� A timed
system is modeled as a collection of timed automata representing the various components of the
system� The speci�cation to be checked is given as a deterministic timed automaton representing the
correct behaviors� The system satis�es the property if the language of the product of the automata
modeling the components is contained in the language of the speci�cation automaton� We present
an algorithmic solution to the veri�cation problem� To alleviate the high computational complexity
of the veri�cation algorithm� di�erent veri�cation tools use di�erent heuristics� We discuss some of
the implemented solutions�

� Automata�theoretic Veri�cation of Untimed Systems

In this section we will brie�y review the relevant aspects of the theory of ��regular languages� and
its application to modeling and automatic veri�cation of untimed systems� We refer the reader to
	Tho
�� for a summary of the theory of ��regular languages� and to 	Kur
�� for its application to
veri�cation�

��� B�uchi automata

The more familiar de�nition of a formal language is as a set of �nite words over some given ��nite�
alphabet� As opposed to this� an ��language consists of in�nite words� Thus an ��language over
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Figure 
� B�uchi automaton accepting words with in�nitely many b�s

a �nite alphabet � is a subset of �� � the set of all in�nite words over �� ��automata provide a
�nite representation for certain types of ��languages� An ��automaton is essentially the same as
a nondeterministic �nite�state automaton� but with the acceptance condition modi�ed suitably so
as to handle in�nite input words�

A transition table A is a tuple h�� S� S��Ei� where � is an input alphabet� S is a �nite set of
automaton states� S� � S is a set of start states� and E � S�S�� is a set of edges� The automaton
starts in an initial state� and if hs� s�� ai � E then the automaton can change its state from s to s�

reading the input symbol a� Formally� for an in�nite word � � ���� � � � over the alphabet �� we
say that

r � s�
���� s�

���� s�
���� � � �

is a run of the transition table A over �� provided s� � S�� and hsi��� si� �ii � E for all i � 
� For
such a run� the set inf �r� consists of the states s � S such that s � si for in�nitely many i � ��

Di�erent types of ��automata are de�ned by adding an acceptance condition to the de�nition
of the transition tables� We will use B�uchi acceptance condition �alternatives such as Streett
acceptance or Muller acceptance lead to expressively equivalent de�nitions� see 	Tho
���� A B�uchi

automaton A is a transition table h�� S� S��Ei with an additional set F � S of accepting states�
A run r of A over a word � � �� is an accepting run i� inf �r� � F �� 	� In other words� a run
r is accepting i� some state from the set F repeats in�nitely often along r� The language L�A�
accepted by the B�uchi automaton A consists of the words � � �� such that A has an accepting
run over ��

Example ��� Consider the ��state automaton of Figure 
 over the alphabet fa� bg� Both states
are start states and s� is the accepting state� The automaton accepts all words with an in�nite
number of b�s� Thus� the automaton expresses the constraint that every a is followed by b�

An ��language is called ��regular i� it is accepted by some B�uchi automaton� The class of ��
regular languages is closed under all the Boolean operations� Language intersection is implemented
by a product construction for B�uchi automata� There are known constructions for complementing
B�uchi automata�

When B�uchi automata are used for modeling �nite�state concurrent processes� the veri�cation
problem reduces to that of language inclusion� The inclusion problem for ��regular languages is
decidable� To test whether the language of one automaton is contained in the other� we check for
emptiness of the intersection of the �rst automaton with the complement of the second� Testing
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for emptiness is easy� we only need to search for a cycle that is reachable from a start state and
includes at least one accepting state� In general� complementing a B�uchi automaton involves an
exponential blow�up in the number of states� and the language inclusion problem is known to be
Pspace�complete� However� checking whether the language of one automaton is contained in the
language of a deterministic automaton can be done in polynomial time�

A transition table A � h�� S� S��Ei is deterministic i� there is a single start state� and the
number of a�labeled edges starting at s is at most one for all states s � S and for all symbols a � ��
Thus� for a deterministic transition table� the current state and the next input symbol determine
the next state uniquely� Consequently� a deterministic automaton has at most one run over a given
word� and this allows an e�cient way to complement�

��� Trace semantics

In trace semantics� we associate a set of observable events with each process� and model the process
by the set of all its traces � A trace is a �linear� sequence of events that may be observed when the
process runs� For example� an event may denote an assignment of a value to a variable� or pressing
a button on the control panel� or arrival of a message�

In our model� a trace will be a sequence of sets of events� Thus if two events a and b happen
simultaneously� the corresponding trace will have a set fa� bg in our model� Formally� given a set
A of events� a trace � � ���� � � � is an in�nite word over P�A� � the set of nonempty subsets of
A� An untimed process is a pair �A�X� comprising of the set A of its observable events and the set
X of its possible traces�

Example ��� Consider a channel P connecting two components� Let a represent the arrival of a
message at one end of P � and let b stand for the delivery of the message at the other end of the
channel� The channel cannot receive a new message until the previous one has reached the other
end� Consequently the two events a and b alternate� Assuming that the messages keep arriving�
the only possible trace is �P � fag� fbg� fag� fbg � � � Often we will denote the singleton set fag
by the symbol a� and in�nite repetition abababa � � � by �ab��� The process P is represented by
�fa� bg� �ab����

Various operations can be de�ned on processes� these are useful for describing complex systems
using the simpler ones� We will consider only the most important of these operations� namely�
parallel composition� The parallel composition of a set of processes describes the joint behavior of
all the processes running concurrently�

The parallel composition operator can be conveniently de�ned using the projection operation�
The projection of � � P�A�� onto B � A �written �dB� is formed by intersecting each event set in
� with B and deleting all the empty sets from the sequence� For instance� in Example ��� �P dfag
is the trace a�� Notice that the projection operation may result in a �nite sequence� but for our
purpose it su�ces to consider the projection of a trace � onto B only when �i �B is nonempty for
in�nitely many i� For a set of processes fPi � �Ai� Xi� j i � 
� �� � � �ng�

ki Pi � � 
iAi� f� � P�
iAi�
� j �dAi � Xi for i � 
� � � �ng�

Thus � is a trace of ki Pi i� �dAi is a trace of Pi for each i � 
� � � �n� When there are no common
events the above de�nition corresponds to the unconstrained interleavings of all the traces� On the
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other hand� if all event sets are identical then the trace set of the composition process is simply the
set�theoretic intersection of all the component trace sets�

Example ��� Consider another channel Q connected to the channel P of Example ���� The event
of message arrival for Q is same as the event b� Let c denote the delivery of the message at the
other end of Q� The process Q is given by �fb� cg� �bc����

When P and Q are composed we require them to synchronize on the common event b� and
between every pair of b�s we allow the possibility of the event a happening before the event c� the
event c happening before a� and both occurring simultaneously� Thus 	P k Q � has the event set
fa� b� cg� and has an in�nite number of traces�

In this framework� the veri�cation question is presented as a language inclusion problem� is the
language of the implementation automaton a subset of the language of the speci�cation automaton�
Intuitively� the speci�cation automaton gives the set of allowed behaviors� so the implementation is
included in the speci�cation if and only if every actual behavior of the implementation is allowed�
Both the implementation and the speci�cation are given as untimed processes� The implementa�
tion process is typically a composition of several smaller component processes� We say that an
implementation �A�XI� is correct with respect to a speci�cation �A�XS� i� XI � XS �

Example ��� Consider the channels of Example ���� The implementation process is 	P k Q ��
The speci�cation is given as the process S � �fa� b� cg� �abc���� Thus the speci�cation requires the
message to reach the other end of Q before the next message arrives at P � In this case� 	P k Q� does
not meet the speci�cation S� for it has too many other traces� speci�cally� the trace ab�acb���

��� ��automata and veri�cation

Observe that for an untimed process �A�X�� X is an ��language over the alphabet P�A�� If it is a
regular language it can be represented by a B�uchi automaton�

We model a �nite�state �untimed� process P with event set A using a B�uchi automaton AP over
the alphabet P�A�� The states of the automaton correspond to the internal states of the process�
The automaton AP has a transition hs� s�� ai� with a � A� if the process can change its state from
s to s� participating in the events from a� The acceptance conditions of the automaton correspond
to the fairness constraints on the process� The automaton AP accepts �or generates� precisely the
traces of P � that is� the process P is given by �A�L�AP ��� Such a process P is called an ��regular
process �

The user describes a system consisting of various components by specifying each individual
component as a B�uchi automaton� In particular� consider a system I comprising of n components�
where each component is modeled as an ��regular process Pi � �Ai� L�Ai��� The implementation
process is 	ki Pi�� We can automatically construct the automaton AI for the implementation I

using the construction for language intersection for B�uchi automata�
The speci�cation is given as a B�uchi automaton AS over the alphabet P�A�� The implemen�

tation meets the speci�cation i� L�AI� � L�AS�� In this case� the veri�cation problem reduces
to checking emptiness of L�AI� � L�AS�

c� The veri�cation problem is provably computationally
expensive� namely� Pspace�complete� The size of AI is exponential in the description of its in�
dividual components� If AS is nondeterministic� taking the complement involves an exponential
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blow�up� and hence� in practice� either deterministic automata are used for speci�cations� or the
user provides complement of the speci�cation �i�e� the automaton that accepts �bad� traces��

A variety of heuristics are used to implement the veri�cation strategy outlined above� Note that
testing language inclusion corresponds to �nding cycles in the product of the automata Ai together
with the complement Ac

S � There is no need to explicitly construct the product automaton� and thus
the search is done on�the��y� The search may be done by enumerating states in a depth��rst fashion�
or by manipulating sets of states in a breadth��rst fashion� The latter technique�also called
symbolic model checking�sometimes turns out to be e�ective even for systems with a large number
of states �see 	McM
�� for an overview of symbolic model checking using binary decision diagrams��
For complex problems� the veri�cation algorithm is used in conjunction with compositional and
hierarchical proof methods that allow a systematic decomposition of the veri�cation problem �see
	Dil�
b� Kur
�� LT��� for some of the methodologies� and also the article by Lynch in this volume��

��� Train�Gate Controller

We consider an example of an automatic controller that opens and closes a gate at a railroad
crossing� The system is composed of three components� Train� Gate and Controller as shown
in Figure �� All of them are modeled as B�uchi automata� The example is simpli�ed� however� it
su�ces to illustrate the basic concepts in automata�theoretic automated veri�cation� Note that�
for now� we model only the sequencing of events within each component� and timing will be added
to the model later�

The event set for the train automaton is fapproach� exit� in� out� idTg� The event idT represents
its idling event� the train is not required to enter the gate� The train communicates with the
controller with two events approach and exit � The events in and out mark the events of entry and
exit of the train from the railroad crossing� The event set for the gate automaton is fraise� lower�
up� down� idGg� The gate is open in state s� and closed in state s�� It communicates with the
controller through the signals lower and raise� The events up and down denote the opening and
the closing of the gate� The gate can take its idling transition idG in states s� or s� forever� Finally�
the event set for the controller is fapproach� exit� raise� lower� idCg� The controller idle state is s��
Whenever it receives the signal approach from the train� it responds by sending the signal lower to
the gate� Whenever it receives the signal exit � it responds with a signal raise to the gate�

The entire system is then Train k Gate k Controller� The event set is the union of the
event sets of all the three components� In this example� all the automata are particularly simple�
they are deterministic� and do not have any fairness constraints �every run is an accepting run�� The
automaton AI specifying the entire system is obtained by composing the above three automata�

The safety correctness requirement for the system is that whenever the train is inside the gate�
the gate should be closed� The safety property is speci�ed by the automaton of Figure �� An edge
label in stands for any event set containing in� and an edge label �in� �out� means any event set
not containing out � but containing in� The automaton disallows in before down� and up before
out � All the states are accepting states�

To verify the safety requirement� we need to check whether the language of AI is contained in
the language of the safety automaton� This can be done using an automated tool such as Cospan�
The desired inclusion does not hold� and the veri�cation tool reports a trace of AI that violates
the safety property �the trace consists of only two events� approach followed by in�� We need
to introduce su�cient delay between the events approach and in so that the safety property is
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� Timed Languages

To introduce time in trace semantics� we de�ne timed words by coupling a real�valued time with
each symbol in a word�

��� Timed languages

The set of nonnegative real numbers� R�� is chosen as the time domain� A time sequence � � ���� � � �
is an in�nite sequence of time values �i � R

� with �i � �� satisfying the following constraints�


� Monotonicity� � increases strictly monotonically� that is� �i � �i�� for all i � 
�

�� Progress� For every t � R�� there is some i � 
 such that �i � t�

A timed word over an alphabet � is a pair ��� �� consisting of an in�nite word � � ���� � � � over
� and a time sequence � � A timed language over � is a set of timed words over �� If each symbol
�i is interpreted to denote an event occurrence then the corresponding component �i is interpreted
as the time of occurrence of �i� The progress requirement ensures that we disallow in�nitely many
events to occur within a �nite interval of time� Let us consider some examples of timed languages�
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Example ��� Let the alphabet be fa� bg� De�ne a timed language L� to consist of all timed words
��� �� such that there is no b after time ���� Thus the language L� is given by

L� � f��� �� j �i� ���i � ���� � ��i � a��g�

Another example is the language L� consisting of timed words in which a and b alternate� and
for the successive pairs of a and b� the time di�erence between a and b keeps increasing� The
language L� is given as

L� � f��ab��� �� j �i� ����i� ��i��� � ���i�� � ��i����g�

The language�theoretic operations such as intersection� union� complementation are de�ned for
timed languages as usual� In addition we de�ne the Untime operation which discards the time
values associated with the symbols� that is� it considers the projection of a timed trace ��� �� on
the �rst component� for a timed language L over �� Untime�L� is the ��language consisting of
words � such that ��� �� � L for some time sequence � � For instance� referring to Example ��
�
Untime�L�� is the ��language with words that contain only �nitely many b�s� and Untime�L��
consists of a single word �ab���

��� Adding timing to traces

An untimed process models the sequencing of events but not the actual times at which the events
occur� Thus the description of the channel in Example ��� gives only the sequencing of the events
a and b� and not the delays between them� Timing can be added to a trace by coupling it with a
sequence of time values�

A timed trace over a set of events A is a pair ��� �� where � is a trace over A� and � is a
time sequence� In a timed trace ��� ��� each �i gives the time at which the events in �i occur� In
particular� �� gives the time of the �rst observable event� we always assume �� � �� and de�ne
�� � �� A timed process is a pair �A�L� where A is a �nite set of events� and L is a set of timed
traces over A�

Example ��� Consider the channel P of Example ��� again� Assume that the �rst message arrives
at time 
� and the subsequent messages arrive at �xed intervals of length � time units� Furthermore�
it takes 
 time unit for every message to traverse the channel� The process has a single timed trace
�P � �a� 
�� �b� ��� �a� ��� �b� �� � � � and it is represented as a timed process PT � �fa� bg� f�Pg��
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The operations on untimed processes are extended in the obvious way to timed processes� To get
the projection of ��� �� onto B � A� we �rst intersect each event set in � with B and then delete all
the empty sets along with the associated time values� The de�nition of parallel composition remains
unchanged� except that it uses the projection for timed traces� Thus in the parallel composition
of two processes� we require that both the processes should participate in the common events at
the same time� This rules out the possibility of interleaving� the parallel composition of two timed
traces is either a single timed trace or is empty�

Example ��� As in Example ��� consider another channel Q connected to P � For Q� as before�
the only possible trace is �Q � �bc�

�� In addition� the timing speci�cation of Q says that the time
taken by a message for traversing the channel� that is� the delay between b and the following c� is
some real value between 
 and �� The timed process QT has in�nitely many timed traces� and it is
given by

	 fb� cg� f��Q� �� j �i� ���i�� � 
 � ��i � ��i�� � ��g ��

The description of 	PT k QT � is obtained by composing �P with each timed trace of QT � The
composition process has uncountably many timed traces� An example trace is

�a� 
�� �b� ��� �c� ����� �a� ��� �b� ��� �c� ����� � � �

The time values associated with the events can be discarded by the Untime operation� For a timed
process P � �A�L�� Untime	�A�L�� is the untimed process with the event set A and the trace set
consisting of traces � such that ��� �� � L for some time sequence � �

Note that
Untime�P� k P�� � Untime�P�� k Untime�P���

However� as Example ��� shows� the two sides are not necessarily equal� In other words� the timing
information retained in the timed traces constrains the set of possible traces when two processes
are composed�

Example ��� For the channels of Example ���� Untime�PT � � P and Untime�QT � � Q� The
composition PT k QT has a unique untimed trace �abc��� but P k Q has in�nitely many traces�
between every pair of b events all possible orderings of an event a and an event c are admissible�

The veri�cation problem is again posed as an inclusion problem� The implementation is given as a
composition of several timed processes� and the speci�cation is also given as a timed process�

Example ��� Consider the veri�cation problem of Example ��� again� If we model the implemen�
tation as the timed process PT k QT then it meets the speci�cation S� The speci�cation S is now
a timed process �fa� b� cg� f��abc��� ��g�� Observe that� though the speci�cation S constrains only
the sequencing of events� the correctness of PT k QT with respect to S crucially depends on the
timing constraints of the two channels�

� Timed automata

We augment the de�nition of ��automata so that they accept timed words� and use them to develop
a theory of timed regular languages analogous to the theory of ��regular languages�
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Figure �� Example of a timed transition table

��� Transition tables with timing constraints

We extend transition tables to timed transition tables so that they can read timed words� When an
automaton makes a state�transition� the choice of the next state depends upon the input symbol
read� In case of a timed transition table� we want this choice to depend also upon the time of the
input symbol relative to the times of the previously read symbols� For this purpose� we associate a
�nite set of �real�valued� clocks with each transition table� A clock can be set to zero simultaneously
with any transition� At any instant� the reading of a clock equals the time elapsed since the last time
it was reset� With each transition we associate a clock constraint� and require that the transition
may be taken only if the current values of the clocks satisfy this constraint� Before we de�ne the
timed transition tables formally� let us consider some examples�

Example ��� Consider the timed transition table of Figure �� The start state is s�� There is a
single clock x� An annotation of the form x �� � on an edge corresponds to the action of resetting
the clock x when the edge is traversed� Similarly an annotation of the form �x � ��� on an edge
gives the clock constraint associated with the edge�

The automaton starts in state s�� and moves to state s� reading the input symbol a� The clock
x gets set to � along with this transition� While in state s�� the value of the clock x shows the time
elapsed since the occurrence of the last a symbol� The transition from state s� to s� is enabled
only if this value is less than �� The whole cycle repeats when the automaton moves back to state
s�� Thus the timing constraint expressed by this transition table is that the delay between a and
the following b is always less than ��

Thus to constrain the delay between two transitions e� and e�� we require a particular clock to
be reset on e�� and associate an appropriate clock constraint with e�� Note that clocks can be set
asynchronously of each other� This means that di�erent clocks can be restarted at di�erent times�
and there is no lower bound on the di�erence between their readings� Having multiple clocks allows
multiple concurrent delays� as in the next example�

Example ��� The timed transition table of Figure � uses two clocks x and y� and accepts the
language

L� � f��abcd��� �� j �j� ����j�� � ��j�� � 
� 
 ���j�� � ��j�� � ���g�

The clock x gets set to � each time the automaton moves from s� to s� reading a� The check
�x � 
�� associated with the c�transition from s� to s� ensures that c happens within time 
 of the
preceding a� A similar mechanism of resetting another independent clock y while reading b and
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Figure �� Timed transition table with � clocks

checking its value while reading d� ensures that the delay between b and the following d is always
greater than ��

Notice that in the above example� to constrain the delay between a and c and between b and d
the automaton does not put any explicit bounds on the time di�erence between a and the following
b� or c and the following d� This is an important advantage of having multiple clocks which can be
set independently of one another� We remark that the clocks of the automaton do not correspond
to the local clocks of di�erent components in a distributed system� All the clocks increase at
the uniform rate counting time with respect to a �xed global time frame� They are �ctitious
clocks invented to express the timing properties of the system� Alternatively� we can consider the
automaton to be equipped with a �nite number of stop�watches which can be started and checked
independently of one another� but all stop�watches refer to the same clock�

��� Clock constraints and clock interpretations

To de�ne timed automata formally� we need to say what type of clock constraints are allowed on the
edges� An atomic constraint compares a clock value with a time constant� and a clock constraint
is a conjunction of atomic constraints� Any value from Q� the set of nonnegative rationals� can be
used as a time constant� Formally� for a set X of clock variables� the set  �X� of clock constraints
� is de�ned inductively

� �� x � c j c � x j x � c j c � x j �� 
 ���

where x is a clock in X and c is a constant in Q�
A clock interpretation 	 for a set X of clocks assigns a real value to each clock� that is� it is a

mapping from X to R�� We say that a clock interpretation 	 for X satis�es a clock constraint �
over X i� � evaluates to true using the values given by 	�

For t � R�� 	�t denotes the clock interpretation which maps every clock x to the value 	�x��t�
For Y � X � 	Y �� t�	 denotes the clock interpretation for X which assigns t to each x � Y � and
agrees with 	 over the rest of the clocks�

��� Timed transition tables

A timed transition table A is a tuple h�� S� S��C�Ei� where







� � is a �nite alphabet�
� S is a �nite set of states�
� S� � S is a set of start states�
� C is a �nite set of clocks� and
� E � S�S����C� �C� gives the set of transitions� An edge hs� s�� a� 
� �i represents

a transition from state s to state s� on input symbol a� The set 
 � C gives the
clocks to be reset with this transition� and � is a clock constraint over C�

Given a timed word ��� ��� the timed transition table A starts in one of its start states at time
� with all its clocks initialized to �� As time advances� the values of all clocks change� re�ecting
the elapsed time� At time �i� A changes state from s to s� using some transition of the form
hs� s�� �i� 
� �i reading the input �i� if the current values of clocks satisfy �� With this transition
the clocks in 
 are reset to �� and thus start counting time with respect to the time of occurrence
of this transition� This behavior is captured by de�ning runs of timed transition tables� A run r�
denoted by �s� 	�� of a timed transition table h�� S� S��C�Ei over a timed word ��� �� is an in�nite
sequence of the form

r � hs�� 	�i
����
��

hs�� 	�i
����
��

hs�� 	�i
����
��

� � �

with� for all i � �� si � S and 	i is a clock interpretation for C� satisfying the following requirements�

� Initiation� s� � S�� and 	��x� � � for all x � C�

� Consecution� for all i � 
� there is an edge in E of the form hsi��� si� �i� 
i� �ii such that
�	i�� � �i � �i��� satis�es �i and 	i equals 	
i �� ���	i�� � �i � �i����

The set inf �r� consists of those states s � S such that s � si for in�nitely many i � ��

Example ��� Consider the timed transition table of Example ���� and the word �a� ��� �b� ����� �c� ����� �d� �� � � �
Below we give the initial segment of the run� A clock interpretation is represented by listing the
values 	x� y��

hs�� 	�� ��i
a
��
�

hs�� 	�� ��i
b

��
���

hs�� 	���� ��i
c

��
���

hs�� 	���� ��
�i
d
��
�

hs�� 	�� ����i � � �

��� Timed regular languages

We can couple acceptance criteria with timed transition tables� and use them to de�ne timed lan�
guages� A timed B�uchi automaton �in short Tba� is a tuple h�� S� S��C�E�Fi� where h�� S� S��C�Ei
is a timed transition table� and F � S is a set of accepting states� A run r � �s� 	� of a Tba over
a timed word ��� �� is called an accepting run i� inf �r�� F �� 	� For a Tba A� the language L�A�
of timed words it accepts is de�ned to be the set f��� �� j A has an accepting run over ��� ��g�

In analogy with the class of languages accepted by B�uchi automata� we call the class of timed
languages accepted by Tbas timed regular languages� a timed language L is a timed regular language

i� L � L�A� for some Tba A�

Example ��� The language L� of Example ��� is a timed regular language �the timed transition
table of Figure � coupled with the acceptance set consisting of all the states� accepts L���
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For every ��regular language L over �� the timed language f��� �� j � � Lg is timed regular�
A typical example of a nonregular timed language is the language L� of Example ��
� It requires

that the time di�erence between the successive pairs of a and b form an increasing sequence� Another
nonregular language is f�a�� �� j �i� ��i � �i�g�

��� Properties of Timed Automata

The closure properties and decision problems for timed automata play an important role in their
application to veri�cation� We mention the relevant results here� and refer the reader to 	AD
��
for details�

The class of timed regular languages is closed under intersection� That is� given Tbas Ai�
it is possible to construct a Tba that accepts the intersection of L�Ai��s� The construction is a
modi�cation of the product construction for B�uchi automata�

Consider Tbas Ai � h�� Si� Si� �Ci�Ei�Fii� i � 
� �� � � �n with disjoint clock sets� The set of
clocks for the product automaton A is 
iCi� The states of A are of the form hs�� � � �sn� ki� where
each si � Si� and � � k � n� The i�th component of the tuple keeps track of the state of Ai�
and the last component is used as a counter for cycling through the accepting conditions of all
the individual automata� Initially the counter value is �� and it is incremented from k to �k � 
�
�modulo n� i� the current state of the k�th automaton is an accepting state�

The initial states of A are of the form hs�� � � �sn� �i where each si is a start state of Ai� A
transition of A is obtained by coupling the transitions of the individual automata having the same
label� Let fhsi� s

�
i� a� 
i� �ii � Ei j i � 
� � � �ng be a set of transitions� one per each automaton� with

the same label a� Corresponding to this set� there is a joint transition of A out of each state of
the form hs�� � � �sn� ki labeled with a� The new state is hs��� � � �s

�
n� ji with j � �k � 
� mod n if

sk�� � Fk��� and j � k otherwise� The set of clocks to be reset with this transition is 
i
i� and
the associated clock constraint is 
i�i�

The counter value cycles through the whole range �� � � ��n� 
� in�nitely often i� the accepting
conditions of all the automata are met� Consequently� we de�ne the accepting set for A to consist
of states of the form hs�� � � �sn� n� 
i� where sn � Fn�

The class of timed regular languages is also closed under union� However� it is not closed under
complement�

Example ��� The language accepted by the automaton of Figure � over fag is

f�a�� �� j �i � 
� �j � i� ��j � �i � 
�g�

The complement of this language cannot be characterized using a Tba� The complement needs
to make sure that no pair of a�s is separated by distance 
� Since there is no bound on the number
of a�s that can happen in a time period of length 
� keeping track of the times of all the a�s within
the past 
 time unit� would require an unbounded number of clocks�

In Section �� we give an algorithm for testing whether the language of a Tba is empty� Recall
that to test whether the language of one B�uchi automaton is contained in another� we test the
emptiness of the language of the product of the �rst automaton with the complement of the latter�
This strategy cannot be used for Tbas� as it is not possible to automatically complement a Tba�
In fact� there is no algorithm for testing whether the language of one Tba is contained in another
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Figure �� Noncomplementable automaton

�the language inclusion problem is undecidable�� The language inclusion problem is solvable if we
use deterministic Tbas as speci�cation automata�

��	 Deterministic timed automata

Recall that in the untimed case a deterministic transition table has a single start state� and from
each state� given the next input symbol� the next state is uniquely determined� We want a similar
criterion for determinism for the timed automata� given an extended state and the next input
symbol along with its time of occurrence� the extended state after the next transition should be
uniquely determined� So we allow multiple transitions starting at the same state with the same
label� but require their clock constraints to be mutually exclusive so that at any time only one of
these transitions is enabled� A timed transition table h�� S� S��C�Ei is called deterministic i�


� it has only one start state� jS�j � 
� and

�� for all s � S� for all a � �� for every pair of edges of the form hs��� a��� ��i and hs��� a��� ��i�
the clock constraints �� and �� are mutually exclusive �i�e�� �� 
 �� is unsatis�able��

A timed automaton is deterministic i� its timed transition table is deterministic� Deterministic
timed automata can be easily complemented because a deterministic timed transition table has at
most one run over a given timed word� The algorithm for checking emptiness can be used to test
whether the language of one Tba is included in the language of a deterministic Tba� More details
regarding deterministic Tbas can be found in 	AD
���

� Checking emptiness

In this section we describe an algorithm for checking the emptiness of the language of a timed
automaton� The existence of an in�nite accepting path in the underlying transition table is clearly
a necessary condition for the language of an automaton to be nonempty� However� the timing
constraints of the automaton rule out certain additional behaviors� We will show that a B�uchi
automaton can be constructed that accepts exactly the set of untimed words that are consistent
with the timed words accepted by a timed automaton�

Recall that our de�nition of timed automata allows clock constraints which involve compar�
isons with rational constants� If the clock constraints of the given automaton A involve rational
constants� we can multiply each constant by the least common multiple of denominators of all
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the constants appearing in the clock constraints of A� This transformation leaves the untimed
language unchanged� Consequently� for checking emptiness� we can restrict ourselves to timed
automata whose clock constraints involve only integer constants�

��� Clock Regions

At every point in time the future behavior of a timed transition table is determined by its state
and the values of all its clocks� This motivates the following de�nition� for a timed transition table
h�� S� S��C�Ei� an extended state is a pair hs� 	i where s � S and 	 is a clock interpretation for
C� Since the number of such extended states is in�nite �in fact� uncountable�� we cannot possibly
build an automaton whose states are the extended states of A� But if two extended states with
the same A�state agree on the integral parts of all clock values� and also on the ordering of the
fractional parts of all clock values� then the runs starting from the two extended states are very
similar� The integral parts of the clock values are needed to determine whether or not a particular
clock constraint is met� whereas the ordering of the fractional parts is needed to decide which clock
will change its integral part �rst� For example� if two clocks x and y are between � and 
 in an
extended state� then a transition with clock constraint �x � 
� can be followed by a transition with
clock constraint �y � 
�� depending on whether or not the current clock values satisfy �x � y��

The integral parts of clock values can get arbitrarily large� But if a clock x is never compared
with a constant greater than c� then its actual value� once it exceeds c� is of no consequence in
deciding the allowed paths�

Now we formalize this notion� For any t � R�� fract�t� denotes the fractional part of t� and btc
denotes the integral part of t� that is� t � btc � fract�t�� We assume that every clock in C appears
in some clock constraint� For each x � C� let cx be the largest integer c such that x is compared
with c in some clock constraint appearing in E�

The equivalence relation � is de�ned over the set of all clock interpretations for C� 	�	� i� all
the following conditions hold�


� For all x � C� either b	�x�c and b	��x�c are the same� or both 	�x� and 	��x� exceed cx�

�� For all x� y � C with 	�x� � cx and 	�y� � cy � fract�	�x�� � fract�	�y�� i�
fract�	��x�� � fract�	��y���

�� For all x � C with 	�x� � cx� fract�	�x�� � � i� fract�	��x�� � ��

A clock region for A is an equivalence class of clock interpretations induced by ��
We will use 		� to denote the clock region to which 	 belongs� Each region can be uniquely

characterized by a ��nite� set of clock constraints it satis�es� For example� consider a clock in�
terpretation 	 over two clocks with 	�x� � ��� and 	�y� � ���� Every clock interpretation in 		�
satis�es the constraint �� � x � y � 
�� and we will represent this region by 	� � x � y � 
�� The
nature of the equivalence classes can be best understood through an example�

Example ��� Consider a timed transition table with two clocks x and y with cx � � and cy � 
�
The clock regions are shown in Figure ��

The role of the region equivalence can be understood by de�ning a �time�abstract� transition
relation over the extended states� For two extended states hs� 	i and hs�� 	�i� and an alphabet
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Figure �� Clock regions

symbol a� de�ne hs� 	i
a
� hs�� 	�i i� there exists a time increment t � R� and an edge hs� s�� a� 
� �i

such that 	 � t satis�es � and 	� � 	
 �� ���	 � t�� Thus� hs� 	i
a
� hs�� 	�i i� the automaton in

extended state hs� 	i can let some time elapse� and read the input symbol a to transition to hs�� 	�i�
The crucial property of the equivalence relation � is the following�

If 	��	� and hs� 	�i
a
� hs�� 	��i then there exists a clock interpretation 	

�
� such that 	

�
��	

�
�

and hs� 	�i
a
� hs�� 	��i�

Due to this property� the equivalence relation � is called a time�abstract bisimulation�
Note that there are only a �nite number of regions� Also note that for a clock constraint � of A�

if 	�	� then 	 satis�es � i� 	� satis�es �� We say that a clock region � satis�es a clock constraint
� i� every 	 � � satis�es �� Each region can be represented by specifying

�
� for every clock x� one clock constraint from the set

fx � c j c � �� 
� � � �cxg 
 fc� 
 � x � c j c � 
� � � �cxg 
 fx � cxg�

��� for every pair of clocks x and y such that c� 
 � x � c and d � 
 � y � d appear
in �
� for some c� d� whether fract�x� is less than� equal to� or greater than fract�y��

By counting the number of possible combinations of equations of the above form� we conclude that
the number of clock regions is bounded by 	jCj! � �jCj �"x�C��cx � ���� Thus� the number of clock
regions is exponential in the encoding of the clock constraints�

��� The region automaton

The �rst step in the decision procedure for checking emptiness is to construct a transition table
whose paths mimic the runs of A in a certain way� We will denote the desired transition table by
R�A�� the region automaton of A� A state of R�A� records the state of the timed transition table
A� and the equivalence class of the current values of the clocks� It is of the form hs� �i with s � S
and � being a clock region� The intended interpretation is that whenever the extended state of A
is hs� 	i� the state of R�A� is hs� 		�i� The region automaton starts in some state hs�� 		��i where
s� is a start state of A� and the clock interpretation 	� assigns � to every clock� The transition
relation of R�A� is de�ned so that the intended simulation is obeyed� It has an edge from hs� �i to
hs�� ��i labeled with a i� A in state s with the clock values 	 � � can make a transition on a to the
extended state hs�� 	�i for some 	� � ���

For a timed transition table A � h�� S� S��C�Ei� the corresponding region automaton R�A� is
a transition table over the alphabet ��
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� The states of R�A� are of the form hs� �i where s � S and � is a clock region�

� The initial states are of the form hs�� 		��i where s� � S� and 	��x� � � for all x � C�

� R�A� has an edge hhs� �i� hs�� ��i� ai i� hs� 	i
a
� hs�� 	�i for some 	 � � and some 	� � ���

Example ��� Consider the timed automaton A� shown in Figure �� The alphabet is fa� b� c� dg�
Every state of the automaton is an accepting state� The corresponding region automaton R�A��
is also shown� Only the regions reachable from the initial region hs�� 	x � y � ��i are shown� Note
that cx � 
 and cy � 
� The timing constraints of the automaton ensure that the transition from
s� to s� is never taken� The only reachable region with state component s� satis�es the constraints
	y � 
� x � 
�� and this region has no outgoing edges� Thus the region automaton helps us in
concluding that no transitions can follow a b�transition�

Let us establish a correspondence between the runs of A and the runs of R�A�� For a run
r � �s� 	� of A of the form

r � hs�� 	�i
����
��

hs�� 	�i
����
��

hs�� 	�i
����
��

� � �

de�ne its projection 	r� � �s� 		�� to be the sequence

	r� � hs�� 		��i
���� hs�� 		��i

���� hs�� 		��i
���� � � �

From the de�nition of the edge relation for R�A�� it follows that 	r� is a run of R�A� over �� Since
time progresses without bound along r� every clock x � C is either reset in�nitely often� or from a
certain time onwards it increases without bound� Hence� for all x � C� for in�nitely many i � ��
		i� satis�es 	�x � �� � �x � cx��� This prompts the following de�nition� a run r � �s� �� of the
region automaton R�A� is progressive i� for each clock x � C� there are in�nitely many i � � such
that �i satis�es 	�x � �� � �x � cx��� The correspondence between the runs of A and the runs of
R�A� can be made precise now� if r is a progressive run of R�A� over � then there exists a time
sequence � and a run r� of A over ��� �� such that r equals 	r���

Example ��� Consider the region automaton R�A�� of Figure �� Every run r of R�A�� has a
su�x of one of the following three forms� �i� the automaton cycles between the regions hs�� 	y �
� � x � 
�i and hs�� 	� � y � x � 
�i� �ii� the automaton stays in the region hs�� 	� � y � 
 � x�i
using the self�loop� or �iii� the automaton stays in the region hs�� 	x � 
� y � 
�i�

Only the case �iii� corresponds to the progressive runs� For runs of type �i�� even though y gets
reset in�nitely often� the value of x is always less than 
� For runs of type �ii�� even though the
value of x is not bounded� the clock y is reset only �nitely often� and yet� its value is bounded�
Thus every progressive run of A� corresponds to a run of R�A�� of type �iii��

��� The untiming construction

For a timed automaton A� its region automaton can be used to recognize Untime	L�A��� For this
purpose� we need to add acceptance conditions so that only progressive runs satisfy the accepting
conditions� This leads to the main theorem for timed automata�
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Given a Tba A � h�� S� S��C�E�Fi� there exists a B�uchi automaton over � which

accepts Untime	L�A���

or equivalently�

If a timed language L is timed regular then Untime�L� is ��regular�

Example ��� Let us consider the region automaton R�A�� of Example ��� again� Since all states
of A� are accepting� from the description of the progressive runs in Example ��� it follows that
the transition table R�A�� can be changed to a B�uchi automaton by choosing the accepting set to
consist of a single region hs�� 	x � 
� y � 
�i� Consequently

Untime	L�A��� � L	R�A��� � ac �ac�� d��

To check whether the language of a given Tba is empty� we can check for the emptiness
of the language of the corresponding B�uchi automaton� Given a timed B�uchi automaton A �

h�� S� S��C�E�Fi the emptiness of L�A� can be checked in time O	�jSj� jEj���j�	A
j�� where j��A�j
is the length of the encoding of the clock constraints of A� This blow�up in the length of clock
constraints seems unavoidable� technically� the problem of checking emptiness of a Tba is Pspace�
complete� Note that the source of this complexity is not the choice of R� to model time� The
Pspace lower bound holds even if we leave the syntax of timed automata unchanged� but use the
discrete domain N to model time�

� Veri�cation

In this section we discuss how to use the theory of timed automata to prove correctness of �nite�state
real�time systems�

	�� Veri�cation using timed automata

For a timed process �A�L�� L is a timed language over P�A�� A timed regular process is one for
which the set L is a timed regular language� and can be represented by a timed automaton�

Finite�state systems are modeled by Tbas� The underlying transition table gives the state�
transition graph of the system� We have already seen how the clocks can be used to represent the
timing delays of various physical components� As before� the acceptance conditions correspond to
the fairness conditions� Notice that the progress requirement imposes certain fairness requirements
implicitly� Thus� with a �nite�state process P � we associate a Tba AP such that L�AP � consists
of precisely the timed traces of P �

An implementation is described as a composition of several components� Each component
should be modeled as a timed regular process Pi � �Ai� L�Ai��� It is possible to construct a Tba
AI which represents the composite process 	ki Pi�� However� in the veri�cation procedure we are
about to outline� we will not explicitly construct the implementation automaton AI �

The speci�cation of the system is given as another timed regular language S over the alphabet
P�A�� where A � 
iAi� The system is correct i� L�AI� � S� If S is given as a deterministic
Tba AS � then we can solve this algorithmically� Consider Tbas Ai � hP�Ai�� Si� Si��Ci�Ei�Fii�







i � 
� � � �n� and the deterministic Tba AS � hP�A�� S�� S�� �C��E��F�i� Assume without loss of
generality that the clock sets Ci� i � �� � � �n� are disjoint�

The veri�cation algorithm constructs the transition table of the region automaton corresponding
to the product A of the timed transition tables of Ai with AS � The set of clocks of A is C � 
iCi�
The states of A are of the form hs�� � � �sni with each si � Si� The initial states of A are of the
form hs�� � � �sni with each si � Si� � A transition of A is obtained by coupling the transitions of the
individual automata labeled with consistent event sets� The transitions of the region automaton
R�A� are de�ned from the edges of A as described in Section �� To test the desired inclusion� the
algorithm searches for a cycle in the region automaton such that

�
� it is accessible from an initial state of R�A��
��� it satis�es the progressiveness condition� for each clock x � C� the cycle contains at

least one region satisfying 	�x � �� � �x � cx���
��� since our de�nition of the composition requires that we consider only those in�nite

runs in which each automaton participates in�nitely many times� we require that�
for each 
 � i � n� the cycle contains a transition in which the automaton Ai

participates�
��� the fairness requirements of all implementation automata Ai are met� for each


 � i � n� the cycle contains some state whose i�th component belongs to the
accepting set Fi�

��� the fairness condition of the speci�cation is not met� the cycle does not contain a
state whose ��th component belongs to the accepting set F��

The desired inclusion does not hold i� a cycle with all the above conditions can be found�

	�� Veri�cation example

Let us revisit the railroad controller example� We introduce the following timing characteristics
to the model of Section ���� The train is required to send the signal approach at least � minutes
before it enters the crossing� Furthermore� we know that the maximum delay between the signals
approach and exit is � minutes� The gate responds to the signal lower by closing within 
 minute�
and responds to the signal raise within 
 to � minutes� The response time of the controller to the
approach signal is 
 minute� and to the signal exit is at most 
 minute� These constraints can easily
be expressed using clocks� and the revised model is shown in Figure �g�timedgrc� As before� the
implementation timed automaton AI is the parallel composition Train k Gate k Controller�

In addition to the safety requirement� we can now consider the real�time liveness requirement
that the gate is never closed at a stretch for more than 
� minutes� The real�time liveness property
is speci�ed by the timed automaton of Figure 
�� The automaton requires that every down be
followed by up within 
� minutes� Note that the automaton is deterministic� and hence can be
complemented� Furthermore� observe that the acceptance condition is not necessary� we can include
state s� also in the acceptance set� This is because the progress of time ensures that the self�loop
on state s� with the clock constraint �x � 
�� cannot be taken inde�nitely� and the automaton will
eventually visit state s��

The correctness of AI against the two speci�cations can be checked separately as outlined in
Section �� Observe that though the safety property is purely a qualitative property� it does not
hold if we discard the timing requirements� In case of both properties� the region automaton of
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� Train�gate controller with timing

the product has only a few reachable vertices �approximately 
���� and all the tools can verify the
property quickly �less than 
 minute��

	�� Heuristics

The number of regions in a region automaton is exponential in the total number of clocks� and is
proportional to the magnitudes of constants in the clock constraints� To alleviate this blow�up a
variety of heuristics have been proposed�

Manipulating with Zones

The �rst heuristic attempts to group regions together� Consider a timed transition table A �
h�� S� S��C�Ei� A clock zone is a union of one or more clock regions� The zone automaton Z�A� is
a transition table over the alphabet �

� The states of Z�A� are of the form hs� �i where s � S and � is a clock zone�

� The initial states are of the form hs�� 		��i where s� � S� and 	��x� � � for all x � C�

� Z�A� has an edge hs� �i
a
� hs�� ��i i� the zone �� contains all clock interpretations 	� such

that hs� 	i
a
� hs�� 	�i for some 	 � ��
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� Reachable zone automaton

Example ��� Let us revisit the region construction of Example ��� �see Figure ��� The reachable
part of the zone automaton is shown in Figure ���� Note that� unlike the region automaton� in the
zone automaton� each vertex has at most one successor per input symbol� The number of vertices
of Z�A�� is less than the number of vertices of R�A���

The emptiness of the language of a timed automaton A can be checked by searching for cycles
in the zone automaton Z�A�� Theoretically� the number of zones is exponential in the number of
regions� and thus� the zone automaton may be exponentially bigger than the region automaton�
However� in practice� the zone automaton has fewer reachable vertices� and thus� leads to an
improved performance� Furthermore� while the number of clock regions grows with the magnitudes
of the constants used in the clock constraints� experience indicates that the number of reachable
zones is relatively insensitive to the magnitudes of constants�

Observe that if the timed transition table A has n clocks� then each zone is a subset of the
n�dimensional euclidean space R�n� Each zone can be represented by linear inequalities over the
clock variables� Let us call a zone simple if it can be described as a conjunction of clock constraints
and formulas of the form x � y � c� x � y � c� x � y � c� and x � y � c for clocks x and y� and
constant c� Thus� a simple zone is convex� and is described by comparing either a clock value� or
di�erence of two clocks� with constants� The structure of timed transition tables ensures that
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If a vertex hs� �i of the zone automaton Z�A� is reachable from an initial state� then
the zone � is a ��nite� union of simple zones�

A simple zone can be nicely represented by a structure called di�erence�bound�matrix �DBM� �see
	Dil�
a� for details�� While searching for cycles in the zone automaton� each zone is maintained
as a union of DBMs� and the edges of the zone automaton are computed on the �y� The DBM
representation allows e�cient computation of the successors of a vertex� Furthermore� the DBM
representation is canonical� hence� testing equality between two zones is easy�

The tool Kronos allows veri�cation of timed automata based on search using zones� Instead of
deterministic timed automata as speci�cations� Kronos uses timed ��calculus as the speci�cation
language� We refer the reader to 	HNSY
�� for the theory underlying Kronos� and to 	NOSY
��
for the description of the tool and its applications�

Approximations

A variety of abstract interpretation techniques can be used to improve the performance of searching
in the zone automaton� As we indicated� manipulating with simple zones is e�cient� The vertices
of the zone automaton contain unions of simple zones� The search can be speeded up by replacing
a union of simple zones by the smallest simple zone containing them� For instance� the zone
x � 
 � � � x � � is replaced by the simple zone x � ��

Formally� for a timed transition table A� the approximate�zone automaton Z��A� is a transition
table as follows� A state of Z��A� is a pair hs� �i consisting of a state s � S and a simple zone ��
A state hs� �i is initial if s � S� and � contains the single clock interpretation that assigns � to all
clocks� Z��A� has an edge hs� �i

a
� hs�� ��i i� the zone �� is the smallest simple zone that contains

all clock interpretations 	� such that hs� 	i
a
� hs�� 	�i for some 	 � �� In other words� if the zone

automaton has the edge hs� �i
a
� hs�� ���i� and �� is the convex hull of ��� then Z��A� has the edge

hs� �i
a
� hs�� ��i�

The transition table Z��A� approximates Z�A�� The acceptance conditions on Z�A� are trans�
lated to the acceptance conditions on Z��A�� Thus� instead of searching Z�A� we can search for
cycles in Z��A�� Note that searching in the approximate�zone automaton Z��A� can be done
e�ciently manipulating DBMs�

If the language of Z��A� is empty then so is the language of Z�A�� and so is the language
of A �when A represents the product of the components together with the complement of the
speci�cation� this means that the system satis�es its speci�cation�� However� when the language
of Z��A� is nonempty� we cannot conclude nonemptiness of the language of Z�A�� In this case�
we may need to perform the search in Z�A�� More e�ective techniques that perform repeated
search using only simple zones have been developed� See 	Won
�� for a variety of approximation
techniques for zone automata� and experimental results on its applications�

Iterative Veri�cation

Consider a Tba A � h�� S� S��C�Ei� The computational complexity of the veri�cation problem
depends upon the number of clocks and magnitudes of constants in clock constraints� The iterative
approximation strategy considers Tbas A�� A�� A�� � � � and in iteration i� tests the emptiness of
L�Ai�� The approximations satisfy the following property�
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� Each Tba Ai is an approximation of A� L�A� � L�Ai��
� Each Tba Ai has the same state�transition structure as A� but simpler clock con�

straints than A �i�e� the constraints on edges of Ai use less number of clocks� or
constants with smaller magnitudes��

� As i increases� Ai is a better approximation of A� L�Ai��� � L�Ai��
� The approximations converge in �nite number number of iterations� for some i�

L�A� � L�Ai��

Speci�cally� A� has the same state�transition structure as A except that every clock constraint of A
is simpli�ed to true� Testing emptiness of A� is easy� we simply need to search for a reachable cycle
that contains an accepting state� If L�A�� is empty then so is L�A�� and we are done� If not� then
there is a word � and an accepting run s of A� over �� The next step is to test whether there exists
a time sequence � such that A has a run over ��� �� that follows the state�sequence s� This problem
is computationally easy� and can be solved e�ciently in polynomial�time� If there is such a run�
then � � Untime�L�A��� and we can infer that L�A� is nonempty� If not� then the algorithm needs
to compute the next approximation A�� The approximation is computed by adding a minimal set
of constraints of A to A� so that A� has no run corresponding to s� A variety of heuristics are used
for this purpose� The next example illustrates the ideas�

Example ��� Consider the Tba A shown in Figure ��� �the alphabet is unary� and � is the
accepting state�� The automaton uses � clocks� and the largest constant is ��� Thus� the region
automaton has large number of vertices� Observe that L�A� is empty�

The �rst approximation is A�� The language L�A�� is nonempty� and the accepting run is s �
�
������ This run s is checked against the constraints of A� and the run is found to be inconsistent
�i�e� A cannot follow the run s�� The algorithm then computes a minimal set C� � fx� y� zg of
clocks such that thee constraints on the clocks in C� are su�cient for the inconsistency of s� In
this case� C� � fy� zg� Next� the algorithm attempts to relax the constraints� lower bounds can be
decreased� and upper bounds can be increased� In particular� y � 
� can be replaced by y � ���
Also� it is possible to divide all constants by the greatest common divisor of all the constants� This
leads to the approximation A�� The automaton A� has only � clocks� and the constants are small�
The region automaton of A� is used to conclude that L�A�� is empty� and this implies L�A� is
empty�

Thus at each step of the iteration� either we can conclude the emptiness or nonemptiness of
L�A�� or need to add additional constraints �with relaxed bounds� to obtain a better approximation�
For precise details of the iterative scheme� see 	AIKY
��� This heuristic is implemented in the tool
Cospan �see 	AIKY
�� for experimental results�� In many cases� the original emptiness question
can be answered in a few iterations� Another advantage of the method is that in many cases the
algorithm computes the tight bounds that are needed to prove the speci�cation�

� Discussion

In this chapter� we have shown how to extend the theory of �nite automata to incorporate timing�
and illustrated its application to veri�cation of real�time systems� Various tools such as Cospan�
Hsis� and Kronos incorporate timing veri�cation based on these principles� For further details on
the implementations and experimental results the reader is referred to 	NOSY
�� AIKY
�� Won
���
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Related work

There is an extensive literature on veri�cation of timed systems� Examples of formalisms that
admit modeling real�time systems include timed Petri nets 	Ram���� timed transition systems
	Ost
�� HMP

�� timed I#O automata 	LA
��� process algebras such timed CSP 	RR��� and ATP
	NRSV
��� and Modecharts 	JM���� The algorithmic techniques developed for timed automata
apply to these other models also�

In this paper� we used automata not only to describe the system� but also to write correctness
requirements� Alternatively� real�time requirements can be written as formulas of timed temporal
logics� Model�checking algorithms for various timed temporal logics have been developed� examples
include discrete linear�time logics 	JM��� Ost
�� AH
��� dense linear�time logics 	AFH

�� discrete
branching�time logics 	EMSS
�� CC
��� and dense branching�time logics 	ACD
�� HNSY
��

We have considered only algorithmic methods for veri�cation that can be fully automated� and
apply only to �nite�state systems� Real�world problems need decomposition of the given veri�cation
problem into subproblems to which the veri�cation algorithms can be applied� This decomposition
requires a careful modeling that admits compositional and hierarchical reasoning� Such issues are
discussed in� for instance� 	AL

� LV
�� Sha
���

Hybrid systems

Recently� the model of timed automata has been extended so that continuous variables other clocks�
such as temperature and imperfect clocks� can be modeled� Hybrid automata are useful in modeling
discrete controllers embedded within continuously changing environment� Verifying correctness of
hybrid automata is computationally more expensive than of timed automata� but in simple cases�
such as the railroad controller� it allows reasoning with parametric bounds� We refer the reader to
	ACH�
�� for an introduction to hybrid automata� and to 	HH
�� for an introduction to the veri�er
HyTech�
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